JP5833428B2 - Method for producing laminated film - Google Patents

Method for producing laminated film Download PDF

Info

Publication number
JP5833428B2
JP5833428B2 JP2011278513A JP2011278513A JP5833428B2 JP 5833428 B2 JP5833428 B2 JP 5833428B2 JP 2011278513 A JP2011278513 A JP 2011278513A JP 2011278513 A JP2011278513 A JP 2011278513A JP 5833428 B2 JP5833428 B2 JP 5833428B2
Authority
JP
Japan
Prior art keywords
film
component
resin
acid component
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011278513A
Other languages
Japanese (ja)
Other versions
JP2013129078A (en
Inventor
良敬 田中
良敬 田中
石田 剛
剛 石田
飯田 真
真 飯田
知可 芳村
知可 芳村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2011278513A priority Critical patent/JP5833428B2/en
Publication of JP2013129078A publication Critical patent/JP2013129078A/en
Application granted granted Critical
Publication of JP5833428B2 publication Critical patent/JP5833428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は積層フィルムの製造方法に関する。 The present invention relates to a method for producing a laminated film.

ポリエチレンテレフタレート(以下PETと略す。)やポリエチレン−2,6−ナフタレート(以下PENと略す。)に代表される芳香族ポリエステルは優れた機械的特性、寸法安定性および耐熱性を有することから、フィルムなどに幅広く使用されている。特にポリエチレン−2,6−ナフタレートは、ポリエチレンテレフタレートよりも優れた機械的特性、寸法安定性および耐熱性を有することから、それらの要求の厳しい用途、例えば高密度磁気記録テープなどのベースフィルムなどに使用されている。しかしながら、近年の高密度磁気記録テープなどでの寸法安定性の要求はますます高くなってきており、さらなる特性の向上、例えば温度や湿度などの環境変化に対する高度の寸法安定性が求められている。   Aromatic polyesters typified by polyethylene terephthalate (hereinafter abbreviated as PET) and polyethylene-2,6-naphthalate (hereinafter abbreviated as PEN) have excellent mechanical properties, dimensional stability and heat resistance. Widely used in In particular, polyethylene-2,6-naphthalate has mechanical properties, dimensional stability and heat resistance superior to those of polyethylene terephthalate, so that it is used in demanding applications such as a base film such as a high-density magnetic recording tape. It is used. However, demands for dimensional stability in high-density magnetic recording tapes and the like in recent years are increasing, and further improvement of characteristics, for example, high dimensional stability against environmental changes such as temperature and humidity is required. .

ところで、特許文献1〜3には、ポリ(1,4−シクロヘキサンジメチレンテレフタレート)(以下PCTと略す。)からなるフィルムが、また、特許文献4には、PCTとPETとをブレンドすることが開示され、湿度膨張係数が小さく寸法安定性に優れた二軸配向ポリエステルフィルムを得られることが記載されている。
しかしながら、これらに記載された二軸配向ポリエステルフィルムは、湿度膨張係数は低いものの、温度膨張係数がいずれの方向も10ppm/℃以上ある温度変化に対する寸法変化が大きなものでしかなかった。
By the way, in Patent Documents 1 to 3, a film made of poly (1,4-cyclohexanedimethylene terephthalate) (hereinafter abbreviated as PCT) is used. In Patent Document 4, PCT and PET are blended. It is disclosed that a biaxially oriented polyester film having a small humidity expansion coefficient and excellent dimensional stability can be obtained.
However, although the biaxially oriented polyester films described in these documents have a low coefficient of humidity expansion, they have only a large dimensional change with respect to a temperature change in which the temperature expansion coefficient is 10 ppm / ° C. or more in any direction.

特開昭60−69133号公報JP 60-69133 A 特開昭60−85437号公報JP-A-60-85437 特開平3−67630号公報Japanese Patent Laid-Open No. 3-67630 特開昭60−203422号公報Japanese Patent Laid-Open No. 60-203422

本発明者らは、上記従来技術の有する問題を解決しようと、PCTの温度膨張係数を低減するためにPETやPENとの積層を研究したが、温度膨張係数を低減しようと高度に延伸しようとすると工程が不安定になってしまう問題があることが判明した。そこで、PCTとPENとをブレンドしたものについてさらに研究をしたが、こちらでは両者は相溶性が乏しく、また延伸性も異なることから、延伸されたフィルムは表面平坦性やカールなどの問題があることが判明した。そこで、さらにPCTとPENとの共重合についても研究したが、PCTによる湿度膨張係数の低減を十分に発現できるだけ加えると、塗布などの加工の際に、フィルムが延びやすく、一方で両者は相溶性が乏しく、また延伸性も異なることから、延伸されたフィルムは表面平坦性やカールなどの問題があることが判明した。さらに上記の場合、湿度膨張係数は低減するものの温度膨張係数の低減を達成できないという状況であった。
したがって、本発明の課題は、温度や湿度変化に対する寸法安定性と表面の平坦性とに優れ、フィルムのカールが小さく、しかも高温での加工性にも優れたポリエステルフィルムを提供することにある。
In order to solve the above-described problems of the prior art, the present inventors have studied the lamination with PET or PEN in order to reduce the temperature expansion coefficient of PCT, but have tried to highly stretch to reduce the temperature expansion coefficient. Then, it became clear that there was a problem that the process became unstable. Therefore, further research was conducted on blends of PCT and PEN, but here they are poorly compatible and have different stretchability, so the stretched film has problems such as surface flatness and curl. There was found. Therefore, we have also studied the copolymerization of PCT and PEN. However, if sufficient addition of the reduction in the coefficient of humidity expansion by PCT is achieved, the film will easily stretch during processing such as coating, while both are compatible. It was found that the stretched film had problems such as surface flatness and curl because the film thickness was poor and the stretchability was different. Further, in the above case, the humidity expansion coefficient is reduced, but the temperature expansion coefficient cannot be reduced.
Accordingly, an object of the present invention is to provide a polyester film which is excellent in dimensional stability and surface flatness against changes in temperature and humidity, small in curl of the film and excellent in workability at high temperatures.

本発明者らは、上記課題を解決しようと鋭意研究した結果、特定の共重合芳香族ポリエステルをPENとブレンドしたものと、PENとを積層することで、上記課題を具備する積層フィルムが得られることを見出し、本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors can obtain a laminated film having the above-mentioned problems by laminating a specific copolymerized aromatic polyester blended with PEN and PEN. The present invention has been found.

かくして本発明によれば、以下の1〜5の積層フィルムの製造方法が提供される。
1.フィルム層Aと全繰り返し単位の90モル%以上がエチレン−2,6−ナフタレンジカルボキシレートであるポリエチレン−2,6−ナフタレンジカルボキシレートからなるフィルム層Bを積層した積層フィルムの製造方法であって、
フィルム層Aを構成する樹脂成分Aが、
全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、15:85〜35:65の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、60:40〜90:10の範囲である樹脂A´と全繰り返し単位の90モル%以上がエチレン−2,6−ナフタレンジカルボキシレートであるポリエチレン−2,6−ナフタレンジカルボキシレートとを
全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、5:95〜20:80の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、15:85〜40:60となるように溶融混練し、二軸方向に延伸する積層フィルムの製造方法
2.フィルム層Aを構成する樹脂成分Aにおける樹脂A´とポリエチレン−2,6−ナフタレンジカルボキシレートとの重量比が10:90〜90:10の範囲である上記1記載の積層フィルムの製造方法
3.積層フィルムの厚み方向において、フィルム層Aが占める厚みとフィルム層Bが占める厚みとの比が、10:90〜80:20の範囲である上記1または2に記載の積層フィルムの製造方法
4.積層フィルム全体における、全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、3:97〜15:85の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、10:90〜30:70の範囲である上記1〜3のいずれかに記載の積層フィルムの製造方法
5.製膜方向および幅方向のヤング率がともに4.5GPa以上である上記1〜4のいずれかに記載の積層フィルムの製造方法
Thus, according to the present invention, the following methods for producing laminated films 1 to 5 are provided.
1. It is a method for producing a laminated film in which film layer A and film layer B composed of polyethylene-2,6-naphthalene dicarboxylate in which 90 mol% or more of all repeating units are ethylene-2,6-naphthalene dicarboxylate are laminated. And
The resin component A constituting the film layer A is
The molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is in the range of 15:85 to 35:65, and the molar ratio of the 1,4-cyclohexanedimethanol component of the total glycol component to the ethylene glycol component. A resin A ′ having a ratio in the range of 60:40 to 90:10 and polyethylene-2,6-naphthalene dicarboxylate wherein 90 mol% or more of all repeating units are ethylene- 2,6-naphthalene dicarboxylate; The molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is in the range of 5:95 to 20:80, the 1,4-cyclohexanedimethanol component of the total glycol component and the ethylene glycol component of A method for producing a laminated film , which is melt-kneaded so as to have a molar ratio of 15:85 to 40:60 and stretched biaxially .
2. 2. The method for producing a laminated film according to 1 above, wherein the weight ratio of the resin A ′ to the polyethylene-2,6-naphthalenedicarboxylate in the resin component A constituting the film layer A is in the range of 10:90 to 90:10.
3. The method for producing a laminated film according to 1 or 2 above, wherein the ratio of the thickness occupied by the film layer A and the thickness occupied by the film layer B is in the range of 10:90 to 80:20 in the thickness direction of the laminated film.
4). In the entire laminated film, the molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is in the range of 3:97 to 15:85, and the 1,4-cyclohexanedimethanol component of the total glycol component The manufacturing method of the laminated | multilayer film in any one of said 1-3 whose molar ratio of an ethylene glycol component is the range of 10: 90-30: 70.
5. The method for producing a laminated film according to any one of 1 to 4 above, wherein the Young's modulus in the film forming direction and the width direction are both 4.5 GPa or more.

本発明によれば、特定の共重合芳香族ポリエステルをPENとブレンドしたフィルム層と、PENからなるフィルム層とを積層することで、温度や湿度変化に対する寸法安定性と表面の平坦性とに優れ、フィルムのカールが小さく、しかも高温での加工性にも優れた積層フィルムが提供される。   According to the present invention, by laminating a film layer obtained by blending a specific copolymerized aromatic polyester with PEN and a film layer made of PEN, it is excellent in dimensional stability against surface temperature and humidity changes and surface flatness. A laminated film having a small film curl and excellent workability at high temperatures is provided.

本発明の積層フィルムは、フィルム層Aとポリエチレン−2,6−ナフタレンジカルボキシレートからなるフィルム層Bを積層した積層フィルムである。以下、フィルム層Aとフィルム層B、積層フィルムおよびその製造方法に分けて説明する。   The laminated film of the present invention is a laminated film obtained by laminating a film layer A and a film layer B made of polyethylene-2,6-naphthalenedicarboxylate. Hereinafter, the film layer A, the film layer B, the laminated film, and the manufacturing method thereof will be described separately.

<フィルム層B>
本発明におけるフィルム層Bは、ポリエチレン−2,6−ナフタレンジカルボキシレート(以下、PENと称する。)からなることが、後述のフィルム層Aと積層したときの延伸性を揃え、表面の平坦性やカールを抑制し、さらに温度膨張係数を低減する上で必要である。
<Film layer B>
The film layer B in the present invention is made of polyethylene-2,6-naphthalene dicarboxylate (hereinafter referred to as PEN), which has uniform stretchability when laminated with the film layer A described later, and has a flat surface. It is necessary for suppressing curling and further reducing the temperature expansion coefficient.

本発明におけるPENは、全繰り返し単位の90モル%以上、好ましくは95モル%以上、さらに好ましくは98モル%以上がエチレン−2,6−ナフタレンジカルボキシレートであるPENである。したがって、本発明におけるPENは、ホモポリマーであっても良いし、本発明の効果を損なわない範囲で、それ自体公知の共重合成分を共重合したものであっても良い。共重合成分としては、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、5−ナトリウムスルホイソフタル酸等のジカルボン酸成分が挙げられる。   PEN in the present invention is PEN in which 90 mol% or more, preferably 95 mol% or more, more preferably 98 mol% or more of all repeating units is ethylene-2,6-naphthalenedicarboxylate. Therefore, PEN in the present invention may be a homopolymer or may be a copolymer obtained by copolymerizing a known copolymer component as long as the effects of the present invention are not impaired. Examples of the copolymer component include diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, and dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, and 5-sodium sulfoisophthalic acid.

本発明におけるPENのP−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度は、0.5〜1.1dl/g、さらに0.6〜1.1dl/gの範囲にあることが本発明の効果の点から好ましい。固有粘度が上限以上だと、粘度が高くなりすぎ、製膜時の押出機からの樹脂の押出が困難になる。また、固有粘度が下限以下だと、フィルムが脆化し、延伸が困難になる。   The intrinsic viscosity measured at 35 ° C. using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60) of PEN in the present invention is 0.5 to 1.1 dl / g, and more preferably in the range of 0.6 to 1.1 dl / g from the viewpoint of the effect of the present invention. If the intrinsic viscosity is equal to or higher than the upper limit, the viscosity becomes too high, and it becomes difficult to extrude the resin from the extruder during film formation. On the other hand, if the intrinsic viscosity is less than the lower limit, the film becomes brittle and stretching becomes difficult.

また、本発明におけるフィルム層Bは、本発明の効果を損なわない範囲で、必要に応じて、他の熱可塑性ポリマー、不活性粒子やワックスなどの滑剤、紫外線吸収剤等の安定剤、滑剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、核剤を必要に応じて配合しても良い。なお、表面の平坦性をより高度に発現させる観点から、表面欠点を形成しやすいPENに対して非相溶の他の熱可塑性ポリマー、顔料、充填剤、ガラス繊維、炭素繊維、層状ケイ酸塩などは含有させないことが好ましい。また、積層フィルムにしたときの走行性や巻取り性を確保しつつ、表面の平坦性を確保する観点から、平均粒径が0.01〜0.5μmの不活性粒子を、0.001〜1.0質量%の範囲で含有させるのが好ましい。好ましい不活性粒子の平均粒径は、0.02〜0.4μm、さらに0.05〜0.35μmの範囲である。また、好ましい含有量は0.005〜0.5質量%、さらに0.01〜0.4質量%である。含有させる不活性粒子としては、シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレンなどの有機高分子粒子および球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン樹脂、架橋ポリスチレンおよび球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましい。   Further, the film layer B in the present invention is within the range not impairing the effects of the present invention, if necessary, other thermoplastic polymers, lubricants such as inert particles and wax, stabilizers such as ultraviolet absorbers, lubricants, You may mix | blend antioxidant, a plasticizer, a lubricant, a flame retardant, a mold release agent, and a nucleating agent as needed. In addition, from the viewpoint of expressing surface flatness to a higher degree, other thermoplastic polymers, pigments, fillers, glass fibers, carbon fibers, layered silicates that are incompatible with PEN that easily forms surface defects. Etc. are preferably not contained. In addition, from the viewpoint of ensuring the flatness of the surface while ensuring the runnability and winding property when the laminated film is formed, the inert particles having an average particle diameter of 0.01 to 0.5 μm are added to 0.001 to 0.001. It is preferable to make it contain in 1.0 mass%. A preferable average particle diameter of the inert particles is in the range of 0.02 to 0.4 μm, and further 0.05 to 0.35 μm. Moreover, preferable content is 0.005-0.5 mass%, Furthermore, 0.01-0.4 mass%. The inert particles to be contained are preferably at least one kind of particles selected from the group consisting of organic polymer particles such as silicone resin, crosslinked acrylic resin, crosslinked polyester, crosslinked polystyrene, and spherical silica. It is preferably at least one particle selected from the group consisting of crosslinked polystyrene and spherical silica.

<フィルム層A>
本発明におけるフィルム層Aは、全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、15:85〜35:65の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、60:40〜90:10の範囲である樹脂A´とポリエチレン−2,6−ナフタレンジカルボキシレートとを、全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、5:95〜20:80の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、15:85〜40:60となるように溶融混練したものである。
<Film layer A>
The film layer A in the present invention has a molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component in the range of 15:85 to 35:65, and 1,4-cyclohexanedi of the total glycol component. Resin A ′ and polyethylene-2,6-naphthalenedicarboxylate having a molar ratio of methanol component to ethylene glycol component in the range of 60:40 to 90:10 are combined with terephthalic acid component of 2,6 and 2,6 -The molar ratio of the naphthalenedicarboxylic acid component is in the range of 5:95 to 20:80, and the molar ratio of the 1,4-cyclohexanedimethanol component to the ethylene glycol component of the total glycol component is 15:85 to 40:60. It is melt-kneaded so that.

樹脂A´中のテレフタル酸成分が過度に少ないか、2,6−ナフタレンジカルボン酸成分の割合が過度に多いと、フィルムにした場合の湿度膨張係数がPENのそれと変わらなくなるほか、樹脂A´そのものの融点が高融点化するため、重合時も難しくなる。他方樹脂A´中のテレフタル酸成分が過度に多いか、2,6−ナフタレンジカルボン酸成分の割合が過度に少ないと、溶融混練を行う相手材のPENとの相溶性が悪くなり、表面があれるなど、フィルム特性上好ましくない。好ましい樹脂A´中のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比は、17:83〜33:67、さらに19:81〜31:69の範囲である。   If the terephthalic acid component in the resin A ′ is excessively small or the proportion of the 2,6-naphthalenedicarboxylic acid component is excessively large, the humidity expansion coefficient when formed into a film does not change from that of PEN, and the resin A ′ itself Since the melting point of the resin becomes high, it becomes difficult during polymerization. On the other hand, if the terephthalic acid component in the resin A ′ is excessively large or the proportion of the 2,6-naphthalenedicarboxylic acid component is excessively small, the compatibility with the PEN of the counterpart material to be melt-kneaded will deteriorate and the surface will be It is not preferable in terms of film characteristics. The molar ratio of the terephthalic acid component to the 2,6-naphthalenedicarboxylic acid component in the preferred resin A ′ is in the range of 17:83 to 33:67, and further 19:81 to 31:69.

また、樹脂A´中の1,4−シクロヘキサンジメタノール成分が過度に少ないか、エチレングリコール成分の割合が過度に多いと、十分な湿度膨張係数の低減効果が得られなくなる。他方、樹脂A´中の1,4−シクロヘキサンジメタノール成分が過度に多いか、エチレングリコール成分の割合が過度に少ないと、PENとの相溶性が悪化することで溶融混練した際の表面性が悪化する。したがって、好ましい樹脂A´中の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比は、64:36〜86:14、さらに67:33〜83:17の範囲である。   If the 1,4-cyclohexanedimethanol component in the resin A ′ is excessively small or the proportion of the ethylene glycol component is excessively large, a sufficient effect of reducing the coefficient of humidity expansion cannot be obtained. On the other hand, when the 1,4-cyclohexanedimethanol component in the resin A ′ is excessively large or the proportion of the ethylene glycol component is excessively small, the compatibility with the PEN deteriorates, so that the surface property when melt-kneaded is increased. Getting worse. Therefore, the molar ratio of the 1,4-cyclohexanedimethanol component and the ethylene glycol component in the preferred resin A ′ is in the range of 64:36 to 86:14, and further 67:33 to 83:17.

なお、上記樹脂A´と溶融混練するポリエチレン−2,6−ナフタレンジカルボキシレートは、前述のフィルム層Bで説明したのと同様なことが言え、生産性の観点からは、フィルム層Bに用いるPENと同じものを用いることが好ましい。   The polyethylene-2,6-naphthalene dicarboxylate melt-kneaded with the resin A ′ can be said to be the same as described in the film layer B, and is used for the film layer B from the viewpoint of productivity. It is preferable to use the same as PEN.

そして、本発明におけるフィルム層Aは、前述の樹脂A´とPENとを溶融混練した樹脂Aからなり、この樹脂Aは、前述の通り、全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、5:95〜20:80の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、15:85〜40:60となるように溶融混練したものである。   And the film layer A in this invention consists of the resin A which melt-kneaded the above-mentioned resin A 'and PEN, This resin A is the terephthalic acid component of all the acid components, and 2, 6- naphthalene dicarboxylic acid as above-mentioned. The molar ratio of the acid component is in the range of 5:95 to 20:80, and the molar ratio of the 1,4-cyclohexanedimethanol component to the ethylene glycol component of all glycol components is 15:85 to 40:60. It is melt-kneaded.

樹脂A中のテレフタル酸成分が過度に少ないか、2,6−ナフタレンジカルボン酸成分の割合が過度に多いと、湿度膨張係数が低減しにくくなり、温度膨張係数が増加しやすくなる。他方樹脂A中のテレフタル酸成分が過度に多いか、2,6−ナフタレンジカルボン酸成分の割合が過度に少ないと、PENとの相溶性が悪化し表面があれる。好ましい樹脂A中のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比は、6:94〜17:83、さらに7:93〜15:85の範囲である。   When the terephthalic acid component in the resin A is excessively small or the proportion of the 2,6-naphthalenedicarboxylic acid component is excessively large, the humidity expansion coefficient is difficult to reduce and the temperature expansion coefficient is likely to increase. On the other hand, if the terephthalic acid component in the resin A is excessively large or if the proportion of the 2,6-naphthalenedicarboxylic acid component is excessively small, the compatibility with PEN deteriorates and the surface becomes rough. The molar ratio of the terephthalic acid component and the 2,6-naphthalenedicarboxylic acid component in the preferred resin A is in the range of 6:94 to 17:83, and further 7:93 to 15:85.

また、樹脂A中の1,4−シクロヘキサンジメタノール成分が過度に少ないか、エチレングリコール成分の割合が過度に多いと、十分な湿度膨張係数低減降が得られない。他方、樹脂A中の1,4−シクロヘキサンジメタノール成分が過度に多いか、エチレングリコール成分の割合が過度に少ないと、ヤング率が得られにくくなる。好ましい樹脂A中の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比は、16:84〜35:65、さらに17:83〜30:70の範囲である。   Further, if the 1,4-cyclohexanedimethanol component in the resin A is excessively small or the proportion of the ethylene glycol component is excessively large, a sufficient humidity expansion coefficient reduction cannot be obtained. On the other hand, if the 1,4-cyclohexanedimethanol component in the resin A is excessively large or the proportion of the ethylene glycol component is excessively small, it is difficult to obtain the Young's modulus. The molar ratio of the 1,4-cyclohexanedimethanol component and the ethylene glycol component in the preferred resin A is in the range of 16:84 to 35:65, and further 17:83 to 30:70.

ところで、樹脂A´とPENとを溶融混練するのではなく、重合の段階で上記組成になるように初めから共重合した場合、塗布などの加工性が乏しく、ヤング率などの機械的物性も乏しいものとなりやすい。そのような観点から、溶融混練する樹脂A´とPENとの重量比は、10:90〜90:10の範囲、さらに20:80〜90:10の範囲、さらに30:70〜90:10の範囲であることが好ましい。   By the way, when resin A ′ and PEN are not melt-kneaded but copolymerized from the beginning so as to have the above composition at the stage of polymerization, workability such as coating is poor and mechanical properties such as Young's modulus are also poor. It is easy to become a thing. From such a viewpoint, the weight ratio of the resin A ′ and PEN to be melt-kneaded is in the range of 10:90 to 90:10, further in the range of 20:80 to 90:10, and further in the range of 30:70 to 90:10. A range is preferable.

なお、本発明における樹脂A´および樹脂Aは、本発明の効果を損なわない範囲で、それ自体公知の他の共重合成分を共重合したものであっても良い。共重合成分としては、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、5−ナトリウムスルホイソフタル酸等のジカルボン酸成分が挙げられる。   The resin A ′ and the resin A in the present invention may be those obtained by copolymerizing other copolymerization components known per se within a range not impairing the effects of the present invention. Examples of the copolymer component include diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, and dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid.

本発明における樹脂A´および樹脂AのP−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度は、0.5〜1.1dl/g、さらに0.6〜1.1dl/gの範囲にあることが本発明の効果の点から好ましい。固有粘度が上限以上だと、粘度が高くなりすぎ、製膜時の押出機からの樹脂の押出が困難になる。また、固有粘度が下限以下だと、フィルムが脆化し、延伸が困難になる。   The intrinsic viscosity measured at 35 ° C. using a mixed solvent of Resin A ′ and Resin A P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60) is 0.5. From the viewpoint of the effect of the present invention, it is preferably in the range of -1.1 dl / g, more preferably in the range of 0.6-1.1 dl / g. If the intrinsic viscosity is equal to or higher than the upper limit, the viscosity becomes too high, and it becomes difficult to extrude the resin from the extruder during film formation. On the other hand, if the intrinsic viscosity is less than the lower limit, the film becomes brittle and stretching becomes difficult.

また、本発明におけるフィルム層Aは、本発明の効果を損なわない範囲で、必要に応じて、他の熱可塑性ポリマー、不活性粒子やワックスなどの滑剤、紫外線吸収剤等の安定剤、滑剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、核剤を必要に応じて配合しても良い。なお、表面の平坦性をより高度に発現させる観点から、表面欠点を形成しやすい樹脂Aに対して非相溶の他の熱可塑性ポリマー、顔料、充填剤、ガラス繊維、炭素繊維、層状ケイ酸塩などは含有させないことが好ましい。また、積層フィルムにしたときの走行性や巻取り性を確保しつつ、表面の平坦性を確保する観点から、平均粒径が0.01〜0.5μmの不活性粒子を、0.001〜1.0質量%の範囲で含有させるのが好ましい。好ましい不活性粒子の平均粒径は、0.02〜0.4μm、さらに0.05〜0.35μmの範囲である。また、好ましい含有量は0.005〜0.5質量%、さらに0.01〜0.4質量%である。含有させる不活性粒子としては、シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレンなどの有機高分子粒子および球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン樹脂、架橋ポリスチレンおよび球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましい。   Further, the film layer A in the present invention is within a range not impairing the effects of the present invention, if necessary, other thermoplastic polymers, lubricants such as inert particles and wax, stabilizers such as ultraviolet absorbers, lubricants, You may mix | blend antioxidant, a plasticizer, a lubricant, a flame retardant, a mold release agent, and a nucleating agent as needed. In addition, from the viewpoint of expressing surface flatness to a higher degree, other thermoplastic polymers, pigments, fillers, glass fibers, carbon fibers, layered silicic acid that are incompatible with the resin A that easily forms surface defects. It is preferable not to contain a salt or the like. In addition, from the viewpoint of ensuring the flatness of the surface while ensuring the runnability and winding property when the laminated film is formed, the inert particles having an average particle diameter of 0.01 to 0.5 μm are added to 0.001 to 0.001. It is preferable to make it contain in 1.0 mass%. A preferable average particle diameter of the inert particles is in the range of 0.02 to 0.4 μm, and further 0.05 to 0.35 μm. Moreover, preferable content is 0.005-0.5 mass%, Furthermore, 0.01-0.4 mass%. The inert particles to be contained are preferably at least one kind of particles selected from the group consisting of organic polymer particles such as silicone resin, crosslinked acrylic resin, crosslinked polyester, crosslinked polystyrene, and spherical silica. It is preferably at least one particle selected from the group consisting of crosslinked polystyrene and spherical silica.

<積層フィルム>
本発明の積層フィルムは、前述のフィルム層Aとフィルム層Bとを積層したものであり、積層構造は、フィルム層Aとフィルム層Bの2層積層フィルム、フィルム層Aの両面にフィルム層Bやフィルム層Bの両面にフィルム層Aを積層した3層積層フィルム、フィルム層Aとフィルム層Bとを交互に積層した多層積層フィルムであっても良い。多層積層フィルムの場合、フィルム層Aとフィルム層Bの合計層数は、カールなどを抑制し、延伸性をより高めやすいことから、8層以上、さらに10層以上、特に15層以上が好ましく、他方上限は特に制限されないが、生産工程の煩雑化を抑制する観点から、1000層以下、さらに500層以下、特に200層以下であることが好ましい。
<Laminated film>
The laminated film of the present invention is obtained by laminating the above-described film layer A and film layer B. The laminated structure is a two-layer laminated film of film layer A and film layer B, and film layer B on both sides of film layer A. Alternatively, it may be a three-layer laminated film in which the film layer A is laminated on both surfaces of the film layer B, or a multilayer laminated film in which the film layer A and the film layer B are alternately laminated. In the case of a multilayer laminated film, the total number of film layers A and B is preferably 8 layers or more, more preferably 10 layers or more, and particularly preferably 15 layers or more because curling and the like are easier to enhance. On the other hand, the upper limit is not particularly limited, but is preferably 1000 layers or less, more preferably 500 layers or less, and particularly preferably 200 layers or less from the viewpoint of suppressing complication of the production process.

また、本発明の積層フィルムは、その厚み方向に見たとき、フィルム層Aが占める厚みとフィルム層Bが占める厚みとが、10:90〜80:20の範囲であることが、温度膨張係数と湿度膨張係数とをより高度に低減させやすいことから好ましい。さらに、好ましいフィルム層Aが占める厚みとフィルム層Bが占める厚みは、15:85〜80:20の範囲であることが好ましい。   Moreover, when the laminated film of this invention is seen in the thickness direction, it is the temperature expansion coefficient that the thickness which the film layer A occupies and the thickness which the film layer B occupies is the range of 10: 90-80: 20. And the humidity expansion coefficient are preferred because they can be easily reduced to a higher degree. Further, the thickness occupied by the preferred film layer A and the thickness occupied by the film layer B are preferably in the range of 15:85 to 80:20.

そのような観点から、本発明の積層フィルムは、積層フィルム全体で見たとき、全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、3:97〜15:85の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、10:90〜30:70の範囲であることが好ましい。   From such a viewpoint, when the laminated film of the present invention is viewed in the whole laminated film, the molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is from 3:97 to 15:85. Preferably, the molar ratio of the 1,4-cyclohexanedimethanol component to the ethylene glycol component of the total glycol component is in the range of 10:90 to 30:70.

積層フィルム全体で見たときの、テレフタル酸成分が過度に少ないか、2,6−ナフタレンジカルボン酸成分の割合が過度に多いと、十分な湿度膨張係数の低減効果が得られなくなる。他方積層フィルム全体で見た場合のテレフタル酸成分が過度に多いか、2,6−ナフタレンジカルボン酸成分の割合が過度に少ないと温度膨張係数が増加しやすく、さらにフィルムのヤング率も低下しやすい。好ましい積層フィルム全体で見たときの、テレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比は、4:96〜12:88、さらに5:95〜10:90の範囲である。また、積層フィルム全体で見たときの、1,4−シクロヘキサンジメタノール成分が過度に少ないか、エチレングリコール成分の割合が過度に多いと、十分な湿度膨張係数低減降が得られない。他方、樹脂A中の1,4−シクロヘキサンジメタノール成分が過度に多いか、エチレングリコール成分の割合が過度に少ないと、ヤング率が得られにくくなる。好ましい積層フィルム全体で見たときの、1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比は、11:89〜25:75、さらに12:88〜20:80の範囲である。   When the terephthalic acid component is excessively small or the proportion of the 2,6-naphthalenedicarboxylic acid component is excessively large when viewed from the whole laminated film, a sufficient effect of reducing the humidity expansion coefficient cannot be obtained. On the other hand, if the terephthalic acid component is excessively large or the proportion of the 2,6-naphthalenedicarboxylic acid component is excessively small, the temperature expansion coefficient is likely to increase, and the Young's modulus of the film is also likely to decrease. . The molar ratio of the terephthalic acid component to the 2,6-naphthalenedicarboxylic acid component as viewed in the preferred laminated film is in the range of 4:96 to 12:88, and further 5:95 to 10:90. In addition, when the 1,4-cyclohexanedimethanol component is excessively small or the proportion of the ethylene glycol component is excessively large when viewed from the entire laminated film, a sufficient humidity expansion coefficient reduction / decrease cannot be obtained. On the other hand, if the 1,4-cyclohexanedimethanol component in the resin A is excessively large or the proportion of the ethylene glycol component is excessively small, it is difficult to obtain the Young's modulus. The molar ratio of the 1,4-cyclohexanedimethanol component to the ethylene glycol component when viewed from the preferable laminated film is in the range of 11:89 to 25:75, and further 12:88 to 20:80.

ところで、本発明の積層フィルムは、表裏の表面粗さ(Ra)の差が1nm以上、さらに2nm以上異なることが、一方の表面で走行性や巻取り性を具備させつつ、他方の表面の平坦性をより高度に発現できるため好ましい。なお、表裏の表面粗さ(Ra)の差の上限は特に制限されないが、過度に差を持たせると、平坦な側の表面に平坦でない側の表面の形状が転写しやすくなるので、10nm以下であることが好ましい。そして、このような表面粗さに差を持たせる観点から、本発明の積層フィルムは、その厚み方向に非対称なフィルム層AとBとが非対象な層構成であることが好ましく、例えばフィルム層Aの厚み割合で見たとき、一方の表面からフィルムの中心部分までの割合と、他方の表面からフィルムの中心部分までの割合とが、厚み比で10%以上異なることが好ましい。   By the way, in the laminated film of the present invention, the difference in surface roughness (Ra) between the front and back surfaces is different by 1 nm or more, and further by 2 nm or more. It is preferable because sex can be expressed to a higher degree. The upper limit of the difference in surface roughness (Ra) between the front and back surfaces is not particularly limited. However, if the difference is excessive, the shape of the surface on the non-flat side is easily transferred to the surface on the flat side. It is preferable that And from the viewpoint of giving such a difference in surface roughness, the laminated film of the present invention preferably has a layer structure in which the film layers A and B that are asymmetric in the thickness direction are untargeted, for example, a film layer When viewed in terms of the thickness ratio of A, the ratio from one surface to the central portion of the film and the ratio from the other surface to the central portion of the film are preferably different by 10% or more in thickness ratio.

つぎに、本発明の積層フィルムの好ましい態様について、以下に説明する。
本発明の積層フィルムは、製膜方向(縦方向またはMD方向と称することもある。)および幅方向(フィルム面方向における製膜方向に直交する方向で、横方向またはTD方向と称することもある。)に延伸された二軸配向フィルムであることが好ましく、製膜方向及び幅方向におけるヤング率が、4.5GPa以上であることが、温度膨張係数を小さくし、高温での加工特性を高度に発現できることから好ましい。特に、磁気記録テープにベースフィルムに用いる場合、ヤング率を高める方向が積層フィルムの幅方向であることが、トラックずれなどを抑制できることから好ましい。
Below, the preferable aspect of the laminated | multilayer film of this invention is demonstrated below.
The laminated film of the present invention has a film forming direction (also referred to as a longitudinal direction or an MD direction) and a width direction (a direction perpendicular to the film forming direction in the film surface direction, sometimes referred to as a transverse direction or a TD direction). .) Is preferably a biaxially oriented film, and the Young's modulus in the film forming direction and the width direction is 4.5 GPa or more, so that the temperature expansion coefficient is reduced and the processing characteristics at high temperature are high. It is preferable because it can be expressed. In particular, when used as a base film for a magnetic recording tape, it is preferable that the direction in which the Young's modulus is increased is the width direction of the laminated film because track deviation and the like can be suppressed.

このような高いヤング率を有するフィルムを得るには、共重合芳香族ポリエステルとして、前述の特定量の1,4−シクロヘキサンジメチレンテレフタレート成分となるように重合されたものを直接用いるのではなく、1,4−シクロヘキサンジメチレンテレフタレート成分の割合が異なる2種以上のポリエステルを用意し、これらをブレンドし、さらにPENと積層すること、ヤング率を高めたい方向に高度に延伸すること、さらにより特定方向のヤング率を高めたい場合は、ヤング率を高めたい方向と直交する方向の延伸を緩和することなどが挙げられる。   In order to obtain a film having such a high Young's modulus, instead of directly using a copolymerized aromatic polyester polymerized to become the above-mentioned specific amount of 1,4-cyclohexanedimethylene terephthalate component, Prepare two or more kinds of polyesters with different proportions of 1,4-cyclohexanedimethylene terephthalate component, blend them, laminate them with PEN, stretch highly in the direction you want to increase Young's modulus, even more specific When it is desired to increase the Young's modulus in the direction, for example, the stretching in the direction perpendicular to the direction in which the Young's modulus is desired to be relaxed.

本発明の積層フィルムは、少なくとも一方向、好ましくはフィルムの幅方向における温度膨張係数の関係を満足する方向の温度膨張係数が−5〜10ppm/℃、好ましくは−2〜10ppm/℃、さらに好ましくは−2〜7.5ppm/℃の範囲にあることが、特に磁気記録テープにしたときの寸法安定性の点で好ましい。上記上限を上回ると磁気テープにした場合に、温度条件によってトラックずれが起こり好ましくない。また上記下限を下回ると磁気テープとそれを読み取るヘッドの温度膨張係数の差が大きくなるため、これも読み取り誤差を大きくするため好ましくない。   The laminated film of the present invention has a temperature expansion coefficient of −5 to 10 ppm / ° C., preferably −2 to 10 ppm / ° C., more preferably in a direction satisfying the relationship of the temperature expansion coefficient in at least one direction, preferably the width direction of the film. Is preferably in the range of −2 to 7.5 ppm / ° C., particularly in terms of dimensional stability when a magnetic recording tape is formed. When the above upper limit is exceeded, when a magnetic tape is used, track deviation occurs due to temperature conditions, which is not preferable. Also, if the lower limit is not reached, the difference between the temperature expansion coefficients of the magnetic tape and the head for reading it becomes large, which is also not preferable because it increases the reading error.

本発明の積層フィルムは、少なくとも一方向、好ましくはフィルムの幅方向における温度膨張係数の関係を満足する方向の湿度膨張係数が1〜7ppm/%RH、好ましくは3〜7ppm/%RH、さらに好ましくは3〜6.5ppm/%RHの範囲にあることが、特に磁気記録テープにしたときの寸法安定性の点で好ましい。上記上限を上回ると磁気テープにした場合に、温度条件によってトラックずれが起こり好ましくない。   The laminated film of the present invention has a humidity expansion coefficient of 1 to 7 ppm /% RH, preferably 3 to 7 ppm /% RH, more preferably in a direction satisfying the relationship of the temperature expansion coefficient in at least one direction, preferably the width direction of the film. Is preferably in the range of 3 to 6.5 ppm /% RH, particularly in terms of dimensional stability when used as a magnetic recording tape. When the above upper limit is exceeded, when a magnetic tape is used, track deviation occurs due to temperature conditions, which is not preferable.

本発明の積層フィルムは、用いる用途に応じて適宜採用すればよいが、本発明の効果を発現しやすいことから、フィルム厚みが2〜15μmの範囲にあることが好ましい。特に、磁気記録テープのベースフィルムに用いる場合、2〜10μm、さらに2.5〜5μm、特に3〜4.7μmの範囲にあることが、カセットに入れるテープ長さを十分に確保して記憶容量を高める点と、フィルム製膜時の生産性の点から好ましい。   The laminated film of the present invention may be appropriately employed depending on the application to be used, but the film thickness is preferably in the range of 2 to 15 μm because the effects of the present invention are easily exhibited. In particular, when used as a base film for magnetic recording tape, it is in the range of 2 to 10 μm, more preferably 2.5 to 5 μm, especially 3 to 4.7 μm, so that a sufficient tape length can be secured in the cassette and the storage capacity It is preferable from the point of raising the point and the productivity at the time of film forming.

本発明の積層フィルムは、表面の平坦性に優れることから、少なくとも一方の表面は、表面粗さRaが10nm以下、さらに8nm以下であることが好ましい。また、磁気記録テープのベースフィルムに用いる場合、磁性層を形成する側の表面は、表面粗さRaが0.5〜4nmの範囲にあることが好ましく、走行性と巻取り性を高度に具備させるために、磁性層を形成しない側の表面は、表面粗さRaが3〜10nmの範囲にあることが好ましい。磁性層を形成しない側の表面粗さRaが上記上限を超えると、製膜時のハンドリング性は優れるものの、フィルムを巻き取った際に磁性層を形成する側の表面の平坦性が損なわれることがある。他方、上記下限を下回ると、フィルムのハンドリングが非常に問題になりえる。   Since the laminated film of the present invention is excellent in surface flatness, at least one surface preferably has a surface roughness Ra of 10 nm or less, and more preferably 8 nm or less. Further, when used for a base film of a magnetic recording tape, the surface on the side on which the magnetic layer is formed preferably has a surface roughness Ra in the range of 0.5 to 4 nm, and has a high running property and winding property. Therefore, the surface on the side where the magnetic layer is not formed preferably has a surface roughness Ra in the range of 3 to 10 nm. If the surface roughness Ra on the side where the magnetic layer is not formed exceeds the above upper limit, the handleability during film formation is excellent, but the flatness of the surface on the side where the magnetic layer is formed is impaired when the film is wound. There is. On the other hand, below the lower limit, film handling can be very problematic.

本発明の積層フィルムは、後述の測定方法によって測定されるフィルムカールが−1〜1mm、さらに−0.5〜0.5mm、特に−0.3〜0.3mmであることが好ましい。カールが上限または下限を外れると、フィルムカールがきつくなりすぎ、例えばフィルム製膜工程上で切断などが起き、生産性が悪化する。また磁気テープを作成する際のハンドリング性も悪化する。このようなカールは、前述の特定の共重合芳香族ポリエステルをPENとブレンドしたフィルム層Aと、PENからなるフィルム層Aとを積層することで抑えることができる。   In the laminated film of the present invention, the film curl measured by the measurement method described later is preferably −1 to 1 mm, more preferably −0.5 to 0.5 mm, and particularly preferably −0.3 to 0.3 mm. When the curl deviates from the upper limit or the lower limit, the film curl becomes too tight, for example, cutting occurs in the film forming process, and productivity is deteriorated. In addition, the handling property when producing a magnetic tape also deteriorates. Such curling can be suppressed by laminating the film layer A obtained by blending the above-mentioned specific copolymerized aromatic polyester with PEN and the film layer A made of PEN.

本発明の積層フィルムは、後述の測定方法で測定される110℃でのMD方向の塗布適性が、1%以下であることが好ましい。塗布適性が1%以下であることで、磁性層を塗布する工程など、高温で張力がかかる状態での加工において、フィルムにシワが入るのを抑制できる。また、より高温の条件やより高張力の条件で加工できるようにもなるので、より高速での加工が可能になり、生産性を向上することもできる。このような塗布適性は、前述の特定の共重合芳香族ポリエステルをPENとブレンドしたフィルム層Aと、PENからなるフィルム層Aとを積層し、製膜方向の延伸などを強化することで抑えることができる。   The laminated film of the present invention preferably has a coating suitability in the MD direction at 110 ° C. of 1% or less as measured by a measurement method described later. When the coating suitability is 1% or less, wrinkles can be prevented from entering the film in processing in a state where tension is applied at high temperature, such as a step of applying a magnetic layer. In addition, since processing can be performed under higher temperature conditions and higher tension conditions, processing at higher speeds is possible, and productivity can be improved. Such coating suitability is suppressed by laminating the film layer A in which the above-mentioned specific copolymerized aromatic polyester is blended with PEN and the film layer A made of PEN, and strengthening stretching in the film forming direction. Can do.

<積層フィルムの製造方法>
本発明の積層フィルムの好ましい製造方法について、以下説明する。
まず、前述の樹脂A´とPENとを用意し、これらを必要に応じて乾燥処理をした後、2台の押出機に供給する。具体的には、第1の押出機には、樹脂A´とPENとを目的の樹脂Aの組成になるように供給し、第2の押出機にはPENを供給し、溶融混練する。この際、エステル交換反応や分子量低下が過度に進行しないように、第1の押出機の溶融混練は得られる樹脂Aの融点(TmA:℃)以上TmA+50℃以下、好ましくはTmA+10℃以上TmA+30℃以下の温度で、第2の押出機の溶融混練はPENの融点(TmB:℃)以上TmB+50℃以下、好ましくはTmB+10℃以上TmB+30℃以下の温度で行い、比較的短時間、例えば20分以下で行うことが好ましい。
そして、このようにして溶融状態になった樹脂AとPENとを、例えばフィードブロックにて所望の層構成になるように溶融状態で積層し、ダイから回転している冷却ドラムの上に押出し、急冷して未延伸積層フィルムを製造する。
<Method for producing laminated film>
A preferred method for producing the laminated film of the present invention will be described below.
First, the above-described resins A ′ and PEN are prepared, and after drying these as necessary, they are supplied to two extruders. Specifically, the resin A ′ and PEN are supplied to the first extruder so as to have the composition of the target resin A, and the PEN is supplied to the second extruder and melt-kneaded. At this time, the melt-kneading of the first extruder is not less than the melting point (TmA: ° C.) of the obtained resin A and not more than TmA + 50 ° C., preferably not less than TmA + 10 ° C. and not more than TmA + 30 ° C., so that transesterification and molecular weight reduction do not proceed excessively. The melting and kneading of the second extruder is performed at a temperature of PEN melting point (TmB: ° C.) or higher and TmB + 50 ° C. or lower, preferably TmB + 10 ° C. or higher and TmB + 30 ° C. or lower, for a relatively short time, for example, 20 minutes or shorter. It is preferable.
Then, the resin A and PEN in a molten state in this way are laminated in a molten state so as to have a desired layer structure, for example, in a feed block, and are extruded onto a cooling drum rotating from a die, Quenched to produce an unstretched laminated film.

なお、前述のヤング率、温度膨張係数(αt)および湿度膨張係数(αh)を好ましい範囲にするには、その後の延伸を進行させやすくすることが必要であり、そのような観点から冷却ドラムによる冷却は非常に速やかに行うことが好ましい。そのような観点から、20〜60℃という低温で行うことが好ましい。このような低温にすることで、未延伸フィルムの状態での結晶化が抑制され、その後の延伸をよりスムーズに行える。   In order to make the aforementioned Young's modulus, temperature expansion coefficient (αt), and humidity expansion coefficient (αh) within the preferable ranges, it is necessary to facilitate the subsequent stretching. Cooling is preferably performed very quickly. From such a viewpoint, it is preferable to carry out at a low temperature of 20 to 60 ° C. By setting it as such low temperature, crystallization in the state of an unstretched film is suppressed and subsequent stretching can be performed more smoothly.

二軸延伸としては、逐次二軸延伸でも同時二軸延伸でもよい。ここでは、逐次二軸延伸で、縦延伸、横延伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。まず、最初の縦延伸はフィルム層BのPENのガラス転移温度(TgB:℃)ないし(TgB+40)℃の温度で、2〜8倍に延伸し、次いで横方向に先の縦延伸と同様の温度で3〜10倍に延伸し、さらに熱処理としてPENの融点以下の温度でかつ(TgB+50)〜(TgB+150)℃の温度で1〜20秒、さらに1〜15秒熱固定処理するのが好ましい。なお、ヤング率を高めたい場合、温度膨張係数や湿度膨張係数を小さくしたい場合、その方向の延伸倍率を高くすること、その方向の延伸時の温度を低くすること、その方向に直交する方向の延伸倍率を小さくすることなどが有効である。   Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching. Here, a manufacturing method in which longitudinal stretching, lateral stretching, and heat treatment are performed in this order by sequential biaxial stretching will be described as an example. First, the first longitudinal stretching is a glass transition temperature (TgB: ° C.) to (TgB + 40) ° C. of the PEN of the film layer B, stretched 2 to 8 times, and then in the transverse direction, the same temperature as the previous longitudinal stretching. It is preferable that the film is stretched 3 to 10 times and further heat-treated at a temperature below the melting point of PEN and at a temperature of (TgB + 50) to (TgB + 150) ° C. for 1 to 20 seconds, and further for 1 to 15 seconds. If you want to increase the Young's modulus, if you want to reduce the temperature expansion coefficient or humidity expansion coefficient, increase the stretching ratio in that direction, decrease the temperature during stretching in that direction, or in the direction orthogonal to that direction. It is effective to reduce the draw ratio.

なお、前述の説明は逐次二軸延伸について説明したが、本発明の積層フィルムは縦延伸と横延伸とを同時に行う同時二軸延伸でも製造でき、例えば先で説明した延伸倍率や延伸温度などを参考にすればよい。
本発明によれば、本発明の積層フィルムをベースフィルムとし、その一方の面に非磁性層および磁性層がこの順で形成され、他方の面にバックコート層が形成することなどで高密度磁気記録テープとすることができる。
In addition, although the above description explained sequential biaxial stretching, the laminated film of the present invention can be manufactured by simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed. For example, the stretching ratio and the stretching temperature described above are set. You can refer to it
According to the present invention, the laminated film of the present invention is used as a base film, a nonmagnetic layer and a magnetic layer are formed in this order on one side, and a backcoat layer is formed on the other side. It can be a recording tape.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いてポリマーを溶解して35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester was measured at 35 ° C by dissolving the polymer using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio). And asked.

(2)ガラス転移点および融点
ガラス転移点、融点はDSC(TAインスツルメンツ株式会社製、商品名:Thermal lyst2100)によりサンプル重量10mg、昇温速度10℃/minで測定した。
(2) Glass transition point and melting point The glass transition point and melting point were measured by DSC (TA Instruments Co., Ltd., trade name: Thermal lyst 2100) at a sample weight of 10 mg and a heating rate of 10 ° C / min.

(3)密度
得られたフィルムを一辺が3〜5mmの任意の形に切り出し、密度勾配管法で測定した。
(3) Density The obtained film was cut into an arbitrary shape having a side of 3 to 5 mm and measured by a density gradient tube method.

(4)ヤング率
得られたフィルムを試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。なお、測定は5回行い、その平均値をヤング率とした。
(4) Young's modulus The obtained film was cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing device (product name: Toyo Baldwin, trade name: 100 mm between chucks, tensile speed 10 mm / min, chart speed 500 mm / min). Pull with Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve. The measurement was performed 5 times, and the average value was defined as Young's modulus.

(5)温度膨張係数(αt)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ20mm、幅4mmに切り出し、SII製EXSTAR6000にセットし、窒素雰囲気下(0%RH)、80℃で30分前処理し、その後室温まで降温させる。その後30℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(×10−6ppm/℃)である。
(5) Temperature expansion coefficient (αt)
The obtained film was cut into a length of 20 mm and a width of 4 mm so that the width direction of the film would be the measurement direction, set in EXSTAR6000 manufactured by SII, and pretreated at 80 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Then, the temperature is lowered to room temperature. Thereafter, the temperature is raised from 30 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 Is the temperature expansion coefficient of quartz glass (× 10 −6 ppm / ° C.).

(6)湿度膨張係数(αh)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、BRUKER製TMA4000SAにセットし、30℃の窒素雰囲気下で、湿度20%RHと湿度80%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαh(ppm/%RH)とした。
αh=(L80−L20)/(L80×△H)
ここで、上記式中のL20は20%RHのときのサンプル長(mm)、L80は80%
RHのときのサンプル長(mm)、△H:60(=80−20)%RHである。
(6) Humidity expansion coefficient (αh)
The obtained film was cut into a length of 15 mm and a width of 5 mm so that the width direction of the film would be the measurement direction, set in BRUKER TMA4000SA, and in a nitrogen atmosphere at 30 ° C., humidity 20% RH and humidity 80% RH. The length of each sample is measured, and the humidity expansion coefficient is calculated by the following equation. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh (ppm /% RH).
αh = (L 80 −L 20 ) / (L 80 × ΔH)
Here, L 20 in the above formula is a sample length (mm) at 20% RH, and L 80 is 80%.
Sample length at RH (mm), ΔH: 60 (= 80-20)% RH.

(7)共重合量
グリコール成分については、試料10mgをp−クロロフェノール:1,1,2,2−テトラクロロエタン=3:1(容積比)混合溶液0.5mlに80℃で溶解した。イソプロピルアミンを加えて、十分に混合した後にH−NMR(日立電子製 JEOL A600)にて80℃で測定し、それぞれのグリコール成分量を測定した。
また、芳香族ジカルボン酸成分については、試料50mgをp−クロロフェノール:1,1,2,2−テトラクロロエタン=3:1混合溶液0.5mlに140℃で溶解し、13C−NMR(日立電子 JEOL A600)にて140℃で測定し、それぞれの酸成分量を測定した。
(7) Copolymerization amount As for the glycol component, 10 mg of a sample was dissolved at 80 ° C. in 0.5 ml of a mixed solution of p-chlorophenol: 1,1,2,2-tetrachloroethane = 3: 1 (volume ratio). Added isopropylamine, measured at 80 ° C. in 1 H-NMR (Hitachi Electronics Ltd. JEOL A600) after thorough mixing, was measured each glycol component amount.
As for the aromatic dicarboxylic acid component, 50 mg of a sample was dissolved at 140 ° C. in 0.5 ml of a mixed solution of p-chlorophenol: 1,1,2,2-tetrachloroethane = 3: 1, and 13 C-NMR (Hitachi). Electronic JEOL A600) was measured at 140 ° C., and the amount of each acid component was measured.

(8)表面粗さ
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率10倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetroProにより中心面平均粗さ(Ra:nm)を求める。
(8) Surface roughness Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 10 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ). The center surface average roughness (Ra: nm) is obtained by the surface analysis software MetroPro built in the roughness meter.

(9)カール
まず、フィルムを長手方向に170mm、幅方向に1/2インチ幅に切り出す。そして、水平方向に配置された2つのフリーロールにフィルムの表面粗さが平坦な側の表面を下にしてセットする。なお、フリーロールはフィルムと接する部分の外経が10mm、フリーロールの中心軸間の距離は10cmとし、フィルムの両端には、17.5g/mmの荷重をかける。次に、発光部と受光部を兼ね備えたキーエンス製レーザー変位計LK−G30を、フィルムの上方に配置し、レーザー光をフィルムの面方向に斜めに照射した。そして、フィルムの幅方向に沿って、フィルムの変位(距離)を計測する。
計測された変位について、フィルムの幅方向における両端の変位の平均値と、フィルム幅方向における中央部分で観測される極大値または極小値とを用い、前述の平均値と極大値または極小値との差異をカールの値とする。なお、表面粗さが平坦な側の表面を内側にしてカールしている場合はプラスの値とし、表面粗さが平坦な側の表面を外側にしてカールしている場合はマイナスの値とした。上記測定を、3つのサンプルについて行い、それらの平均値を算出してカールの値とした。
(9) Curl First, the film is cut to 170 mm in the longitudinal direction and ½ inch in the width direction. Then, the film is set on two free rolls arranged in the horizontal direction with the surface having the flat surface facing down. In the free roll, the outer diameter of the portion in contact with the film is 10 mm, the distance between the central axes of the free roll is 10 cm, and a load of 17.5 g / mm 2 is applied to both ends of the film. Next, a KEYENCE laser displacement meter LK-G30 having both a light emitting part and a light receiving part was arranged above the film, and laser light was irradiated obliquely in the surface direction of the film. Then, the displacement (distance) of the film is measured along the width direction of the film.
About the measured displacement, using the average value of the displacement at both ends in the width direction of the film and the maximum value or the minimum value observed in the central portion in the film width direction, the above average value and the maximum value or the minimum value The difference is the curl value. In addition, when curling with the surface of the flat surface side facing inward, it is a positive value, and when curling with the surface roughness of the flat surface side facing out, it is a negative value. . The above measurement was performed on three samples, and an average value thereof was calculated as a curl value.

(10)塗布適性
得られたフィルムを、フィルムの製膜方向が測定方向となるように長さ20mm、幅4mmに切り出し、SII製EXSTAR6000にセットし、窒素雰囲気下(0%RH)、30℃で保持した後、2℃/minで150℃まで昇温して、各温度でのサンプル長を測定し、30℃で保持した後の昇温する前のフィルム長(L30)に対し、110℃におけるフィルム長(L110)から、以下の式にて、いてどの程度長さ方向に膨張したかを計算した。
塗布適性(%)=(L110−L30)/L30×100
(10) Application suitability The obtained film was cut into a length of 20 mm and a width of 4 mm so that the film-forming direction of the film would be the measurement direction, set in EXSTAR6000 made of SII, and in a nitrogen atmosphere (0% RH), 30 ° C. After being held at 110 ° C., the sample length at each temperature was measured by raising the temperature to 150 ° C. at 2 ° C./min, and the film length (L30) before being heated after being held at 30 ° C. was 110 ° C. From the film length (L110), the degree of expansion in the length direction was calculated according to the following formula.
Application suitability (%) = (L110−L30) / L30 × 100

[実施例1]
ジカルボン酸成分としてテレフタル酸ジメチルと2,6−ナフタレンジカルボン酸ジメチル、ジオール成分としてエチレングリコールと1,4−シクロヘキサンジメタノールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのシクロヘキサンジメタノールを共重合せしめた共重合ポリエステルを得て、これを樹脂A´−1とした。
樹脂A’の各成分のモル比は、テレフタル酸成分:ナフタレンジカルボン酸成分が30:70、シクロヘキサンジメタノール成分:エチレングリコール成分が70:30であった。
一方、ジカルボン酸成分として2,6−ナフタレンジカルボン酸ジメチルとジオール成分としてエチレングリコールとをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのポリエチレン−2,6−ナフタレンジカルボキシレートを得て、これを樹脂B−1とした。
このようにして得られた樹脂A´−1と樹脂B−1を、重量比45:55になるようにブレンドし、樹脂A−1を得た。
このようにして得られた樹脂A−1と樹脂B−1を、押出機に供給して、樹脂A−1と樹脂B−1の吐出量を2:1となるようにし、300℃でダイから溶融状態でフィードブロックを用いて表1に示す厚みの層構成になるように2層に積層せしめ、回転中の温度60℃の冷却ドラム上にシート状に押し出し積層未延伸フィルムとした。なお、フィルム層Aには、平均粒径0.3μmの球状シリカ粒子を、フィルム層Aの質量を基準としたとき、0.15質量%となるように含有させ、フィルム層Bには、平均粒径0.1μmの球状シリカ粒子を、フィルム層Bの質量を基準としたとき、0.10質量%となるように含有させた。
そして、積層未延伸フィルムを、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して、縦方向(製膜方向)の延伸を、延伸倍率4.6倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、140℃で横方向(幅方向)に延伸倍率6.5倍で延伸し、その後200℃で3秒間熱固定処理を行い、厚さ4.5μmの積層二軸配向フィルムを得た。
得られた積層二軸配向フィルムの特性を表1に示す。
[Example 1]
Transesterification of dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as the diol component in the presence of titanium tetrabutoxide, followed by polycondensation reaction To obtain a copolymerized polyester copolymerized with cyclohexanedimethanol having an intrinsic viscosity of 0.62 dl / g, and this was designated as resin A′-1.
The molar ratio of each component of the resin A ′ was 30:70 for the terephthalic acid component: naphthalenedicarboxylic acid component, and 70:30 for the cyclohexanedimethanol component: ethylene glycol component.
On the other hand, dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component and ethylene glycol as the diol component are transesterified in the presence of titanium tetrabutoxide, followed by a polycondensation reaction, and an intrinsic viscosity of 0.62 dl / G of polyethylene-2,6-naphthalenedicarboxylate was obtained, and this was designated as resin B-1.
The resin A′-1 and the resin B-1 thus obtained were blended so as to have a weight ratio of 45:55 to obtain a resin A-1.
The resin A-1 and the resin B-1 obtained in this way are supplied to an extruder so that the discharge amount of the resin A-1 and the resin B-1 is 2: 1, and the die is formed at 300 ° C. In a molten state, the film was laminated into two layers using a feed block so as to have a layer structure having the thickness shown in Table 1, and extruded into a sheet on a rotating cooling drum at a temperature of 60 ° C. to obtain a laminated unstretched film. In addition, the film layer A contains spherical silica particles having an average particle diameter of 0.3 μm so as to be 0.15% by mass, based on the mass of the film layer A, and the film layer B has an average Spherical silica particles having a particle size of 0.1 μm were contained so as to be 0.10% by mass, based on the mass of the film layer B.
Then, the laminated unstretched film is heated between two sets of rollers having different rotational speeds along the film forming direction from above with an IR heater so that the film surface temperature becomes 135 ° C. Direction) was performed at a draw ratio of 4.6 times to obtain a uniaxially stretched film. And this uniaxially stretched film is led to a stenter and stretched at 140 ° C. in the transverse direction (width direction) at a draw ratio of 6.5 times, and then heat-set at 200 ° C. for 3 seconds to form a laminate having a thickness of 4.5 μm. A biaxially oriented film was obtained.
Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[実施例2]
表1に示すように、積層構成を2層から、フィルム層Aとフィルム層Bとを交互に積層した50層に変更した以外は実施例1と同様にして積層二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Example 2]
As shown in Table 1, a laminated biaxially oriented film was obtained in the same manner as in Example 1 except that the laminated structure was changed from 2 layers to 50 layers in which film layers A and B were alternately laminated. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[実施例3]
樹脂A´−1と樹脂B−1を重量比29:71になるようにブレンドし、樹脂A−2を作成し、この樹脂A−2を樹脂A−1の代わりに用いた以外は、実施例2と同様にして積層二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Example 3]
A resin A′-1 and a resin B-1 were blended so as to have a weight ratio of 29:71 to prepare a resin A-2, and this resin A-2 was used in place of the resin A-1. A laminated biaxially oriented film was obtained in the same manner as in Example 2. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[実施例4]
ジカルボン酸成分としてテレフタル酸ジメチルと2,6−ナフタレンジカルボン酸ジメチル、ジオール成分としてエチレングリコールと1,4−シクロヘキサンジメタノールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのシクロヘキサンジメタノールを共重合せしめた共重合ポリエステルを得て、これを樹脂A´−3とした。樹脂A´−3の各成分は、モル比で、テレフタル酸成分:ナフタレンジカルボン酸成分が20:80、シクロヘキサンジメタノール成分:エチレングリコール成分が80:20である。
こうして得られた樹脂A´−3を用いて、樹脂A´−3と樹脂B−1とを重量比41:59になるようにブレンドし、樹脂A−3を作成し、この樹脂A−3を樹脂A−1の代わりに用いた以外は、実施例2と同様にして二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Example 4]
Transesterification of dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as the diol component in the presence of titanium tetrabutoxide, followed by polycondensation reaction To obtain a copolymerized polyester obtained by copolymerizing cyclohexanedimethanol having an intrinsic viscosity of 0.62 dl / g, and this was designated as Resin A′-3. Each component of Resin A′-3 is 20:80 for the terephthalic acid component: naphthalenedicarboxylic acid component and 80:20 for the cyclohexanedimethanol component: ethylene glycol component in molar ratio.
Using the resin A′-3 thus obtained, the resin A′-3 and the resin B-1 are blended so as to have a weight ratio of 41:59 to prepare a resin A-3. This resin A-3 A biaxially oriented film was obtained in the same manner as in Example 2 except that was used instead of Resin A-1. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[実施例5]
樹脂A´−1と樹脂B−1を重量比61:39になるようにブレンドし、樹脂A−4を作成し、この樹脂A−4を樹脂A−1の代わりに用いた。これを押出機上の吐出量で1:1になるように供給した以外は実施例2と同様にして積層二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Example 5]
Resin A′-1 and Resin B-1 were blended in a weight ratio of 61:39 to prepare Resin A-4, and Resin A-4 was used in place of Resin A-1. A laminated biaxially oriented film was obtained in the same manner as in Example 2 except that this was supplied so that the discharge amount on the extruder was 1: 1. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[比較例1]
樹脂A´−1と樹脂B−1とを重量比97:3になるようにブレンドし、樹脂A−5を作成し、樹脂A−1の代わりに樹脂A−5を用いた以外は、実施例2と同様にして二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Comparative Example 1]
Resin A′-1 and resin B-1 were blended at a weight ratio of 97: 3 to prepare resin A-5, except that resin A-5 was used instead of resin A-1. A biaxially oriented film was obtained in the same manner as in Example 2. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[比較例2]
ジカルボン酸成分としてテレフタル酸ジメチルと2,6−ナフタレンジカルボン酸ジメチル、ジオール成分としてエチレングリコールと1,4−シクロヘキサンジメタノールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのシクロヘキサンジメタノールを共重合せしめた共重合ポリエステルを得て、これを芳香族ポリエステルA´−5とした。樹脂A´−5の各成分のモル比は、テレフタル酸成分:ナフタレンジカルボン酸成分が80:20、シクロヘキサンジメタノール成分:エチレングリコール成分が80:20である。
こうして得られた樹脂A´−6と樹脂B−1を重量比38:62になるようにブレンドし、樹脂A−6を作成し、樹脂A−1の代わりに樹脂A−6を用いた以外は、実施例2と同様にして二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Comparative Example 2]
Transesterification of dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as the diol component in the presence of titanium tetrabutoxide, followed by polycondensation reaction To obtain a copolymerized polyester copolymerized with cyclohexanedimethanol having an intrinsic viscosity of 0.62 dl / g, and this was designated as aromatic polyester A′-5. The molar ratio of each component of Resin A′-5 is 80:20 for the terephthalic acid component: naphthalenedicarboxylic acid component, and 80:20 for the cyclohexanedimethanol component: ethylene glycol component.
The resin A′-6 and the resin B-1 thus obtained were blended so as to have a weight ratio of 38:62 to prepare a resin A-6, except that the resin A-6 was used instead of the resin A-1. Obtained a biaxially oriented film in the same manner as in Example 2. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[比較例3]
ジカルボン酸成分としてテレフタル酸ジメチルと2,6−ナフタレンジカルボン酸ジメチル、ジオール成分としてエチレングリコールと1,4−シクロヘキサンジメタノールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのシクロヘキサンジメタノールを共重合せしめた共重合ポリエステルを得て、これをA´−7とした。樹脂A´−7の各成分のモル比は、テレフタル酸成分:ナフタレンジカルボン酸成分が80:20、シクロヘキサンジメタノール成分:エチレングリコール成分が90:10である。
こうして得られた樹脂A´−7と樹脂B−1を重量比35:65になるようにブレンドし、樹脂A−7を作成し、樹脂A−1の代わりに樹脂A−7を用いた以外は、実施例2と同様にして二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Comparative Example 3]
Transesterification of dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as the diol component in the presence of titanium tetrabutoxide, followed by polycondensation reaction To obtain a copolyester obtained by copolymerizing cyclohexanedimethanol having an intrinsic viscosity of 0.62 dl / g, and this was designated as A′-7. The molar ratio of each component of the resin A′-7 is 80:20 for the terephthalic acid component: naphthalenedicarboxylic acid component, and 90:10 for the cyclohexanedimethanol component: ethylene glycol component.
The resin A′-7 and the resin B-1 thus obtained were blended so as to have a weight ratio of 35:65 to prepare a resin A-7, except that the resin A-7 was used instead of the resin A-1. Obtained a biaxially oriented film in the same manner as in Example 2. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[比較例4]
樹脂A´−7と樹脂B−1を重量比22:78になるようにブレンドし、樹脂A−8を作成し、樹脂A−7の代わりに樹脂A−8を用いた以外は、比較例3と同様にして二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Comparative Example 4]
Comparative example except that resin A′-7 and resin B-1 were blended so as to have a weight ratio of 22:78, resin A-8 was prepared, and resin A-8 was used instead of resin A-7 In the same manner as in Example 3, a biaxially oriented film was obtained. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

[比較例5]
ジカルボン酸成分としてテレフタル酸ジメチルと2,6−ナフタレンジカルボン酸ジメチル、ジオール成分としてエチレングリコールと1,4−シクロヘキサンジメタノールをチタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gのシクロヘキサンジメタノールを共重合せしめた共重合ポリエステルを得て、これを樹脂A´−9とした。樹脂A´−9の各成分のモル比はテレフタル酸成分:ナフタレンジカルボン酸成分が80:20、シクロヘキサンジメタノール成分:エチレングリコール成分が70:30である。
こうして得られた樹脂A´−9と樹脂B−1とを重量比が27:73になるようにブレンドし、樹脂A−9を作成し、樹脂A−1の代わりに樹脂A−9を用いた以外は、実施例2と同様にして二軸配向フィルムを得た。得られた積層二軸配向フィルムの特性を表1に示す。
[Comparative Example 5]
Transesterification of dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate as the dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as the diol component in the presence of titanium tetrabutoxide, followed by polycondensation reaction To obtain a copolyester obtained by copolymerizing cyclohexanedimethanol having an intrinsic viscosity of 0.62 dl / g, and this was designated as resin A′-9. The molar ratio of each component of Resin A′-9 is 80:20 for the terephthalic acid component: naphthalenedicarboxylic acid component, and 70:30 for the cyclohexanedimethanol component: ethylene glycol component.
The resin A′-9 and the resin B-1 thus obtained were blended so that the weight ratio was 27:73 to prepare a resin A-9, and the resin A-9 was used instead of the resin A-1. A biaxially oriented film was obtained in the same manner as in Example 2 except that. Table 1 shows the characteristics of the obtained laminated biaxially oriented film.

Figure 0005833428
Figure 0005833428

表1中の表層A層は樹脂Aからなる最表層に位置するフィルム層Aの厚み、内層A層は最表層に位置しない各フィルム層Aの厚みを測定し、それらから算出した厚みの平均値、内層B層は最表層に位置しない各フィルム層Bの厚みを測定し、それから算出した厚みの平均値、表層B層は樹脂Bからなる最表層に位置するフィルム層Bの厚みを示す。また、表1中のTAはテレフタル酸成分、NDCはナフタレンジカルボン酸成分、CHDMはシクロヘキサンジメタノール成分、EGはエチレングリコール成分、RaBは最表層に位置するフィルム層Bの表面粗さ、RaAは最表層に位置するフィルム層Aの表面粗さ、CTEは温度膨張係数、CHEは湿度膨張係数を意味する。   The surface layer A in Table 1 is the thickness of the film layer A located on the outermost layer made of the resin A, the inner layer A layer is the thickness of each film layer A not located on the outermost layer, and the average value of the thicknesses calculated from them. The inner layer B layer measures the thickness of each film layer B not located on the outermost layer, and the average value of the thicknesses calculated therefrom, the surface layer B layer indicates the thickness of the film layer B located on the outermost layer made of the resin B. In Table 1, TA is the terephthalic acid component, NDC is the naphthalene dicarboxylic acid component, CHDM is the cyclohexanedimethanol component, EG is the ethylene glycol component, RaB is the surface roughness of the film layer B located on the outermost layer, and RaA is the highest. The surface roughness of the film layer A located in the surface layer, CTE means a temperature expansion coefficient, and CHE means a humidity expansion coefficient.

本発明の積層フィルムは、優れた寸法安定性と表面平坦性とを有し、カールが小さく高温での加工性にも優れることから、高密度磁気記録テープのベースフィルムなどに、好適に使用することができる。   The laminated film of the present invention has excellent dimensional stability and surface flatness, is small in curl and excellent in workability at high temperatures, and therefore is suitably used for a base film of a high-density magnetic recording tape. be able to.

Claims (5)

フィルム層Aと全繰り返し単位の90モル%以上がエチレン−2,6−ナフタレンジカルボキシレートであるポリエチレン−2,6−ナフタレンジカルボキシレートからなるフィルム層Bを積層した積層フィルムの製造方法であって、
フィルム層Aを構成する樹脂成分Aが、
全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、15:85〜35:65の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、60:40〜90:10の範囲である樹脂A´と全繰り返し単位の90モル%以上がエチレン−2,6−ナフタレンジカルボキシレートであるポリエチレン−2,6−ナフタレンジカルボキシレートとを
全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、5:95〜20:80の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、15:85〜40:60となるように溶融混練し、二軸方向に延伸する積層フィルムの製造方法
It is a method for producing a laminated film in which film layer A and film layer B composed of polyethylene-2,6-naphthalene dicarboxylate in which 90 mol% or more of all repeating units are ethylene-2,6-naphthalene dicarboxylate are laminated. And
The resin component A constituting the film layer A is
The molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is in the range of 15:85 to 35:65, and the molar ratio of the 1,4-cyclohexanedimethanol component of the total glycol component to the ethylene glycol component. A resin A ′ having a ratio in the range of 60:40 to 90:10 and polyethylene-2,6-naphthalene dicarboxylate wherein 90 mol% or more of all repeating units are ethylene- 2,6-naphthalene dicarboxylate; The molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is in the range of 5:95 to 20:80, the 1,4-cyclohexanedimethanol component of the total glycol component and the ethylene glycol component of A method for producing a laminated film , which is melt-kneaded so as to have a molar ratio of 15:85 to 40:60 and stretched biaxially .
フィルム層Aを構成する樹脂成分Aにおける樹脂A´とポリエチレン−2,6−ナフタレンジカルボキシレートとの重量比が10:90〜90:10の範囲である請求項1記載の積層フィルムの製造方法The method for producing a laminated film according to claim 1, wherein the weight ratio of the resin A 'to the polyethylene-2,6-naphthalenedicarboxylate in the resin component A constituting the film layer A is in the range of 10:90 to 90:10. . 積層フィルムの厚み方向において、フィルム層Aが占める厚みとフィルム層Bが占める厚みとの比が、10:90〜80:20の範囲である請求項1または2に記載の積層フィルムの製造方法The method for producing a laminated film according to claim 1 or 2, wherein the ratio of the thickness occupied by the film layer A and the thickness occupied by the film layer B is in the range of 10:90 to 80:20 in the thickness direction of the laminated film. 積層フィルム全体における、全酸成分のテレフタル酸成分と2,6−ナフタレンジカルボン酸成分のモル比が、3:97〜15:85の範囲で、全グリコール成分の1,4−シクロヘキサンジメタノール成分とエチレングリコール成分のモル比が、10:90〜30:70の範囲である請求項1〜3のいずれかに記載の積層フィルムの製造方法In the entire laminated film, the molar ratio of the terephthalic acid component of the total acid component to the 2,6-naphthalenedicarboxylic acid component is in the range of 3:97 to 15:85, and the 1,4-cyclohexanedimethanol component of the total glycol component The manufacturing method of the laminated | multilayer film in any one of Claims 1-3 whose molar ratio of an ethylene glycol component is the range of 10: 90-30: 70. 製膜方向および幅方向のヤング率がともに4.5GPa以上である請求項1〜4のいずれかに記載の積層フィルムの製造方法The method for producing a laminated film according to any one of claims 1 to 4, wherein the Young's modulus in the film forming direction and the width direction are both 4.5 GPa or more.
JP2011278513A 2011-12-20 2011-12-20 Method for producing laminated film Active JP5833428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278513A JP5833428B2 (en) 2011-12-20 2011-12-20 Method for producing laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278513A JP5833428B2 (en) 2011-12-20 2011-12-20 Method for producing laminated film

Publications (2)

Publication Number Publication Date
JP2013129078A JP2013129078A (en) 2013-07-04
JP5833428B2 true JP5833428B2 (en) 2015-12-16

Family

ID=48907083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278513A Active JP5833428B2 (en) 2011-12-20 2011-12-20 Method for producing laminated film

Country Status (1)

Country Link
JP (1) JP5833428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253550B2 (en) * 2017-11-30 2023-04-06 スリーエム イノベイティブ プロパティズ カンパニー Substrate comprising a self-supporting three-layer laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254346A (en) * 1996-01-17 1997-09-30 Mitsubishi Chem Corp Multilayered polyester sheet and packaging container produced by working it

Also Published As

Publication number Publication date
JP2013129078A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP2010031174A (en) Polyester resin composition and biaxially oriented film using the same
KR101545371B1 (en) Biaxially oriented multilayer film
JP2011084037A (en) Biaxial orientation multilayer laminate film
JP5763456B2 (en) Biaxially oriented film
JP5495326B2 (en) Biaxially oriented laminated polyester film
JP2010031138A (en) Biaxially oriented film
JP2008100509A (en) Composite film
JP5833428B2 (en) Method for producing laminated film
JP5886026B2 (en) Laminated film
JP5271124B2 (en) Biaxially oriented multilayer laminated polyester film
JP5739220B2 (en) Biaxially oriented film
JP4624850B2 (en) Biaxially oriented laminated film and magnetic recording medium
JP6231580B2 (en) Polyester film for solar cell and protective film for solar cell comprising the same
JP2010031116A (en) Biaxially oriented polyester film and magnetic recording medium using it
JP5735370B2 (en) Aromatic polyester resin composition and oriented polyester film
JP2009255475A (en) Biaxially oriented laminated polyester film
JP6374214B2 (en) Laminated film with coating layer
JP5226597B2 (en) Biaxially oriented laminated film
JP2013103995A (en) Aromatic copolyester, oriented polyester film and magnetic recording medium
JP5718717B2 (en) Biaxially oriented film
JP2011243240A (en) Biaxially-oriented laminated film
JP5788729B2 (en) Oriented polyester film
JP5475543B2 (en) Oriented film
JP2000025106A (en) Biaxially oriented polyethylene naphthalate film
JP2004223835A (en) Heat-sealable polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5833428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250