JP5548784B2 - Secondary battery deterioration estimation device - Google Patents

Secondary battery deterioration estimation device Download PDF

Info

Publication number
JP5548784B2
JP5548784B2 JP2012546909A JP2012546909A JP5548784B2 JP 5548784 B2 JP5548784 B2 JP 5548784B2 JP 2012546909 A JP2012546909 A JP 2012546909A JP 2012546909 A JP2012546909 A JP 2012546909A JP 5548784 B2 JP5548784 B2 JP 5548784B2
Authority
JP
Japan
Prior art keywords
secondary battery
deterioration
resistance value
positive electrode
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012546909A
Other languages
Japanese (ja)
Other versions
JPWO2012073997A1 (en
Inventor
由騎 冨永
幸一郎 武政
彰博 姉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012546909A priority Critical patent/JP5548784B2/en
Publication of JPWO2012073997A1 publication Critical patent/JPWO2012073997A1/en
Application granted granted Critical
Publication of JP5548784B2 publication Critical patent/JP5548784B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、2次電池の劣化推定装置に関する。
本願は、2010年11月30日に、日本に出願された特願2010−266899号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a secondary battery deterioration estimation device.
This application claims priority on November 30, 2010 based on Japanese Patent Application No. 2010-266899 for which it applied to Japan, and uses the content here.

従来、例えば、リチウムイオン電池の内部抵抗を、溶液抵抗に係る成分と、正極の反応抵抗の成分と、負極の反応抵抗の成分とから構成されると定義して、予め、電池温度、電池電圧、リチウムイオン電池の劣化状態などと、各成分との対応関係を示すデータを記憶しておき、このデータを参照してリチウムイオン電池の内部抵抗および最大出力を推定する出力計が知られている(例えば、特許文献1参照)。   Conventionally, for example, the internal resistance of a lithium ion battery is defined as being composed of a component related to solution resistance, a reaction resistance component of the positive electrode, and a reaction resistance component of the negative electrode. An output meter is known that stores data indicating the correspondence between each component and the deterioration state of the lithium ion battery, and estimates the internal resistance and maximum output of the lithium ion battery with reference to this data. (For example, refer to Patent Document 1).

この出力計は、各時点での電池温度や電池電圧の検出結果に基づいて予め記憶しているデータを検索して、リチウムイオン電池の内部抵抗および最大出力を推定している。   This output meter searches the data stored in advance based on the battery temperature and battery voltage detection results at each time point to estimate the internal resistance and maximum output of the lithium ion battery.

特開平9−117001号公報Japanese Patent Laid-Open No. 9-11001

ところで、上記従来技術に係る出力計によれば、リチウムイオン電池の劣化状態に依存する成分を負極の反応抵抗の成分のみとして内部抵抗および最大出力を推定するだけであるから、リチウムイオン電池の残価値に関連する内部状態を詳細に把握することはできないという問題が生じる。   By the way, according to the output meter according to the above prior art, since the internal resistance and the maximum output are only estimated by assuming that the component depending on the deterioration state of the lithium ion battery is only the component of the reaction resistance of the negative electrode, There arises a problem that the internal state related to value cannot be grasped in detail.

つまり、上記従来技術において推定される各状態量(電池の劣化状態や内部抵抗および最大出力)は、推定時点においてリチウムイオン電池が有する性能のみを示す指標であって、これらの状態量には、推定時以降におけるリチウムイオン電池の劣化速度や寿命期間などの将来における状態の変化は考慮されていない。   That is, each state quantity (battery deterioration state and internal resistance and maximum output) estimated in the above-described prior art is an index indicating only the performance of the lithium ion battery at the time of estimation, and these state quantities include Future state changes such as the deterioration rate and lifetime of the lithium ion battery after estimation are not considered.

上記従来技術においては、リチウムイオン電池の容量(あるいは容量維持率)の劣化を推定することはできず、リチウムイオン電池の残価値に関連する将来的な容量(あるいは容量維持率)の変化を把握することはできない。   In the above prior art, it is impossible to estimate the deterioration of the capacity (or capacity retention rate) of the lithium ion battery, and to grasp the future change in capacity (or capacity maintenance ratio) related to the remaining value of the lithium ion battery. I can't do it.

したがって、推定時点においてリチウムイオン電池が有する内部抵抗および最大出力などの状態量が同一であっても、この推定時以降におけるリチウムイオン電池の劣化速度や寿命期間が内部状態に応じて変化することを考慮して、リチウムイオン電池の残価値に関連する内部状態を詳細に推定することが望まれている。   Therefore, even if the state quantities such as the internal resistance and the maximum output of the lithium ion battery at the estimated time are the same, the deterioration rate and lifetime of the lithium ion battery after this estimated time will change according to the internal state. In consideration, it is desired to estimate in detail the internal state related to the residual value of the lithium ion battery.

本発明は上記事情に鑑みてなされた。本発明は、2次電池の残価値に関連する内部状態を詳細に推定することが可能な2次電池の劣化推定装置を提供することを目的としている。   The present invention has been made in view of the above circumstances. An object of the present invention is to provide a secondary battery deterioration estimation device capable of estimating in detail an internal state related to a residual value of a secondary battery.

上記課題を解決して係る目的を達成するために、本発明の一実施態様に係る2次電池の劣化推定装置は、少なくとも、2次電池の電圧を検出する電圧検出部と、前記2次電池の電流を検出する電流検出部と、前記2次電池の温度を検出する温度検出部と、前記2次電池の使用時間を検出する時間検出部とを有し、前記2次電池の状態を検出する状態検出部と、前記2次電池の正極および負極および電解液毎の劣化度と容量維持率とに関係性を有する周波数に応じた交流インピーダンス値の単位時間当たりの変移挙動と、前記状態検出部により検出される前記2次電池の状態に基づく前記2次電池の使用履歴との対応関係を示すデータからなる変移挙動データを記憶する第1記憶部と、前記状態検出部により検出された前記2次電池の状態に基づく前記2次電池の使用履歴に応じて前記変移挙動データを参照して、前記2次電池の正極側相関抵抗値および負極側相関抵抗値を推定する相関抵抗値推定部と、前記正極側相関抵抗値および前記負極側相関抵抗値と、前記2次電池の正極および負極毎の劣化度との対応関係を示すデータからなる劣化度データを記憶する第2記憶部と、前記相関抵抗値推定部により推定された前記正極側相関抵抗値および前記負極側相関抵抗値に応じて前記劣化度データを参照して、前記2次電池の正極および負極毎の劣化度を推定する劣化度推定部と、を備える。 In order to solve the above problems and achieve the object, a secondary battery deterioration estimation apparatus according to an embodiment of the present invention includes at least a voltage detection unit that detects a voltage of the secondary battery, and the secondary battery. A current detection unit for detecting the current of the secondary battery, a temperature detection unit for detecting the temperature of the secondary battery, and a time detection unit for detecting the usage time of the secondary battery, and detecting the state of the secondary battery A state detection unit that performs, a change behavior per unit time of an AC impedance value according to a frequency having a relationship with a degree of deterioration and a capacity maintenance rate of each of the positive and negative electrodes and the electrolyte of the secondary battery , and the state A first storage unit for storing transition behavior data including data indicating a correspondence relationship with the use history of the secondary battery based on the state of the secondary battery detected by the detection unit; and the first storage unit detected by the state detection unit Based on the state of the secondary battery A correlation resistance value estimator for estimating the positive side correlation resistance value and the negative side correlation resistance value of the secondary battery with reference to the transition behavior data according to the usage history of the secondary battery, and the positive side correlation A second storage unit for storing deterioration degree data composed of data indicating a correspondence relationship between the resistance value and the negative electrode side correlation resistance value and the deterioration degree for each positive electrode and negative electrode of the secondary battery ; and the correlation resistance value estimation A deterioration level estimation unit that estimates the deterioration level of each of the positive and negative electrodes of the secondary battery with reference to the deterioration level data according to the positive side correlation resistance value and the negative side correlation resistance value estimated by the unit And comprising.

また、上記2次電池の劣化推定装置は以下のように構成されてもよい。前記変移挙動データは、前記2次電池の正極および負極毎の経時劣化成分のデータからなる第1データと、前記2次電池の正極および負極毎の通電劣化成分のデータからなる第2データとを有し、前記相関抵抗値推定部は、前記2次電池の正極および負極毎に、前記状態検出部により検出された前記2次電池の状態に基づく前記2次電池の使用履歴に応じて前記第1データおよび前記第2データを参照して、前記第1データおよび前記第2データ毎に推定した相関抵抗値を用いた加算モデルによる演算により、前記正極側相関抵抗値および前記負極側相関抵抗値を推定する。 The secondary battery deterioration estimation apparatus may be configured as follows. The transition behavior data, a positive electrode and a first data consisting of data time degradation components Fukyokugoto, second data consisting of data of energizing degraded component of the positive electrode and Fukyokugoto of the secondary battery of the secondary battery The correlation resistance value estimation unit is configured to respond to the usage history of the secondary battery based on the state of the secondary battery detected by the state detection unit for each positive electrode and negative electrode of the secondary battery. wherein the first data and with reference to the second data, the calculation by adding model using pre-Symbol correlation resistance value estimated for each first data and the second data, the positive electrode side correlation resistance value and the negative electrode Te Estimate the side correlation resistance value.

また、上記2次電池の劣化推定装置は以下のように構成されてもよい。前記正極側相関抵抗値および前記負極側相関抵抗値は、前記2次電池の交流インピーダンスの実数部と虚数部とによる2次元座標上での円弧状の曲線を示す正極成分および負極成分毎の極大値に対応する周波数での前記交流インピーダンス値である。 The secondary battery deterioration estimation apparatus may be configured as follows. The positive electrode side correlation resistance and the negative electrode side correlation resistance, the secondary battery of the AC impedance of the real part and shows the arc-shaped curve in the two-dimensional coordinate system by the imaginary part positive component and the negative component per The AC impedance value at a frequency corresponding to the local maximum value.

また、上記2次電池の劣化推定装置は以下のように構成されてもよい。前記劣化度推定部は、前記2次電池の正極および負極毎の劣化度に基づき、前記正極および前記負極の劣化アンバランス度を推定する。 The secondary battery deterioration estimation apparatus may be configured as follows. The deterioration degree estimation portion, based on the degree of deterioration of the positive electrode and Fukyokugoto of the secondary battery to estimate the degradation degree of unbalance of the positive electrode and the negative electrode.

本発明の一実施形態に係る2次電池の劣化推定装置によれば、2次電池の状態(電圧、電流、温度、使用時間など)に基づく使用履歴から、変移挙動データと劣化度データとにより、2次電池の劣化速度や寿命期間などの残価値に関連する内部状態として各正極および負極毎の劣化度を推定することができる。これらの推定結果に基づいて、2次電池の劣化速度や寿命期間などの残価値を適切かつ精度良く推定することができる。   According to the secondary battery deterioration estimation device according to an embodiment of the present invention, from the usage history based on the state (voltage, current, temperature, usage time, etc.) of the secondary battery, the transition behavior data and the deterioration degree data are used. As the internal state related to the remaining value such as the deterioration rate and lifetime of the secondary battery, the deterioration degree for each positive electrode and each negative electrode can be estimated. Based on these estimation results, the remaining value such as the deterioration rate and lifetime of the secondary battery can be estimated appropriately and accurately.

さらに、各正極および負極毎の劣化度の推定には、交流インピーダンス分析を応用して得られる変移挙動データを用いることで、例えば車両に搭載された2次電池を構成する複数のセルのそれぞれ(つまり、単セル毎)に対して実際に交流インピーダンス測定機によって測定を行なう場合に比べて、装置構成に要する費用がかさむことを防止することができる。   Furthermore, in order to estimate the degree of deterioration for each positive electrode and each negative electrode, by using transition behavior data obtained by applying AC impedance analysis, for example, each of a plurality of cells constituting a secondary battery mounted on a vehicle ( That is, it is possible to prevent the cost required for the apparatus configuration from increasing compared to the case where the measurement is actually performed with respect to each single cell) using an AC impedance measuring machine.

しかも、実際に交流インピーダンス測定機によって測定を行なうだけでは把握することが困難である各劣化度と容量維持率と交流インピーダンス値の単位時間当たりの変移挙動との関連性を2次電池の使用履歴から取得することができ、各正極および負極毎の劣化度を容易に推定することができる。   Moreover, the usage history of the secondary battery shows the relationship between the degree of deterioration, the capacity maintenance ratio, and the transition behavior of the AC impedance value per unit time, which is difficult to grasp only by actually measuring with an AC impedance measuring device. Therefore, the degree of deterioration for each positive electrode and each negative electrode can be easily estimated.

さらに、本発明の別の一実施形態に係る2次電池の劣化推定装置によれば、各正極および負極毎の経時劣化成分と通電劣化成分とを独立に把握することができ、2次電池の劣化速度や寿命期間などの残価値に関連する内部状態として各正極および負極毎の劣化度を、より詳細に推定することができる。   Furthermore, according to the secondary battery deterioration estimation device according to another embodiment of the present invention, the time-dependent deterioration component and the conduction deterioration component for each positive electrode and negative electrode can be grasped independently. The degree of deterioration for each positive electrode and each negative electrode can be estimated in more detail as the internal state related to the residual value such as the deterioration rate and the lifetime.

また、本発明のさらに別の一実施形態に係る2次電池の劣化推定装置によれば、2次電池の正極側相関抵抗値および負極側相関抵抗値を容易に推定することができる。   Moreover, according to the secondary battery deterioration estimation device according to another embodiment of the present invention, the positive-side correlation resistance value and the negative-side correlation resistance value of the secondary battery can be easily estimated.

そして、本発明のさらに別の一実施形態に係る2次電池の劣化推定装置によれば、2次電池の劣化速度や寿命期間などの残価値に関連する内部状態として正極および負極の劣化アンバランス度を推定することができる。この推定結果に基づいて、2次電池の劣化速度や寿命期間などの残価値を適切かつ精度良く推定することができる。   According to the secondary battery deterioration estimation apparatus according to still another embodiment of the present invention, the deterioration imbalance between the positive electrode and the negative electrode is used as an internal state related to the residual value such as the deterioration rate and lifetime of the secondary battery. The degree can be estimated. Based on this estimation result, it is possible to estimate the residual value such as the deterioration rate and lifetime of the secondary battery appropriately and accurately.

本発明の一実施形態に係る2次電池の劣化推定装置の構成図である。It is a block diagram of the deterioration estimation apparatus of the secondary battery which concerns on one Embodiment of this invention. 同実施形態に係る交流インピーダンス分析にて作成されるCole‐Cole Plot図の一例である。It is an example of a Cole-Cole Plot diagram created by AC impedance analysis according to the embodiment. 同実施形態に係る2次電池の各正極および負極の電位と充電量との対応関係の例を示す図である。It is a figure which shows the example of the correspondence of the electric potential of each positive electrode of the secondary battery which concerns on the same embodiment, and a negative electrode, and charge amount. 同実施形態に係る2次電池の相関抵抗値増加率と経過時間tのルート値(=√t)との対応関係の例を示す図である。It is a figure which shows the example of the correspondence of the correlation resistance value increase rate of the secondary battery which concerns on the same embodiment, and the root value (= √t) of the elapsed time t. 同実施形態に係る2次電池の劣化推定装置の動作を示すフローチャートである。特に、図5は、蓄電装置の使用履歴の演算結果に応じて、変移挙動マップと劣化度マップとを参照して、各正極および負極および電解液毎の劣化度を推定する動作のフローチャートである。It is a flowchart which shows operation | movement of the deterioration estimation apparatus of the secondary battery which concerns on the same embodiment. In particular, FIG. 5 is a flowchart of an operation for estimating the degree of deterioration for each of the positive electrode, the negative electrode, and the electrolyte with reference to the transition behavior map and the deterioration degree map according to the calculation result of the usage history of the power storage device. .

以下、本発明の一実施形態に係る2次電池の劣化推定装置について添付図面を参照しながら説明する。   Hereinafter, a secondary battery deterioration estimation apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

同実施形態に係る2次電池の劣化推定装置10は、例えば図1に示すように、リチウムイオン2次電池などの蓄電装置11と、状態検出部12と、内部状態推定部13と、記憶部14と、抵抗推定部15と、開路電圧推定部16と、残容量推定部17とを備える。   As shown in FIG. 1, for example, the secondary battery deterioration estimation device 10 according to the embodiment includes a power storage device 11 such as a lithium ion secondary battery, a state detection unit 12, an internal state estimation unit 13, and a storage unit. 14, a resistance estimation unit 15, an open circuit voltage estimation unit 16, and a remaining capacity estimation unit 17.

状態検出部12は、例えば、蓄電装置11から負荷(図示略)へと供給される放電電流及び外部から蓄電装置11に供給される充電電流からなる電流IBを検出する電流センサ21と、蓄電装置11の端子電圧VBを検出する電圧センサ22と、蓄電装置11の温度TBを検出する温度センサ23と、計時を行なうタイマー24とを備える。   The state detection unit 12 includes, for example, a current sensor 21 that detects a current IB including a discharge current supplied from the power storage device 11 to a load (not shown) and a charging current supplied from the outside to the power storage device 11, and a power storage device 11 includes a voltage sensor 22 that detects a terminal voltage VB of 11, a temperature sensor 23 that detects a temperature TB of the power storage device 11, and a timer 24 that counts time.

内部状態推定部13は、例えば、相関抵抗値推定部31と、劣化度推定部32とを備えている。   The internal state estimation unit 13 includes, for example, a correlation resistance value estimation unit 31 and a deterioration degree estimation unit 32.

また、記憶部14は、例えば、変移挙動マップを記憶する第1記憶部41と、劣化度マップを記憶する第2記憶部42とを備えている。   The storage unit 14 includes, for example, a first storage unit 41 that stores a transition behavior map and a second storage unit 42 that stores a deterioration degree map.

相関抵抗値推定部31は、状態検出部12の各センサ21,22,23から出力される検出結果およびタイマー24から出力される計時結果(蓄電装置11の通電期間である使用時間と、蓄電装置11の非通電期間である経過時間となど)と、残容量推定部17から出力される残容量SOCの推定結果となどからなる蓄電装置11の状態に基づいて、蓄電装置11の使用履歴を演算する。   The correlation resistance value estimation unit 31 includes detection results output from the sensors 21, 22, 23 of the state detection unit 12 and timing results output from the timer 24 (the usage time that is the energization period of the power storage device 11 and the power storage device). 11) and the usage history of the power storage device 11 is calculated based on the state of the power storage device 11 including the estimation result of the remaining capacity SOC output from the remaining capacity estimation unit 17 and the like. To do.

そして、相関抵抗値推定部31は、蓄電装置11の使用履歴の演算結果に応じて、第1記憶部41に記憶されている変移挙動マップを参照して、蓄電装置11の正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値を推定する。   Then, the correlation resistance value estimation unit 31 refers to the transition behavior map stored in the first storage unit 41 according to the calculation result of the use history of the power storage device 11, and the positive side correlation resistance value of the power storage device 11. The negative electrode side correlation resistance value and the electrolyte solution correlation resistance value are estimated.

なお、記憶部14の第1記憶部41に記憶されている変移挙動マップは、蓄電装置11の各正極および負極および電解液毎の劣化度と容量維持率とに関係性を有する周波数に応じた交流インピーダンス値の単位時間当たりの変移挙動と、蓄電装置11の状態に基づく蓄電装置11の使用履歴との対応関係を示すデータである。   In addition, the transition behavior map memorize | stored in the 1st memory | storage part 41 of the memory | storage part 14 respond | corresponded to the frequency which has a relationship with the deterioration degree and capacity retention rate for each positive electrode of the electrical storage apparatus 11, and every electrolyte solution. This is data indicating the correspondence between the transition behavior per unit time of the AC impedance value and the usage history of the power storage device 11 based on the state of the power storage device 11.

正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値は、蓄電装置11の交流インピーダンスの実数部と虚数部とによる2次元座標(所謂交流インピーダンス分析によって得られるCole‐Cole Plot図)上での各成分に関連する抵抗値である。   The positive side correlation resistance value, the negative side correlation resistance value, and the electrolyte correlation resistance value are two-dimensional coordinates based on the real part and imaginary part of the AC impedance of the power storage device 11 (Cole-Cole Plot diagram obtained by so-called AC impedance analysis). The resistance value associated with each component above.

なお、各成分に関連する抵抗値の具体例は、例えば蓄電装置11の種別や構成などに応じて適宜に設定される。   A specific example of the resistance value related to each component is appropriately set according to, for example, the type and configuration of the power storage device 11.

例えば、正極側相関抵抗値は、図2に示すCole‐Cole Plot図において、蓄電装置11の正極に起因する正極成分Pに関連する抵抗値であって、例えば円弧状の曲線を示す正極成分Pの極大値に対応する周波数での交流インピーダンス値(虚数部)PRとされている。   For example, in the Cole-Cole Plot diagram shown in FIG. 2, the positive correlation resistance value is a resistance value related to the positive electrode component P caused by the positive electrode of the power storage device 11, and is, for example, the positive electrode component P showing an arcuate curve. AC impedance value (imaginary part) PR at a frequency corresponding to the local maximum value.

この周波数は、例えば蓄電装置11の正極の劣化度と容量維持率とに対して強い関係性を有する周波数である。   This frequency is, for example, a frequency having a strong relationship with the degree of deterioration of the positive electrode of the power storage device 11 and the capacity maintenance rate.

例えば、負極側相関抵抗値は、図2に示すCole‐Cole Plot図において、蓄電装置11の負極に起因する負極成分Nに関連する抵抗値であって、例えば円弧状の曲線を示す負極成分Nの極大値に対応する周波数での交流インピーダンス値(虚数部)NRとされている。   For example, in the Cole-Cole Plot diagram illustrated in FIG. 2, the negative side correlation resistance value is a resistance value related to the negative electrode component N caused by the negative electrode of the power storage device 11 and is, for example, the negative electrode component N indicating an arcuate curve. AC impedance value (imaginary part) NR at a frequency corresponding to the local maximum value.

この周波数は、例えば蓄電装置11の負極の劣化度と容量維持率とに対して強い関係性を有する。   This frequency has a strong relationship with, for example, the degree of deterioration of the negative electrode of the power storage device 11 and the capacity retention rate.

例えば、電解液相関抵抗値は、図2に示すCole‐Cole Plot図において、蓄電装置11の電解液に起因する電解液成分Fに関連する抵抗値であって、例えば最も高い周波数での交流インピーダンス値(実数部)FRとされている。この周波数は、例えば蓄電装置11の電解液の劣化度と容量維持率とに対して強い関係性を有する。   For example, in the Cole-Cole Plot diagram shown in FIG. 2, the electrolytic solution correlated resistance value is a resistance value related to the electrolytic solution component F caused by the electrolytic solution of the power storage device 11 and is, for example, an AC impedance at the highest frequency. Value (real part) FR. This frequency has a strong relationship with, for example, the degree of deterioration of the electrolytic solution of the power storage device 11 and the capacity retention rate.

なお、交流インピーダンス分析では、蓄電装置11の負荷電流(蓄電装置11から負荷へと供給される放電電流)に重畳する交流電流周波数を変化させつつ、蓄電装置11の等価回路となる内部インピーダンスが実数部と虚数部とに分けて測定され、この測定結果から実数部と虚数部とによる2次元座標のCole‐Cole Plot図が作成される。   In the AC impedance analysis, the internal impedance that becomes an equivalent circuit of the power storage device 11 is a real number while changing the alternating current frequency superimposed on the load current of the power storage device 11 (the discharge current supplied from the power storage device 11 to the load). A Cole-Cole Plot diagram of two-dimensional coordinates with a real part and an imaginary part is created from the measurement result.

本発明に係る相関抵抗値推定部31は、交流インピーダンス分析を実行せずに、蓄電装置11の各正極および負極および電解液毎の劣化度と容量維持率とに関係性を有する周波数に応じた交流インピーダンス値による各相間抵抗値を、蓄電装置11の使用履歴の演算結果に応じて変移挙動マップを参照して推定する。   The correlation resistance value estimation unit 31 according to the present invention does not perform the AC impedance analysis, and responds to the frequency having a relationship with the degree of deterioration and the capacity maintenance rate for each positive electrode, negative electrode, and electrolytic solution of the power storage device 11. The interphase resistance value based on the AC impedance value is estimated with reference to the transition behavior map according to the calculation result of the use history of the power storage device 11.

なお、蓄電装置11の容量維持率は、例えば図3に示すように、劣化の無い初期時などにおける蓄電装置11の容量を基準(例えば、1.0)として、各時点(例えば、劣化時など)での蓄電装置11の容量の基準に対する割合(≦1.0)を示す値である。   As shown in FIG. 3, for example, as shown in FIG. 3, the capacity maintenance rate of the power storage device 11 is based on the capacity of the power storage device 11 at the initial stage without deterioration as a reference (for example, 1.0). ) Is a value indicating the ratio (≦ 1.0) of the capacity of the power storage device 11 to the reference.

また、蓄電装置11の容量は、各時点(初期時や劣化時など)において、蓄電装置11の満充電状態での所定の電位差(満充電側電位差)に対応する充電量(例えば、図3に示す各充電量A4または充電量A3など)と、満放電状態での所定の電位差(満放電側電位差)に対応する充電量(例えば、図3に示す各充電量A1または充電量A2など)との差である。   In addition, the capacity of the power storage device 11 is the amount of charge corresponding to a predetermined potential difference (full-charge side potential difference) in the fully charged state of the power storage device 11 at each time point (initial time, deterioration or the like) (for example, in FIG. Each charging amount A4 or charging amount A3, etc.) and a charging amount (for example, each charging amount A1 or charging amount A2 shown in FIG. 3) corresponding to a predetermined potential difference in the fully discharged state (full discharging side potential difference) Is the difference.

記憶部14の第1記憶部41に記憶されている変移挙動マップは、蓄電装置11の各正極および負極および電解液毎の経時劣化成分のデータからなる第1データと、蓄電装置11の各正極および負極および電解液毎の通電劣化成分のデータからなる第2データとを有している。   The transition behavior map stored in the first storage unit 41 of the storage unit 14 includes first data composed of data on the aging degradation components for each positive electrode and negative electrode of the power storage device 11 and each electrolyte, and each positive electrode of the power storage device 11. And second data consisting of data on the current-carrying deterioration component for each negative electrode and electrolyte.

相関抵抗値推定部31は、蓄電装置11の各正極および負極および電解液毎に蓄電装置11の使用履歴の演算結果に応じて第1データおよび第2データを参照して、各第1データおよび第2データ毎に抽出した各相関抵抗値を用いた加算モデルによる演算により、蓄電装置11の正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値を推定する。   The correlation resistance value estimation unit 31 refers to the first data and the second data according to the calculation result of the use history of the power storage device 11 for each positive electrode, negative electrode, and electrolytic solution of the power storage device 11, and each first data and The positive side correlation resistance value, the negative side correlation resistance value, and the electrolyte correlation resistance value of the power storage device 11 are estimated by calculation using an addition model using each correlation resistance value extracted for each second data.

例えば、下記表1は、蓄電装置11の正極の経時劣化成分のデータからなる第1データを示す。   For example, Table 1 below shows the first data composed of the data of the time-degraded component of the positive electrode of the power storage device 11.

この第1データは、例えば、正極側相関抵抗値の単位時間当たりの変移挙動に関連する係数kと、蓄電装置11の温度TBと、蓄電装置11の残容量SOCとの対応関係を示す。   The first data indicates, for example, the correspondence relationship between the coefficient k related to the transition behavior per unit time of the positive correlation resistance value, the temperature TB of the power storage device 11, and the remaining capacity SOC of the power storage device 11.

Figure 0005548784
Figure 0005548784

上記表1での係数kは、例えば、正極の経時劣化時における正極側相関抵抗値の増加率(相関抵抗値増加率)が経過時間tのルート値(=√t)に比例するとして設定された比例係数である。この係数kは、蓄電装置11の温度TBの増大に伴い、あるいは、蓄電装置11の残容量SOCの増大に伴い、増大傾向に変化するように設定されている。   The coefficient k in Table 1 is set, for example, such that the positive electrode side correlation resistance value increase rate (correlation resistance value increase rate) when the positive electrode deteriorates with time is proportional to the root value (= √t) of the elapsed time t. Proportional coefficient. The coefficient k is set so as to change in an increasing trend as the temperature TB of the power storage device 11 increases or as the remaining capacity SOC of the power storage device 11 increases.

また、例えば蓄電装置11の正極の通電時劣化成分のデータからなる第2データは、下記表2に示すように記述されている。   Further, for example, the second data including the data of the deterioration component during energization of the positive electrode of the power storage device 11 is described as shown in Table 2 below.

この第2データは、例えば、正極側相関抵抗値の単位時間当たりの変移挙動に関連する係数kと、蓄電装置11の温度TBと、蓄電装置11の電流IBとの対応関係を示す。   The second data indicates, for example, a correspondence relationship between the coefficient k related to the transition behavior per unit time of the positive correlation resistance value, the temperature TB of the power storage device 11, and the current IB of the power storage device 11.

Figure 0005548784
Figure 0005548784

上記表2での係数kは、例えば、正極の通電劣化時における正極側相関抵抗値の増加率(相関抵抗値増加率)が経過時間(使用時間)tのルート値(=√t)に比例するとして設定された比例係数である。この係数kは、蓄電装置11の温度TBの増大に伴い、あるいは、蓄電装置11の電流IBの増大に伴い、増大傾向に変化するように設定されている。   The coefficient k in Table 2 is proportional to the root value (= √t) of the elapsed time (usage time) t, for example, the rate of increase in the positive side correlation resistance value (correlation resistance value increase rate) when the positive electrode is deteriorated in energization. It is a proportionality coefficient set as The coefficient k is set so as to change in an increasing trend as the temperature TB of the power storage device 11 increases or as the current IB of the power storage device 11 increases.

相関抵抗値推定部31は、逐次繰り返す推定の処理において、例えば、前回の推定時における各相関抵抗値の推定結果を基点として、今回の推定時において状態検出部12から出力された蓄電装置11の状態の検出結果に応じて変移挙動マップから検索して得た係数kによって、今回の推定時における各相関抵抗値を推定する。そして、相関抵抗値推定部31は、この推定の処理を繰り返すことによって、蓄電装置11の使用履歴を今回の推定時の各相関抵抗値に反映させる。   The correlation resistance value estimation unit 31 performs, for example, successive iterations of the estimation process. For example, the correlation resistance value estimation unit 31 uses the estimation result of each correlation resistance value at the time of the previous estimation as a base point of the power storage device 11 output from the state detection unit 12 at the current estimation time. Each correlation resistance value at the time of the current estimation is estimated by the coefficient k obtained by searching from the transition behavior map according to the detection result of the state. Correlation resistance value estimation unit 31 repeats this estimation process to reflect the use history of power storage device 11 in each correlation resistance value at the time of the current estimation.

例えば図4に示すように、正極の経時劣化時における正極側相関抵抗値の増加率(相関抵抗値増加率)が経過時間tのルート値(=√t)に比例するとして係数kが設定された場合において、先ず、ルート値(=√t)が所定値T1となる期間の蓄電装置11の温度TBが10℃かつ蓄電装置11の残容量SOCが40%であれば、この状態に応じて検索された係数kによって正極側相関抵抗値が初期値(例えば、1)から第1推定値Y1まで増加することが推定される。   For example, as shown in FIG. 4, the coefficient k is set on the assumption that the increase rate of the positive correlation resistance value (correlation resistance increase rate) when the positive electrode deteriorates with time is proportional to the root value (= √t) of the elapsed time t. In this case, first, if the temperature TB of the power storage device 11 is 10 ° C. and the remaining capacity SOC of the power storage device 11 is 40% during the period when the root value (= √t) is the predetermined value T1, according to this state It is estimated that the positive correlation resistance value increases from the initial value (for example, 1) to the first estimated value Y1 by the retrieved coefficient k.

次に、ルート値(=√t)が所定値T2となる期間の蓄電装置11の温度TBが0℃かつ蓄電装置11の残容量SOCが40%であれば、この状態に応じて検索された係数kによって正極側相関抵抗値が前回の推定値(つまり第1推定値Y1)から第2推定値Y2まで増加することが推定される。   Next, if the temperature TB of the power storage device 11 is 0 ° C. and the remaining capacity SOC of the power storage device 11 is 40% during the period when the root value (= √t) is the predetermined value T2, the search is performed according to this state. It is estimated that the positive correlation resistance value increases from the previous estimated value (that is, the first estimated value Y1) to the second estimated value Y2 by the coefficient k.

次に、ルート値(=√t)が所定値T3となる期間の蓄電装置11の温度TBが25℃かつ蓄電装置11の残容量SOCが80%であれば、この状態に応じて検索された係数kによって正極側相関抵抗値が前回の推定値(つまり第2推定値Y2)から第3推定値Y3まで増加することが推定される。   Next, if the temperature TB of the power storage device 11 is 25 ° C. and the remaining capacity SOC of the power storage device 11 is 80% during the period when the root value (= √t) is the predetermined value T3, the search is performed according to this state. It is estimated that the positive correlation resistance value increases from the previous estimated value (that is, the second estimated value Y2) to the third estimated value Y3 by the coefficient k.

次に、ルート値(=√t)が所定値T4となる期間の蓄電装置11の温度TBが10℃かつ蓄電装置11の残容量SOCが40%であれば、この状態に応じて検索された係数kによって正極側相関抵抗値が前回の推定値(つまり第3推定値Y3)から第4推定値Y4まで増加することが推定される。   Next, if the temperature TB of the power storage device 11 is 10 ° C. and the remaining capacity SOC of the power storage device 11 is 40% during the period when the root value (= √t) is the predetermined value T4, the search is performed according to this state. It is estimated that the positive correlation resistance value increases from the previous estimated value (that is, the third estimated value Y3) to the fourth estimated value Y4 by the coefficient k.

次に、ルート値(=√t)が所定値T5となる期間の蓄電装置11の温度TBが25℃かつ蓄電装置11の残容量SOCが100%であれば、この状態に応じて検索された係数kによって正極側相関抵抗値が前回の推定値(つまり第4推定値Y4)から第5推定値Y5まで増加することが推定される。   Next, if the temperature TB of the power storage device 11 is 25 ° C. and the remaining capacity SOC of the power storage device 11 is 100% during the period when the root value (= √t) is the predetermined value T5, the search is performed according to this state. It is estimated that the positive correlation resistance value increases from the previous estimated value (that is, the fourth estimated value Y4) to the fifth estimated value Y5 by the coefficient k.

また、相関抵抗値推定部31は、例えば蓄電装置11の通電期間と非通電期間とが混在する期間にわたって各相関抵抗値を推定する場合などにおいては、非通電期間において経時劣化成分の第1データを用いて推定した各相関抵抗値と、通電期間において通電劣化成分の第2データを用いて推定した各相関抵抗値とを用いた加算モデルによる演算を行なう。   In addition, for example, when the correlation resistance value estimation unit 31 estimates each correlation resistance value over a period in which the energization period and the non-energization period of the power storage device 11 coexist, the first data of the temporal deterioration component in the non-energization period. The calculation based on the addition model using each correlation resistance value estimated by using each correlation resistance value estimated using the second data of the energization deterioration component during the energization period is performed.

この加算モデルによる演算では、例えば、逐次繰り返す推定の処理において、変移挙動マップとして第1データまたは第2データの何れを参照したかにかかわらずに、前回の推定時における変移挙動マップに基づく各相関抵抗値の推定結果を基点として、今回の推定時において状態検出部12から出力された蓄電装置11の状態の検出結果に応じて変移挙動マップから検索して得た係数kによって今回の推定時における各相関抵抗値を推定する。   In the calculation based on this addition model, for example, in the process of successive iteration estimation, each correlation based on the transition behavior map at the time of the previous estimation is performed regardless of whether the first data or the second data is referred to as the transition behavior map. Based on the estimation result of the resistance value, the coefficient k obtained by searching from the transition behavior map according to the detection result of the state of the power storage device 11 output from the state detection unit 12 at the time of the current estimation is obtained at the time of the current estimation. Each correlation resistance value is estimated.

劣化度推定部32は、相関抵抗値推定部31から出力された蓄電装置11の正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値の推定結果に応じて、第2記憶部42に記憶されている劣化度マップを参照して、蓄電装置11の各正極および負極および電解液毎の劣化度を推定する。   The deterioration degree estimation unit 32 is configured to output the second storage unit 42 according to the estimation results of the positive side correlation resistance value, the negative side correlation resistance value, and the electrolyte correlation resistance value of the power storage device 11 output from the correlation resistance value estimation unit 31. , The deterioration degree for each positive electrode and negative electrode of the power storage device 11 and each electrolyte solution is estimated.

なお、記憶部14の第2記憶部42に記憶されている劣化度マップは、蓄電装置11の各正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値と、各正極および負極および電解液毎の劣化度との対応関係を示すデータである。   Note that the deterioration degree map stored in the second storage unit 42 of the storage unit 14 includes the positive correlation coefficient value, the negative correlation resistance value, and the electrolyte correlation resistance value of the power storage device 11, the positive and negative electrodes, It is data which shows the correspondence with the deterioration degree for every electrolyte solution.

例えば、下記表3は、相関抵抗値推定部31により推定された各相間抵抗値(例えば、初期値である1を基点とした各相関抵抗値増加量)と、各正極および負極の劣化度(正極劣化度および負極劣化度)との対応関係を示す劣化度マップである。   For example, Table 3 below shows each interphase resistance value estimated by the correlation resistance value estimation unit 31 (for example, each correlation resistance value increase amount with an initial value of 1 as a base point) and the degree of deterioration of each positive electrode and negative electrode ( It is a deterioration degree map which shows a correspondence relationship with a positive electrode deterioration degree and a negative electrode deterioration degree).

Figure 0005548784
Figure 0005548784

上記表3において、正極劣化度および負極劣化度は、各相間抵抗値の増大に伴い、増大傾向に変化するように設定されている。   In Table 3 above, the positive electrode deterioration degree and the negative electrode deterioration degree are set so as to change in an increasing tendency as the interphase resistance value increases.

さらに、劣化度推定部32は、劣化度マップを参照して得られる蓄電装置11の各正極および負極毎の劣化度(正極劣化度PBおよび負極劣化度NB)に基づき、正極および負極の劣化アンバランス度B(例えば、劣化アンバランス度B=負極劣化度NB/正極劣化度PBなど)を推定する。   Furthermore, the deterioration degree estimation unit 32 determines the deterioration degree of the positive electrode and the negative electrode based on the deterioration degree (positive electrode deterioration degree PB and negative electrode deterioration degree NB) for each positive electrode and negative electrode of the power storage device 11 obtained by referring to the deterioration degree map. The degree of balance B (for example, the degree of deterioration imbalance B = the degree of negative electrode deterioration NB / the degree of positive electrode deterioration PB) is estimated.

上記数式(劣化アンバランス度B=負極劣化度NB/正極劣化度PB)に示す劣化アンバランス度Bは、B=1の状態から乖離することに伴い、つまり正極劣化度PB=負極劣化度NBの状態から乖離することに伴い、劣化度が促進されることを示している。   The deterioration unbalance degree B shown in the above formula (deterioration unbalance degree B = negative electrode deterioration degree NB / positive electrode deterioration degree PB) is accompanied by deviation from the state of B = 1, that is, positive electrode deterioration degree PB = negative electrode deterioration degree NB. It is shown that the degree of deterioration is promoted with the deviation from the state.

例えば図3に示すように、蓄電装置11の劣化が増大することに伴い、各正極および負極の電位が所定の電位に到達する満充電状態での充電量が低下傾向に変化している。この充電量の低下度合いが蓄電装置11の劣化度となる。   For example, as illustrated in FIG. 3, as the deterioration of the power storage device 11 increases, the amount of charge in a fully charged state in which the potentials of the positive and negative electrodes reach a predetermined potential changes. The degree of decrease in the amount of charge is the degree of deterioration of the power storage device 11.

そして、例えば、蓄電装置11の正極のみが劣化した場合に、劣化の無い初期時などにおける満充電側電位差(満充電状態での正極と負極との電位差)と同一の電位差を確保するためには、満充電状態での正極の電位を所定の電位Va(初期時)から電位Vb(劣化時;Vb>Va)へと過剰に増大させる必要が生じる。このため、正極の劣化が、より一層、促進されることになる。   For example, when only the positive electrode of the power storage device 11 is deteriorated, in order to ensure the same potential difference as the full charge side potential difference (potential difference between the positive electrode and the negative electrode in the fully charged state) in the initial stage where there is no deterioration. Therefore, it is necessary to excessively increase the potential of the positive electrode in the fully charged state from the predetermined potential Va (initial time) to the potential Vb (during deterioration; Vb> Va). For this reason, the deterioration of the positive electrode is further promoted.

抵抗推定部15は、電流センサ21から出力される蓄電装置11の電流IBの検出結果と、電圧センサ22から出力される蓄電装置11の端子電圧VBの検出結果とに基づき、蓄電装置11の内部抵抗を推定し、この推定結果を出力する。   Based on the detection result of the current IB of the power storage device 11 output from the current sensor 21 and the detection result of the terminal voltage VB of the power storage device 11 output from the voltage sensor 22, the resistance estimation unit 15 Estimate the resistance and output the estimation result.

開路電圧推定部16は、抵抗推定部15から出力される蓄電装置11の内部抵抗の推定結果に基づき、蓄電装置11の開路電圧(蓄電装置11の無負荷状態での端子電圧)を推定し、この推定結果を出力する。   The open circuit voltage estimation unit 16 estimates the open circuit voltage of the power storage device 11 (the terminal voltage in the no-load state of the power storage device 11) based on the estimation result of the internal resistance of the power storage device 11 output from the resistance estimation unit 15. This estimation result is output.

残容量推定部17は、予め設定された蓄電装置11の開路電圧と残容量SOCとの対応関係を示す所定のマップまたは数式などのデータを用いて、開路電圧推定部16から出力される蓄電装置11の開路電圧の推定結果に対応する残容量SOCを推定する。そして残容量推定部17はこの推定結果を出力する。   The remaining capacity estimating unit 17 uses the data such as a predetermined map or a mathematical formula indicating the correspondence between the preset open circuit voltage of the power storage device 11 and the remaining capacity SOC, and the power storage device output from the open circuit voltage estimating unit 16 The remaining capacity SOC corresponding to the estimation result of the open circuit voltage of 11 is estimated. The remaining capacity estimation unit 17 outputs the estimation result.

同実施形態に係る2次電池の劣化推定装置10は上記のように構成されている。次に、この2次電池の劣化推定装置10の動作について説明する。特に、蓄電装置11の使用履歴の演算結果に応じて、変移挙動マップと劣化度マップとを参照して、各正極および負極および電解液毎の劣化度を推定する動作について説明する。   The secondary battery deterioration estimation device 10 according to the embodiment is configured as described above. Next, the operation of the secondary battery deterioration estimation apparatus 10 will be described. In particular, an operation for estimating the degree of deterioration for each positive electrode, negative electrode, and electrolyte will be described with reference to a transition behavior map and a deterioration degree map according to the calculation result of the usage history of the power storage device 11.

先ず、例えば図5に示すステップS01においては、蓄電装置11の各種の状態(例えば、温度TB、電流IB、電圧VB、使用時間、残容量SOCなど)の検出結果および推定結果を取得する。   First, for example, in step S01 shown in FIG. 5, detection results and estimation results of various states of the power storage device 11 (for example, temperature TB, current IB, voltage VB, usage time, remaining capacity SOC, etc.) are acquired.

次に、ステップS02においては、蓄電装置11の状態に基づいて蓄電装置11の使用履歴を演算する。そして、蓄電装置11の使用履歴の演算結果に応じて変移挙動マップを参照して、必要に応じて非通電期間における経時劣化成分による各相関抵抗値と通電期間における通電劣化成分による各相関抵抗値とを区別しつつ、蓄電装置11の正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値の変移挙動を推定する。   Next, in step S <b> 02, the usage history of the power storage device 11 is calculated based on the state of the power storage device 11. Then, referring to the transition behavior map according to the calculation result of the usage history of the power storage device 11, each correlation resistance value due to the time-dependent deterioration component during the non-energization period and each correlation resistance value due to the current deterioration component during the energization period as necessary The transition behavior of the positive side correlation resistance value, the negative side correlation resistance value, and the electrolyte correlation resistance value of the power storage device 11 is estimated.

次に、ステップS03においては、必要に応じて非通電期間における経時劣化成分による各相関抵抗値と通電期間における通電劣化成分による各相関抵抗値とを用いた加算モデルによる演算を行ないつつ、蓄電装置11の正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値を推定する。   Next, in step S03, the power storage device performs an operation based on an addition model using each correlation resistance value due to the deterioration component with time during the non-energization period and each correlation resistance value due to the conduction deterioration component during the energization period as necessary. 11 positive electrode side correlation resistance value, negative electrode side correlation resistance value and electrolyte solution correlation resistance value are estimated.

次に、ステップS04においては、蓄電装置11の正極側相関抵抗値および負極側相関抵抗値および電解液相関抵抗値の推定結果に応じて、劣化度マップを参照して、蓄電装置11の各正極および負極および電解液毎の劣化度を推定し、リターンに進む。   Next, in step S04, each positive electrode of power storage device 11 is referred to with reference to the deterioration degree map according to the estimation results of the positive electrode side correlation resistance value, the negative electrode side correlation resistance value, and the electrolyte solution correlation resistance value of power storage device 11. Then, the degree of deterioration for each negative electrode and electrolyte is estimated, and the process proceeds to return.

上述したように、同実施形態に係る2次電池の劣化推定装置10によれば、蓄電装置11の状態(例えば、温度TB、電流IB、電圧VB、使用時間、残容量SOCなど)に基づく使用履歴から、変移挙動データと劣化度データとにより、蓄電装置11の劣化速度や寿命期間などの残価値に関連する内部状態として各正極および負極および電解液毎の劣化度を推定することができる。これらの推定結果に基づいて、蓄電装置11の劣化速度や寿命期間などの残価値を適切かつ精度良く推定することができる。   As described above, according to the secondary battery deterioration estimation device 10 according to the embodiment, the usage based on the state of the power storage device 11 (for example, temperature TB, current IB, voltage VB, usage time, remaining capacity SOC, etc.). From the history, it is possible to estimate the degree of deterioration of each positive electrode, the negative electrode, and the electrolytic solution as the internal state related to the remaining value such as the deterioration rate and the lifetime of the power storage device 11 by the transition behavior data and the deterioration degree data. Based on these estimation results, it is possible to appropriately and accurately estimate the residual value of the power storage device 11 such as the deterioration rate and the lifetime.

さらに、各正極および負極および電解液毎の劣化度の推定には、交流インピーダンス分析を応用して得られる変移挙動マップを用いることで、例えば車両に搭載された蓄電装置11を構成する複数のセルのそれぞれ(つまり、単セル毎)に対して実際に交流インピーダンス測定機によって測定を行なう場合に比べて、装置構成に要する費用がかさむことを防止することができる。   Further, the deterioration degree of each positive electrode, negative electrode, and electrolyte solution is estimated by using a transition behavior map obtained by applying AC impedance analysis, for example, a plurality of cells constituting the power storage device 11 mounted on the vehicle. It is possible to prevent the cost required for the device configuration from increasing as compared with the case where each of these (ie, each single cell) is actually measured by an AC impedance measuring machine.

しかも、実際に交流インピーダンス測定機によって測定を行なうだけでは把握することが困難である各劣化度と容量維持率と交流インピーダンス値の単位時間当たりの変移挙動との関連性を蓄電装置11の使用履歴から取得することができる。このようにして、各正極および負極および電解液毎の劣化度を容易に推定することができる。   In addition, the usage history of the power storage device 11 shows the relationship between the degree of deterioration, the capacity maintenance ratio, and the transition behavior per unit time of the AC impedance value, which is difficult to grasp only by actually measuring with an AC impedance measuring device. Can be obtained from. In this way, the degree of deterioration for each positive electrode, negative electrode, and electrolytic solution can be easily estimated.

つまり、劣化速度や寿命期間などの残価値に関連する内部状態を把握するために実際に交流インピーダンス測定機によって測定を行なう交流インピーダンス分析は、単セルに対しては有効であるが、複数のセルによって構成される蓄電装置11に対しては、適用が困難であるという問題がある。しかも、車両などに搭載された蓄電装置11に対して適宜のタイミングで交流インピーダンス分析を実行するために、車両に交流インピーダンス測定機を搭載すると、費用がかさむという問題が生じる。さらに、単に、交流インピーダンス分析を実行してCole‐Cole Plot図を作成するだけでは、各劣化度と容量維持率と交流インピーダンス値の単位時間当たりの変移挙動との関連性を蓄電装置11の使用履歴から取得することはできないという問題が生じる。同実施形態に係る2次電池の劣化推定装置10は、これらの問題を解決して、蓄電装置11の劣化速度や寿命期間などの残価値を適切かつ精度良く推定することができる。   In other words, AC impedance analysis, which is actually measured by an AC impedance measuring machine to grasp the internal state related to the residual value such as deterioration rate and lifetime, is effective for a single cell, There is a problem that it is difficult to apply to the power storage device 11 configured by the above. In addition, if an AC impedance measuring machine is mounted on the vehicle in order to perform AC impedance analysis at an appropriate timing on the power storage device 11 mounted on the vehicle or the like, there is a problem that costs increase. Furthermore, simply by performing an AC impedance analysis and creating a Cole-Cole Plot diagram, the relationship between the degree of deterioration, the capacity retention rate, and the transition behavior of the AC impedance value per unit time can be used. There arises a problem that it cannot be acquired from the history. The secondary battery deterioration estimation device 10 according to the embodiment can solve these problems and estimate the remaining value of the power storage device 11 such as the deterioration rate and the life period appropriately and accurately.

さらに、各正極および負極および電解液毎の経時劣化成分と通電劣化成分とを独立に把握することができ、蓄電装置11の劣化速度や寿命期間などの残価値に関連する内部状態として各正極および負極および電解液毎の劣化度を、より詳細に推定することができる。   Furthermore, it is possible to independently grasp the aging degradation component and the energization degradation component for each positive electrode, the negative electrode, and the electrolyte solution, and each positive electrode and the internal state related to the residual value such as the degradation rate and the lifetime of the power storage device 11 can be obtained. The degree of deterioration for each negative electrode and electrolytic solution can be estimated in more detail.

さらに、正極側相関抵抗値および負極側相関抵抗値を、Cole‐Cole Plot図上で円弧状の曲線を示す各正極成分Pおよび負極成分Nの極大値に対応する周波数での交流インピーダンス値としたことで、蓄電装置11の正極側相関抵抗値および負極側相関抵抗値を容易に推定することができる。   Further, the positive side correlation resistance value and the negative side correlation resistance value are AC impedance values at frequencies corresponding to the maximum values of the positive electrode component P and the negative electrode component N that show arcuate curves on the Cole-Cole Plot diagram. Thus, the positive side correlation resistance value and the negative side correlation resistance value of the power storage device 11 can be easily estimated.

さらに、蓄電装置11の劣化速度や寿命期間などの残価値に関連する内部状態として正極および負極の劣化アンバランス度を推定することができる。この推定結果に基づいて、蓄電装置11の劣化速度や寿命期間などの残価値を適切かつ精度良く推定することができる。   Further, the degree of deterioration unbalance between the positive electrode and the negative electrode can be estimated as an internal state related to the residual value such as the deterioration rate and the lifetime of the power storage device 11. Based on this estimation result, the remaining value such as the deterioration rate and the lifetime of the power storage device 11 can be estimated appropriately and accurately.

なお、同実施形態において、正極側相関抵抗値および負極側相関抵抗値では、蓄電装置11の正極の劣化度と容量維持率とに対して強い関係性を有する周波数を、円弧状の曲線を示す各正極成分Pおよび負極成分Nの極大値に対応する周波数とした。しかし、本発明はこれに限定されない。例えば、上記周波数を、各正極成分Pおよび負極成分Nの形状の各種の形状値などに基づいて設定される他の特定の周波数としてもよい。   In the embodiment, in the positive correlation resistance value and the negative correlation resistance value, a frequency having a strong relationship with the degree of deterioration of the positive electrode of the power storage device 11 and the capacity retention rate is indicated by an arcuate curve. The frequency corresponds to the maximum value of each positive electrode component P and negative electrode component N. However, the present invention is not limited to this. For example, the frequency may be another specific frequency set based on various shape values of the shape of each positive electrode component P and negative electrode component N.

また、同実施形態において、各相間抵抗値を蓄電装置11の各劣化度と容量維持率とに関係性を有する特定の1点の周波数での交流インピーダンス値とした。しかし、本発明はこれに限定されない。例えば、各相間抵抗値を、蓄電装置11の各劣化度と容量維持率とに関係性を有する特定の複数の周波数に関連した交流インピーダンス値としてもよい。   Moreover, in the same embodiment, each interphase resistance value is an AC impedance value at a specific one-point frequency having a relationship with each degree of deterioration of the power storage device 11 and the capacity maintenance rate. However, the present invention is not limited to this. For example, each interphase resistance value may be an AC impedance value related to a plurality of specific frequencies having a relationship with each degree of deterioration of the power storage device 11 and the capacity maintenance rate.

また、同実施形態において、正極側相関抵抗値および負極側相関抵抗値を交流インピーダンス値の虚数成分とした。しかし、本発明はこれに限定されない。例えば、これら正極側相関抵抗値および負極側相関抵抗値は、実数成分や、虚数成分と実数成分との複合的な値であってもよい。   In the same embodiment, the positive side correlation resistance value and the negative side correlation resistance value are imaginary components of the AC impedance value. However, the present invention is not limited to this. For example, the positive side correlation resistance value and the negative side correlation resistance value may be a real number component or a composite value of an imaginary number component and a real number component.

同様に、同実施形態において、電解液相関抵抗値を交流インピーダンス値の実数成分とした。しかし、本発明はこれに限定されない。例えば、上記電解液相関抵抗値は、虚数成分や、実数成分と虚数成分との複合的な値としてもよい。   Similarly, in the same embodiment, the electrolytic solution correlated resistance value is a real component of the AC impedance value. However, the present invention is not limited to this. For example, the electrolyte solution correlation resistance value may be a complex value of an imaginary component or a real component and an imaginary component.

また、同実施形態において、各相間抵抗値をCole‐Cole Plot図上での各成分に関連する抵抗値とした。しかし、本発明はこれに限定されない。各相間抵抗値を他の成分に関連する抵抗値としてもよい。   In the embodiment, each interphase resistance value is a resistance value related to each component on the Cole-Cole Plot diagram. However, the present invention is not limited to this. Each interphase resistance value may be a resistance value related to other components.

なお、同実施形態において、各相関抵抗値の単位時間当たりの変移挙動に関連する係数kを、各相関抵抗値の増加率が経過時間tのルート値(=√t)に比例するとして設定された比例係数であるとした。しかし、本発明はこれに限定されない。上記係数kは、各相関抵抗値の増加率が経過時間tに対して他の関係性(例えば、経過時間tの4乗根に比例するなど)を有しているとして設定される適宜の係数であってもよい。   In the embodiment, the coefficient k related to the transition behavior per unit time of each correlation resistance value is set so that the increase rate of each correlation resistance value is proportional to the root value (= √t) of the elapsed time t. It was assumed that it was a proportional coefficient. However, the present invention is not limited to this. The coefficient k is an appropriate coefficient that is set on the assumption that the increasing rate of each correlation resistance value has another relationship with the elapsed time t (for example, proportional to the fourth root of the elapsed time t). It may be.

また、同実施形態において、第1データは、係数kと、蓄電装置11の温度TBと、蓄電装置11の残容量SOCとの対応関係を示すデータであるとした。しかし、本発明はこれに限定されない。例えば、第1データは、係数kと、蓄電装置11の各種の状態(例えば、温度TB、電流IB、電圧VB、使用時間など)の適宜の組み合わせとの対応関係を示すデータであってもよい。   In the embodiment, the first data is data indicating a correspondence relationship between the coefficient k, the temperature TB of the power storage device 11, and the remaining capacity SOC of the power storage device 11. However, the present invention is not limited to this. For example, the first data may be data indicating a correspondence relationship between the coefficient k and an appropriate combination of various states of the power storage device 11 (for example, temperature TB, current IB, voltage VB, usage time, and the like). .

同様に、同実施形態において、第2データは、係数kと、蓄電装置11の温度TBと、蓄電装置11の電流IBとの対応関係を示すデータであるとした。しかし、本発明はこれに限定されない。例えば、第2データは、係数kと、蓄電装置11の各種の状態(例えば、温度TB、電流IB、電圧VB、使用時間など)の適宜の組み合わせとの対応関係を示すデータであってもよい。   Similarly, in the embodiment, the second data is data indicating a correspondence relationship between the coefficient k, the temperature TB of the power storage device 11, and the current IB of the power storage device 11. However, the present invention is not limited to this. For example, the second data may be data indicating a correspondence relationship between the coefficient k and an appropriate combination of various states of the power storage device 11 (for example, temperature TB, current IB, voltage VB, usage time, and the like). .

なお、同実施形態において、加算モデルによる演算を、前回の推定時における第1データまたは第2データに基づく各相関抵抗値の推定結果を基点として、今回の推定時における蓄電装置11の状態の検出結果に応じて第1データまたは第2データから検索して得た係数kによって各相関抵抗値を推定する演算とした。しかし、本発明はこれに限定されない。上記加算モデルによる演算は、他の演算であってもよい。   In the embodiment, the calculation of the addition model is performed by detecting the state of the power storage device 11 at the time of the current estimation based on the estimation result of each correlation resistance value based on the first data or the second data at the time of the previous estimation. It was set as the calculation which estimates each correlation resistance value with the coefficient k obtained by searching from 1st data or 2nd data according to the result. However, the present invention is not limited to this. The calculation based on the addition model may be another calculation.

なお、同実施形態において、劣化アンバランス度Bを負極劣化度NBと正極劣化度PBとの比により算出した。しかし、本発明はこれに限定されない。上記劣化アンバランス度Bを、他の数式(例えば、負極劣化度NBと正極劣化度PBと差など)によって算出してもよい。
本発明は、上述した実施形態に限られず、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。
In the embodiment, the degree of deterioration imbalance B is calculated by the ratio of the degree of negative electrode deterioration NB and the degree of positive electrode deterioration PB. However, the present invention is not limited to this. The deterioration imbalance degree B may be calculated by another mathematical formula (for example, a difference between the negative electrode deterioration degree NB and the positive electrode deterioration degree PB).
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明によれば、2次電池の状態(電圧、電流、温度、使用時間など)に基づく使用履歴から、変移挙動データと劣化度データとにより、2次電池の劣化速度や寿命期間などの残価値に関連する内部状態として各正極および負極毎の劣化度を推定することができる。これらの推定結果に基づいて、2次電池の劣化速度や寿命期間などの残価値を適切かつ精度良く推定することができる。   According to the present invention, from the usage history based on the state of the secondary battery (voltage, current, temperature, usage time, etc.), it is possible to determine the remaining speed, lifetime, etc. of the secondary battery from the transition behavior data and the deterioration degree data. As an internal state related to value, the degree of deterioration for each positive electrode and each negative electrode can be estimated. Based on these estimation results, the remaining value such as the deterioration rate and lifetime of the secondary battery can be estimated appropriately and accurately.

10 2次電池の劣化推定装置
11 蓄電装置(2次電池)
12 状態検出部(状態検出部)
21 電流センサ(電流検出部)
22 電圧センサ(電圧検出部)
23 温度センサ(温度検出部)
24 タイマー(時間検出部)
31 相関抵抗値推定部(相関抵抗値推定部)
32 劣化度推定部(劣化度推定部)
41 第1記憶部(第1記憶部)
42 第2記憶部(第2記憶部)
10 Secondary battery deterioration estimation device 11 Power storage device (secondary battery)
12 State detector (state detector)
21 Current sensor (current detector)
22 Voltage sensor (voltage detector)
23 Temperature sensor (temperature detector)
24 timer (time detector)
31 Correlated Resistance Estimator (Correlated Resistance Estimator)
32 Deterioration degree estimation part (Deterioration degree estimation part)
41 1st memory | storage part (1st memory | storage part)
42 2nd memory | storage part (2nd memory | storage part)

Claims (4)

少なくとも、2次電池の電圧を検出する電圧検出部と、前記2次電池の電流を検出する電流検出部と、前記2次電池の温度を検出する温度検出部と、前記2次電池の使用時間を検出する時間検出部とを有し、前記2次電池の状態を検出する状態検出部と、
前記2次電池の正極および負極および電解液毎の劣化度と容量維持率とに関係性を有する周波数に応じた交流インピーダンス値の単位時間当たりの変移挙動と、前記状態検出部により検出される前記2次電池の状態に基づく前記2次電池の使用履歴との対応関係を示すデータからなる変移挙動データを記憶する第1記憶部と、
前記状態検出部により検出された前記2次電池の状態に基づく前記2次電池の使用履歴に応じて前記変移挙動データを参照して、前記2次電池の正極側相関抵抗値および負極側相関抵抗値を推定する相関抵抗値推定部と、
前記正極側相関抵抗値および前記負極側相関抵抗値と、前記2次電池の正極および負極毎の劣化度との対応関係を示すデータからなる劣化度データを記憶する第2記憶部と、
前記相関抵抗値推定部により推定された前記正極側相関抵抗値および前記負極側相関抵抗値に応じて前記劣化度データを参照して、前記2次電池の正極および負極毎の劣化度を推定する劣化度推定部と、
を備えることを特徴とする2次電池の劣化推定装置。
At least a voltage detector that detects the voltage of the secondary battery, a current detector that detects the current of the secondary battery, a temperature detector that detects the temperature of the secondary battery, and a usage time of the secondary battery A state detection unit for detecting the state of the secondary battery,
A change behavior per unit time of an alternating current impedance value according to a frequency having a relationship with a degree of deterioration and a capacity maintenance rate of each of the positive and negative electrodes and the electrolyte of the secondary battery , and detected by the state detection unit A first storage unit that stores transition behavior data including data indicating a correspondence relationship with a usage history of the secondary battery based on a state of the secondary battery;
By referring to the transition behavior data according to the usage history of the secondary battery based on the state of the secondary battery detected by the state detection unit, the positive-side correlation resistance value and the negative-side correlation resistance of the secondary battery A correlation resistance value estimation unit for estimating a value;
A second storage unit that stores deterioration degree data including data indicating a correspondence relationship between the positive correlation coefficient value of the positive electrode side and the negative correlation coefficient value of the negative electrode and the deterioration level of each of the positive electrode and the negative electrode of the secondary battery;
Referring to the deterioration degree data according to the positive side correlation resistance value and the negative side correlation resistance value estimated by the correlation resistance value estimation unit, the deterioration degree for each positive electrode and negative electrode of the secondary battery is estimated. A deterioration estimation unit that performs
A deterioration estimation device for a secondary battery, comprising:
前記変移挙動データは、前記2次電池の正極および負極毎の経時劣化成分のデータからなる第1データと、前記2次電池の正極および負極毎の通電劣化成分のデータからなる第2データとを有し、
前記相関抵抗値推定部は、前記2次電池の正極および負極毎に、前記状態検出部により検出された前記2次電池の状態に基づく前記2次電池の使用履歴に応じて前記第1データおよび前記第2データを参照して、前記第1データおよび前記第2データ毎に推定した相関抵抗値を用いた加算モデルによる演算により、前記正極側相関抵抗値および前記負極側相関抵抗値を推定することを特徴とする請求項1に記載の2次電池の劣化推定装置。
The transition behavior data, a positive electrode and a first data consisting of data time degradation components Fukyokugoto, second data consisting of data of energizing degraded component of the positive electrode and Fukyokugoto of the secondary battery of the secondary battery And
The correlation resistance value estimation unit is configured to provide the first data according to a usage history of the secondary battery based on a state of the secondary battery detected by the state detection unit for each positive electrode and negative electrode of the secondary battery. and with reference to the second data, by calculation by the previous SL addition model using the correlation resistance value estimated for each first data and the second data, the positive electrode side correlation resistance and the negative electrode side correlation resistance The deterioration estimation device for a secondary battery according to claim 1, wherein estimation is performed.
前記正極側相関抵抗値および前記負極側相関抵抗値は、前記2次電池の交流インピーダンスの実数部と虚数部とによる2次元座標上での円弧状の曲線を示す正極成分および負極成分毎の極大値に対応する周波数での前記交流インピーダンス値であることを特徴とする請求項1に記載の2次電池の劣化推定装置。 The positive electrode side correlation resistance and the negative electrode side correlation resistance, the secondary battery of the AC impedance of the real part and shows the arc-shaped curve in the two-dimensional coordinate system by the imaginary part positive component and the negative component per The deterioration estimation device for a secondary battery according to claim 1, wherein the AC impedance value at a frequency corresponding to a local maximum value of the secondary battery. 前記劣化度推定部は、前記2次電池の正極および負極毎の劣化度に基づき、前記正極および前記負極の劣化アンバランス度を推定することを特徴とする請求項1に記載の2次電池の劣化推定装置。 The deterioration degree estimation portion, based on said positive electrode and Fukyokugoto the deterioration degree of the secondary battery, the positive electrode and the secondary battery according to claim 1, characterized in that to estimate the deterioration degree of unbalance of the anode Degradation estimation device.
JP2012546909A 2010-11-30 2011-11-30 Secondary battery deterioration estimation device Expired - Fee Related JP5548784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546909A JP5548784B2 (en) 2010-11-30 2011-11-30 Secondary battery deterioration estimation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010266899 2010-11-30
JP2010266899 2010-11-30
PCT/JP2011/077648 WO2012073997A1 (en) 2010-11-30 2011-11-30 Degradation estimation device for secondary battery
JP2012546909A JP5548784B2 (en) 2010-11-30 2011-11-30 Secondary battery deterioration estimation device

Publications (2)

Publication Number Publication Date
JPWO2012073997A1 JPWO2012073997A1 (en) 2014-05-19
JP5548784B2 true JP5548784B2 (en) 2014-07-16

Family

ID=46171924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012546909A Expired - Fee Related JP5548784B2 (en) 2010-11-30 2011-11-30 Secondary battery deterioration estimation device

Country Status (2)

Country Link
JP (1) JP5548784B2 (en)
WO (1) WO2012073997A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199433A (en) * 2015-05-29 2016-12-07 丰田自动车株式会社 The impairment grade computational methods of lithium rechargeable battery, control method and control device
US10930982B2 (en) 2015-12-25 2021-02-23 Mazda Motor Corporation Lithium ion battery charge/discharge control device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150229150A1 (en) * 2012-09-20 2015-08-13 Sekisui Chemical Co., Ltd. Apparatus for controlling operation of storage battery, and method and program for controlling operation of storage battery
JP6227309B2 (en) * 2013-07-17 2017-11-08 矢崎総業株式会社 Battery state detection device
JP2015220879A (en) * 2014-05-19 2015-12-07 レシップホールディングス株式会社 Maintenance information providing device
JP6323441B2 (en) 2015-12-25 2018-05-16 マツダ株式会社 Lithium-ion battery remaining capacity estimation device
JP2017168361A (en) * 2016-03-17 2017-09-21 富士電機株式会社 Secondary battery device, charge control device, and charge control method
WO2018003210A1 (en) * 2016-06-28 2018-01-04 株式会社日立製作所 Secondary cell control system and secondary cell control method
JP6743722B2 (en) * 2017-02-16 2020-08-19 株式会社デンソー Battery system
JP6790892B2 (en) * 2017-02-16 2020-11-25 株式会社デンソー Battery state estimation device and power supply device
JP6790893B2 (en) * 2017-02-16 2020-11-25 株式会社デンソー Battery state estimation device and power supply device
US10957946B2 (en) 2019-08-13 2021-03-23 International Business Machines Corporation Capacity degradation analysis for batteries
KR102657496B1 (en) * 2020-12-28 2024-04-12 주식회사 엘지에너지솔루션 Apparatus and method for managing battery
CN113945763A (en) * 2021-11-15 2022-01-18 湖北亿纬动力有限公司 Method for testing liquid-phase resistance of pole piece
KR102497271B1 (en) * 2021-12-28 2023-02-08 한국전자기술연구원 Apparatus and method for optimizing the use ratio of ESS and water electrolysis facilities considering deterioration cost

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232273A (en) * 1996-12-17 1998-09-02 Matsushita Electric Ind Co Ltd Method and apparatus for analyzing state of battery
JPH11174136A (en) * 1997-12-09 1999-07-02 Hioki Ee Corp Method and device for judging deterioration of battery pack
JP2003308885A (en) * 2002-04-18 2003-10-31 Central Res Inst Of Electric Power Ind Deterioration diagnosis method for lithium ion battery and device incorporating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232273A (en) * 1996-12-17 1998-09-02 Matsushita Electric Ind Co Ltd Method and apparatus for analyzing state of battery
JPH11174136A (en) * 1997-12-09 1999-07-02 Hioki Ee Corp Method and device for judging deterioration of battery pack
JP2003308885A (en) * 2002-04-18 2003-10-31 Central Res Inst Of Electric Power Ind Deterioration diagnosis method for lithium ion battery and device incorporating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199433A (en) * 2015-05-29 2016-12-07 丰田自动车株式会社 The impairment grade computational methods of lithium rechargeable battery, control method and control device
KR101809838B1 (en) * 2015-05-29 2017-12-15 도요타지도샤가부시키가이샤 Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
CN106199433B (en) * 2015-05-29 2018-12-28 丰田自动车株式会社 Impairment grade calculation method, control method and the control device of lithium ion secondary battery
US10490864B2 (en) 2015-05-29 2019-11-26 Toyota Jidosha Kabushiki Kaisha Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
US10930982B2 (en) 2015-12-25 2021-02-23 Mazda Motor Corporation Lithium ion battery charge/discharge control device

Also Published As

Publication number Publication date
JPWO2012073997A1 (en) 2014-05-19
WO2012073997A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5548784B2 (en) Secondary battery deterioration estimation device
CN104965176B (en) Battery cell state of health estimation method
JP5862836B2 (en) Battery system
JP5840116B2 (en) Secondary battery state estimation apparatus and method
EP3410137B1 (en) Cell state estimation device, cell control device, cell system, and cell state estimation method
JP7490921B2 (en) Method and apparatus for detecting lithium plating and for obtaining polarization ratio - Patents.com
EP2728368B1 (en) Condition estimation device and method for battery
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
JP4923929B2 (en) Battery internal resistance estimation device
JP6534746B2 (en) Battery control device and battery system
EP3171186B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
CN108474824A (en) Charge storage element managing device, charge storage element module, vehicle and charge storage element management method
JP6101714B2 (en) Battery control device, battery system
JP5929778B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2011085592A (en) State detection device for power source apparatus, and the power source apparatus
JP5704108B2 (en) Battery system and estimation method
JP6183336B2 (en) Charge rate calculation device
JP2022044621A (en) Rechargeable battery liquid decrease detection device and rechargeable battery liquid decrease detection method
JP2019211248A (en) Secondary battery parameter estimating device, secondary battery parameter estimating method, and program
JP2019144211A (en) Estimation device and method for estimation
WO2020012720A1 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method, and program
JP5768772B2 (en) Power storage system and charging rate estimation method
JP6434245B2 (en) Charging rate estimation device and power supply system
KR20220112284A (en) Methods and systems for calculating the available energy, autonomy, capacity and remaining life without discharging at any time during the life of an electric battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees