JP5833749B2 - 電力制御装置、電力制御方法及びプログラム - Google Patents

電力制御装置、電力制御方法及びプログラム Download PDF

Info

Publication number
JP5833749B2
JP5833749B2 JP2014515495A JP2014515495A JP5833749B2 JP 5833749 B2 JP5833749 B2 JP 5833749B2 JP 2014515495 A JP2014515495 A JP 2014515495A JP 2014515495 A JP2014515495 A JP 2014515495A JP 5833749 B2 JP5833749 B2 JP 5833749B2
Authority
JP
Japan
Prior art keywords
power
value
voltage
control
change value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014515495A
Other languages
English (en)
Other versions
JPWO2013172012A1 (ja
Inventor
渡辺 健一
健一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2014515495A priority Critical patent/JP5833749B2/ja
Application granted granted Critical
Publication of JP5833749B2 publication Critical patent/JP5833749B2/ja
Publication of JPWO2013172012A1 publication Critical patent/JPWO2013172012A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F5/00Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力制御装置、電力制御方法及びプログラムに関し、特に、分散型電源等の電力調整装置が連系された電力系統における潮流値及び電圧値を制御するための電力制御装置、電力制御方法及びプログラムに関する。
近年、太陽光発電システム等の分散型電源が家庭及びオフィスビル等に導入されている。このような分散型電源は、電力系統に連系されている。分散型電源による発電電力のうち、家庭内及びオフィスビル内の負荷により消費されなかった余剰電力は、電力系統へ逆潮流されることにより、電力会社に売られている。しかしながら、多数の分散型電源が電力系統に連系された場合には、分散型電源の逆潮流及び一斉解列等により、急激な潮流変動及び電圧変動が発生する可能性がある。
このような潮流変動及び電圧変動を制御する方式として、例えばマイクログリッド及びバーチャルパワープラント等が提案されている。これらの制御方式では、電力系統に連系された分散型電源及び負荷を統合的に制御するための電力制御装置が用いられる(例えば、特許文献1参照)。この電力制御装置は、分散型電源と上位系統との連系点における潮流値を制御する潮流制御を行うとともに、分散型電源の受電点における電圧値を制御する電圧制御を行う。具体的には、電力制御装置は、潮流制御の制御解と電圧制御の制御解とを同時に算出し、潮流計算等を用いて潮流・電圧分布を求める。求めた潮流・電圧分布が制約条件を満たしていない場合は、条件等を変更して制御解の算出から繰り返す。算出した潮流制御の制御解に基づいて潮流値を制御することにより、分散型電源の出力変動及び負荷の変動による上位系統への擾乱を低減することができる。また、算出した電圧制御の制御解に基づいて電圧値を制御することにより、例えばバーチャルパワープラント内における各需要家に対して安定的に電力を供給することができる。
特開2011−211803号公報
しかしながら、上述した従来の電力制御装置では、潮流制御の制御解と電圧制御の制御解とを同時に算出しているため、方程式や変数の数が増加し、制御解を算出するための計算が複雑になる。また、制約条件を満たす制御解が求まるまで、繰り返し制御解を算出する場合があるため、制御解を算出するのに比較的長い時間を要することが課題となっている。
そこで、本発明は、潮流制御の制御解及び電圧制御の制御解を高速で算出することができる電力制御装置、電力制御方法及びプログラムを提供する。
上記目的を達成するために、本発明の一態様に係る電力制御装置は、電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御する電力制御装置であって、前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得する第1の取得部と、前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記第1の取得部により取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出する潮流制御部と、前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定する電圧制御部と、前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知する通知部と、を備える。
なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD−ROM等の非一時的な記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
本発明の電力制御装置では、第1の電力変化値(すなわち、潮流制御の制御解)を算出した後に、この第1の電力変化値に基づいて第2の電力変化値(すなわち、電圧制御の制御解)を算出するので、潮流制御の制御解及び電圧制御の制御解を算出するための計算を簡略化することができる。
これにより、潮流制御の制御解及び電圧制御の制御解を高速に算出することができ、電力系統を安定化させることができる。さらに、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる場合においても、これらの制御解の近似解を高速に算出することができる。
図1は、実施の形態1に係る電力制御装置が設けられた電力系統を示す概念図である。 図2は、図1の電力制御装置の機能的構成を示すブロック図である。 図3は、図1の電力制御装置による電力制御の流れを示すフローチャートである。 図4Aは、電圧値が所定の電圧範囲に含まれている場合における、潮流制御部による第1の電力変化値の算出方法を説明するための概念図である。 図4Bは、電圧値が所定の電圧範囲に含まれている場合における、電圧制御部による電圧値の逸脱判定方法を説明するための概念図である。 図5Aは、電圧値が所定の電圧範囲に含まれていない場合における、潮流制御部による第1の電力変化値の算出方法を説明するための概念図である。 図5Bは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部による電圧値の逸脱判定方法を説明するための概念図である。 図5Cは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部による第2の電力変化値の算出方法を説明するための概念図である。 図6Aは、電圧値が所定の電圧範囲に含まれていない場合における、潮流制御部による第1の電力変化値の算出方法を説明するための概念図である。 図6Bは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部による電圧値の逸脱判定方法を説明するための概念図である。 図6Cは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部による第2の電力変化値の算出方法を説明するための概念図である。 図7は、実施の形態2に係る電力制御装置の機能的構成を示すブロック図である。 図8は、図7の電力制御装置による電力制御の流れを示すフローチャートである。 図9は、電力制御装置の制御パターンを示す表である。
(本発明の基礎となった知見)
本発明者は、「背景技術」の欄において記載した電力制御装置に関し、以下の問題が生じることを見出した。
上述した電力制御装置は、数理計画法を用いることにより、潮流制御の制御解と電圧制御の制御解とを同時に算出する。しかしながら、このような構成では、制御解を算出するための計算が複雑になるとともに、制御解を算出するのに比較的長い時間を要することが課題となっている。さらに、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる場合には、両者について最適解を算出することができない可能性があることが課題となっている。
また、特許文献1には、系統事故等により電力系統に電圧低下及び電力動揺が生じた場合に、潮流制御の制御解及び電圧制御の制御解のうちいずれか一方の算出処理を停止する技術が開示されている。しかしながら、特許文献1に開示された技術では、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる状態が続く場合には、その間いずれか一方の制御解を算出することができず、電力系統が不安定になる。
このような問題を解決するために、本発明の一態様に係る電力制御装置では、電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御する電力制御装置であって、前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得する第1の取得部と、前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記第1の取得部により取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出する潮流制御部と、前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定する電圧制御部と、前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知する通知部と、を備える。
本態様によれば、第1の電力変化値(すなわち、潮流制御の制御解)を算出した後に、この第1の電力変化値に基づいて第2の電力変化値(すなわち、電圧制御の制御解)を算出するので、潮流制御の制御解及び電圧制御の制御解を算出するための計算を簡略化することができる。これにより、潮流制御の制御解及び電圧制御の制御解を高速に算出することができ、電力系統を安定化させることができる。さらに、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる場合においても、これらの制御解の近似解を高速に算出することができる。
例えば、本発明の一態様に係る電力制御装置において、さらに、前記電力系統に電力を供給する上位系統と前記電力調整装置との間における系統インピーダンス値を取得する第2の取得部を備え、前記電圧制御部は、前記第2の取得部により取得された前記系統インピーダンス値に基づいて、前記電圧値を算出するように構成してもよい。
本態様によれば、電圧制御部は、第2の取得部により取得された系統インピーダンス値に基づいて、電圧値を算出することができる。
例えば、本発明の一態様に係る電力制御装置において、前記電圧制御部は、算出した前記電圧値が前記所定の電圧範囲に含まれている場合には、前記第2の電力変化値を零に決定するように構成してもよい。
本態様によれば、算出した電圧値が所定の電圧範囲に含まれている場合に、第2の電力変化値を零に決定することができる。
例えば、本発明の一態様に係る電力制御装置において、前記電圧制御部は、算出した前記電圧値が前記所定の電圧範囲に含まれている場合には、前記電力調整装置において入力又は出力される前記第2の電力が小さくなるように前記第2の電力変化値を決定するように構成してもよい。
本態様によれば、算出した電圧値が所定の電圧範囲に含まれている場合に、第2の電力変化値を所定の値に決定することができる。
例えば、本発明の一態様に係る電力制御装置において、前記電圧制御部は、算出した前記電圧値が前記所定の電圧範囲に含まれていない場合には、算出した前記電圧値を前記所定の電圧範囲に収めることができるか否かを判定し、その判定結果に基づいて、前記第2の電力変化値を決定するように構成してもよい。
本態様によれば、算出した電圧値が所定の電圧範囲に含まれていない場合に、第2の電力変化値を所定の値に決定することができる。
例えば、本発明の一態様に係る電力制御装置において、前記電圧制御部は、算出した前記電圧値を前記所定の電圧範囲に収めることができると判定した場合には、算出した前記電圧値に基づいて、所定の制約条件を満たすような前記第2の電力変化値を決定するように構成してもよい。
本態様によれば、算出した電圧値を所定の電圧範囲に収めることができる場合に、第2の電力変化値を所定の値に決定することができる。
例えば、本発明の一態様に係る電力制御装置において、前記電圧制御部は、算出した前記電圧値を前記所定の電圧範囲に収めることができないと判定した場合には、前記電力調整装置において入力又は出力される前記第2の電力が定格電力又は零に近付くように前記第2の電力変化値を決定するように構成してもよい。
本態様によれば、算出した電圧値を所定の電圧範囲に収めることができない場合に、第2の電力変化値を所定の値に決定することができる。
例えば、本発明の一態様に係る電力制御装置において、さらに、前記潮流制御部による潮流制御の精度及び前記電圧制御部による電圧制御の精度の大小関係を決定する制御精度決定部を備え、前記潮流制御では、前記潮流検出点における前記潮流値が前記所定の目標値から逸脱した値である第1の逸脱値が制御され、前記電圧制御では、前記電圧検出点における前記電圧値が前記所定の電圧範囲から逸脱した値である第2の逸脱値が制御され、前記制御精度決定部は、前記第1の逸脱値が前記第2の逸脱値より大きい場合には、前記潮流制御の精度を前記電圧制御の精度よりも高く決定し、前記第2の逸脱値が前記第1の逸脱値より大きい場合には、前記電圧制御の精度を前記潮流制御の精度よりも高く決定するように構成してもよい。
本態様によれば、第1の逸脱値及び第2の逸脱値に基づいて、潮流制御部による潮流制御の精度及び電圧制御部による電圧制御の精度の大小関係を決定することができる。
例えば、本発明の一態様に係る電力制御装置において、さらに、前記潮流制御部による潮流制御の精度及び前記電圧制御部による電圧制御の精度の大小関係を決定する制御精度決定部を備え、前記潮流制御では、前記潮流検出点における前記潮流値が前記所定の目標値から逸脱した値である第1の逸脱値が制御され、前記電圧制御では、前記電圧検出点における前記電圧値が前記所定の電圧範囲から逸脱した値である第2の逸脱値が制御され、前記制御精度決定部は、前記潮流値の逸脱時間が前記電圧値の逸脱時間よりも長い場合には、前記潮流制御の精度を前記電圧制御の精度よりも高く決定し、前記電圧値の逸脱時間が前記潮流値の逸脱時間よりも長い場合には、前記電圧制御の精度を前記潮流制御の精度よりも高く決定するように構成してもよい。
本態様によれば、潮流値の逸脱時間及び電圧値の逸脱時間に基づいて、潮流制御部による潮流制御の精度及び電圧制御部による電圧制御の精度の大小関係を決定することができる。
例えば、本発明の一態様に係る電力制御装置において、前記潮流制御部は、前記制御精度決定部により前記電圧制御の精度が前記潮流制御の精度よりも高く決定された場合には、前記電圧検出点における前記電圧値を前記所定の電圧範囲に含める電圧制約条件を考慮して前記第1の電力変化値を算出し、前記制御精度決定部により前記潮流制御の精度が前記電圧制御の精度よりも高く決定された場合には、前記電圧制約条件を考慮せずに前記第1の電力変化値を算出するように構成してもよい。
本態様によれば、制御精度決定部により潮流制御の精度及び電圧制御の精度の大小関係が決定された場合に、潮流制御部は、電圧制約条件の考慮の有無に基づいて、第1の電力変化値を算出することができる。
例えば、本発明の一態様に係る電力制御装置において、前記第1の電力は、有効電力及び無効電力のいずれか一方であり、且つ、前記第2の電力は、有効電力及び無効電力のいずれか一方であるように構成してもよい。
本態様によれば、第1の電力を有効電力及び無効電力のいずれか一方とし、且つ、第2の電力を有効電力及び無効電力のいずれか一方とすることができる。
本発明の一態様に係る電力制御方法では、電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御する電力制御方法であって、前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得するステップと、前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記第1の取得部により取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出するステップと、前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定するステップと、前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知するステップと、を含む。
本態様によれば、第1の電力変化値(すなわち、潮流制御の制御解)を算出した後に、この第1の電力変化値に基づいて第2の電力変化値(すなわち、電圧制御の制御解)を算出するので、潮流制御の制御解及び電圧制御の制御解を算出するための計算を簡略化することができる。これにより、潮流制御の制御解及び電圧制御の制御解を高速に算出することができ、電力系統を安定化させることができる。さらに、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる場合においても、これらの制御解の近似解を高速に算出することができる。
本発明の一態様に係るプログラムでは、電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御するプログラムであって、前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得するステップと、前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記第1の取得部により取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出するステップと、前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定するステップと、前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知するステップと、をコンピュータに実行させる。
本態様によれば、第1の電力変化値(すなわち、潮流制御の制御解)を算出した後に、この第1の電力変化値に基づいて第2の電力変化値(すなわち、電圧制御の制御解)を算出するので、潮流制御の制御解及び電圧制御の制御解を算出するための計算を簡略化することができる。
すなわち、まず第1の電力変化値(潮流制御の制御解)を算出し、第1の電力変化値が及ぼす電圧変動を、潮流計算を用いずに線形的に算出し、その電圧変動も含めて制御するよう第2の電力変化値(電圧制御の制御解)を算出するので、潮流制御の制御解算出ステップと、電圧変動を算出するステップと、電圧制御の制御解算出ステップとをそれぞれ1度ずつ実行すればよい。
これにより、潮流制御の制御解及び電圧制御の制御解を高速に算出することができ、電力系統を従来よりも高速に安定化させることができる。さらに、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる場合においても、これらの制御解の近似解を高速に算出することができる。
なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD−ROM等の非一時的な記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
(実施の形態)
以下、実施の形態に係る電力制御装置、電力制御方法及びプログラムについて、図面を参照しながら説明する。
なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
図1は、実施の形態1に係る電力制御装置が設けられた電力系統を示す概念図である。図1に示されるように、電力系統100は、電力線102、複数の電圧検出点103、潮流検出点104、複数の電力調整装置105、通信線106及び電力制御装置200を含んでいる。この電力系統100は、潮流検出点104を介して上位系統としての変電所101と連系されている。
電力線102は、変電所101からの電力を複数の電力調整装置105の各々に供給するためのものである。
電圧検出点103は、例えば、電力調整装置105が電力系統100と連系される受電点であり、電力調整装置105により電圧値を取得可能な点である。なお、電圧検出点103における電圧値を検出する方法は、限定されない。本実施の形態では、電圧検出点103は、複数の電力調整装置105の各々に対応して設けられている。なお、電力線102の電圧階級と電圧検出点103の電圧階級とが異なる場合には、電力線102と電圧検出点103との間に変圧器等(図示せず)が設置されていてもよい。
潮流検出点104は、例えば、電力系統100と変電所101との連系点である。潮流検出点104には、潮流検出点104における潮流値を検出するための潮流計測器(図示せず)が設けられている。なお、潮流値とは、潮流検出点104を流れる有効電力又は無効電力の値である。
電力調整装置105は、電力を入力又は出力することにより電力系統100における電力を調整するための装置である。本実施の形態では、電力調整装置105は、電力系統100に複数設けられている。この電力調整装置105は、例えば、分散型電源で構成されている。なお、分散型電源とは、例えば、太陽光発電システム及び燃料電池システム等の分散型発電システム、或いは、二次電池蓄電システム等の分散型電気エネルギー貯蔵システムである。分散型電源は、例えば、太陽電池、燃料電池及び二次電池等の発電装置と、発電装置により発生した直流電力に対してDC/AC変換等を施すパワーコンディショナと、を有する。なお、電力調整装置105としては、分散型電源の他に、例えば、SVC(Static Var Compensator)及び調相装置等を用いることもできる。
電力調整装置105により電力が消費される場合には、変電所101からの電力は、潮流検出点104、電力線102及び電圧検出点103を介して電力調整装置105に入力される。一方、電力調整装置105から出力された電力は、対応する電圧検出点103を介して電力線102に供給される。
電力制御装置200は、複数の電力調整装置105の各々を制御することにより、潮流検出点104における潮流値を制御する潮流制御及び電圧検出点103における電圧値を制御する電圧制御を行うための装置である。具体的には、電力制御装置200は、潮流検出点104における潮流値を所定の目標値に近付けるように、潮流制御の制御解(すなわち、後述する第1の電力変化値)を算出する。また、電力制御装置200は、電圧検出点103における電圧値を所定の電圧範囲内に収めるように、電圧制御の制御解(すなわち、後述する第2の電力変化値)を算出する。電力制御装置200の構成については後述する。
通信線106は、電力制御装置200と複数の電力調整装置105の各々とを相互に通信接続するためのものである。この通信線106を介して、電力制御装置200と複数の電力調整装置105の各々との間でデータ等のやりとりが行われる。なお、通信線106は、例えば、インターネット、PLC(Power Line Communication)及び950MHz帯無線等で構成される。
次に、上述した電力制御装置200の構成について説明する。図2は、図1の電力制御装置の機能的構成を示すブロック図である。
図2に示されるように、電力制御装置200は、第1の取得部201、第2の取得部202、潮流制御部203、電圧制御部204及び通知部205を備えている。
第1の取得部201は、電圧検出点103における電圧値を取得する。さらに、第1の取得部201は、上述した潮流計測器からの検出信号に基づいて、潮流検出点104における潮流値を取得する。
第2の取得部202は、変電所101と複数の電力調整装置105の各々との間における系統インピーダンス値を取得する。なお、系統インピーダンス値の取得方法としては、例えば、電力会社が管理及び運営しているサーバから取得する方法、複数の電力調整装置105の各々から取得する方法、及び、電力制御装置200が備えるROM(Read Only Memory)等に記憶された系統インピーダンス値を読み出す方法等がある。
潮流制御部203は、潮流検出点104における潮流値を所定の目標値に近付けるために、第1の取得部201により取得された潮流値に基づいて、複数の電力調整装置105の各々において入力又は出力される第1の電力の変化値である第1の電力変化値を算出する。なお、第1の電力は、有効電力及び無効電力のいずれか一方である。例えば、潮流検出点104において制御される潮流値が有効電力である場合には、第1の電力は有効電力であり、潮流検出点104において制御される潮流値が無効電力である場合には、第1の電力は無効電力である。本実施の形態では、第1の電力が有効電力である場合について説明する。潮流制御部203による第1の電力変化値の算出方法については後述する。
電圧制御部204は、複数の電力調整装置105の各々において入力又は出力される第1の電力を上記第1の電力変化値だけ変化させた場合の、電圧検出点103における電圧値を算出する。その後、電圧制御部204は、算出した当該電圧値が所定の電圧範囲に含まれるか否かに基づいて、複数の電力調整装置105の各々において入力又は出力される第2の電力の変化値である第2の電力変化値を決定する。なお、所定の電圧範囲とは、例えば、日本国内における系統連系規程で定められた低圧需要家の電圧適正範囲(101±6V、202±20V)等である。ここで、有効電力を用いて電圧検出点103における電圧値を制御する場合には、第2の電力は有効電力であり、無効電力を用いて電圧検出点103における電圧値を制御する場合には、第2の電力は無効電力である。本実施の形態では、第2の電力が無効電力である場合について説明する。電圧制御部204による第2の電力変化値の算出方法については後述する。
通知部205は、第1の電力変化値だけ変化させた第1の電力及び第2の電力変化値だけ変化させた第2の電力を複数の電力調整装置105の各々において入力又は出力させるための指令値を決定し、決定した指令値を複数の電力調整装置105の各々に通知する。本実施の形態では、指令値は、潮流制御部203により算出された第1の電力変化値及び電圧制御部204により決定された第2の電力変化値を含むデータである。
次に、図3を用いて、本実施の形態の電力制御装置200による電力制御の流れについて説明する。図3は、図1の電力制御装置による電力制御の流れを示すフローチャートである。
まず、第2の取得部202は、変電所101と複数の電力調整装置105の各々との間における系統インピーダンス値を取得する(S101)。なお、本実施の形態では、第2の取得部202は、系統インピーダンス値を一回だけ取得しているが、配電系統が構成される毎に系統インピーダンス値を取得してもよく、或いは、定期的に系統インピーダンス値を取得してもよい。
次に、第1の取得部201は、潮流検出点104における潮流値(本実施の形態では、有効電力値)を取得するとともに、電圧検出点103における電圧値を取得する(S102)。第1の取得部201は、取得した潮流値を潮流制御部203に送信し、取得した電圧値を電圧制御部204に送信する。
その後、潮流制御部203は、潮流検出点104における潮流値を所定の目標値に近付けるために、第1の取得部201により取得された潮流値に基づいて第1の電力変化値を算出する(S103)。ここで、図4Aを用いて、潮流制御部203による第1の電力変化値の算出方法について説明する。図4Aは、電圧値が所定の電圧範囲に含まれている場合における、潮流制御部203による第1の電力変化値の算出方法を説明するための概念図である。なお、図4Aでは、説明を簡略化するため、電圧検出点103が1つである場合について図示している。図4Aにおいて、横軸は、潮流制御部203による潮流制御の制約条件(後述する式2参照)を表し、縦軸は、電圧制御部204による電圧制御の制約条件(後述する式4参照)を表している。また、図4Aにおいて、Pは、潮流検出点104における上記所定の目標値を表している。なお、後述する式2では、所定の目標値Pに対して許容誤差範囲を設定しているが、図4Aでは、説明を簡素化するために、正の許容誤算範囲(斜線で囲まれた範囲)のみを図示している。
潮流制御部203は、所定の制約条件の下で、例えば、コスト総和を最小にする最適化問題を数理計画法により算出する。この算出に用いられる目的関数は、次式1で表されるように、複数の電力調整装置105の各々の特性(例えば、燃料費、運転効率及び残容量等)に応じて、複数の電力調整装置105の各々において入力又は出力される第1の電力を配分する関数である。
Figure 0005833749
上式1において、nは、電力系統100に設けられた複数の電力調整装置105の数を示す。Pは、識別子i(1≦i≦n)で特定される電力調整装置105において入力又は出力される第1の電力を示す。なお、Pについては、例えば、識別子iで特定される電力調整装置105に設けられた電力計(図示せず)を用いることにより取得することができる。ΔPは、識別子iで特定される電力調整装置105において入力又は出力される第1の電力の変化値である第1の電力変化値を示す。αは、例えば、識別子iで特定される電力調整装置105に対して第1の電力変化値だけ変化させた第1の電力(P+ΔP)を入力又は出力させる際に発生するコストを示す。
なお、本実施の形態では、αをコストとしたが、上述のように、運転効率及び残容量等であってもよい。また、上式1は、第1の電力変化値だけ変化させた第1の電力(P+ΔP)を用いているが、第1の電力変化値(ΔP)を用いてもよい。
また、上記所定の制約条件は、次式2で表されるように、複数の電力調整装置105についての第1の電力変化値の総和が、潮流検出点104における潮流値と所定の目標値との差分に係数を乗じた値±許容誤差以内となる条件である。
Figure 0005833749
上式2において、cは、0〜1の範囲の値をとる係数を示す。P潮流値は、第1の取得部201により取得された潮流検出点104における潮流値を示す。P目標値は、潮流検出点104における潮流値が近付くべき、予め定められた所定の目標値を示す。また、dは、許容誤差を示す。
潮流制御部203は、上式2の制約条件を満たし、且つ、上式1の目的関数を最小にする第1の電力変化値(ΔP)を最適値として算出する。以上のようにして、潮流制御部203は、第1の電力変化値(ΔP)を潮流制御の制御解として算出する。
その後、電圧制御部204は、電力調整装置105において入力又は出力される第1の電力を上記第1の電力変化値だけ変化させた場合の、電圧検出点103における電圧値を算出する(S104)。電圧制御部204による電圧値の算出には、次式3が用いられる。
Figure 0005833749
上式3において、Aは、制御感度を表す係数(=dV/dP)を成分とする行列であり、第2の取得部202により取得された系統インピーダンス値に基づいて算出される。具体的には、例えば、次式4により、行列Aの各成分Ahiを算出することができる。
Figure 0005833749
上式4において、rは、第2の取得部202により取得された系統インピーダンス値における抵抗成分の値であり、変電所101から識別子iで特定される電圧検出点103までの抵抗値である。rは、変電所101から識別子hで特定される電圧検出点103までの抵抗値である。なお、上式4は一例であり、説明を簡単にするために簡易式を用いている。第2の取得部202が取得した系統インピーダンスにおけるリアクタンス成分等を含めて詳細な計算式を用いることも可能である。
なお、Ahiの決定においては、識別子iで特定される電力調整装置105がΔPだけ有効電力の出力を変化させた場合の、識別子hで特定される電圧検出点103における電圧変化値ΔVを測定することにより決定することも可能である。
また、ΔVは、識別子iで特定される電力調整装置105において入力又は出力される第1の電力を第1の電力変化値だけ変化させた場合の、当該電力調整装置105に対応する電圧検出点103における電圧変化値である。なお、本実施の形態では、電圧検出点103は電力調整装置105の受電点であるため、ΔVの数は最大n個となるが、ΔVの数は必ずしもn個でなくてもよい。
電圧制御部204は、上式3を用いることにより、潮流制御部203により算出された第1の電力変化値(ΔP)に基づいて、電圧変化値(ΔV)を算出する。電圧制御部204は、第1の取得部201により取得された電圧値(V)と、上式3により算出された電圧変化値(ΔV)とを加算することにより、電力調整装置105において入力又は出力される第1の電力を第1の電力変化値(ΔP)だけ変化させた場合の、電圧検出点103における電圧値(V+ΔV)を算出する。
その後、電圧制御部204は、算出した電圧値(V+ΔV)が所定の電圧範囲を逸脱しているか否かを次式5に基づいて判定する。
Figure 0005833749
上式5において、Vは、第1の取得部201により取得された、識別子iで特定される電力調整装置105に対応する電圧検出点103における電圧値を示す。V+ΔVは、識別子iで特定される電力調整装置105において入力又は出力される第1の電力を第1の電力変化値だけ変化させた場合の、電圧検出点103における電圧値を示す。Vi_maxは、識別子iで特定される電力調整装置105に対応する電圧検出点103における所定の電圧範囲の上限値を示し、例えば107Vである。Vi_minは、識別子iで特定される電力調整装置105に対応する電圧検出点103における所定の電圧範囲の下限値を示し、例えば95Vである。なお、上記所定の電圧範囲は、全ての電力調整装置105で同一にしてもよく、或いは、各電力調整装置105において異なる範囲を設定してもよい。
図4Bは、電圧値が所定の電圧範囲に含まれている場合における、電圧制御部204による電圧値の逸脱判定方法を説明するための概念図である。図4Bにおいて、Vmaxは、所定の電圧範囲の上限値を表し、Vminは、所定の電圧範囲の下限値を表している。図4Bに示すように、全ての電圧検出点103について算出した電圧値が所定の電圧範囲を逸脱していない場合には(S105でNo)、電圧制御部204は、電力調整装置105において入力又は出力される第2の電力の変化値である第2の電力変化値(ΔQ)を零に決定する(S106)。以上のようにして、算出した電圧値が所定の電圧範囲を逸脱していない場合に、電圧制御部204は、第2の電力変化値(ΔQ=0)を電圧制御の制御解として決定する。
なお、このような構成に代えて、電圧制御部204は、電力調整装置105において入力又は出力される第2の電力(Q)が小さくなるように、第2の電力変化値(ΔQ)を算出してもよい。
次に、算出した電圧値が所定の電圧範囲を逸脱している場合について説明する。図5Aは、電圧値が所定の電圧範囲に含まれていない場合における、潮流制御部203による第1の電力変化値の算出方法を説明するための概念図である。図5Bは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部204による電圧値の逸脱判定方法を説明するための概念図である。
図5Bに示すように、複数の電圧検出点103について算出した電圧値のうち、1以上の電圧値が所定の電圧範囲を逸脱している場合には(S105でYes)、電圧制御部204は、当該電圧値の逸脱方向を判定する(S107)。すなわち、電圧制御部204は、算出した電圧値が所定の電圧範囲の上限値を逸脱しているのか(V+ΔV>Vi_max)、或いは、所定の電圧範囲の下限値を逸脱しているのか(V+ΔV<Vi_min)について判定する。なお、本実施の形態では、算出した電圧値が所定の電圧範囲の上限値を逸脱していると判定された場合について説明する。
その後、電圧制御部204は、算出した電圧値を所定の電圧範囲に収めることができるか否か(すなわち、電圧制御の制御解が存在するか否か)を次式6に基づいて判定する。
Figure 0005833749
上式6において、Bは、制御感度を表す係数(=dV/dQ)を成分とする行列であり、第2の取得部202により取得された系統インピーダンス値に基づいて算出される。具体的には、例えば、次式7により、Bhiを算出することができる。
Figure 0005833749
上式7において、xは、第2の取得部202により取得された系統インピーダンス値におけるリアクタンス成分の値であり、変電所101から識別子iで特定される電圧検出点103までのリアクタンス値である。xは、変電所101から識別子hで特定される電圧検出点103までのリアクタンス値である。なお、上式7は一例であり、説明を簡単にするために簡易式を用いている。第2の取得部202が取得した系統インピーダンスにおける抵抗成分等を含めて詳細な計算式を用いることも可能である。
なお、Bhiの決定においては、識別子iで特定される電力調整装置105がΔQだけ無効電力の出力を変化させた場合の、識別子hで特定される電圧検出点103における電圧変化値ΔVを測定することにより決定することも可能である。
また、Qi_maxは、識別子iで特定される電力調整装置105が出力可能な第2の電力の最大値である。すなわち、
Figure 0005833749
となる。
上式6を満たすQi_maxが存在する場合には、電圧制御部204は、電圧検出点103における電圧値を所定の電圧範囲に収めることができる(すなわち、電圧制御の制御解が存在する)と判定する(S108でYes)。この場合には、電圧制御部204は、算出した電圧値に基づいて、所定の制約条件を満たすような第2の電力変化値を算出する。具体的には、電圧制御部204は、所定の制約条件の下で、例えば、コスト総和を最小にする最適化問題を数理計画法により算出する。この算出に用いられる目的関数は、次式9で表されるように、複数の電力調整装置105の各々の特性(例えば、燃料費、運転効率及び残容量等)に応じて複数の電力調整装置105の各々において入力又は出力される第2の電力を配分する関数である。
Figure 0005833749
上式9において、Qは、識別子iで特定される電力調整装置105において入力又は出力される第2の電力を示す。ΔQは、識別子iで特定される電力調整装置105において入力又は出力される第2の電力の変化値である第2の電力変化値を示す。βは、例えば、識別子iで特定される電力調整装置105に対して第2の電力変化値だけ変化させた第2の電力(Q+ΔQ)を入力又は出力させる際に発生するコストを示す。なお、Qについては、例えば、識別子iで特定される電力調整装置105に設けられた電力計(図示せず)を用いることにより取得することができる。
また、上記所定の制約条件は、次式10で表される。
Figure 0005833749
電圧制御部204は、上式10の制約条件を満たし、且つ、上式9の目的関数を最小にする第2の電力変化値(ΔQ)を電圧制御の制御解として算出する(S109)。
図5Cは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部204による第2の電力変化値の算出方法を説明するための概念図である。図5Cに示すように、電力調整装置105において入力又は出力される第2の電力を、上述のように算出した第2の電力変化値だけ変化させることにより、電圧検出点103における電圧値を所定の電圧範囲に収めることができる。以上のようにして、電圧検出点103における電圧値を所定の電圧範囲に収めることができる場合に、電圧制御部204は、第2の電力変化値(ΔQ)を電圧制御の制御解として決定する。
一方、上式6を満たすQi_maxが存在しない場合には、電圧制御部204は、電圧検出点103における電圧値を所定の電圧範囲に収めることができない(すなわち、電圧制御の制御解が存在しない)と判定する(S108でNo)。この場合には、電圧制御部204は、電力調整装置105において入力又は出力される第2の電力(Q)が定格電力(Qi_max)に近付くように、第2の電力変化値(ΔQ)の近似解を次式11により決定する(S110)。
Figure 0005833749
図6Aは、電圧値が所定の電圧範囲に含まれていない場合における、潮流制御部203による第1の電力変化値の算出方法を説明するための概念図である。図6Bは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部204による電圧値の逸脱判定方法を説明するための概念図である。図6Cは、電圧値が所定の電圧範囲に含まれていない場合における、電圧制御部204による第2の電力変化値の算出方法を説明するための概念図である。図6Cに示すように、電力調整装置105において入力又は出力される第2の電力を、上述のように決定した第2の電力変化値だけ変化させることにより、電圧検出点103における電圧値を所定の電圧範囲に近付けることができる。以上のようにして、電圧検出点103における電圧値を所定の電圧範囲に収めることができない場合に、電圧制御部204は、第2の電力変化値(ΔQ)を電圧制御の制御解として決定する。
最後に、通知部205は、潮流制御部203により算出された第1の電力変化値(ΔP)及び電圧制御部204により決定された第2の電力変化値(ΔQ)を指令値として決定する(S111)。通知部205は、決定した指令値を対応する電力調整装置105の各々に通知する(S112)。その後、電力制御装置200は、上述したS102〜S112の処理を繰り返し実行する。
なお、S110において、上述した構成に代えて、電圧制御部204は、電力調整装置105において入力又は出力される第2の電力(Q)が零に近付くように、第2の電力変化値(ΔQ)の近似解を決定することもできる。
以上説明したように、本実施の形態の電力制御装置200では、第1の電力変化値(すなわち、潮流制御の制御解)を算出した後に、この第1の電力変化値に基づいて第2の電力変化値(すなわち、電圧制御の制御解)を算出するので、潮流制御の制御解及び電圧制御の制御解を算出するための計算を簡略化することができる。これにより、潮流制御の制御解及び電圧制御の制御解を高速に(例えば、従来技術の10倍程度の速度で)算出することができ、電力系統100を安定化させることができる。さらに、潮流制御の制御解と電圧制御の制御解とがトレードオフの関係になる場合においても、これらの制御解の近似解を高速に算出することができる。
(実施の形態2)
図7は、実施の形態2に係る電力制御装置の機能的構成を示すブロック図である。図8は、図7の電力制御装置による電力制御の流れを示すフローチャートである。なお、本実施の形態において、上記実施の形態1と同一の構成要素には同一の符号を付し、その説明を省略する。
図7に示すように、本実施の形態の電力制御装置200Aは、さらに、制御精度決定部206を備えている。この制御精度決定部206は、潮流制御部203による潮流制御の精度及び電圧制御部204による電圧制御の精度の大小関係を決定する。潮流制御では、潮流検出点104における潮流値が所定の目標値から逸脱した値である第1の逸脱値が制御される。一方、電圧制御では、電圧検出点103における電圧値が所定の電圧範囲から逸脱した値である第2の逸脱値が制御される。
制御精度決定部206は、制御精度の決定方法を選定し、選定した決定方法に基づいて、制御精度の大小関係を決定する。制御精度の決定方法として、逸脱値を比較する方法及び逸脱時間を比較する方法等が存在する。
逸脱値を比較する場合において、制御精度決定部206は、第1の逸脱値が第2の逸脱値より大きい場合には、潮流制御の精度を電圧制御の精度よりも高く決定し、第2の逸脱値が第1の逸脱値より大きい場合には、電圧制御の精度を潮流制御の精度よりも高く決定する。なお、第1の逸脱値の単位はkW、kVar等であり、第2の逸脱値の単位はV等であるため、第1の逸脱値と第2の逸脱値とを比較する際には、両者をそれぞれ正規化する。例えば、第1の逸脱値が目標値4kW基準で0.1kWであり、第2の逸脱値が上限値107V基準で2Vである場合について説明する。このとき、第1の逸脱値を正規化すると、|0.1kW|/4kW=0.025となり、第2の逸脱値を正規化すると、|2V|/107V=0.019となる。この場合には、第1の逸脱値が第2の逸脱値よりも大きいため、制御精度決定部206は、潮流制御の精度を電圧制御の精度よりも高く決定する。
一方、逸脱時間を比較する場合において、制御精度決定部206は、潮流値が所定の目標値から逸脱している時間である第1の逸脱時間が、電圧値が所定の電圧範囲から逸脱している時間である第2の逸脱時間よりも大きい場合には、潮流制御の精度を電圧制御の精度よりも高く決定する。一方、第2の逸脱時間が第1の逸脱時間より大きい場合には、電圧制御の精度を潮流制御の精度よりも高く決定する。なお、逸脱時間の算出には、直近の連続逸脱回数を用いてもよい。また、第1の逸脱値に第1の逸脱時間を、第2の逸脱値に第2の逸脱時間を含めるようにしてもよい。
制御精度決定部206により電圧制御の精度が潮流制御の精度よりも高く決定された場合には、潮流制御部203は、電圧制約条件を考慮して第1の電力変化値を算出する。この電圧制約条件とは、上式5で表される制約条件であり、電力調整装置105において入力又は出力される第1の電力を第1の電力変化値だけ変化させた場合の、電圧検出点103における電圧値を所定の電圧範囲に含める制約条件である。この場合には、潮流制御部203は、上式1、上式2及び上式5を用いることにより、第1の電力変化値を算出する。これにより、電圧制御部204により算出される第2の電力変化値は、電圧検出点103における電圧値を所定の電圧範囲に含めるという制約条件を満足する値となる。ここで、潮流制御部203は、上式2及び上式5の制約条件を満たす解が存在しない場合には、上式1及び上式5を用いて(すなわち、上式2を用いることなく)解を算出することにより、電圧制御部204により算出される第2の電力変化値は、電圧検出点103における電圧値を所定の電圧範囲に含めるという制約条件を満足する値となる。
一方、制御精度決定部206により潮流制御の精度が電圧制御の精度よりも高く決定された場合には、潮流制御部203は、上記電圧制約条件を考慮せずに第1の電力変化値を算出する。この場合には、潮流制御部203は、上記実施の形態1と同様に、上式1及び上式2を用いることにより、第1の電力変化値を算出する。これにより、潮流制御部203により算出される第1の電力変化値は、潮流検出点104における潮流値をできるだけ所定の目標値に近付けるという制約条件を満足する値となる。
次に、図8を用いて、本実施の形態の電力制御装置200Aによる電力制御の流れについて説明する。まず、上記実施の形態1と同様に、S101及びS102が実行された後に、制御精度決定部206は、制御精度の決定方法を選定する(S201)。具体的には、制御精度決定部206は、第1の逸脱値と第2の逸脱値とを比較することにより制御精度の大小関係を決定する方法と、第1の逸脱時間と第2の逸脱時間とを比較することにより制御精度の大小関係を決定する方法とのうちいずれか一方を選択する。
第1の逸脱値が第2の逸脱値より大きい(或いは、第1の逸脱時間が第2の逸脱時間よりも長い)場合には(S202でYes)、制御精度決定部206は、潮流制御の精度を電圧制御の精度よりも高く決定する(S203)。一方、第2の逸脱値が第1の逸脱値より大きい(或いは、第2の逸脱時間が第1の逸脱時間よりも長い)場合には(S202でNo)、電圧制御の精度を潮流制御の精度よりも高く決定する(S204)。その後、上記実施の形態1と同様に、S103〜S112が実行される。
図9は、電力制御装置の制御パターンを示す表である。図9に示すように、潮流制御部203が制御する電力と、電圧制御部204が制御する電力と、制御精度を高くする制御部の種類とに応じて、電力制御装置200Aの制御パターンとして合計8種類の制御パターン1〜8が考えられる。なお、制御パターン1〜8のうち、上記実施の形態1及び2では、制御パターン3及び4を中心に説明した。
例えば、制御パターン1では、潮流制御部203は、潮流検出点104における有効電力値(潮流値)を所定の目標値に近付けるために、電力調整装置105において入力又は出力される有効電力(第1の電力)を制御する。電圧制御部204は、電圧検出点103における電圧値が所定の電圧範囲に収まるように、電力調整装置105において入力又は出力される有効電力(第2の電力)を制御する。また、制御パターン1では、制御精度決定部206は、潮流制御部203による潮流制御の精度を電圧制御部204による電圧制御の精度より高く決定する。このとき、潮流制御部203によって算出された有効電力変化値(第1の電力変化値)だけ変化させた有効電力(第1の電力)が電力調整装置105において入力又は出力される。一方、電圧制御部204によって算出された有効電力変化値(第2の電力変化値)は考慮しない(電圧制御部204は、有効電力変化値(第2の電力変化値)を算出しなくてもよい)。すなわち、第2の電力変化値は、零となる。
また、制御パターン6では、潮流制御部203は、潮流検出点104における無効電力値(潮流値)を所定の目標値に近付けるために、電力調整装置105において入力又は出力される無効電力(第1の電力)を制御する。電圧制御部204は、電圧検出点103における電圧値が所定の電圧範囲に収まるように、電力調整装置105において入力又は出力される有効電力(第2の電力)を制御する。また、制御パターン6では、制御精度決定部206は、電圧制御部204による電圧制御の精度を潮流制御部203による潮流制御の精度より高く決定する。このとき、潮流制御部203は、電圧検出点103における電圧値が所定の電圧範囲に含まれるように、無効電力変化値(第1の電力変化値)を算出する。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の電力制御装置等を実現するソフトウェアは、次のようなプログラムである。
すなわち、電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御するプログラムであって、前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得するステップと、前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記第1の取得部により取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出するステップと、前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定するステップと、前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知するステップと、をコンピュータに実行させるプログラムである。
以上、本発明の一つ又は複数の態様に係る電力制御装置、電力制御方法及びプログラムについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思い付く各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
上記実施の形態1及び2では、電圧検出点を電力調整装置の受電点に設けたが、これに限定されず、任意の箇所に設けることが可能である。また、上記実施の形態1及び2では、電圧検出点を複数設けたが、1つのみ設けることも可能である。
上記実施の形態1及び2では、潮流検出点を電力系統と変電所との連系点に設けたが、これに限定されず、任意の箇所に設けることが可能である。また、上記実施の形態1及び2では、潮流検出点を1つのみ設けたが、複数設けることも可能である。
上記実施の形態1及び2では、指令値は、潮流制御部203により算出された第1の電力変化値及び電圧制御部により決定された第2の電力変化値を含むデータであるが、これに限定されず、例えば、第1の電力変化値だけ変化させた第1の電力(P+ΔP)及び第2の電力変化値だけ変化させた第2の電力(Q+ΔQ)を含むデータでもよい。
本発明は、分散型電源等の電力調整装置が連系された電力系統における潮流値及び電圧値を制御するための電力制御装置、電力制御方法及びプログラムに適用することができる。
100 電力系統
101 変電所
102 電力線
103 電圧検出点
104 潮流検出点
105 電力調整装置
106 通信線
200,200A 電力制御装置
201 第1の取得部
202 第2の取得部
203 潮流制御部
204 電圧制御部
205 通知部
206 制御精度決定部

Claims (8)

  1. 電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御する電力制御装置であって、
    前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得する第1の取得部と、
    前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記第1の取得部により取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出する潮流制御部と、
    前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて、且つ、当該電圧値が前記所定の電圧範囲に含まれていない場合には、当該電圧値を前記所定の電圧範囲に収めることができるか否かを判定し、その判定結果に基づいて、前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定する電圧制御部と、
    前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知する通知部と、を備え
    前記電圧制御部は、
    算出した前記電圧値が前記所定の電圧範囲に含まれている場合には、前記第2の電力変化値を零に決定し、
    算出した前記電圧値が前記所定の電圧範囲に含まれていない場合であって、算出した前記電圧値を前記所定の電圧範囲に収めることができると判定した場合には、算出した前記電圧値に基づいて、所定の制約条件を満たすような前記第2の電力変化値を決定し、
    算出した前記電圧値が前記所定の電圧範囲に含まれていない場合であって、算出した前記電圧値を前記所定の電圧範囲に収めることができないと判定した場合には、前記電力調整装置において入力又は出力される前記第2の電力が定格電力に近付くように前記第2の電力変化値を決定する
    電力制御装置。
  2. さらに、前記電力系統に電力を供給する上位系統と前記電力調整装置との間における系統インピーダンス値を取得する第2の取得部を備え、
    前記電圧制御部は、前記第2の取得部により取得された前記系統インピーダンス値に基づいて、前記電圧値を算出する
    請求項1に記載の電力制御装置。
  3. さらに、前記潮流制御部による潮流制御の精度及び前記電圧制御部による電圧制御の精度の大小関係を決定する制御精度決定部を備え、
    前記潮流制御では、前記潮流検出点における前記潮流値が前記所定の目標値から逸脱した値である第1の逸脱値が制御され、
    前記電圧制御では、前記電圧検出点における前記電圧値が前記所定の電圧範囲から逸脱した値である第2の逸脱値が制御され、
    前記制御精度決定部は、前記第1の逸脱値が前記第2の逸脱値より大きい場合には、前記潮流制御の精度を前記電圧制御の精度よりも高く決定し、前記第2の逸脱値が前記第1の逸脱値より大きい場合には、前記電圧制御の精度を前記潮流制御の精度よりも高く決定する
    請求項1又は2に記載の電力制御装置。
  4. さらに、前記潮流制御部による潮流制御の精度及び前記電圧制御部による電圧制御の精度の大小関係を決定する制御精度決定部を備え、
    前記潮流制御では、前記潮流検出点における前記潮流値が前記所定の目標値から逸脱した値である第1の逸脱値が制御され、
    前記電圧制御では、前記電圧検出点における前記電圧値が前記所定の電圧範囲から逸脱した値である第2の逸脱値が制御され、
    前記制御精度決定部は、前記潮流値の逸脱時間が前記電圧値の逸脱時間よりも長い場合には、前記潮流制御の精度を前記電圧制御の精度よりも高く決定し、前記電圧値の逸脱時間が前記潮流値の逸脱時間よりも長い場合には、前記電圧制御の精度を前記潮流制御の精度よりも高く決定する
    請求項1又は2に記載の電力制御装置。
  5. 前記潮流制御部は、前記制御精度決定部により前記電圧制御の精度が前記潮流制御の精度よりも高く決定された場合には、前記電圧検出点における前記電圧値を前記所定の電圧範囲に含める電圧制約条件を考慮して前記第1の電力変化値を算出し、前記制御精度決定部により前記潮流制御の精度が前記電圧制御の精度よりも高く決定された場合には、前記電圧制約条件を考慮せずに前記第1の電力変化値を算出する
    請求項又はに記載の電力制御装置。
  6. 前記第1の電力は、有効電力及び無効電力のいずれか一方であり、且つ、前記第2の電力は、有効電力及び無効電力のいずれか一方である
    請求項1〜のいずれか1項に記載の電力制御装置。
  7. 電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御する電力制御方法であって、
    前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得するステップと、
    前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記取得するステップで取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出するステップと、
    前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて、且つ、当該電圧値が前記所定の電圧範囲に含まれていない場合には、当該電圧値を前記所定の電圧範囲に収めることができるか否かを判定し、その判定結果に基づいて、前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定するステップと、
    前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知するステップと、を含み、
    前記決定するステップでは、
    算出した前記電圧値が前記所定の電圧範囲に含まれている場合には、前記第2の電力変化値を零に決定し、
    算出した前記電圧値が前記所定の電圧範囲に含まれていない場合であって、算出した前記電圧値を前記所定の電圧範囲に収めることができると判定した場合には、算出した前記電圧値に基づいて、所定の制約条件を満たすような前記第2の電力変化値を決定し、
    算出した前記電圧値が前記所定の電圧範囲に含まれていない場合であって、算出した前記電圧値を前記所定の電圧範囲に収めることができないと判定した場合には、前記電力調整装置において入力又は出力される前記第2の電力が定格電力に近付くように前記第2の電力変化値を決定する
    電力制御方法。
  8. 電力を入力又は出力することにより電力系統における電力を調整する電力調整装置を制御するプログラムであって、
    前記電力系統上に設けられた潮流検出点における潮流値及び前記電力系統上に設けられた電圧検出点における電圧値をそれぞれ取得するステップと、
    前記潮流検出点における前記潮流値を所定の目標値に近付けるために、前記取得するステップで取得された前記潮流値に基づいて、前記電力調整装置において入力又は出力される第1の電力の変化値である第1の電力変化値を算出するステップと、
    前記電力調整装置において入力又は出力される前記第1の電力を前記第1の電力変化値だけ変化させた場合の前記電圧検出点における電圧値を算出し、当該電圧値が所定の電圧範囲に含まれるか否かに基づいて、且つ、当該電圧値が前記所定の電圧範囲に含まれていない場合には、当該電圧値を前記所定の電圧範囲に収めることができるか否かを判定し、その判定結果に基づいて、前記電力調整装置において入力又は出力される第2の電力の変化値である第2の電力変化値を決定するステップと、
    前記第1の電力変化値だけ変化させた前記第1の電力及び前記第2の電力変化値だけ変化させた前記第2の電力を前記電力調整装置において入力又は出力させるための指令値を前記電力調整装置に通知するステップと、をコンピュータに実行させ
    前記決定するステップでは、
    算出した前記電圧値が前記所定の電圧範囲に含まれている場合には、前記第2の電力変化値を零に決定し、
    算出した前記電圧値が前記所定の電圧範囲に含まれていない場合であって、算出した前記電圧値を前記所定の電圧範囲に収めることができると判定した場合には、算出した前記電圧値に基づいて、所定の制約条件を満たすような前記第2の電力変化値を決定し、
    算出した前記電圧値が前記所定の電圧範囲に含まれていない場合であって、算出した前記電圧値を前記所定の電圧範囲に収めることができないと判定した場合には、前記電力調整装置において入力又は出力される前記第2の電力が定格電力に近付くように前記第2の電力変化値を決定する
    プログラム。
JP2014515495A 2012-05-17 2013-05-13 電力制御装置、電力制御方法及びプログラム Expired - Fee Related JP5833749B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515495A JP5833749B2 (ja) 2012-05-17 2013-05-13 電力制御装置、電力制御方法及びプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012113784 2012-05-17
JP2012113784 2012-05-17
JP2014515495A JP5833749B2 (ja) 2012-05-17 2013-05-13 電力制御装置、電力制御方法及びプログラム
PCT/JP2013/003053 WO2013172012A1 (ja) 2012-05-17 2013-05-13 電力制御装置、電力制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP5833749B2 true JP5833749B2 (ja) 2015-12-16
JPWO2013172012A1 JPWO2013172012A1 (ja) 2016-01-12

Family

ID=49583441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515495A Expired - Fee Related JP5833749B2 (ja) 2012-05-17 2013-05-13 電力制御装置、電力制御方法及びプログラム

Country Status (3)

Country Link
US (1) US9595829B2 (ja)
JP (1) JP5833749B2 (ja)
WO (1) WO2013172012A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9544448B2 (en) * 2015-03-20 2017-01-10 Ricoh Company, Ltd. Communication apparatus and method for determining connection
CN106374498B (zh) * 2016-11-22 2019-02-15 合肥工业大学 一种考虑二次电压频率控制的微电网潮流计算方法
CN106972945B (zh) * 2017-01-26 2019-12-06 南京陇源汇能电力科技有限公司 一种配电***中配电网的巡线装置
JP7059697B2 (ja) 2018-03-06 2022-04-26 富士電機株式会社 最適計算装置、最適計算方法、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271723A (ja) * 2007-04-23 2008-11-06 Toshiba Corp 電力需給制御装置およびその方法
JP2009153333A (ja) * 2007-12-21 2009-07-09 Tokyo Gas Co Ltd 分散型電源システム及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441786B2 (ja) 2010-03-29 2014-03-12 三菱電機株式会社 電力系統安定化装置の制御装置
US8866549B2 (en) * 2010-06-01 2014-10-21 Rf Micro Devices, Inc. Method of power amplifier calibration
US9172245B1 (en) * 2010-12-06 2015-10-27 Sandia Corporation Intelligent electrical outlet for collective load control
CN102156504B (zh) * 2011-04-14 2013-10-23 矽力杰半导体技术(杭州)有限公司 一种太阳能电池板最大功率跟踪装置、跟踪方法以及应用其的太阳能供电装置
US20130231793A1 (en) * 2012-03-01 2013-09-05 Leviton Manufacturing Co., Inc. Relay system with branch circuit metering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271723A (ja) * 2007-04-23 2008-11-06 Toshiba Corp 電力需給制御装置およびその方法
JP2009153333A (ja) * 2007-12-21 2009-07-09 Tokyo Gas Co Ltd 分散型電源システム及びその制御方法

Also Published As

Publication number Publication date
US20150123626A1 (en) 2015-05-07
US9595829B2 (en) 2017-03-14
WO2013172012A1 (ja) 2013-11-21
JPWO2013172012A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
US7923862B2 (en) Reactive power regulation and voltage support for renewable energy plants
JP5893544B2 (ja) 電圧制御装置、電圧制御方法、電力調整装置、及び電圧制御プログラム
US9941700B2 (en) Utility scale renewable energy system controls for ramp-rate, voltage, and frequency management
US9507367B2 (en) Method and system for dynamic stochastic optimal electric power flow control
US9997922B2 (en) Method for feeding electrical power into an electrical supply network
CN102439297B (zh) 风力发电装置的控制装置和控制方法
US20140032000A1 (en) Power System Stabilization Using Distributed Inverters
US9698601B2 (en) Voltage control apparatus, voltage control method, and power adjustment apparatus
US10784686B2 (en) Grid stabilization using adjusted voltage regulator response to grid characteristics
Khosravi et al. A novel control approach to improve the stability of hybrid AC/DC microgrids
JP5427006B2 (ja) 分散型電源システム、太陽光発電装置、燃料電池装置、及び、分散型電源システムの電圧調整方法
JP5833749B2 (ja) 電力制御装置、電力制御方法及びプログラム
KR20210011727A (ko) 에너지 저장장치의 관성제어를 위한 장치 및 방법
JP2005117734A (ja) 配電系統の電圧管理装置および電圧管理方法
JP6075348B2 (ja) 電圧調整装置
Liu et al. Sensitivity Region-Based Optimization for Maximizing Renewable Generation Hosting Capacity of an Islanded Microgrid
KR20170021606A (ko) 배터리 에너지 저장 시스템 및 이를 이용한 무효 전력 보상 방법
Hossain et al. A distributed-MPC framework for voltage control under discrete time-wise variable generation/load
Nguyen et al. Multi-layer Reactive Power Control of Solar Photovoltaic Systems in MV Distribution Network
JP5897518B2 (ja) 電圧調整装置
CN109474027B (zh) 一种下垂控制方法、装置及变流器
JP2012070598A (ja) 多数台連系した太陽光発電システムの出力抑制回避方法及びその装置
JP6629606B2 (ja) 発電システム、発電制御方法及び発電装置
Mahdavian Rostami et al. Reactive Power Management of PV Systems by Distributed Cooperative Control in Low Voltage Distribution Networks
Sitompul et al. Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System. Energies 2021, 14, 2213

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R151 Written notification of patent or utility model registration

Ref document number: 5833749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees