JP5824686B2 - Temperature-responsive polymer fine particle and method for producing dispersion thereof - Google Patents

Temperature-responsive polymer fine particle and method for producing dispersion thereof Download PDF

Info

Publication number
JP5824686B2
JP5824686B2 JP2011129592A JP2011129592A JP5824686B2 JP 5824686 B2 JP5824686 B2 JP 5824686B2 JP 2011129592 A JP2011129592 A JP 2011129592A JP 2011129592 A JP2011129592 A JP 2011129592A JP 5824686 B2 JP5824686 B2 JP 5824686B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
hydrogen atom
polymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011129592A
Other languages
Japanese (ja)
Other versions
JP2012241188A (en
Inventor
卓也 大原
卓也 大原
景山 忠
忠 景山
明石 満
満 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senka Corp
Original Assignee
Senka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senka Corp filed Critical Senka Corp
Priority to JP2011129592A priority Critical patent/JP5824686B2/en
Publication of JP2012241188A publication Critical patent/JP2012241188A/en
Application granted granted Critical
Publication of JP5824686B2 publication Critical patent/JP5824686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、表面にカチオン系及び/又はノニオン系の親水性高分子鎖を有する新規な高分子微粒子及びその製造方法に関するものであり、詳細には温度の変化に応じて平均粒子径が可逆的に変化する、温度応答性高分子微粒子及びその分散体の簡易な製造方法に関する。  The present invention relates to a novel polymer fine particle having a cationic and / or nonionic hydrophilic polymer chain on its surface and a method for producing the same, and in particular, the average particle size is reversible according to changes in temperature. The present invention relates to a simple method for producing temperature-responsive polymer fine particles and dispersions thereof.

高分子の片末端にラジカル重合性基を持つマクロモノマーは、構造が明確に制御されたグラフト共重合体を製造することができ、親水性のマクロモノマーと疎水性モノマーとを共重合することにより、表面に親水性の高分子鎖を有し、内部が疎水性の高分子化合物から構成される水分散性の高分子微粒子を製造することができる。例えば従来知られている親水性マクロモノマーと疎水性モノマーとを共重合した高分子微粒子としては、ポリエチレングリコールマクロモノマーと疎水性モノマーとを共重合した高分子微粒子(非特許文献1、非特許文献2)、N−ビニルアミドマクロモノマーと疎水性モノマーとを共重合した高分子微粒子及び当該高分子微粒子のアミド部分をアミンにケン化した高分子微粒子(特許文献1)、N−イソプロピルアクリルアミドマクロモノマーと疎水性モノマーとを共重合した高分子微粒子(特許文献2)がある。  A macromonomer having a radically polymerizable group at one end of a polymer can produce a graft copolymer with a clearly controlled structure. By copolymerizing a hydrophilic macromonomer and a hydrophobic monomer, Water-dispersible polymer fine particles having a hydrophilic polymer chain on the surface and composed of a hydrophobic polymer compound inside can be produced. For example, conventionally known polymer fine particles obtained by copolymerization of a hydrophilic macromonomer and a hydrophobic monomer include polymer fine particles obtained by copolymerization of a polyethylene glycol macromonomer and a hydrophobic monomer (Non-patent Document 1, Non-patent Document). 2), polymer fine particles obtained by copolymerizing an N-vinylamide macromonomer and a hydrophobic monomer, polymer fine particles obtained by saponifying the amide portion of the polymer fine particles to an amine (Patent Document 1), N-isopropylacrylamide macromonomer And polymer fine particles obtained by copolymerization of a hydrophobic monomer (Patent Document 2).

N−イソプロピルアクリルアミドマクロモノマーと疎水性モノマーとを共重合した高分子微粒子は温度の変化により粒子径は変化するが、変化幅は320nmから440nmの範囲であり、変化幅は非常に小さい(非特許文献3)。  The fine polymer particles obtained by copolymerizing N-isopropylacrylamide macromonomer and hydrophobic monomer have a particle diameter that varies with changes in temperature, but the variation range is 320 nm to 440 nm, and the variation range is very small (non-patent) Reference 3).

ポリマージャーナル第17巻、827頁、1985年Polymer Journal, Vol. 17, 827, 1985 Macromolecules 2000,33,1759−1764Macromolecules 2000, 33, 1759-1764 Journal of Polymer Chemistry,Vol.34,2213−2220(1996)Journal of Polymer Chemistry, Vol. 34, 2213-2220 (1996) 特開平02−296808号公報Japanese Patent Laid-Open No. 02-296808 特開平08−183760号公報Japanese Patent Laid-Open No. 08-183760

本発明の目的は、表面にカチオン系及び/又はノニオン系の親水性高分子鎖を有する新規な高分子微粒子及びその分散体の製造方法を提供することであって、温度の変化に応じて平均粒子径が可逆的に変化する温度応答性高分子微粒子及び当該微粒子分散体の簡易な製造方法を提供することにある。  An object of the present invention is to provide a novel polymer fine particle having a cationic and / or nonionic hydrophilic polymer chain on the surface and a method for producing a dispersion thereof, and an average depending on a change in temperature. An object of the present invention is to provide a temperature-responsive polymer fine particle whose particle diameter reversibly changes and a simple method for producing the fine particle dispersion.

本発明者は、鋭意研究を積み重ねた結果、微粒子表面に親水性高分子鎖が局在し、微粒子のコアが疎水性高分子及び温度感受性高分子から構成される高分子微粒子が可逆的な温度応答性を示すことを見出し、さらには親水性マクロモノマーと疎水性モノマーと温度感受性モノマーとを共重合することにより、容易に温度応答性高分子微粒子の分散体を得ることができることを見出し、本発明を完成するに至った。  As a result of intensive research, the present inventor has found that the polymer fine particles in which the hydrophilic polymer chains are localized on the surface of the fine particles and the core of the fine particles is composed of the hydrophobic polymer and the temperature-sensitive polymer are reversible. It has been found that it exhibits responsiveness, and furthermore, it has been found that a dispersion of temperature-responsive polymer fine particles can be easily obtained by copolymerizing a hydrophilic macromonomer, a hydrophobic monomer, and a temperature-sensitive monomer. The invention has been completed.

即ち本発明の温度応答性高分子微粒子は、下記の一般式(1)で表される構造単位の中から選ばれる少なくとも1種と、  That is, the temperature-responsive fine polymer particle of the present invention includes at least one selected from structural units represented by the following general formula (1):

Figure 0005824686
Figure 0005824686

[式(1)中、Qは水素原子、メチル基又はシアノ基を示し、Qは水素原子、[In Formula (1), Q 1 represents a hydrogen atom, a methyl group or a cyano group, Q 2 represents a hydrogen atom,

Figure 0005824686
Figure 0005824686

(R及びR’は同一又は異なって水素原子又は炭素数1〜4の低級アルキル基又はハロゲン原子又はハロゲノメチル基を示し、Rは炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はベンジル基又はヒドロキシプロピル基を示し、R’は炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はフェニル基を示し、Rは水素原子又は炭素数1〜10のアルキル基を示し、Rは炭素数1〜10のアルキル基を示す(ただしR及びRの総炭素数は3〜20である))を示す。](R 1 and R 1 ′ are the same or different and each represents a hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, a halogen atom or a halogenomethyl group, and R 2 is a linear, branched or cyclic group having 1 to 18 carbon atoms. An alkyl group, a benzyl group or a hydroxypropyl group; R 2 ′ represents a linear, branched or cyclic alkyl group or phenyl group having 1 to 18 carbon atoms; and R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 4 represents an alkyl group having 1 to 10 carbon atoms (provided that R 3 and R 4 have 3 to 20 carbon atoms in total). ]

下記の一般式(2)で表される構造単位の中から選ばれる少なくとも1種と、At least one selected from structural units represented by the following general formula (2);

Figure 0005824686
Figure 0005824686

[式(2)中、Qは水素原子又はメチル基を示し、Qは−CO−NR(Rは水素原子又は炭素数1〜3のアルキル基を示し、Rは炭素数1〜3のアルキル基を示す(ただしR及びRの総炭素数は1〜6である))を示す。][In Formula (2), Q 3 represents a hydrogen atom or a methyl group, Q 4 represents —CO—NR 5 R 6 (R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 6 represents carbon. 1 to 3 represents an alkyl group (wherein R 5 and R 6 have 1 to 6 carbon atoms in total). ]

下記の一般式(3)及び(4)で表される構造単位の中から選ばれる少なくとも1種から成る水分散性の高分子微粒子であって、温度の変化に応じて可逆的に平均粒子径が変化することを特徴とする。Water-dispersible polymer fine particles comprising at least one selected from structural units represented by the following general formulas (3) and (4), and having an average particle diameter reversibly according to a change in temperature Changes.

Figure 0005824686
Figure 0005824686

[式(3)中、Qは水素原子又はメチル基を示し、Qは、[In Formula (3), Q 5 represents a hydrogen atom or a methyl group, and Q 6 represents

Figure 0005824686
Figure 0005824686

(Aは炭素数1〜10のアルキレン基を示す)を示し、Qは酸素原子又は−NH−を示し、Qは炭素数1〜10のアルキレン基を示し、Qは酸素原子又は硫黄原子を示し、Yは酸素原子又は2個の水素原子を示し、Rは水素原子又はメチル基を示し、X(A 1 represents an alkylene group having 1 to 10 carbon atoms), Q 7 represents an oxygen atom or —NH—, Q 8 represents an alkylene group having 1 to 10 carbon atoms, and Q 9 represents an oxygen atom or Represents a sulfur atom, Y 1 represents an oxygen atom or two hydrogen atoms, R 7 represents a hydrogen atom or a methyl group, and X 1 represents

Figure 0005824686
Figure 0005824686

(R、R及びR10は同一又は異なって炭素数1〜4の低級アルキル基又はベンジル基を示し、R11は水素原子又はメチル基又はエチル基を示し、R12は水素原子又はメチル基を示し、Zは陰イオンを示す)を示し、lは1〜100の数を示す。](R 8 , R 9 and R 10 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms or a benzyl group, R 11 represents a hydrogen atom, a methyl group or an ethyl group, and R 12 represents a hydrogen atom or a methyl group. Represents a group, Z represents an anion), and l represents a number of 1 to 100. ]

Figure 0005824686
Figure 0005824686

[式(4)中、Q10及びQ12は同一又は異なって水素原子又はメチル基を示し、Q11は酸素原子又は−NH−を示し、nは1〜100の数を示す。][In Formula (4), Q 10 and Q 12 are the same or different and represent a hydrogen atom or a methyl group, Q 11 represents an oxygen atom or —NH—, and n represents a number of 1 to 100. ]

また、本発明の温度応答性高分子微粒子分散体の製造方法は、下記の一般式(5)で表される単量体の中から選ばれる少なくとも1種と、  Moreover, the method for producing the temperature-responsive polymer fine particle dispersion of the present invention includes at least one selected from monomers represented by the following general formula (5):

Figure 0005824686
Figure 0005824686

[式(5)中、Q13は水素原子、メチル基又はシアノ基を示し、Q14は水素原子、Wherein (5), Q 13 represents a hydrogen atom, a methyl group or a cyano group, Q 14 is a hydrogen atom,

Figure 0005824686
Figure 0005824686

(R13及びR13’は同一又は異なって水素原子又は炭素数1〜4の低級アルキル基又はハロゲン原子又はハロゲノメチル基を示し、R14は炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はベンジル基又はヒドロキシプロピル基を示し、R14’は炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はフェニル基を示し、R15は水素原子又は炭素数1〜10のアルキル基を示し、R16は炭素数1〜10のアルキル基を示す(ただしR15及びR16の総炭素数は3〜20である))を示す。](R 13 and R 13 ′ are the same or different and each represents a hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, a halogen atom or a halogenomethyl group, and R 14 is a linear, branched or cyclic group having 1 to 18 carbon atoms. An alkyl group, a benzyl group or a hydroxypropyl group, R 14 ′ represents a linear, branched or cyclic alkyl group or phenyl group having 1 to 18 carbon atoms, and R 15 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 16 represents an alkyl group having 1 to 10 carbon atoms (however, the total carbon number of R 15 and R 16 is 3 to 20). ]

下記の一般式(6)で表される単量体の中から選ばれる少なくとも1種と、At least one selected from monomers represented by the following general formula (6);

Figure 0005824686
Figure 0005824686

[式(6)中、Q15は水素原子又はメチル基を示し、Q16は−CO−NR1718(R17は水素原子又は炭素数1〜3のアルキル基を示し、R18は炭素数1〜3のアルキル基を示す(ただしR17及びR18の総炭素数は1〜6である))を示す。][In Formula (6), Q 15 represents a hydrogen atom or a methyl group, Q 16 represents —CO—NR 17 R 18 (R 17 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 18 represents carbon. 1 to 3 represents an alkyl group (wherein R 17 and R 18 have a total carbon number of 1 to 6). ]

下記の一般式(7)及び(8)で表される親水性マクロモノマーの中から選ばれる少なくとも1種とを共重合させることを特徴とする。It is characterized by copolymerizing at least one selected from hydrophilic macromonomers represented by the following general formulas (7) and (8).

Figure 0005824686
Figure 0005824686

[式(7)中、Q17は水素原子又はメチル基を示し、Q18は、[In Formula (7), Q 17 represents a hydrogen atom or a methyl group, and Q 18 represents

Figure 0005824686
Figure 0005824686

(Aは炭素数1〜10のアルキレン基を示す)を示し、Q19は酸素原子又は−NH−を示し、Q20は炭素数1〜10のアルキレン基を示し、Q21は酸素原子又は硫黄原子を示し、Yは酸素原子又は2個の水素原子を示し、R19は水素原子又はメチル基を示し、X(A 2 represents an alkylene group having 1 to 10 carbon atoms), Q 19 represents an oxygen atom or —NH—, Q 20 represents an alkylene group having 1 to 10 carbon atoms, and Q 21 represents an oxygen atom or Represents a sulfur atom, Y 2 represents an oxygen atom or two hydrogen atoms, R 19 represents a hydrogen atom or a methyl group, and X 2 represents

Figure 0005824686
Figure 0005824686

(R20、R21及びR22は同一又は異なって炭素数1〜4の低級アルキル基又はベンジル基を示し、R23は水素原子又はメチル基又はエチル基を示し、R24は水素原子又はメチル基を示し、Zは陰イオンを示す)を示し、lは1〜100の数を示す。](R 20 , R 21 and R 22 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms or a benzyl group, R 23 represents a hydrogen atom, a methyl group or an ethyl group, and R 24 represents a hydrogen atom or a methyl group. Represents a group, Z represents an anion), and l represents a number of 1 to 100. ]

Figure 0005824686
Figure 0005824686

[式(8)中、Q22及びQ24は同一又は異なって水素原子又はメチル基を示し、Q23は酸素原子又は−NH−を示し、は1〜100の数を示す。]
Wherein (8), Q 22 and Q 24 are the same or different and each represents a hydrogen atom or a methyl group, Q 23 represents an oxygen atom or -NH-, m is a number of 1 to 100. ]

本発明によれば、表面にカチオン系及び/又はノニオン系の親水性高分子鎖を有し、内部が疎水性の高分子化合物から構成される水分散性の温度応答性高分子微粒子を、凝集物等副生することなく簡易に分散体として製造することができる。  According to the present invention, water-dispersible temperature-responsive fine polymer particles having a cationic and / or nonionic hydrophilic polymer chain on the surface and composed of a hydrophobic polymer compound inside are aggregated. It can be easily produced as a dispersion without by-products.

以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.

本発明の温度応答性微粒子は、微粒子のコアを形成する前記一般式(1)で表わされる構造単位と、温度応答性能を発現させる前記一般式(2)で表わされる構造単位と、微粒子表面に局在する前記一般式(3)及び/又は(4)で表わされる親水性の高分子鎖から構成される。  The temperature-responsive fine particles of the present invention include a structural unit represented by the general formula (1) that forms the core of the fine particles, a structural unit represented by the general formula (2) that expresses the temperature response performance, and a fine particle surface. It comprises a hydrophilic polymer chain represented by the general formula (3) and / or (4) that is localized.

先ず、本発明の温度応答性高分子微粒子を構成する前記一般式(1)について説明する。  First, the general formula (1) constituting the temperature-responsive polymer fine particles of the present invention will be described.

前記一般式(1)で表される構造単位中のQの式(Q−1)で表わされるR及びR’で示される炭素数1〜4の低級アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等を挙げることができ、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、ハロゲノメチル基としてはクロロメチル基、ブロモメチル基、ヨードメチル基等を挙げることができる。式(1)中、Qの式(Q−2)及び(Q−3)で表わされるR及びR’で示される炭素数1〜18のアルキル基としては、直鎖又は分岐又は環状のアルキル基が挙げられ、具体例としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、ラウリル基、ステアリル基等が挙げられる。このうちR及びR´としては炭素数1〜5のアルキル基がより好ましく、メチル基、エチル基、イソプロピル基が特に好ましい。また、式(1)中、Qの式(Q−4)で表わされるR及びRはいずれか一方が水素原子で他方がアルキル基の場合、及び両者がアルキル基の場合があるが、両者の総炭素数が3〜20である。例えばRが水素原子の場合、Rは炭素数3〜20のアルキル基であり、R及びRがアルキル基の場合にはR及びRのアルキル基の炭素数の合計が3〜20となる組み合わせである。The lower alkyl group having 1 to 4 carbon atoms represented by R 1 and R 1 ′ represented by the formula (Q 2 -1) of Q 2 in the structural unit represented by the general formula (1) is a methyl group, An ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like can be mentioned. A halogen atom can include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a halogenomethyl group can include chloromethyl. Group, bromomethyl group, iodomethyl group and the like. In the formula (1), the alkyl group having 1 to 18 carbon atoms represented by the formula Q 2 (Q 2 -2) and (Q 2 -3) R 2 and R 2 'represented by a straight or branched Or a cyclic alkyl group, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, n-hexyl group, lauryl group, Stearyl group etc. are mentioned. Among these, R 2 and R 2 ′ are more preferably an alkyl group having 1 to 5 carbon atoms, and a methyl group, an ethyl group, and an isopropyl group are particularly preferable. In the formula (1), if either R 3 and R 4 is represented by the formula Q 2 (Q 2 -4) is a hydrogen atom and the other alkyl group, and both have the alkyl group However, the total carbon number of both is 3-20. For example, when R 3 is a hydrogen atom, R 4 is an alkyl group having 3 to 20 carbon atoms, and when R 3 and R 4 are alkyl groups, the total number of carbon atoms of the alkyl groups of R 3 and R 4 is 3 A combination of ˜20.

一般式(1)の構造単位中のQは、式(Q−1)、(Q−2)、(Q−3)及び(Q−4)の構造から選ばれる1種でもよく、2種以上を組み合わせてもよいが、次の式(1a)Q 2 in the structural unit of the general formula (1) may be one kind selected from the structures of the formulas (Q 2 -1), (Q 2 -2), (Q 2 -3) and (Q 2 -4) Well, two or more may be combined, but the following formula (1a)

Figure 0005824686
Figure 0005824686

である構造がより好ましく、さらには次の式(1b)Is more preferable. Furthermore, the following formula (1b)

Figure 0005824686
Figure 0005824686

(式中、Rは前記と同じ)で表わされる構造単位がより好ましく、Rが水素原子の場合が特に好ましい。(Wherein R 1 is as defined above) is more preferred, and the case where R 1 is a hydrogen atom is particularly preferred.

次に、本発明の温度応答性高分子微粒子を構成する前記一般式(2)について説明する。  Next, the general formula (2) constituting the temperature-responsive polymer fine particles of the present invention will be described.

一般式(2)の構造単位から選ばれる1種でもよく、2種以上を組み合わせてもよいが、次の式(2a)  One type selected from structural units of the general formula (2) may be used, or two or more types may be combined, but the following formula (2a)

Figure 0005824686
Figure 0005824686

である構造がより好ましく、次の式(2b)Is more preferred, and the following formula (2b)

Figure 0005824686
Figure 0005824686

で表わされる構造単位が特に好ましい。The structural unit represented by

次に、本発明の温度応答性高分子微粒子を構成する一般式(3)及び(4)について説明する。  Next, general formulas (3) and (4) constituting the temperature-responsive polymer fine particles of the present invention will be described.

一般式(3)で表される構造単位中、QのA及びQで示される炭素数1〜10のアルキレン基としては、炭素数1〜10の直鎖又は分岐状のアルキレン基が挙げられ、具体的にはメチレン基、エチレン基、トリメチレン基、ヘキサメチレン基、(エチル)エチレン基、(ジメチル)エチレン基等が挙げられる。このうち、炭素数1〜5の直鎖又は分岐状のアルキレン基がより好ましい。In the structural unit represented by the general formula (3), the alkylene group having 1 to 10 carbon atoms represented by A 1 of Q 6 and Q 8 is a linear or branched alkylene group having 1 to 10 carbon atoms. Specific examples include a methylene group, an ethylene group, a trimethylene group, a hexamethylene group, a (ethyl) ethylene group, and a (dimethyl) ethylene group. Among these, a linear or branched alkylene group having 1 to 5 carbon atoms is more preferable.

一般式(3)で表される構造単位中のXの、式(X−1)、(X−2)、(X−3)及び(X−4)中のR、R及びR10で示される低級アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基等が挙げられる。X 8 in the structural unit represented by the general formula (3), R 8 in the formulas (X 1 -1), (X 1 -2), (X 1 -3) and (X 1 -4), Examples of the lower alkyl group represented by R 9 and R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a butyl group.

一般式(3)で表される構造単位中のXの、式(X−1)及び(X−2)中の(CHは炭素数1〜3のアルキレン基であり、具体的にはメチレン基、エチレン基、トリメチレン基が挙げられるが、エチレン基が好ましい。(CH 2 ) n in the formula (X 1 -1) and (X 1 -2) of X 1 in the structural unit represented by the general formula (3) is an alkylene group having 1 to 3 carbon atoms, Specific examples include a methylene group, an ethylene group, and a trimethylene group, with an ethylene group being preferred.

一般式(3)で表される構造単位中のXの、式(X−1)、(X−2)、(X−3)及び(X−4)中のZで示される陰イオンはフッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン等が挙げられ、中でも塩素イオンが特に好ましい。X 1 in the structural unit represented by the general formula (3) is represented by Z in the formulas (X 1 -1), (X 1 -2), (X 1 -3) and (X 1 -4). Examples of the anions shown include fluorine ions, chlorine ions, bromine ions, iodine ions, and sulfate ions, and among them, chlorine ions are particularly preferable.

一般式(3)で表される構造単位中のXを含む繰り返し単位は、(X−1)、(X−2)、(X−3)、(X−4)、(X−5)及び(X−6)の中から選ばれる1種でもよく、2種以上を組み合わせてもよい。The repeating unit containing X 1 in the structural unit represented by the general formula (3) is (X 1 -1), (X 1 -2), (X 1 -3), (X 1 -4), ( X 1 -5) and (X 1 -6) may be a one selected from among, or in combination of two or more.

一般式(3)の構造単位中、次の式(3a)  In the structural unit of the general formula (3), the following formula (3a)

Figure 0005824686
Figure 0005824686

(式中、Q、Q、Q、Y、X、R及びlは前記と同じ)で表わされる構造単位がより好ましく、さらには式(3b)(Wherein, Q 7 , Q 8 , Q 9 , Y 1 , X 1 , R 7 and l are the same as those described above) are more preferable, and further the formula (3b)

Figure 0005824686
Figure 0005824686

(式中、X、R及びlは前記と同じ)で表わされる構造単位がより好ましく、式(3c)(Wherein X 1 , R 7 and l are the same as defined above) are more preferred, and the formula (3c)

Figure 0005824686
Figure 0005824686

(式中、Z及びlは前記と同じ)で表わされる構造単位が特に好ましい。A structural unit represented by the formula (wherein Z and l are the same as above) is particularly preferred.

一般式(4)の構造単位中、次の式(4a)  In the structural unit of the general formula (4), the following formula (4a)

Figure 0005824686
Figure 0005824686

(式中、Q11及びmは前記と同じ)で表わされる構造単位がより好ましく、式(4b)(Wherein Q 11 and m are the same as those described above), and a structural unit represented by formula (4b)

Figure 0005824686
Figure 0005824686

(式中、mは前記と同じ)で表わされる構造単位が特に好ましい。A structural unit represented by (wherein m is the same as above) is particularly preferred.

微粒子のコアを形成する構造単位は、一般式(1)で表わされる構造単位から1種又は2種以上選んでもよい。また、温度応答性能を発現させる構造単位は、一般式(2)で表わされる構造単位から1種又は2種以上選んでもよく、この場合は温度の変化に応じて粒子径が変化する温度応答性微粒子となり、さらに詳細には温度が高温から低温へ変化するに連れて粒子径が大きくなる温度応答性微粒子となる。微粒子表面に局在する親水性の高分子鎖である構造単位は、一般式(3)で表わされる構造単位から1種又は2種以上選んでもよいし、一般式(4)で表わされる構造単位から1種又は2種以上選んでもよいし、一般式(3)及び(4)の群から2種以上選んでもよい。より好ましい組合わせは、一般式(1)で表わされる構造単位から選ばれる1種と、一般式(2)で表わされる構造単位から選ばれる1種と、一般式(3)又は一般式(4)で表わされる構造単位から選ばれる1種との組合せである。  The structural unit forming the core of the fine particles may be selected from one or more structural units represented by the general formula (1). In addition, the structural unit that develops the temperature response performance may be selected from one or more structural units represented by the general formula (2). In this case, the temperature responsiveness in which the particle diameter changes according to the temperature change. Fine particles, and more specifically, temperature-responsive fine particles whose particle diameter increases as the temperature changes from high temperature to low temperature. The structural unit which is a hydrophilic polymer chain localized on the surface of the fine particle may be selected from one or more structural units represented by the general formula (3), or may be selected from the structural unit represented by the general formula (4). 1 type or 2 types or more may be selected, or 2 or more types may be selected from the group of the general formulas (3) and (4). A more preferred combination is one selected from the structural unit represented by the general formula (1), one selected from the structural unit represented by the general formula (2), and the general formula (3) or the general formula (4 ) In combination with one kind selected from structural units represented by:

本発明の温度応答性微粒子を構成する一般式(1)で表わされる構造単位、一般式(2)で表わされる構造単位、一般式(3)及び/又は(4)で表わされる構造単位の比率は特に制限されないが、温度応答性の観点から、一般式(1)で表わされる構造単位と、一般式(2)で表わされる構造単位と、一般式(3)及び(4)で表わされる構造単位のうち当該高分子微粒子の表面に局在する高分子鎖を構成する繰り返し単位との比率が1/0.01〜100/0.01〜100の範囲が好ましく、1/0.1〜90/0.1〜50の範囲がより好ましく、1/0.5〜80/0.5〜40が特に好ましい。  The ratio of the structural unit represented by the general formula (1), the structural unit represented by the general formula (2), the structural unit represented by the general formula (3) and / or (4) constituting the temperature-responsive fine particles of the present invention. Is not particularly limited, but from the viewpoint of temperature responsiveness, the structural unit represented by the general formula (1), the structural unit represented by the general formula (2), and the structures represented by the general formulas (3) and (4) The ratio of the unit to the repeating unit constituting the polymer chain localized on the surface of the polymer fine particle is preferably in the range of 1 / 0.01 to 100 / 0.01 to 100, and preferably 1 / 0.1 to 90. The range of /0.1-50 is more preferable, and 1 / 0.5-80 / 0.5-40 is especially preferable.

本発明の温度応答性高分子微粒子分散体は、微粒子のコアを形成する前記一般式(5)で表わされる単量体から選ばれる少なくとも1種と、温度応答性能を発現させる前記一般式(6)で表わされる単量体から選ばれる少なくとも1種と、微粒子表面に局在する前記一般式(7)及び/又は(8)で表わされる親水性マクロモノマーから選ばれる少なくとも1種とを共重合させることにより製造することができる。  The temperature-responsive polymer fine particle dispersion of the present invention includes at least one selected from the monomers represented by the general formula (5) that forms the core of the fine particles, and the general formula (6) that expresses the temperature response performance. ) And at least one selected from the hydrophilic macromonomer represented by the general formula (7) and / or (8) localized on the surface of the fine particles. Can be manufactured.

以下にその製造方法を詳しく説明する。  The manufacturing method will be described in detail below.

一般式(5)で表される単量体のQ14の式(Q14−1)で表わされるR13及びR13’で示される炭素数1〜4の低級アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等を挙げることができ、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、ハロゲノメチル基としては、クロロメチル基、ブロモメチル基、ヨードメチル基等を挙げることができる。式(5)中、Q14の式(Q14−2)及び(Q14−3)で表わされるR14及びR14’で示される炭素数1〜18のアルキル基としては、直鎖又は分岐又は環状のアルキル基が挙げられ、具体例としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、ラウリル基、ステアリル基等が挙げられる。このうちR14及びR14’としては炭素数1〜5のアルキル基がより好ましく、メチル基、エチル基、イソプロピル基が特に好ましい。また、式(5)中、Q14の式(Q14−4)で表わされるR15及びR16はいずれか一方が水素原子で他方がアルキル基の場合、及び両者がアルキル基の場合があるが、両者の総炭素数が3〜20である。例えばR15が水素原子の場合、R16は炭素数3〜20のアルキル基であり、R15及びR16がアルキル基の場合にはR15及びR16のアルキル基の炭素数の合計が3〜20となる組み合わせである。The lower alkyl group having 1 to 4 carbon atoms represented by the general formula (5) wherein the Q 14 of the monomer represented by (Q 14 -1) R 13 and R 13 represented by 'a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group and the like. As the halogen atom, fluorine atom, chlorine atom, bromine atom and iodine atom can be mentioned. As halogenomethyl group, chloromethyl can be mentioned. Group, bromomethyl group, iodomethyl group and the like. Equation (5), examples of the alkyl group having 1 to 18 carbon atoms represented by the formula of Q 14 (Q 14 -2) and (Q 14 -3) R 14 and R 14 represented by ', straight-chain or branched Or a cyclic alkyl group, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, n-hexyl group, lauryl group, Stearyl group etc. are mentioned. Among these, as R <14> and R < 14 '>, a C1-C5 alkyl group is more preferable, and a methyl group, an ethyl group, and an isopropyl group are especially preferable. In the formula (5), if either one of R 15 and R 16 is represented by the formula Q 14 (Q 14 -4) is a hydrogen atom and the other alkyl group, and both have the alkyl group However, the total carbon number of both is 3-20. For example, when R 15 is a hydrogen atom, R 16 is an alkyl group having 3 to 20 carbon atoms, and when R 15 and R 16 are alkyl groups, the total number of carbon atoms of the alkyl groups of R 15 and R 16 is 3 A combination of ˜20.

一般式(5)で表される単量体としては、スチレン、モノメチルスチレン、ジメチルスチレン、クロロスチレン、ジクロロスチレン、クロロメチルスチレン、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ラウリルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、ヒドロキシプロピルメタクリレート、酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、ラウリン酸ビニル、シクロヘキサンカルボン酸ビニル、安息香酸ビニル、N−ブチルアクリルアミド、アクリロニトリル等が挙げられ、これらの単量体は単独で、あるいは適宜組み合わせて用いることができるが、スチレンが特に好ましい。  As the monomer represented by the general formula (5), styrene, monomethylstyrene, dimethylstyrene, chlorostyrene, dichlorostyrene, chloromethylstyrene, ethyl acrylate, propyl acrylate, butyl acrylate, lauryl acrylate, stearyl acrylate, methyl methacrylate , Ethyl methacrylate, butyl methacrylate, lauryl methacrylate, stearyl methacrylate, benzyl methacrylate, hydroxypropyl methacrylate, vinyl acetate, vinyl propionate, vinyl caproate, vinyl laurate, vinyl cyclohexanecarboxylate, vinyl benzoate, N-butylacrylamide, acrylonitrile These monomers can be used alone or in appropriate combination, Styrene is particularly preferred.

一般式(6)で表される単量体中、Q16が−CO−NR1718(R17は水素原子又は炭素数1〜3のアルキル基を示し、R18は炭素数1〜3のアルキル基を示す(ただしR17及びR18の総炭素数は1〜6である))で表わされる単量体としては、N−イソプロピル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等が挙げられるが、N−イソプロピルアクリルアミドがより好ましい。In the monomer represented by the general formula (6), Q 16 represents —CO—NR 17 R 18 (R 17 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 18 represents 1 to 3 carbon atoms). N-isopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide is a monomer represented by the following formula (wherein R 17 and R 18 have a total carbon number of 1 to 6): N-isopropylacrylamide is more preferable.

一般式(7)で表されるマクロモノマー中、Q18のA及びQ20で示される炭素数1〜10のアルキレン基としては、炭素数1〜10の直鎖又は分岐状のアルキレン基が挙げられ、具体的にはメチレン基、エチレン基、トリメチレン基、ヘキサメチレン基、(エチル)エチレン基、(ジメチル)エチレン基等が挙げられる。このうち、炭素数1〜5の直鎖又は分岐状のアルキレン基がより好ましい。In the macromonomer represented by the general formula (7), the alkylene group having 1 to 10 carbon atoms represented by A 2 of Q 18 and Q 20 is a linear or branched alkylene group having 1 to 10 carbon atoms. Specific examples include a methylene group, an ethylene group, a trimethylene group, a hexamethylene group, a (ethyl) ethylene group, and a (dimethyl) ethylene group. Among these, a linear or branched alkylene group having 1 to 5 carbon atoms is more preferable.

一般式(7)で表されるマクロモノマー中のXの、式(X−1)、(X−2)、(X−3)及び(X−4)中のR20、R21及びR22で示される低級アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基等が挙げられる。X 2 in the macromonomer represented by the general formula (7), R 20 in the formulas (X 2 -1), (X 2 -2), (X 2 -3) and (X 2 -4), Examples of the lower alkyl group represented by R 21 and R 22 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a butyl group.

一般式(7)で表されるマクロモノマー中のXの、式(X−1)及び(X−2)中の(CHは炭素数1〜3のアルキレン基であり、具体的にはメチレン基、エチレン基、トリメチレン基が挙げられるが、エチレン基が好ましい。Formula X 2 of macromonomer represented by (7), wherein (X 2 -1) and (X 2 -2) in the (CH 2) n is an alkylene group having 1 to 3 carbon atoms, Specific examples include a methylene group, an ethylene group, and a trimethylene group, with an ethylene group being preferred.

一般式(7)で表されるマクロモノマー中のXの、式(X−1)、(X−2)、(X−3)及び(X−4)中のZで示される陰イオンはフッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン等が挙げられ、中でも塩素イオンが特に好ましい。X 2 in the macromonomer represented by the general formula (7) is Z in the formulas (X 2 -1), (X 2 -2), (X 2 -3) and (X 2 -4). Examples of the anions shown include fluorine ions, chlorine ions, bromine ions, iodine ions, and sulfate ions, and among them, chlorine ions are particularly preferable.

一般式(7)で表されるマクロモノマー中のXを含む繰り返し単位は、(X−1)、(X−2)、(X−3)、(X−4)、(X−5)及び(X−6)の中から選ばれる1種でもよく、2種以上を組み合わせてもよい。The repeating unit containing X 2 in the macromonomer represented by the general formula (7) includes (X 2 -1), (X 2 -2), (X 2 -3), (X 2 -4), ( X 2 -5) and (X 2 -6) may be a one selected from among, or in combination of two or more.

一般式(7)の構造単位に相当する親水性マクロモノマーのうち、繰り返し単位のXが式(X−1)、(X−2)、(X−3)及び(X−6)で表される親水性マクロモノマーは、相当する単量体をアミノ基、水酸基又はカルボキシル基を分子内に有する連鎖移動剤の存在下、ラジカル重合させ、末端にアミノ基、水酸基又はカルボキシル基を持つ、重合体又は共重合体を合成した後、ビニルベンジルハライド、メタクリル酸アルキルエステルジオキシド等のビニルモノマーと反応させることにより製造することができる。Among the hydrophilic macromonomers corresponding to the structural unit of the general formula (7), X 2 is the formula of the repeating unit (X 2 -1), (X 2 -2), (X 2 -3) and (X 2 - 6) The hydrophilic macromonomer represented by 6) is radical-polymerized in the presence of a chain transfer agent having an amino group, hydroxyl group or carboxyl group in the molecule, and the terminal is an amino group, hydroxyl group or carboxyl group. Can be produced by reacting with a vinyl monomer such as vinyl benzyl halide or methacrylic acid alkyl ester dioxide.

一般式(7)の構造単位のXが式(X−1)で表わされる親水性マクロモノマーを製造する場合の、繰り返し単位に相当する単量体としては(メタ)アクリロイルオキシアルキルトリアルキルアンモニウム塩が挙げられ、具体的にはアクリロイルオキシメチルトリメチルアンモニウムクロライド、アクリロイルオキシエチルトリメチルアンモニウムクロライド、アクリロイルオキシメチルトリエチルアンモニウムクロライド、アクリロイルオキシエチルトリエチルアンモニウムクロライド、アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド、メタクリロイルオキシメチルトリメチルアンモニウムクロライド、メタクリロイルオキシエチルトリメチルアンモニウムクロライド、メタクリロイルオキシメチルトリエチルアンモニウムクロライド、メタクリロイルオキシエチルトリエチルアンモニウムクロライド、メタクリロイルオキシエチルジメチルベンジルアンモニウムクロライド等が挙げられる。In the case of producing a hydrophilic macromonomer in which X 2 of the structural unit of the general formula (7) is represented by the formula (X 2 -1), the monomer corresponding to the repeating unit is (meth) acryloyloxyalkyltrialkyl. Specific examples include ammonium salts such as acryloyloxymethyltrimethylammonium chloride, acryloyloxyethyltrimethylammonium chloride, acryloyloxymethyltriethylammonium chloride, acryloyloxyethyltriethylammonium chloride, acryloyloxyethyldimethylbenzylammonium chloride, methacryloyloxymethyltrimethyl. Ammonium chloride, methacryloyloxyethyltrimethylammonium chloride, methacryloyloxymethyltriethyl Nmo chloride, methacryloyloxyethyl triethylammonium chloride, methacryloyloxyethyl dimethylbenzyl ammonium chloride.

一般式(7)の構造単位のXが式(X−2)で表わされる親水性マクロモノマーを製造する場合の、繰り返し単位に相当する単量体としては(メタ)アクリロイルアミノアルキルトリアルキルアンモニウム塩が挙げられ、具体的には(メタ)アクリロイルアミノアルキルトリアルキルアンモニウム塩としては、アクリロイルアミノメチルトリメチルアンモニウムクロライド、アクリロイルアミノエチルトリメチルアンモニウムクロライド、アクリロイルアミノメチルトリエチルアンモニウムクロライド、アクリロイルアミノエチルトリエチルアンモニウムクロライド、アクリロイルアミノエチルジメチルベンジルアンモニウムクロライド、メタクリロイルアミノメチルトリメチルアンモニウムクロライド、メタクリロイルアミノエチルトリメチルアンモニウムクロライド、メタクリロイルアミノメチルトリエチルアンモニウムクロライド、メタクリロイルアミノエチルトリエチルアンモニウムクロライド、メタクリロイルアミノエチルジメチルベンジルアンモニウムクロライド等が挙げられる。In the case of producing a hydrophilic macromonomer in which X 2 of the structural unit of the general formula (7) is represented by the formula (X 2 -2), the monomer corresponding to the repeating unit is (meth) acryloylaminoalkyltrialkyl. Specific examples of the (meth) acryloylaminoalkyltrialkylammonium salt include acryloylaminomethyltrimethylammonium chloride, acryloylaminoethyltrimethylammonium chloride, acryloylaminomethyltriethylammonium chloride, and acryloylaminoethyltriethylammonium chloride. , Acryloylaminoethyldimethylbenzylammonium chloride, methacryloylaminomethyltrimethylammonium chloride, methacryloylaminoethyl Trimethyl ammonium chloride, methacryloyl aminomethyl triethylammonium chloride, methacryloyl aminoethyl triethylammonium chloride, methacryloyl aminoethyl dimethyl benzyl ammonium chloride.

一般式(7)の構造単位のXが式(X−3)で表わされる親水性マクロモノマーを製造する場合の、繰り返し単位に相当する単量体としてはビニルベンジルトリアルキルアンモニウム塩が挙げられ、具体的にはビニルベンジルトリメチルアンモニウムクロライド、ビニルベンジルトリエチルアンモニウムクロライド、ビニルベンジルトリブチルアンモニウムクロライド等が挙げられる。In the case of producing a hydrophilic macromonomer in which X 2 of the structural unit of the general formula (7) is represented by the formula (X 2 -3), a vinylbenzyltrialkylammonium salt is exemplified as a monomer corresponding to the repeating unit. Specific examples include vinylbenzyltrimethylammonium chloride, vinylbenzyltriethylammonium chloride, vinylbenzyltributylammonium chloride and the like.

一般式(7)の構造単位のXが式(X−6)で表わされる親水性マクロモノマーを製造する場合の、繰り返し単位に相当する単量体としてはアクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、メタクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド、N,N−ジメチルメタクリルアミド等が挙げられる。In the case of producing a hydrophilic macromonomer in which X 2 of the structural unit of the general formula (7) is represented by the formula (X 2 -6), examples of the monomer corresponding to the repeating unit include acrylamide, N-methylacrylamide, N -Ethylacrylamide, N, N-dimethylacrylamide, methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N, N-dimethylmethacrylamide and the like.

これらの単量体は単独で、あるいは適宜組み合わせて用いることができる。  These monomers can be used alone or in appropriate combination.

末端にアミノ基、水酸基又はカルボキシル基を持つ重合体又は共重合体の合成は、求める親水性マクロモノマーの繰り返し単位に相当する単量体、連鎖移動剤、ラジカル重合開始剤の存在下で行うが、その際、溶媒は存在してもしなくてもよいが、反応制御、操作面から溶媒が存在した方が好ましい。溶媒としてはメタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド、水等の極性溶媒が使用でき、アルコール類/水又はケトン類/水等の混合溶媒も使用できる。  Synthesis of a polymer or copolymer having an amino group, a hydroxyl group or a carboxyl group at the end is carried out in the presence of a monomer, a chain transfer agent, and a radical polymerization initiator corresponding to the desired repeating unit of the hydrophilic macromonomer. In this case, the solvent may or may not be present, but it is preferable that the solvent is present from the viewpoint of reaction control and operation. As the solvent, alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethylformamide and water can be used, and mixed solvents such as alcohols / water or ketones / water can also be used.

また、連鎖移動剤としてはメルカプトアルキルアミン類、メルカプトアルカノール類、ω−メルカプトカルボン酸類、アルキレングリコール類等が使用できるが、2−メルカプトエチルアミン、2−メルカプトエタノール、メルカプト酢酸、β−メルカプトプロピオン酸が好ましい。上記連鎖移動剤の好ましい使用量は、求める親水性マクロモノマーの数平均分子量及び反応条件によるが、親水性マクロモノマーの好ましい数平均分子量は500〜50,000であり、数平均分子量が500〜50,000の親水性高分子鎖を得る場合、連鎖移動剤の使用量は単量体100モルに対して0.1〜50モル程度である。数平均分子量が500未満の場合は親水性マクロモノマーが表面に集積した高分子微粒子を得にくいので好ましくない。また数平均分子量が50,000を超えると親水性高分子の末端に結合したラジカル重合性基の重合性が低下するので好ましくない。  As the chain transfer agent, mercaptoalkylamines, mercaptoalkanols, ω-mercaptocarboxylic acids, alkylene glycols and the like can be used, but 2-mercaptoethylamine, 2-mercaptoethanol, mercaptoacetic acid, and β-mercaptopropionic acid. preferable. The preferred amount of chain transfer agent used depends on the number average molecular weight of the hydrophilic macromonomer to be obtained and the reaction conditions, but the preferred number average molecular weight of the hydrophilic macromonomer is 500 to 50,000, and the number average molecular weight is 500 to 50. In the case of obtaining 1,000,000 hydrophilic polymer chains, the amount of the chain transfer agent used is about 0.1 to 50 mol with respect to 100 mol of the monomer. A number average molecular weight of less than 500 is not preferred because it is difficult to obtain polymer fine particles in which hydrophilic macromonomers are accumulated on the surface. On the other hand, if the number average molecular weight exceeds 50,000, the polymerizability of the radical polymerizable group bonded to the end of the hydrophilic polymer is lowered, which is not preferable.

ラジカル重合開始剤としては過硫酸アンモニウム、過硫酸カリウム、過酸化水素、過酸化ベンゾイル、t−ブチルヒドロパーオキサイド、アゾビスイソブチロニトリル、アゾビス(2−アミノジプロパン)塩酸塩等が使用できるが、アゾビス(2−アミノジプロパン)塩酸塩が好ましい。重合開始剤の好ましい使用量は単量体100モルに対して0.02〜2モル程度である。  As the radical polymerization initiator, ammonium persulfate, potassium persulfate, hydrogen peroxide, benzoyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile, azobis (2-aminodipropane) hydrochloride and the like can be used. Azobis (2-aminodipropane) hydrochloride is preferred. The preferred amount of polymerization initiator used is about 0.02 to 2 moles per 100 moles of monomer.

重合時間は重合開始剤の種類及び使用量、重合温度等によって変化するが通常30分〜10時間であり、単量体が重合によって消費されるまで重合を行うのが好ましい。  The polymerization time varies depending on the type and amount of polymerization initiator used, the polymerization temperature, etc., but is usually from 30 minutes to 10 hours, and it is preferable to carry out the polymerization until the monomer is consumed by the polymerization.

重合は単量体及び連鎖移動剤を極性溶媒に溶解、昇温後、重合開始剤を添加してもよいし、昇温した極性溶媒中に単量体、連鎖移動剤、重合開始剤をそれぞれ別々に又は混合して添加してもよい。重合温度としては50℃〜100℃が好ましい。  Polymerization may be carried out by dissolving the monomer and chain transfer agent in a polar solvent, raising the temperature, and then adding a polymerization initiator, or adding the monomer, chain transfer agent, and polymerization initiator in the heated polar solvent, respectively. You may add separately or in mixture. The polymerization temperature is preferably 50 ° C to 100 ° C.

上記の如くして得られた末端にアミノ基、水酸基あるいはカルボキシル基の入った重合体又は共重合体とビニルモノマーの反応は、一般の酸アミド反応、エーテル化反応あるいはエステル化反応などより容易に達成しうる。ビニルモノマーとしては、クロロメチルスチレンやメタクリル酸グリシジルが好ましい。  Reaction of a vinyl monomer with a polymer or copolymer having an amino group, hydroxyl group or carboxyl group at the end obtained as described above is easier than general acid amide reaction, etherification reaction or esterification reaction. Can be achieved. As the vinyl monomer, chloromethylstyrene and glycidyl methacrylate are preferable.

例えば、末端に水酸基、アミノ基、カルボキシル基等の官能基を有する重合体又は共重合体をクロロメチルスチレン等のビニルベンジルハライド又は、メタクリル酸グリシジル等のエポキシ基含有(メタ)アクリレートと反応させて、末端にラジカル重合性基を導入する。本反応はジメチルホルムアミド等の極性媒体中において、塩基や、相間移動触媒の存在下、10℃〜80℃の温度を保つことによって行うことができる。  For example, a polymer or copolymer having a functional group such as a hydroxyl group, an amino group, or a carboxyl group at the terminal is reacted with a vinylbenzyl halide such as chloromethylstyrene or an epoxy group-containing (meth) acrylate such as glycidyl methacrylate. A radical polymerizable group is introduced at the terminal. This reaction can be carried out in a polar medium such as dimethylformamide by maintaining a temperature of 10 ° C. to 80 ° C. in the presence of a base and a phase transfer catalyst.

塩基としては水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、又は、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン等の有機アミン或いはトリクロロ酢酸ナトリウム等のようなアルカリ発生剤等を挙げることが出来るが、特に限定されない。塩基の使用量は、末端に水酸基、アミノ基、カルボキシル基等の官能基を有するカチオン性の親水性高分子を合成する際に使用した連鎖移動剤のモル数に対して1〜10倍で用いるのが好ましい。  Bases include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, or organic amines such as ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, or trichloro Examples include alkali generators such as sodium acetate, but are not particularly limited. The amount of base used is 1 to 10 times the number of moles of chain transfer agent used when synthesizing a cationic hydrophilic polymer having a functional group such as a hydroxyl group, an amino group, or a carboxyl group at the terminal. Is preferred.

相間移動触媒としてはテトラブチルホスホニウムブロマイド、テトラエチルホスホニウムブロマイド、テトラブチルホスホニウムクロライドのようなホスホニウム塩又はテトラブチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムクロライドのようなアンモニウム塩が挙げられるが、特に限定されない。相間移動触媒の使用量は、末端に水酸基、アミノ基、カルボキシル基等の官能基を有するカチオン性の親水性高分子を合成する際に使用した連鎖移動剤のモル数に対して0.05〜1倍で用いるのが好ましい。  Examples of the phase transfer catalyst include, but are not limited to, phosphonium salts such as tetrabutylphosphonium bromide, tetraethylphosphonium bromide, and tetrabutylphosphonium chloride, or ammonium salts such as tetrabutylammonium bromide, tetraethylammonium bromide, and tetrabutylammonium chloride. . The amount of phase transfer catalyst used is 0.05 to the number of moles of chain transfer agent used when synthesizing a cationic hydrophilic polymer having a functional group such as a hydroxyl group, an amino group, or a carboxyl group at the terminal. It is preferable to use 1 time.

ビニルベンジルハライドとしてはクロロメチルスチレン、ブロモメチルスチレン、ヨードメチルスチレン等が挙げられ、エポキシ基含有(メタ)アクリレートとしてはグリシジルメタクリレート、グリシジルアクリレート、3,4−エポキシシクロヘキシルメタクリレート等が挙げられるが、クロロメチルスチレンが特に好ましい。ビニルベンジルハライド又はエポキシ基含有(メタ)アクリレートの使用量は、末端に水酸基、アミノ基、カルボキシル基等の官能基を有するカチオン性の親水性高分子を合成する際に使用した連鎖移動剤のモル数に対して1〜10倍で用いるのが好ましい。  Examples of vinyl benzyl halides include chloromethyl styrene, bromomethyl styrene, and iodomethyl styrene. Epoxy group-containing (meth) acrylates include glycidyl methacrylate, glycidyl acrylate, 3,4-epoxycyclohexyl methacrylate, and the like. Methylstyrene is particularly preferred. The amount of vinylbenzyl halide or epoxy group-containing (meth) acrylate used is the mole of chain transfer agent used when synthesizing a cationic hydrophilic polymer having a functional group such as a hydroxyl group, amino group, or carboxyl group at the terminal. It is preferable to use 1 to 10 times the number.

末端に水酸基、アミノ基、カルボキシル基等の官能基を有する親水性高分子とビニルベンジルハライド又はエポキシ基含有(メタ)アクリレートとの反応に要する時間は、上記親水性高分子及びビニルベンジルハライド又はエポキシ基含有(メタ)アクリレートの使用量、触媒の種類や使用量、反応温度等によって変化するが、通常10時間〜100時間であり、上記親水性高分子の末端にラジカル重合性基が導入されるまで反応を行うのが好ましい。  The time required for the reaction between the hydrophilic polymer having a functional group such as a hydroxyl group, an amino group, or a carboxyl group at the terminal and the vinylbenzyl halide or epoxy group-containing (meth) acrylate is the above-mentioned hydrophilic polymer and vinylbenzyl halide or epoxy. It varies depending on the amount of group-containing (meth) acrylate used, the type and amount of catalyst used, the reaction temperature, etc., but it is usually 10 to 100 hours, and a radical polymerizable group is introduced at the end of the hydrophilic polymer. It is preferable to carry out the reaction until.

末端に水酸基、アミノ基、カルボキシル基等の官能基を有する親水性高分子とビニルベンジルハライド又はエポキシ基含有(メタ)アクリレートとの反応で使用する極性溶媒は、メタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド、水等を使用することができるが、水に対する溶解度の高い親水性高分子と水に対する溶解度の低いビニルベンジルハライド又はエポキシ基含有(メタ)アクリレートとの馴染みを良くするために、水に上述のアルコール類、ケトン類又はジメチルホルムアミド等の極性有機溶媒を混合するのが好ましい。その場合の混合比としては水に対して上述のアルコール類、ケトン類又はジメチルホルムアミド等の極性有機溶媒を5重量%〜50重量%で使用するのが好ましい。  Polar solvents used in the reaction of a hydrophilic polymer having a functional group such as a hydroxyl group, an amino group or a carboxyl group with vinylbenzyl halide or an epoxy group-containing (meth) acrylate are alcohols such as methanol, ethanol and propanol. , Ketones such as acetone and methyl ethyl ketone, dimethylformamide, water and the like can be used, but a hydrophilic polymer having a high solubility in water and a vinylbenzyl halide or an epoxy group-containing (meth) acrylate having a low solubility in water In order to improve the familiarity, it is preferable to mix the above-mentioned alcohols, ketones or polar organic solvents such as dimethylformamide with water. In this case, the mixing ratio is preferably 5% to 50% by weight of the above-mentioned polar organic solvent such as alcohols, ketones or dimethylformamide with respect to water.

一般式(7)の構造単位に相当する親水性マクロモノマーのうち、繰り返し単位のXが式(X−4)及び(X−5)で表される親水性マクロモノマーは、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミドモノマーから選ばれる単量体の少なくとも1種を前記同様、アミノ基、水酸基又はカルボキシル基を分子内に有する連鎖移動剤の存在下、ラジカル重合させ、末端にアミノ基、水酸基又はカルボキシル基を持つ重合体又は共重合体を合成した後、ビニルベンジルハライド、メタクリル酸アルキルエステルジオキシド等のビニルモノマーと反応させ、次いで塩酸等の酸の存在下で、アルコール又は/及び水のような極性溶媒中でアミド基を加水分解することにより、1級アミノ基を有する親水性マクロモノマーが得られる。1級アミノ基を4級化する場合は、例えばメチルクロライド、エチルクロライド等のハロゲン化アルキル(ハロゲン原子が塩素原子、臭素原子又はヨウ素原子)やベンジルクロライド等のハロゲン化ベンジル等のハロゲン化合物が用いられる。4級化は種々の公知の方法によって容易に達成される。Among the hydrophilic macromonomers corresponding to the structural unit of the general formula (7), the hydrophilic macromonomer in which the repeating unit X 2 is represented by the formulas (X 2 -4) and (X 2 -5) is N- At least one monomer selected from N-vinylamide monomers such as vinylformamide and N-vinylacetamide is radically polymerized in the presence of a chain transfer agent having an amino group, hydroxyl group or carboxyl group in the molecule, as described above. After synthesizing a polymer or copolymer having an amino group, a hydroxyl group or a carboxyl group at the terminal, it is reacted with a vinyl monomer such as vinyl benzyl halide or alkyl methacrylate ester methacrylate, and then in the presence of an acid such as hydrochloric acid. Hydrophilic macromonomers having primary amino groups by hydrolyzing amide groups in polar solvents such as alcohol or / and water Over it can be obtained. When the primary amino group is quaternized, halogen compounds such as alkyl halides such as methyl chloride and ethyl chloride (halogen atoms are chlorine, bromine or iodine atoms) and benzyl halides such as benzyl chloride are used. It is done. Quaternization is easily accomplished by various known methods.

一般式(7)で表される親水性マクロモノマーとしては、次の式(7a)  As the hydrophilic macromonomer represented by the general formula (7), the following formula (7a)

Figure 0005824686
Figure 0005824686

(式中、Q19、Q20、Q21、Y、X、R19及びlは前記と同じ)で表わされる親水性マクロモノマーがより好ましく、さらには式(7b)(Wherein, Q 19 , Q 20 , Q 21 , Y 2 , X 2 , R 19 and l are the same as those described above) are more preferable, and furthermore, the formula (7b)

Figure 0005824686
Figure 0005824686

(式中、X、R19及びlは前記と同じ)で表わされる親水性マクロモノマーがより好ましく、さらには式(7c)(Wherein X 2 , R 19 and l are the same as those described above), more preferably, a hydrophilic macromonomer represented by formula (7c)

Figure 0005824686
Figure 0005824686

(式中、Z及びlは前記と同じ)で表わされる親水性マクロモノマーがより好ましいが、式(7d)A hydrophilic macromonomer represented by the formula (wherein Z and l are the same as described above) is more preferable, but the formula (7d)

Figure 0005824686
Figure 0005824686

(式中、lは前記と同じ)で表わされる親水性マクロモノマーが特に好ましい。A hydrophilic macromonomer represented by the formula (wherein l is the same as described above) is particularly preferred.

一般式(8)で表される親水性マクロモノマーとしては、  As the hydrophilic macromonomer represented by the general formula (8),

Figure 0005824686
Figure 0005824686

(式中、Q23及びmは前記と同じ)で表わされる親水性マクロモノマーがより好ましいが、式(8b)A hydrophilic macromonomer represented by the formula (wherein Q 23 and m are the same as described above) is more preferable, but the formula (8b)

Figure 0005824686
Figure 0005824686

(式中、mは前記と同じ)で表わされる親水性マクロモノマーが特に好ましい。A hydrophilic macromonomer represented by the formula (wherein m is the same as described above) is particularly preferred.

式(8)の構造単位に相当する親水性マクロモノマーは市販の親水性マクロモノマーを使用することができる。  As the hydrophilic macromonomer corresponding to the structural unit of the formula (8), a commercially available hydrophilic macromonomer can be used.

前記の如くして得られた一般式(7)の構造単位に相当する親水性マクロモノマー及び一般式(8)の構造単位に相当する親水性マクロモノマーの少なくとも1種を、一般式(5)の構造単位に相当する少なくとも1種の単量体及び一般式(6)の構造単位に相当する少なくとも1種の単量体と、重合開始剤、必要に応じて連鎖移動剤の存在下、メタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、水等の極性溶媒中で共重合することにより、本発明の温度応答性高分子微粒子分散体を製造することができる。  At least one of the hydrophilic macromonomer corresponding to the structural unit of the general formula (7) and the hydrophilic macromonomer corresponding to the structural unit of the general formula (8) obtained as described above is represented by the general formula (5). Methanol in the presence of at least one monomer corresponding to the structural unit and at least one monomer corresponding to the structural unit of general formula (6), a polymerization initiator, and optionally a chain transfer agent. The temperature-responsive polymer fine particle dispersion of the present invention can be produced by copolymerization in alcohols such as ethanol and propanol, ketones such as acetone and methyl ethyl ketone, and polar solvents such as water.

上記の重合温度としては50℃〜100℃が好ましく、溶媒としてはメタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド、水等が使用でき、アルコール類/水又はケトン類/水等の混合溶媒も使用できる。重合開始剤としては、例えば過硫酸アンモニウム、過硫酸カリウム、過酸化水素、過酸化ベンゾイル、t−ブチルヒドロパーオキサイド、アゾビスイソブチロ二トリル、アゾビス(2−アミノジプロパン)塩酸塩等が挙げられる。連鎖移動剤としては、イソプロパノール、プロピレングリコール、ヘキシレングリコール、メタリルスルホン酸ソーダ等が挙げられる。重合開始剤の好ましい使用量は一般式(5)で表わされる単量体及び一般式(6)で表わされる単量体の合計100モルに対して0.02〜2モル程度である。重合時間は重合開始剤の種類及び使用量、重合温度等によって変化するが通常30分〜10時間であり、微粒子のコア部形成に寄与する一般式(5)で表わされる疎水性単量体、温度応答性発現に寄与する一般式(6)で表わされる単量体及び末端にラジカル重合性基を有する一般式(7)又は(8)で表わされる親水性マクロモノマーが重合によって消費されるまで、重合を行うのが好ましい。  The polymerization temperature is preferably 50 ° C. to 100 ° C. As the solvent, alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, dimethylformamide, water and the like can be used, and alcohols / water or ketones A mixed solvent such as water / water can also be used. Examples of the polymerization initiator include ammonium persulfate, potassium persulfate, hydrogen peroxide, benzoyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile, azobis (2-aminodipropane) hydrochloride, and the like. It is done. Examples of the chain transfer agent include isopropanol, propylene glycol, hexylene glycol, and sodium methallyl sulfonate. The preferable use amount of the polymerization initiator is about 0.02 to 2 mol with respect to 100 mol in total of the monomer represented by the general formula (5) and the monomer represented by the general formula (6). The polymerization time varies depending on the type and amount of polymerization initiator used, the polymerization temperature, etc., but is usually 30 minutes to 10 hours, and is a hydrophobic monomer represented by the general formula (5) that contributes to the formation of the core part of the fine particles, Until the monomer represented by the general formula (6) contributing to the expression of temperature responsiveness and the hydrophilic macromonomer represented by the general formula (7) or (8) having a radical polymerizable group at the terminal are consumed by polymerization. It is preferable to perform polymerization.

本発明の温度応答性微粒子の合成において、一般式(5)で表わされる単量体、一般式(6)で表わされる単量体、一般式(7)及び/又は(8)で表わされる親水性マクロモノマーの比率は特に制限されないが、温度応答性の観点から、一般式(5)で表わされる単量体と、一般式(6)で表わされる単量体と、一般式(7)及び(8)で表わされる親水性マクロモノマーのうち当該高分子微粒子の表面に局在する高分子鎖を構成する繰り返し単位との比率が1/0.01〜100/0.01〜100の範囲が好ましく、1/0.1〜90/0.1〜50の範囲がより好ましく、1/0.5〜80/0.5〜40が特に好ましい。  In the synthesis of the temperature-responsive fine particles of the present invention, the monomer represented by the general formula (5), the monomer represented by the general formula (6), the hydrophilicity represented by the general formula (7) and / or (8). The ratio of the functional macromonomer is not particularly limited, but from the viewpoint of temperature responsiveness, the monomer represented by the general formula (5), the monomer represented by the general formula (6), the general formula (7) and In the hydrophilic macromonomer represented by (8), the ratio of the repeating unit constituting the polymer chain localized on the surface of the polymer fine particle is in the range of 1 / 0.01 to 100 / 0.01 to 100. The range of 1 / 0.1 to 90 / 0.1 to 50 is more preferable, and 1 / 0.5 to 80 / 0.5 to 40 is particularly preferable.

本発明の温度応答性高分子微粒子は、一般式(5)の構造単位に相当する少なくとも1種の疎水性の単量体と、一般式(6)の構造単位に相当する少なくとも1種の温度応答性の発現に寄与する単量体と、一般式(7)及び/又は一般式(8)の構造単位に相当する親水性マクロモノマーの少なくとも1種とを共重合することにより得られ、表面に親水性マクロモノマーが局在し、内部が環境応答性を有する疎水性ポリマーから成る微粒子となる。  The temperature-responsive polymer fine particle of the present invention includes at least one hydrophobic monomer corresponding to the structural unit of the general formula (5) and at least one temperature corresponding to the structural unit of the general formula (6). A surface obtained by copolymerizing a monomer that contributes to the development of responsiveness and at least one hydrophilic macromonomer corresponding to the structural unit of the general formula (7) and / or the general formula (8). In this case, the hydrophilic macromonomer is localized in the inside, and the inside becomes fine particles made of a hydrophobic polymer having environmental responsiveness.

図1は、例えばスチレンとN−イソプロピルアクリルアミドとメタクリロイルオキシエチルトリメチルアンモニウムクロライドから合成した末端にラジカル重合性基を有するカチオン性の親水性マクロモノマーを使用した場合に、高分子微粒子が得られる典型的なメカニズムを図式的に表したものである。末端ラジカル重合性基含有カチオン性マクロモノマー1はメタクリロイルオキシエチルトリメチルアンモニウムクロライド単位1aとビニルベンジル基1bとから成る。先ず上記カチオン性マクロモノマー1とスチレンモノマー2とN−イソプロピルアクリルアミド3とを混合し(工程A)、スチレンモノマー及びN−イソプロピルアクリルアミドを重合させると、スチレンモノマーとN−イソプロピルアクリルアミドの共重合(工程B)が部分的に起こるが、ビニルベンジル基1bとの共重合(工程C)が同時に起こる。共重合の結果、あたかもスチレンとN−イソプロピルアクリルアミド共重合体に上記カチオン性マクロモノマーがグラフト化したかのような構造を有する高分子が得られる。反応は極性媒体中で行われるので、疎水性のスチレン単位は内側に、上記カチオン性マクロモノマー1は外側に選択的に集積する(工程D)。このようにして重合が完了すると、スチレン/N−イソプロピルアクリルアミド単位のコア部4の表面にカチオン性高分子鎖5が位置する高分子微粒子6が得られる(工程E)。  FIG. 1 shows a typical example of polymer fine particles obtained when a cationic hydrophilic macromonomer having a radical polymerizable group at the terminal synthesized from styrene, N-isopropylacrylamide and methacryloyloxyethyltrimethylammonium chloride is used. This is a schematic representation of the mechanism. The terminal radical polymerizable group-containing cationic macromonomer 1 comprises a methacryloyloxyethyltrimethylammonium chloride unit 1a and a vinylbenzyl group 1b. First, the cationic macromonomer 1, the styrene monomer 2 and N-isopropylacrylamide 3 are mixed (step A), and the styrene monomer and N-isopropylacrylamide are polymerized to copolymerize the styrene monomer and N-isopropylacrylamide (step). B) occurs partly, but copolymerization with vinylbenzyl group 1b (step C) occurs simultaneously. As a result of the copolymerization, a polymer having a structure as if the cationic macromonomer is grafted to styrene and N-isopropylacrylamide copolymer is obtained. Since the reaction is carried out in a polar medium, the hydrophobic styrene units are selectively accumulated on the inside and the cationic macromonomer 1 is selectively accumulated on the outside (Step D). When the polymerization is completed in this manner, polymer fine particles 6 in which the cationic polymer chain 5 is located on the surface of the core portion 4 of the styrene / N-isopropylacrylamide unit are obtained (Step E).

当該微粒子は表面が親水性であるため水系媒体中で分散状態となるが、媒体の温度を変化させることにより、微粒子内部の疎水性ポリマーが親水性を帯びることでコア部分が膨潤するため、粒子径が変化するものと考えられる。  Since the fine particles have a hydrophilic surface, they are dispersed in an aqueous medium. However, by changing the temperature of the medium, the hydrophobic polymer inside the fine particles becomes hydrophilic and the core portion swells. The diameter is considered to change.

本発明の温度応答性高分子微粒子は医療材料、キレート剤、吸着剤等への応用が期待される。  The temperature-responsive polymer fine particles of the present invention are expected to be applied to medical materials, chelating agents, adsorbents and the like.

以下、実施例及び比較例を挙げる事により、本発明の特徴をより一層明確なものとするが、本発明は以下の実施例に限定されるものではない。尚、比較製造例および製造例におけるポリマーの重量平均分子量は、以下の方法に従って測定した。
〈ポリマーの重量平均分子量および重合収率の測定〉
カラム恒温槽には島津製作所製CTO−20A、検出器には島津製作所製RID−10A、溶離液流路ポンプには島津製作所製LC−20AD、デガッサには島津製作所製DGU−20A、オートサンプラーには島津製作所製SIL−20Aを用いてGPC法によって測定した。カラムは東ソー製の水系SECカラムTSKgelG3000PWXL(排除限界分子量2×10)とTSKgelG5000PWXL(排除限界分子量2.5×10)とTSKgelG6000PWXL(排除限界分子量5×10)を接続したものを用いた。サンプルは溶離液で2g/100mlの濃度に調製し、測定に用いた。溶離液には酢酸、酢酸ナトリウム各々0.5モル/リットルに調整した水溶液を使用した。カラム温度は40℃で、流速は1.0ml/分で実施した。標準サンプルとして分子量1065、5050、24000、50000、107000、140000、250000、540000、920000の9種のポリエチレングリコールを用いて較正曲線を求め、その較正曲線を基に、ポリマーの重量平均分子量を求めた。また、本発明による温度応答性高分子微粒子の粒子径は動的光散乱法(Malvern製:ゼータサイザーナノZS)により測定した。また、以下の略号は次の化合物を意味する。
MATMAC:メタクリロイルオキシエチルトリメチルアンモニウムクロライド
NIPAM:N−イソプロピルアクリルアミド
VBTMAC:ビニルベンジルトリメチルアンモニウムクロライド
VAm:ビニルアミン
NVF:N−ビニルホルムアミド
St:スチレン
Hereinafter, the features of the present invention will be made clearer by giving examples and comparative examples, but the present invention is not limited to the following examples. In addition, the weight average molecular weight of the polymer in a comparative manufacture example and a manufacture example was measured in accordance with the following method.
<Measurement of polymer weight average molecular weight and polymerization yield>
Shimadzu CTO-20A for the column thermostat, Shimadzu RID-10A for the detector, Shimadzu LC-20AD for the eluent flow path pump, Shimadzu DGU-20A for the degasser, autosampler Was measured by GPC method using SIL-20A manufactured by Shimadzu Corporation. The column used was a Tosoh water-based SEC column TSKgelG3000PWXL (exclusion limit molecular weight 2 × 10 5 ), TSKgelG5000PWXL (exclusion limit molecular weight 2.5 × 10 6 ), and TSKgelG6000PWXL (exclusion limit molecular weight 5 × 10 7 ). The sample was prepared to a concentration of 2 g / 100 ml with an eluent and used for measurement. As an eluent, an aqueous solution adjusted to 0.5 mol / liter each of acetic acid and sodium acetate was used. The column temperature was 40 ° C. and the flow rate was 1.0 ml / min. A calibration curve was determined using nine types of polyethylene glycols having molecular weights of 1065, 5050, 24000, 50000, 107000, 140000, 250,000, 540000, and 920000 as standard samples, and the weight average molecular weight of the polymer was determined based on the calibration curve. . Further, the particle diameter of the temperature-responsive polymer fine particles according to the present invention was measured by a dynamic light scattering method (Malvern: Zetasizer Nano ZS). The following abbreviations mean the following compounds.
MATMAC: methacryloyloxyethyltrimethylammonium chloride NIPAM: N-isopropylacrylamide VBTMAC: vinylbenzyltrimethylammonium chloride VAm: vinylamine NVF: N-vinylformamide St: styrene

合成例1Synthesis example 1

MATMAC高分子鎖が表面に集積した温度応答性高分子微粒子分散体<1>の合成
(MATMAC高分子の合成)
攪拌装置、還流冷却機、滴下ロート2個、窒素ガス導入管及び温度計を備えた反応容器中に、水463.5gを仕込み、加熱して温度を80℃まで昇温した。窒素気流下、メタクリロイルオキシエチルトリメチルアンモニウムクロライド(MATMAC)の80重量%水溶液500g(1.93モル)とメルカプト酢酸20.3g(0.22モル)の混合溶液及び過硫酸カリウムの5重量%水溶液16.2g(0.003モル)を、同時に2時間かけて滴下した。滴下終了後、80℃にて3時間保ち、末端にカルボキシル基を有するMATMAC高分子溶液(固形分濃度42.1%)を得た。反応終了後、アセトンで再沈殿を数回行ってMATMAC高分子を精製した。得られた重合物のGPC(液体クロマトグラフィー)より求めた重量平均分子量は12,000、数平均分子量は6,000であった。
Synthesis of temperature-responsive polymer fine particle dispersion <1> in which MATMAC polymer chains are accumulated on the surface ( synthesis of MATMAC polymer)
In a reaction vessel equipped with a stirrer, a reflux condenser, two dropping funnels, a nitrogen gas inlet tube and a thermometer, 463.5 g of water was charged and heated to raise the temperature to 80 ° C. Under a nitrogen stream, a mixed solution of 500 g (1.93 mol) of an 80 wt% aqueous solution of methacryloyloxyethyltrimethylammonium chloride (MATMAC) and 20.3 g (0.22 mol) of mercaptoacetic acid and an aqueous 16 wt% solution of potassium persulfate 16 .2 g (0.003 mol) was added dropwise simultaneously over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 3 hours to obtain a MATMAC polymer solution having a carboxyl group at the end (solid content concentration: 42.1%). After completion of the reaction, the MATMAC polymer was purified by reprecipitation with acetone several times. The obtained polymer had a weight average molecular weight of 12,000 and a number average molecular weight of 6,000, as determined from GPC (liquid chromatography).

(MATMAC高分子末端へのラジカル重合性基の導入)
次に攪拌装置、還流冷却機及び温度計を備えた反応容器中に、上記MATMAC高分子溶液(固形分濃度42.8%)700.0g[メルカプト酢酸単位として0.15モル(前仕込みより求めた)]を仕込み、エタノール280.0gを加え、水酸化ナトリウムの48重量%水溶液16.7g(0.20モル)、テトラブチルアンモニウムブロミド13.0g(0.04モル)、及びp−クロロメチルスチレン30.2g(0.20モル)を加えて60℃で6時間反応させ、末端ビニルベンジル基含有MATMAC高分子溶液(固形分濃度32.8%)を得た。反応終了後、アセトンで再沈殿を行って末端ビニルベンジル基含有MATMAC高分子を精製した。H−NMR測定の結果、末端へのビニルベンジル基導入率はほぼ100%であることが分かった。また、GPC(液体クロマトグラフィー)により測定した末端ビニルベンジル基含有MATMAC高分子の数平均分子量は6,100であった。
(Introduction of radical polymerizable group to MATMAC polymer terminal)
Next, in a reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer, 700.0 g of the above MATMAC polymer solution (solid concentration: 42.8%) [0.15 mol as a mercaptoacetic acid unit (obtained from pre-charging) In addition, 280.0 g of ethanol was added, 16.7 g (0.20 mol) of a 48 wt% aqueous solution of sodium hydroxide, 13.0 g (0.04 mol) of tetrabutylammonium bromide, and p-chloromethyl 30.2 g (0.20 mol) of styrene was added and reacted at 60 ° C. for 6 hours to obtain a terminal vinylbenzyl group-containing MATMAC polymer solution (solid content concentration 32.8%). After completion of the reaction, reprecipitation with acetone was performed to purify the terminal vinylbenzyl group-containing MATMAC polymer. As a result of 1 H-NMR measurement, it was found that the introduction rate of vinylbenzyl group at the terminal was almost 100%. The number average molecular weight of the terminal vinylbenzyl group-containing MATMAC polymer measured by GPC (liquid chromatography) was 6,100.

(MATMAC高分子鎖が表面に集積した温度応答性高分子微粒子分散体<1>の合成)
次いで攪拌装置、還流冷却機、窒素ガス導入管及び温度計を備えた反応容器中に、上記末端ビニルベンジル基含有MATMAC高分子溶液361.0g[MATMAC繰返し単位として0.47モル(前仕込みより求めた)]、NIPAM79.0g(0.70モル)、スチレン24.3g(0.23モル)、水454.6gを仕込み、60℃に昇温した。窒素気流下、過硫酸カリウムの5重量%水溶液81.1g(0.015モル)を加え、6時間共重合させ、乳白色の分散液(固形分濃度22.8%)を得た。
(Synthesis of temperature-responsive polymer fine particle dispersion <1> in which MATMAC polymer chains are accumulated on the surface)
Next, in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen gas inlet tube and a thermometer, 361.0 g of the terminal vinylbenzyl group-containing MATMAC polymer solution [0.47 mol as a MATMAC repeating unit (determined from the previous charge) NIPAM 79.0 g (0.70 mol), styrene 24.3 g (0.23 mol), and water 454.6 g were charged, and the temperature was raised to 60 ° C. Under a nitrogen stream, 81.1 g (0.015 mol) of a 5% by weight aqueous solution of potassium persulfate was added and copolymerized for 6 hours to obtain a milky white dispersion (solid content concentration 22.8%).

このようにして得られた温度応答性高分子微粒子の60℃での平均粒子径は290nmであった。この高分子微粒子を生成する反応式(9)は  The average particle diameter at 60 ° C. of the temperature-responsive polymer fine particles thus obtained was 290 nm. The reaction formula (9) for producing the polymer fine particles is

Figure 0005824686
(ただし、h、i、j、kは重合度を表す整数である。)により表されると考えられる。
Figure 0005824686
(Where h, i, j and k are integers representing the degree of polymerization).

合成例2Synthesis example 2

MATMAC高分子鎖が表面に集積した温度応答性高分子微粒子分散体<2>の合成
上記合成例1の温度応答性高分子微粒子<1>の合成において、末端ビニルベンジル基含有MATMAC高分子溶液358.2g[MATMAC繰返し単位として0.46モル(前仕込みより求めた)]、NIPAM98.0g(0.87モル)、スチレン6.0g(0.06モル)、水456.7gとした以外は合成例1と同様に反応を行い、乳白色の分散液(固形分濃度23.5%)を得た。このようにして得られた温度応答性高分子微粒子の60℃での平均粒子径は290nmであった。
Synthesis of temperature-responsive polymer fine particle dispersion <2> in which MATMAC polymer chains are accumulated on the surface In the synthesis of temperature-responsive polymer fine particle <1> in Synthesis Example 1 above, terminal vinylbenzyl group-containing MATMAC polymer solution 358 .2 g [0.46 mol as MATMAC repeating unit (determined from pre-charging)], NIPAM 98.0 g (0.87 mol), styrene 6.0 g (0.06 mol), water 456.7 g The reaction was conducted in the same manner as in Example 1 to obtain a milky white dispersion (solid content concentration 23.5%). The average particle diameter at 60 ° C. of the temperature-responsive polymer fine particles thus obtained was 290 nm.

合成例3Synthesis example 3

MATMAC高分子禎が表面に集積した温度応答性高分子微粒子分散体<3>の合成
上記合成例1の温度応答性高分子微粒子<1>の合成において、末端ビニルベンジル基含有MATMAC高分子溶液357.5g[MATMAC繰返し単位として0.46モル(前仕込みより求めた)]、NIPAM102.7g(0.91モル)、スチレン1.5g(0.014モル)、水457.2gとした以外は合成例1と同様に反応を行い、乳白色の分散液(固形分濃度23.0%)を得た。このようにして得られた温度応答性高分子微粒子の60℃での平均粒子径は310nmであった。
Synthesis of Temperature Responsive Polymer Fine Particle Dispersion <3> with MATMAC Polymer Soot Accumulated on the Surface In the synthesis of temperature responsive polymer fine particles <1> of Synthesis Example 1 above, terminal vinylbenzyl group-containing MATMAC polymer solution 357 .5 g [0.46 mol as MATMAC repeating unit (determined from pre-charge)], NIPAM 102.7 g (0.91 mol), styrene 1.5 g (0.014 mol), and water except 457.2 g. The reaction was carried out in the same manner as in Example 1 to obtain a milky white dispersion (solid content concentration 23.0%). The temperature-responsive polymer fine particles thus obtained had an average particle size at 310 ° C. of 310 nm.

合成例4Synthesis example 4

VBTMA高分子鎖が表面に集積した温度応答性高分子微粒子分散体<4>の合成
(VBTMAC高分子の合成)
攪拌装置、還流冷却機、滴下ロート2個、窒素ガス導入管及び温度計を備えた反応容器中に、水463.5gを仕込み、加熱して温度を80℃まで昇温した。窒素気流下、ビニルベンジルトリメチルアンモニウムクロライド(VBTMAC)の80重量%水溶液500g(1.89モル)とメルカプト酢酸20.3g(0.22モル)の混合溶液及び過硫酸カリウムの5重量%水溶液16.2g(0.003モル)を、同時に2時間かけて滴下した。滴下終了後、80℃にて3時間保ち、末端にカルボキシル基を有するVBTMAC高分子溶液(固形分濃度41.9%)を得た。反応終了後、アセトンで再沈殿を数回行ってVBTMAC高分子を精製した。得られた重合物のGPC(液体クロマトグラフィー)より求めた重量平均分子量は14,000、数平均分子量は7,000であった。
Synthesis of temperature-responsive polymer fine particle dispersion <4> with VBTMA polymer chains accumulated on the surface ( synthesis of VBTMAC polymer)
In a reaction vessel equipped with a stirrer, a reflux condenser, two dropping funnels, a nitrogen gas inlet tube and a thermometer, 463.5 g of water was charged and heated to raise the temperature to 80 ° C. Under a nitrogen stream, a mixed solution of 500 g (1.89 mol) of an 80 wt% aqueous solution of vinylbenzyltrimethylammonium chloride (VBTMAC) and 20.3 g (0.22 mol) of mercaptoacetic acid and a 5 wt% aqueous solution of potassium persulfate 16. 2 g (0.003 mol) was added dropwise simultaneously over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 3 hours to obtain a VBTMAC polymer solution having a carboxyl group at the end (solid content concentration 41.9%). After completion of the reaction, the VBTMAC polymer was purified by reprecipitation with acetone several times. The obtained polymer had a weight average molecular weight of 14,000 and a number average molecular weight of 7,000 determined by GPC (liquid chromatography).

(VBTMAC高分子末端へのラジカル重合性基の導入)
次に攪拌装置、還流冷却機及び温度計を備えた反応容器中に、上記VBTMAC高分子溶液(固形分濃度41.9%)700.0g[メルカプト酢酸単位として0.15モル(前仕込みより求めた)]を仕込み、エタノール280.0gを加え、水酸化ナトリウムの48重量%水溶液16.7g(0.20モル)、テトラブチルアンモニウムブロミド13.0g(0.04モル)、及びp−クロロメチルスチレン30.2g(0.20モル)を加えて30℃で72時間反応させ、末端ビニルベンジル基含有MATMAC高分子溶液(固形分濃度32.2%)を得た。反応終了後、アセトンで再沈殿を行って末端ビニルベンジル基含有VBTMAC高分子を精製した。H−NMR測定の結果、末端へのビニルベンジル基導入率はほぼ100%であることが分かった。また、GPC(液体クロマトグラフィー)により測定した末端ビニルベンジル基含有MATMAC高分子の数平均分子量は7,100であった。
(Introduction of radical polymerizable group to VBTMAC polymer terminal)
Next, in a reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer, 700.0 g of the VBTMAC polymer solution (solid content concentration 41.9%) [0.15 mol as a mercaptoacetic acid unit (obtained from pre-charging) In addition, 280.0 g of ethanol was added, 16.7 g (0.20 mol) of a 48 wt% aqueous solution of sodium hydroxide, 13.0 g (0.04 mol) of tetrabutylammonium bromide, and p-chloromethyl 30.2 g (0.20 mol) of styrene was added and reacted at 30 ° C. for 72 hours to obtain a terminal vinylbenzyl group-containing MATMAC polymer solution (solid content concentration 32.2%). After completion of the reaction, reprecipitation was performed with acetone to purify the terminal vinylbenzyl group-containing VBTMAC polymer. As a result of 1 H-NMR measurement, it was found that the introduction rate of vinylbenzyl group at the terminal was almost 100%. The number average molecular weight of the terminal vinylbenzyl group-containing MATMAC polymer measured by GPC (liquid chromatography) was 7,100.

(VBTMAC高分子鎖が表面に集積した温度応答性高分子微粒子分散体<4>の合成)
次いで攪拌装置、還流冷却機、窒素ガス導入管及び温度計を備えた反応容器中に、上記末端ビニルベンジル基含有VBTMAC高分子溶液361.7g[VBTMAC繰返し単位として0.46モル(前仕込みより求めた)]、NIPAM102.7g(0.91モル)、スチレン1.5g(0.014モル)、水453.0gを仕込み、60℃に昇温した。窒素気流下、過硫酸カリウムの5重量%水溶液81.1g(0.015モル)を加え、6時間共重合させ、乳白色の分散液(固形分濃度24.1%)を得た。
このようにして得られた温度応答性高分子微粒子の60℃での平均粒子径は350nmであった。
(Synthesis of temperature-responsive polymer fine particle dispersion <4> with VBTMAC polymer chains accumulated on the surface)
Next, in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen gas inlet tube and a thermometer, 361.7 g of the above-mentioned terminal vinylbenzyl group-containing VBTMAC polymer solution [0.46 mol as a VBTMAC repeating unit (obtained from pre-charging) )], 102.7 g (0.91 mol) of NIPAM, 1.5 g (0.014 mol) of styrene, and 453.0 g of water were charged, and the temperature was raised to 60 ° C. Under a nitrogen stream, 81.1 g (0.015 mol) of a 5% by weight aqueous solution of potassium persulfate was added and copolymerized for 6 hours to obtain a milky white dispersion (solid content concentration 24.1%).
The temperature-responsive polymer fine particles thus obtained had an average particle size at 350 ° C. of 350 nm.

合成例5Synthesis example 5

NVF高分子鎖が表面に集積した温度応答性高分子微粒子分散体<5>の合成
(NVF高分子の合成)
攪拌装置、還流冷却機、滴下ロート2個、窒素ガス導入管及び温度計を備えた反応容器中に、水463.5gを仕込み、加熱して温度を80℃まで昇温した。窒素気流下、N−ビニルホルムアミド(NVF)の80重量%水溶液500g(5.63モル)とメルカプト酢酸20.3g(0.22モル)の混合溶液及び過硫酸カリウムの5重量%水溶液16.2g(0.003モル)を、同時に2時間かけて滴下した。滴下終了後、80℃にて3時間保ち、末端にカルボキシル基を有するNVF高分子溶液(固形分濃度41.8%)を得た。反応終了後、アセトンで再沈殿を数回行ってNVF高分子を精製した。得られた重合物のGPC(液体クロマトグラフィー)より求めた重量平均分子量は28,000、数平均分子量は14,000であった。
Synthesis of temperature-responsive polymer fine particle dispersion <5> with NVF polymer chains accumulated on the surface ( synthesis of NVF polymer)
In a reaction vessel equipped with a stirrer, a reflux condenser, two dropping funnels, a nitrogen gas inlet tube and a thermometer, 463.5 g of water was charged and heated to raise the temperature to 80 ° C. Under a nitrogen stream, a mixed solution of 500 g (5.63 mol) of an 80% by weight aqueous solution of N-vinylformamide (NVF) and 20.3 g (0.22 mol) of mercaptoacetic acid and 16.2 g of a 5% by weight aqueous solution of potassium persulfate. (0.003 mol) was added dropwise simultaneously over 2 hours. After completion of dropping, the mixture was kept at 80 ° C. for 3 hours to obtain an NVF polymer solution having a carboxyl group at the end (solid content concentration 41.8%). After completion of the reaction, the NVF polymer was purified by reprecipitation with acetone several times. The weight average molecular weight of the obtained polymer obtained by GPC (liquid chromatography) was 28,000, and the number average molecular weight was 14,000.

(NVF高分子末端へのラジカル重合性基の導入)
次に攪拌装置、還流冷却機及び温度計を備えた反応容器中に、上記NVF高分子溶液(固形分濃度41.8%)700.0g[メルカプト酢酸単位として0.15モル(前仕込みより求めた)]を仕込み、エタノール280.0gを加え、水酸化ナトリウムの48重量%水溶液16.7g(0.20モル)、テトラブチルアンモニウムブロミド13.0g(0.04モル)、及びp−クロロメチルスチレン30.2g(0.20モル)を加えて30℃で72時間反応させ、末端ビニルベンジル基含有NVF高分子溶液(固形分濃度31.5%)を得た。反応終了後、アセトンで再沈殿を行って末端ビニルベンジル基含有MATMAC高分子を精製した。H−NMR測定の結果、末端へのビニルベンジル基導入率はほぼ100%であることが分かった。また、GPC(液体クロマトグラフィー)により測定した末端ビニルベンジル基含有NVF高分子の数平均分子量は14,100であった。
(Introduction of radical polymerizable group to the terminal of NVF polymer)
Next, in a reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer, 700.0 g of the above-mentioned NVF polymer solution (solid content concentration 41.8%) [0.15 mol as a mercaptoacetic acid unit (obtained from pre-charging) In addition, 280.0 g of ethanol was added, 16.7 g (0.20 mol) of a 48 wt% aqueous solution of sodium hydroxide, 13.0 g (0.04 mol) of tetrabutylammonium bromide, and p-chloromethyl 30.2 g (0.20 mol) of styrene was added and reacted at 30 ° C. for 72 hours to obtain a terminal vinylbenzyl group-containing NVF polymer solution (solid content concentration 31.5%). After completion of the reaction, reprecipitation with acetone was performed to purify the terminal vinylbenzyl group-containing MATMAC polymer. As a result of 1 H-NMR measurement, it was found that the introduction rate of vinylbenzyl group at the terminal was almost 100%. The number average molecular weight of the terminal vinylbenzyl group-containing NVF polymer measured by GPC (liquid chromatography) was 14,100.

(NVF高分子鎖が表面に集積した温度応答性高分子微粒子分散体<5>の合成)
次いで攪拌装置、還流冷却機、窒素ガス導入管及び温度計を備えた反応容器中に、上記末端ビニルベンジル基含有NVF高分子溶液177.2g[NVF繰返し単位として0.67モル(前仕込みより求めた)]、NIPAM144.9g(1.32モル)、スチレン2.2g(0.021モル)、水589.6gを仕込み、60℃に昇温した。窒素気流下、過硫酸カリウムの5重量%水溶液81.1g(0.015モル)を加え、6時間共重合させ、乳白色の分散液(固形分濃度23.1%)を得た。このようにして得られた温度応答性高分子微粒子の60℃での平均粒子径は300nmであった。
(Synthesis of temperature-responsive polymer fine particle dispersion <5> with NVF polymer chains accumulated on the surface)
Next, in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen gas introduction tube and a thermometer, 177.2 g of the above-mentioned terminal vinylbenzyl group-containing NVF polymer solution [0.67 mol as an NVF repeating unit (determined from pre-charging) NIPAM 144.9 g (1.32 mol), styrene 2.2 g (0.021 mol), and water 589.6 g were charged, and the temperature was raised to 60 ° C. Under a nitrogen stream, 81.1 g (0.015 mol) of a 5% by weight aqueous solution of potassium persulfate was added and copolymerized for 6 hours to obtain a milky white dispersion (solid content concentration 23.1%). The temperature-responsive polymer fine particles thus obtained had an average particle size at 60 ° C. of 300 nm.

合成例6Synthesis Example 6

PEG鎖が表面に集積した温度応答性高分子微粒子分散体<6>の合成
攪拌装置、還流冷却機、窒素ガス導入管及び温度計を備えた反応容器中に、PEGマクロモノマー(ブレンマーPME−1000)34.4g[繰返し単位として0.78モル]、NIPAM173.6g(1.53モル)、スチレン2.5g(0.024モル)、エタノール100.0g、水608.4gを仕込み、塩酸でpH調整後、60℃に昇温した。窒素気流下、過硫酸カリウムの5重量%水溶液81.1g(0.015モル)を加え、6時間共重合させ、乳白色の分散液(固形分濃度22.8%)を得た。このようにして得られた温度応答性高分子微粒子の60℃での平均粒子径は400nmであった。
Synthesis of temperature-responsive fine polymer particle dispersion <6> having PEG chains accumulated on the surface thereof In a reaction vessel equipped with a stirring device, a reflux condenser, a nitrogen gas introduction tube, and a thermometer, PEG macromonomer (Blemmer PME-1000 ) 34.4 g [0.78 mol as a repeating unit], 173.6 g (1.53 mol) of NIPAM, 2.5 g (0.024 mol) of styrene, 100.0 g of ethanol, 608.4 g of water, and pH with hydrochloric acid After adjustment, the temperature was raised to 60 ° C. Under a nitrogen stream, 81.1 g (0.015 mol) of a 5% by weight aqueous solution of potassium persulfate was added and copolymerized for 6 hours to obtain a milky white dispersion (solid content concentration 22.8%). The temperature-responsive polymer fine particles thus obtained had an average particle diameter at 400C of 400 nm.

比較合成例1Comparative Synthesis Example 1

MATMAC高分子鎖が表面に集積した高分子微粒子分散体の合成
上記合成例1の温度応答性高分子微粒子<1>の合成において、末端ビニルベンジル基含有MATMAC高分子溶液532.0g[MATMAC繰返し単位として0.70モル(前仕込みより求めた)]、スチレン67.9g(0.65モル)、水319.0gとして合成例1と同様に反応を行い、乳白色の分散液(固形分濃度23.8%)を得た。このようにして得られた高分子微粒子の60℃での平均粒子径は100nmであった。
Synthesis of Polymer Fine Particle Dispersion with MATMAC Polymer Chains Accumulated on the Surface In the synthesis of temperature-responsive polymer fine particles <1> of Synthesis Example 1 above, 532.0 g of a terminal vinylbenzyl group-containing MATMAC polymer solution [MATMAC repeating unit As 0.70 mol (obtained from the previous charge)], 67.9 g (0.65 mol) of styrene and 319.0 g of water, the reaction was carried out in the same manner as in Synthesis Example 1, and a milky white dispersion (solid content concentration 23.3%) was obtained. 8%). The average particle size at 60 ° C. of the polymer fine particles thus obtained was 100 nm.

比較合成例2Comparative Synthesis Example 2

PEG鎖が表面に集積した高分子微粒子分散体の合成
上記合成例6の温度応答性高分子微粒子<6>の合成において、PEGマクロモノマー(ブレンマーPME−1000)59.4g[繰返し単位として1.35モル]、スチレン140.6g(1.35モル)、エタノール100.0g、水618.9gとして合成例6と同様に反応を行い、乳白色の分散液(固形分濃度21.6%)を得た。このようにして得られた高分子微粒子の60℃での平均粒子径は155nmであった。
Synthesis of Polymer Fine Particle Dispersion with PEG Chains Accumulated on the Surface In the synthesis of temperature-responsive polymer fine particles <6> in Synthesis Example 6 above, 59.4 g of PEG macromonomer (Blemmer PME-1000) [1. 35 mol], 140.6 g (1.35 mol) of styrene, 100.0 g of ethanol, and 618.9 g of water, the reaction was conducted in the same manner as in Synthesis Example 6 to obtain a milky white dispersion (solid content concentration 21.6%). It was. The average particle size at 60 ° C. of the polymer fine particles thus obtained was 155 nm.

各温度応答性高分子微粒子の構成単位、各構成単位のモル比を表1に示す。  Table 1 shows the constitutional units of each temperature-responsive polymer fine particle and the molar ratio of each constitutional unit.

Figure 0005824686
Figure 0005824686

各微粒子の0.2%分散液を60℃、40℃、20℃に調整し、各々の温度での粒子径を測定した。各温度でのそれぞれの微粒子の平均粒子径の測定結果を表2に示す。  The 0.2% dispersion of each fine particle was adjusted to 60 ° C., 40 ° C., and 20 ° C., and the particle size at each temperature was measured. Table 2 shows the measurement results of the average particle diameter of each fine particle at each temperature.

また、各微粒子の0.2%分散液を60℃から20℃まで冷却させた後、再度60℃まで昇温した過程における平均粒子径を測定した。温度と平均粒子径との関係を図2〜図3に示す。  In addition, after the 0.2% dispersion of each fine particle was cooled from 60 ° C. to 20 ° C., the average particle diameter was measured in the process of raising the temperature to 60 ° C. The relationship between temperature and average particle diameter is shown in FIGS.

Figure 0005824686
Figure 0005824686

本発明の温度応答性高分子微粒子は20℃から60℃の領域での温度の変化に伴い、粒子径が可逆的に変化した。一方、比較例による方法では温度が変化してもほとんど粒子径は変化しなかった。  The temperature-responsive polymer fine particles of the present invention reversibly changed in particle size with a change in temperature in the region of 20 ° C to 60 ° C. On the other hand, in the method according to the comparative example, the particle diameter hardly changed even when the temperature was changed.

高分子微粒子が得られるメカニズムを表す概略図である。It is the schematic showing the mechanism in which polymer microparticles are obtained. 合成例1〜3及び比較合成例1における、温度と平均粒子径との関係を示す。The relationship between the temperature and the average particle diameter in Synthesis Examples 1 to 3 and Comparative Synthesis Example 1 is shown. 合成例4〜6及び比較合成例2における、温度と平均粒子径との関係を示す。The relationship between temperature and an average particle diameter in the synthesis examples 4-6 and the comparative synthesis example 2 is shown.

1・・・末端ラジカル重合性基含有カチオン性高分子
1a・・メタクリロイルオキシエチルトリメチルアンモニウムクロライド単位
1b・・ビニルベンジル基
2・・・スチレンモノマー
3・・・N−イソプロピルアクリルアミド
4・・・スチレン単位のコア部
5・・・カチオン性高分子鎖
6・・・高分子微粒子
DESCRIPTION OF SYMBOLS 1 ... Terminal radical polymerizable group containing cationic polymer 1a ... methacryloyloxyethyltrimethylammonium chloride unit 1b ... vinyl benzyl group 2 ... styrene monomer 3 ... N-isopropylacrylamide 4 ... styrene unit Core part 5 ... cationic polymer chain 6 ... polymer fine particles

Claims (2)

下記の一般式(1)で表される構造単位の中から選ばれる少なくとも1種と、
Figure 0005824686
[式(1)中、Qは水素原子、メチル基又はシアノ基を示し、Qは水素原子、
Figure 0005824686

(R及びR’は同一又は異なって水素原子又は炭素数1〜4の低級アルキル基又はハロゲン原子又はハロゲノメチル基を示し、Rは炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はベンジル基又はヒロキシプロピル基を示し、R’は炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はフェニル基を示し、Rは水素原子又は炭素数1〜10のアルキル基を示し、Rは炭素数1〜10のアルキル基を示す(ただしR及びRの総炭素数は3〜20である))を示す。]
下記の一般式(2)で表される構造単位の中から選ばれる少なくとも1種と、
Figure 0005824686
下記の一般式(3)及び(4)で表される構造単位の中から選ばれる少なくとも1種から成る水分散性の高分子微粒子であって、微粒子表面に一般式(3)及び(4)で表される構造単位の中から選ばれる少なくとも1種である親水性高分子鎖が局在し、微粒子のコアが一般式(1)で表される構造単位の中から選ばれる少なくとも1種である疎水性高分子及び一般式(2a)で表される構造単位の中から選ばれる少なくとも1種である温度感受性高分子から構成される高分子微粒子であって、温度の変化に応じて平均粒子径が可逆的に変化することを特徴とする、温度応答性高分子微粒子。
Figure 0005824686
[式(3)中、Qは水素原子又はメチル基を示し、Qは、
Figure 0005824686
(Aは炭素数1〜10のアルキレン基を示す)を示し、Qは酸素原子又は−NH−を示し、Qは炭素数1〜10のアルキレン基を示し、Qは酸素原子又は硫黄原子を示し、Yは酸素原子又は2個の水素原子を示し、Rは水素原子又はメチル基を示し、X
Figure 0005824686
(R、R及びR10は同一又は異なって炭素数1〜4の低級アルキル基又はベンジル基を示し、R11は水素原子又はメチル基又はエチル基を示し、R12は水素原子又はメチル基を示し、Zは陰イオンを示す)を示し、lは1〜100の数を示す。]
Figure 0005824686

[式(4)中、Q10及びQ12は同一又は異なって水素原子又はメチル基を示し、Q11は酸素原子又は−NH−を示し、mは1〜100の数を示す。]
At least one selected from structural units represented by the following general formula (1);
Figure 0005824686
[In Formula (1), Q 1 represents a hydrogen atom, a methyl group or a cyano group, Q 2 represents a hydrogen atom,
Figure 0005824686

(R 1 and R 1 ′ are the same or different and each represents a hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, a halogen atom or a halogenomethyl group, and R 2 is a linear, branched or cyclic group having 1 to 18 carbon atoms. an alkyl group or a benzyl group, or arsenate de Rokishipuropiru group, R 2 'represents a straight-chain or branched or cyclic alkyl group or a phenyl group having 1 to 18 carbon atoms, R 3 is 1 to 10 hydrogen atoms or carbon atoms R 4 represents an alkyl group having 1 to 10 carbon atoms (provided that R 3 and R 4 have 3 to 20 carbon atoms in total). ]
At least one selected from structural units represented by the following general formula (2 a );
Figure 0005824686
Water-dispersible polymer fine particles comprising at least one selected from structural units represented by the following general formulas (3) and (4), wherein the general formulas (3) and (4) A hydrophilic polymer chain that is at least one selected from the structural units represented by the formula is localized, and the core of the fine particles is at least one selected from the structural units represented by the general formula (1) Polymer fine particles composed of a certain hydrophobic polymer and at least one temperature-sensitive polymer selected from the structural unit represented by the general formula (2a), and the average particle according to the temperature change Temperature-responsive polymer fine particles characterized in that the diameter reversibly changes.
Figure 0005824686
[In Formula (3), Q 5 represents a hydrogen atom or a methyl group, and Q 6 represents
Figure 0005824686
(A 1 represents an alkylene group having 1 to 10 carbon atoms), Q 7 represents an oxygen atom or —NH—, Q 8 represents an alkylene group having 1 to 10 carbon atoms, and Q 9 represents an oxygen atom or Represents a sulfur atom, Y 1 represents an oxygen atom or two hydrogen atoms, R 7 represents a hydrogen atom or a methyl group, and X 1 represents
Figure 0005824686
(R 8 , R 9 and R 10 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms or a benzyl group, R 11 represents a hydrogen atom, a methyl group or an ethyl group, and R 12 represents a hydrogen atom or a methyl group. indicates group, Z - represents a represents an anion), l is a number of 1 to 100. ]
Figure 0005824686

[In Formula (4), Q 10 and Q 12 are the same or different and each represents a hydrogen atom or a methyl group, Q 11 represents an oxygen atom or —NH—, and m represents a number of 1 to 100. ]
下記の一般式(5)で表される単量体の中から選ばれる少なくとも1種と、
Figure 0005824686
[式(5)中、Q13は水素原子、メチル基又はシアノ基を示し、Q14は水素原子、
Figure 0005824686
(R13及びR13’は同一又は異なって水素原子又は炭素数1〜4の低級アルキル基又はハロゲン原子又はハロゲノメチル基を示し、R14は炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はベンジル基又はヒドロキシプロピル基を示し、R14’は炭素数1〜18の直鎖又は分岐又は環状のアルキル基又はフェニル基を示し、R15は水素原子又は炭素数1〜10のアルキル基を示し、R16は炭素数1〜10のアルキル基を示す(ただしR15及びR16の総炭素数は3〜20である))を示す。]
N−イソプロピルアクリルアミドと、下記の一般式(7)及び(8)で表されるマクロモノマーの中から選ばれる少なくとも1種とを共重合させることを特徴とする、請求項1記載の温度応答性高分子微粒子の分散体の製造方法。
Figure 0005824686
[式(7)中、Q17は水素原子又はメチル基を示し、Q18は、
Figure 0005824686
(Aは炭素数1〜10のアルキレン基を示す)を示し、Q19は酸素原子又は−NH−を示し、Q20は炭素数1〜10のアルキレン基を示し、Q21は酸素原子又は硫黄原子を示し、Yは酸素原子又は2個の水素原子を示し、R19は水素原子又はメチル基を示し、X
Figure 0005824686
(R20、R21及びR22は同一又は異なって炭素数1〜4の低級アルキル基又はベンジル基を示し、R23は水素原子又はメチル基又はエチル基を示し、R24は水素原子又はメチル基を示し、Zは陰イオンを示す)を示し、lは1〜100の数を示す。]
Figure 0005824686
[式(8)中、Q22及びQ24は同一又は異なって水素原子又はメチル基を示し、Q23は酸素原子又は−NH−を示し、は1〜100の数を示す。]
At least one selected from monomers represented by the following general formula (5);
Figure 0005824686
Wherein (5), Q 13 represents a hydrogen atom, a methyl group or a cyano group, Q 14 is a hydrogen atom,
Figure 0005824686
(R 13 and R 13 ′ are the same or different and each represents a hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, a halogen atom or a halogenomethyl group, and R 14 is a linear, branched or cyclic group having 1 to 18 carbon atoms. An alkyl group, a benzyl group or a hydroxypropyl group, R 14 ′ represents a linear, branched or cyclic alkyl group or phenyl group having 1 to 18 carbon atoms, and R 15 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. represents a group, R 16 represents an an alkyl group having 1 to 10 carbon atoms (provided that the total number of carbon atoms of R 15 and R 16 is 3 to 20)). ]
The temperature responsiveness according to claim 1, wherein N-isopropylacrylamide is copolymerized with at least one selected from macromonomers represented by the following general formulas (7) and (8). A method for producing a dispersion of polymer fine particles.
Figure 0005824686
[In Formula (7), Q 17 represents a hydrogen atom or a methyl group, and Q 18 represents
Figure 0005824686
(A 2 represents an alkylene group having 1 to 10 carbon atoms), Q 19 represents an oxygen atom or —NH—, Q 20 represents an alkylene group having 1 to 10 carbon atoms, and Q 21 represents an oxygen atom or Represents a sulfur atom, Y 2 represents an oxygen atom or two hydrogen atoms, R 19 represents a hydrogen atom or a methyl group, and X 2 represents
Figure 0005824686
(R 20 , R 21 and R 22 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms or a benzyl group, R 23 represents a hydrogen atom, a methyl group or an ethyl group, and R 24 represents a hydrogen atom or a methyl group. Represents a group, Z represents an anion), and l represents a number of 1 to 100. ]
Figure 0005824686
Wherein (8), Q 22 and Q 24 are the same or different and each represents a hydrogen atom or a methyl group, Q 23 represents an oxygen atom or -NH-, m is a number of 1 to 100. ]
JP2011129592A 2011-05-24 2011-05-24 Temperature-responsive polymer fine particle and method for producing dispersion thereof Active JP5824686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129592A JP5824686B2 (en) 2011-05-24 2011-05-24 Temperature-responsive polymer fine particle and method for producing dispersion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129592A JP5824686B2 (en) 2011-05-24 2011-05-24 Temperature-responsive polymer fine particle and method for producing dispersion thereof

Publications (2)

Publication Number Publication Date
JP2012241188A JP2012241188A (en) 2012-12-10
JP5824686B2 true JP5824686B2 (en) 2015-11-25

Family

ID=47463235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129592A Active JP5824686B2 (en) 2011-05-24 2011-05-24 Temperature-responsive polymer fine particle and method for producing dispersion thereof

Country Status (1)

Country Link
JP (1) JP5824686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191066B2 (en) * 2013-10-18 2017-09-06 センカ株式会社 Water-dispersed polymer fine particles and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08183760A (en) * 1994-12-28 1996-07-16 Dai Ichi Seiyaku Co Ltd Macromonomer, graft polymer and their production
JPH0912652A (en) * 1995-06-30 1997-01-14 Zenichi Ogita Thermally reversible hydrogel material and its production
JP3664822B2 (en) * 1996-09-13 2005-06-29 満 明石 Particulate carrier
JP2005255967A (en) * 2004-03-09 2005-09-22 Tatsuo Kaneko Surface-reactive crenellated macromolecular microparticle and method for producing the same
KR100626767B1 (en) * 2005-07-07 2006-09-25 한국과학기술연구원 Chain-end functionalized poly(ethylene oxide) and method for the preparation of nano-sized transition metals and metal salts using the same

Also Published As

Publication number Publication date
JP2012241188A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5824688B2 (en) Method for producing pH-responsive polymer fine particles and dispersion thereof
RU2265615C2 (en) Gel-like aqueous composition containing block copolymer wherein at least one water-soluble block and one hydrophobic block are available
TWI288758B (en) Thermal responsive, water-soluble polymers
US9475894B2 (en) Dendritic polymer, dendritic polymer monomer, and hyperbranched copolymer
CN108164655B (en) Application of N-isopropyl acrylamide copolymer with side chain containing azopyridine
Ma et al. DESIGN AND SYNTHESIS OF NOVEL CHIRAL IONIC LIQUIDS AND THEIR APPLICATION IN FREE RADICAL POLYMERIZATION OF METHYL METHACRYLATE.
JP7093975B2 (en) Zwitterionic polymers, their production methods, and protein stabilizers containing zwitterionic polymers
JP5824686B2 (en) Temperature-responsive polymer fine particle and method for producing dispersion thereof
JP6569870B2 (en) Graft polymer and method for producing the same
JP6298646B2 (en) Carboxyl group-containing copolymer
JP2015131947A (en) Method of producing polymer, molding material and molded article
CN108164654B (en) N-isopropyl acrylamide copolymer with side chain containing azopyridine
JP5763899B2 (en) Intermediate-containing composition for water-soluble monomer and production method thereof, intermediate for water-soluble monomer, cationic group-containing monomer and production method thereof
JP4243126B2 (en) Method for producing (meth) acrylic acid copolymer
JP5434256B2 (en) Drilling mud additive, method for producing the same, and drilling mud using the same
CN114195962A (en) Amphiphilic fluorine-containing block polymer and preparation method and application thereof
JP7236055B2 (en) Diallylamine/diallyl ether copolymer, production method and use thereof
WO2021161851A1 (en) Method for producing iodine-containing compound, and polymer
JP6191066B2 (en) Water-dispersed polymer fine particles and method for producing the same
JP2015214614A (en) Block polymer and production method thereof
JP6253373B2 (en) Paper chemical dispersant and paper chemical dispersion
JP2010111766A (en) Block copolymer
JP7256059B2 (en) Method for producing sulfonic acid group-containing copolymer
EP4153644A2 (en) Ketone functionalized polymers, methods of making ketone functionalized polymers, and compositions including the same
WO2022054547A1 (en) Method for producing iodine-containing compound, and iodine-containing compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5824686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250