JP5823152B2 - Method and apparatus for collecting magnetized particles in non-magnetized particles - Google Patents

Method and apparatus for collecting magnetized particles in non-magnetized particles Download PDF

Info

Publication number
JP5823152B2
JP5823152B2 JP2011084123A JP2011084123A JP5823152B2 JP 5823152 B2 JP5823152 B2 JP 5823152B2 JP 2011084123 A JP2011084123 A JP 2011084123A JP 2011084123 A JP2011084123 A JP 2011084123A JP 5823152 B2 JP5823152 B2 JP 5823152B2
Authority
JP
Japan
Prior art keywords
magnetized particles
magnet
particles
slurry
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011084123A
Other languages
Japanese (ja)
Other versions
JP2012217888A (en
Inventor
尚三 徳田
尚三 徳田
澤野 清志
清志 澤野
克昌 矢木
克昌 矢木
道太 齋藤
道太 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2011084123A priority Critical patent/JP5823152B2/en
Publication of JP2012217888A publication Critical patent/JP2012217888A/en
Application granted granted Critical
Publication of JP5823152B2 publication Critical patent/JP5823152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、非着磁性粒子中の着磁性粒子の捕集方法および捕集装置に関する。具体的には、例えばシリカやアルミナなどの非着磁性粒子中から着磁性粒子を捕集する方法および装置に関する。 The present invention relates to a method and an apparatus for collecting magnetized particles in non-magnetized particles. Specifically, the present invention relates to a method and apparatus for collecting magnetized particles from non-magnetized particles such as silica and alumina.

従来、例えばシリカやアルミナなどの非着磁性粒子中から着磁性粒子を捕集する方法は、従来から提案されており、例えば、特許第4195243号公報(下記特許文献1)には、非着磁性粒子を水に分散させ、磁石を該スラリーに浸漬し、攪拌して磁石に捕捉する方法が記載されている。 Conventionally, a method of collecting magnetized particles from non-magnetized particles such as silica and alumina has been conventionally proposed. For example, Japanese Patent No. 4195243 (Patent Document 1 below) discloses non-magnetized particles. A method is described in which particles are dispersed in water, a magnet is immersed in the slurry, stirred and captured by the magnet.

しかし、この特許文献1の方法では、必ずしも着磁性粒子が磁石に付着しないという問題があった。即ち、攪拌速度が速すぎると磁石と着磁性粒子が近づいても磁石に捕集されず、逆に攪拌速度が遅すぎると十分にスラリーが攪拌されないという問題があるうえ、磁石を浸漬して攪拌する工程を比較的長時間行わなければ十分な効果は得られず、1日に何度も行う場合には適用できなかった。 However, the method of Patent Document 1 has a problem that the magnetized particles do not necessarily adhere to the magnet. In other words, if the stirring speed is too high, the magnet and the magnetized particles will not be collected even if they are close to each other. Conversely, if the stirring speed is too low, the slurry will not be sufficiently stirred. If the process is not performed for a relatively long time, a sufficient effect cannot be obtained, and it cannot be applied when it is performed many times a day.

特許第4195243号公報Japanese Patent No. 4195243

そこで本発明は、例えばシリカやアルミナなどの非着磁性粒子中から着磁性粒子を短時間で効率的に捕集する方法および捕集装置を提供することを課題とする。 Accordingly, an object of the present invention is to provide a method and a collection device for collecting magnetic particles efficiently from non-magnetic particles such as silica and alumina in a short time.

本発明は、前述の課題を解決するために鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)着磁性粒子を含む非着磁性粒子を液体中に分散させてスラリーとし、該スラリーをU字型の溝を有する樋と磁石の隙間の流路に流すことにより、前記スラリーを磁石に接触させて着磁性粒子を捕集することを特徴とする、非着磁性粒子中の着磁性粒子の捕集方法。
(2)(1)に記載の着磁性粒子の捕集方法に用いる捕集装置であって、U字型の溝を有する樋と、該溝に設けられた複数の突起を有し、該突起に磁石を固定することにより、前記樋と磁石との間にスラリーの流路を設けたことを特徴とする、非着磁性粒子中の着磁性粒子の捕集装置。
The present invention has been made as a result of intensive studies in order to solve the above-described problems, and the gist of the present invention is the following contents as described in the claims.
(1) Non-magnetized particles containing magnetized particles are dispersed in a liquid to form a slurry, and the slurry is passed through a flow path between a gutter having a U-shaped groove and a magnet, whereby the slurry is applied to the magnet. A method of collecting magnetized particles in non-magnetized particles, wherein the magnetized particles are collected by contact.
(2) A collection device used in the method for collecting magnetic particles according to (1), comprising a ridge having a U-shaped groove, and a plurality of protrusions provided in the groove, the protrusion An apparatus for collecting magnetized particles in non-magnetized particles, wherein a slurry flow path is provided between the basket and the magnet by fixing a magnet to the magnet.

本発明によれば、磁石の周りにスラリーを安定して通すことができるため、従来の方法と比較して、半導体封止材用に用いるフィラーなどにおける非着磁性粒子中の着磁性粒子を多く、且つ安定して捕集することができ、具体的には下記のような産業上有用な著しい効果を奏する。 According to the present invention, since the slurry can be stably passed around the magnet, the number of the magnetized particles in the non-magnetized particles in the filler used for the semiconductor sealing material is larger than that in the conventional method. In addition, it can be stably collected, and has the following remarkable industrially useful effects.

1)スラリーを磁石と樋の間の細い流路を通すことで流体中の着磁性粒子と磁石との距離を一定以内とすることができ、よって同じ強さの磁石を用いても従来よりもより磁力の強い部分を通すことができるため捕集効率が上がる。 1) The distance between the magnetized particles and the magnet in the fluid can be kept within a certain range by passing the slurry through a narrow flow path between the magnet and the cage. Because it is possible to pass a portion with a stronger magnetic force, the collection efficiency increases.

2)樋を用いることで、従来の方法とは異なりスラリーの流速を減速することができる。流速を遅くすることで着磁性粒子が磁石の傍を通過する速度が遅くなり着磁性粒子が従来より捕集され易くなる。 2) By using soot, unlike the conventional method, the flow rate of the slurry can be reduced. By slowing down the flow rate, the speed at which the magnetized particles pass by the magnet is slowed down, and the magnetized particles are more easily collected.

3)従来の方法では比較的長い時間の攪拌時間が必要であったが、本発明の方法は傾斜させた着磁性粒子捕集装置の流路を通すだけでよく、従来よりも短時間で着磁性粒子を捕集することができるようになる。 3) In the conventional method, a relatively long stirring time is required, but in the method of the present invention, it is only necessary to pass through the flow path of the tilted magnetized particle collecting device, and the stirring is performed in a shorter time than the conventional method. Magnetic particles can be collected.

本発明に用いる樋を例示する図である。It is a figure which illustrates the bag used for this invention. 本発明に用いる磁石を樋に固定した状態の着磁性粒子捕集装置を例示する図である。It is a figure which illustrates the magnetic particle collection apparatus of the state which fixed the magnet used for this invention to the cage. 本発明の着磁性粒子の捕集装置の部分詳細図である。It is a partial detail drawing of the collection apparatus of the magnetic particle of the present invention.

発明を実施するための形態について、以下に説明する。本発明の非着磁性粒子中の着磁性粒子の捕集方法は、非着磁性粒子を液体中に分散させてスラリーとし、該スラリーをU字型の溝を有する樋と磁石の隙間の流路に流すことにより、前記スラリーを磁石に接触させて着磁性粒子を捕集することを特徴とする。本発明に用いる非着磁性粒子は、平均粒径が0.1〜50μm程度の、例えばシリカやアルミナなどの粒子をいう。 Modes for carrying out the invention will be described below. The method for collecting magnetized particles in non-magnetized particles according to the present invention comprises dispersing non-magnetized particles in a liquid to form a slurry, and using the slurry as a flow path between a ridge having a U-shaped groove and a magnet The magnetic particles are collected by bringing the slurry into contact with a magnet. The non-magnetic particles used in the present invention refer to particles such as silica and alumina having an average particle diameter of about 0.1 to 50 μm.

1)着磁性粒子捕集装置
まず、本発明の着磁性粒子捕集装置について図3を用いて説明する。本発明の捕集装置は、前記スラリーと接触させて着磁性粒子を捕集するための磁石3と、前記磁石を設置するためのU字型の溝を有する樋1、樋1の内側に突起2を設け、磁石3が着脱可能に固定されると共に樋1との間に流路5が形成されるように構成する。本着磁性粒子捕集装置は、流路5の片側からスラリーを流し入れられるようになっており、流路5に流入したスラリーは磁石3と一定距離以内で接触できるので、スラリー中の着磁性粒子を従来より効率よく短時間に捕集する手段を提供するものである。
1) Magnetized Particle Collection Device First, the magnetized particle collection device of the present invention will be described with reference to FIG. The collection device of the present invention has a magnet 3 for collecting the magnetized particles in contact with the slurry, a ridge 1 having a U-shaped groove for installing the magnet, and a protrusion inside the ridge 1 2, the magnet 3 is detachably fixed and the flow path 5 is formed between the magnet 1 and the flange 1. In the present magnetized particle collecting apparatus, the slurry can be poured from one side of the flow path 5, and the slurry flowing into the flow path 5 can contact the magnet 3 within a certain distance. The present invention provides a means for collecting the gas efficiently and in a shorter time than in the past.

本装置では、樋1の溝部の突起2は、磁石3を固定でき、流路5のスラリーの流れに支障が生じなければ配置や形状は自由である。また、流路5の幅は狭い方が捕集効率は上がるが、あまり狭くしすぎるとスラリー中の非着磁性粒子や磁石3に捕集された着磁性粒子によって流路5の詰まりが発生するため、スラリー中の粒子径や着磁性粒子の量、スラリー粘度などに合わせて流路の幅を調節することが好ましいが、調節が困難な構造の場合は広めに設定することが望ましいため、流路5の幅は着磁性粒子を含む非着磁性粒子の最大粒径の2倍〜10倍程度としておくのが良い。 In this apparatus, the projection 2 in the groove portion of the ridge 1 can fix the magnet 3 and can be freely arranged and shaped as long as it does not hinder the slurry flow in the flow path 5. The narrower the flow path 5, the higher the collection efficiency. However, if the flow path 5 is too narrow, the flow path 5 is clogged by the non-magnetic particles in the slurry and the magnetic particles collected by the magnet 3. Therefore, it is preferable to adjust the width of the flow path according to the particle diameter in the slurry, the amount of magnetized particles, the viscosity of the slurry, etc., but if the structure is difficult to adjust, it is desirable to set it wider. The width of the path 5 is preferably about 2 to 10 times the maximum particle size of non-magnetized particles including magnetized particles.

また、磁石3を長くし、流路5が長くなるようにすれば捕集能力は上がるので好ましいが、あまり長いと磁石の着脱、あるいは着磁性粒子の回収作業の容易性が落ちることもあるので、磁石の長さは10〜50cm程度が好ましい。また、磁石の磁力を強くすれば捕集率が上がるため磁石の表面磁束密度は3000ガウス以上が好ましい。 In addition, if the magnet 3 is lengthened and the flow path 5 is lengthened, the collection capability is improved, but if it is too long, the magnet may be attached or detached or the collection work of the magnetized particles may be reduced. The length of the magnet is preferably about 10 to 50 cm. Further, since the collection rate increases if the magnetic force of the magnet is increased, the surface magnetic flux density of the magnet is preferably 3000 gauss or more.

図3では、磁石3に薄い鞘4を被せているが、これは捕集した着磁性粒子を容易に回収するためである。つまり、薄い鞘4を被せた磁石3でスラリー中の着磁性粒子を捕集し、着磁性粒子が付着した磁石3を鞘4を被せたまま樋1から取り出し、磁石3を外して鞘4に付着した着磁性粒子を純水等で洗い落とせば着磁性粒子を容易に回収することができる。この鞘4は、着磁性粒子を捕集後、回収する必要が無ければ必ずしも必要ではないが、着磁性粒子の洗浄除去のためにも鞘を被せている方が作業は容易である。尚、被せる鞘の素材は磁石3に着脱し易く、磁石3の着磁性を妨げず、着磁性粒子の付着・回収が容易な表面性状であり、スラリーに不純物として混入しにくいあるいは混入しても非着磁性粒子に影響が少ない素材であればどのような素材でもよく、金属、樹脂、セラミックス等のいずれの素材で形成しても良い。 In FIG. 3, the magnet 3 is covered with a thin sheath 4 in order to easily collect the collected magnetized particles. That is, the magnetized particles 3 covered with the thin sheath 4 are used to collect the magnetized particles in the slurry, and the magnets 3 to which the magnetized particles are attached are removed from the tub 1 with the sheath 4 covered, and the magnets 3 are removed and the sheath 4 is removed. If the attached magnetic particles are washed away with pure water or the like, the magnetic particles can be easily recovered. The sheath 4 is not necessarily required if it is not necessary to collect the magnetized particles after collecting them, but the operation is easier if the sheath 4 is also covered for cleaning and removing the magnetized particles. The sheath material to be covered is easy to attach to and detach from the magnet 3, does not interfere with the magnetism of the magnet 3, and has a surface property that allows easy attachment and recovery of the magnetized particles. Any material may be used as long as the material has little influence on the non-magnetic particles, and any material such as metal, resin, ceramics, etc. may be used.

2)着磁性粒子の捕集工程
非着磁性粒子に含まれる着磁性粒子の捕集方法を次に記す。本方法では、まず着磁性粒子を含む非着磁性粒子を液体に分散させてスラリーとする。前記液体は、非着磁性粒子および着磁性粒子の分散性、非反応性等を考慮して適宜選択すればよいが、例えば、非着磁性粒子がシリカやアルミナの場合は、アルコール、またはアセトンなどの有機溶媒をそのまままたは混合して用いても良く、またこれらの溶媒と水を混合して用いても良い。また、作製したスラリーは均一に分散していることが望ましいが、流路5の内部で著しく沈殿するようなことがなければ若干不均一であっても差し支えない。
2) Collection process of magnetized particles The method of collecting magnetized particles contained in non-magnetized particles is described below. In this method, first, non-magnetized particles containing magnetized particles are dispersed in a liquid to form a slurry. The liquid may be appropriately selected in consideration of dispersibility, nonreactivity, etc. of the non-magnetized particles and the magnetized particles. For example, when the non-magnetized particles are silica or alumina, alcohol, acetone, or the like These organic solvents may be used as they are or in combination, or these solvents and water may be used in combination. In addition, it is desirable that the produced slurry is uniformly dispersed, but it may be slightly non-uniform if it does not precipitate significantly inside the flow path 5.

次に、図2に例示したような磁石3を固定した着磁性粒子捕集装置を、流路5のスラリー流入側から流出側に適度な傾斜を付けて固定し、流路5の流入側からスラリーを一定流量で流し込む。するとスラリーが磁石3と流路5の間を流れ、流路5のスラリー流出側から流出する間にスラリー中の着磁性粒子が磁石3に付着する。尚、着磁性粒子が磁石3に捕集された後のスラリーは、流路5の流出側に設置したスラリー回収容器(図示せず)に回収される。
上記着磁性粒子捕集装置の傾斜角度は、水平に近いほどスラリーがゆっくり流れて着磁性粒子の捕集率が上がるので好ましいが、粘度が高いスラリー等の場合には流速が落ちるので捕集に時間がかかる。そのため、傾斜角度はスラリー性状に合わせて適宜調整することになるが、例えば、シリカやアルミナのような非着磁性粒子の比較的粘度の低いスラリーでは、水平方向から45度以下が好ましい。
Next, the magnetized particle collecting apparatus having the magnet 3 fixed as illustrated in FIG. 2 is fixed with an appropriate inclination from the slurry inflow side to the outflow side of the flow path 5, and from the inflow side of the flow path 5. The slurry is poured at a constant flow rate. Then, the slurry flows between the magnet 3 and the flow path 5, and the magnetized particles in the slurry adhere to the magnet 3 while flowing out from the slurry outflow side of the flow path 5. The slurry after the magnetized particles are collected by the magnet 3 is collected in a slurry collection container (not shown) installed on the outflow side of the flow path 5.
The tilt angle of the magnetized particle collecting device is preferable because the slurry flows slowly and the collecting rate of the magnetized particles increases as it is closer to the horizontal. take time. For this reason, the inclination angle is appropriately adjusted in accordance with the slurry properties. For example, in a slurry having a relatively low viscosity of non-magnetized particles such as silica and alumina, it is preferably 45 degrees or less from the horizontal direction.

また、スラリーの流量を下げるほど捕集率が上がるため好ましいが、流量を下げ過ぎると全体量を処理する時間が長くなるので、スラリーの流量もスラリー性状に合わせて適宜決定する。例えば、シリカやアルミナのようなスラリーでは、捕集率と処理時間を考慮すると100〜1000ml/分程度とするのがよい。 Moreover, since the collection rate increases as the flow rate of the slurry is lowered, it is preferable. However, if the flow rate is lowered too much, the time for processing the whole amount becomes longer. Therefore, the flow rate of the slurry is appropriately determined according to the slurry properties. For example, in the case of a slurry such as silica or alumina, the concentration is preferably about 100 to 1000 ml / min in consideration of the collection rate and the processing time.

3)着磁性粒子の回収工程
次に、上記2)で捕集した着磁性粒子の回収法を説明する。尚、本説明では鞘4を被せた磁石3を用いて着磁性粒子を捕集した場合の操作を示す。前記着磁性粒子捕集装置から着磁性粒子の付着した磁石3を鞘4ごと取り出す。そして磁石3の鞘4に付着した着磁性粒子を洗い落として回収するためビーカー等の回収容器の上部に移動する。次に磁石3を鞘4から外すことにより、鞘4に付着していた着磁性粒子がビーカーに落ちる。さらに、着磁性粒子を変質させない液体、例えば純水等で洗い落とすことにより、鞘4に付着していた着磁性粒子を容器に全て回収することができる。
3) Recovery process of magnetized particles Next, a method of recovering the magnetized particles collected in 2) will be described. In this description, an operation in the case where the magnetized particles are collected using the magnet 3 covered with the sheath 4 is shown. The magnet 3 with the magnetized particles attached is taken out from the magnetized particle collecting device together with the sheath 4. And it moves to the upper part of collection containers, such as a beaker, in order to wash away and collect the magnetic particles adhering to the sheath 4 of the magnet 3. Next, when the magnet 3 is removed from the sheath 4, the magnetized particles attached to the sheath 4 fall into the beaker. Furthermore, all the magnetized particles adhering to the sheath 4 can be recovered in the container by washing with a liquid that does not alter the magnetized particles, for example, pure water.

この着磁性粒子の回収工程は、スラリー全量が流出した後に実施すれば付着した粒子全量を一度の操作で回収できるが、着磁性粒子が多く付着すると捕集効率が落ちたり、着磁した粒子が再度流れ出たりするため、ある程度着磁性粒子が付着した時点で着磁性粒子を回収することが望ましい。 If the collection step of the magnetized particles is carried out after the entire slurry has flowed out, the total amount of adhered particles can be collected in a single operation. In order to flow out again, it is desirable to collect the magnetized particles when the magnetized particles adhere to some extent.

容器に回収した着磁性粒子は、フィルター等を利用して液体中から回収することができる。その個数や大きさを測定すれば、非着磁性粒子中の着磁性粒子数量を把握でき、さらに、形状や組成を分析することにより着磁性粒子の発生源を特定することができる。 The magnetized particles recovered in the container can be recovered from the liquid using a filter or the like. By measuring the number and size of the particles, the number of magnetized particles in the non-magnetized particles can be grasped, and the source of the magnetized particles can be specified by analyzing the shape and composition.

また、上記2)で流出回収したスラリーは着磁性粒子が除去されているので、本方法は着磁性粒子を含まない非着磁性粒子を製造することにも利用できる。   In addition, since the magnetic particles are removed from the slurry recovered and discharged in the above 2), this method can be used to produce non-magnetic particles that do not contain magnetic particles.

<発明例>
シリカ粒子(新日鉄マテリアルズ株式会社製HS−101)300gを1000ml容器に計量し、これに水を1000ml入れてスラリーを作り、均一に分散されるように攪拌した。一方、磁石(日本マグネティックス製)に磁石と密着する金属鞘を被せ、着磁性粒子を捕集するための磁石を作成した。これを予め作成しておいたU字型の溝をもつ樋に設置し、樋が水平から20度傾斜するように着磁性粒子捕集装置を固定した。
<Invention Example>
300 g of silica particles (HS-101 manufactured by Nippon Steel Materials Co., Ltd.) were weighed into a 1000 ml container, and 1000 ml of water was added to this to make a slurry, which was stirred so as to be uniformly dispersed. On the other hand, a magnet (manufactured by Nippon Magnetics) was covered with a metal sheath that was in close contact with the magnet, and a magnet for collecting the magnetized particles was created. This was installed in a cage having a U-shaped groove prepared in advance, and the magnetized particle collecting apparatus was fixed so that the cage was inclined 20 degrees from the horizontal.

磁石を設置した樋にスラリーを流速500ml/分で流し込んだ。スラリー全量が流出した後、着磁性粒子捕集装置から着磁性粒子の付着した磁石3を取り出す。そして鞘を被せた磁石に付着した着磁性粒子を洗い落とすために磁石をビーカーの上部に移動した。次に鞘を被せた磁石から磁石を外すことにより、鞘に付着していた着磁性粒子がビーカーに落ちる。さらに純水等で洗い落とし、鞘に付着していた着磁性粒子をビーカーに捕集した。 The slurry was poured into a basket equipped with a magnet at a flow rate of 500 ml / min. After the entire amount of the slurry has flowed out, the magnet 3 to which the magnetic particles are attached is taken out from the magnetic particle collector. The magnet was moved to the top of the beaker to wash away the magnetized particles adhering to the sheathed magnet. Next, the magnetized particles attached to the sheath fall into the beaker by removing the magnet from the magnet covered with the sheath. Further, it was washed off with pure water or the like, and the magnetic particles adhering to the sheath were collected in a beaker.

ビーカーの着磁性粒子をフィルターで回収し、画像解析装置を用いて数量をカウントした結果を表1に示す。
尚、表1に記載の回数は、同じシリカフィラーを用いて上記の手順を繰り返し実施した回数を示す。
Table 1 shows the results of collecting the magnetized particles of the beaker with a filter and counting the quantity using an image analyzer.
The number of times described in Table 1 indicates the number of times the above procedure was repeated using the same silica filler.

<比較例>
発明例と同様のスラリーを作製し、スラリーの入ったビーカーに磁石を浸漬し、実施例でかかった時間と同様の時間攪拌した。攪拌終了後、磁石を取り出し、流水で洗い流して着磁性粒子をビーカーに回収した。着磁性粒子の水からの回収と数量のカウントは発明例と同様に行った。結果を表1に示す。
表1に示すように、発明例では、回収された着磁性粒子の数が比較例に比べて著しく多く、本発明例のほうが効率的に着磁性粒子を回収できるという効果が確認された。
<Comparative example>
A slurry similar to that of the inventive example was prepared, the magnet was immersed in a beaker containing the slurry, and the mixture was stirred for the same time as the time taken in the example. After completion of stirring, the magnet was taken out and washed with running water to collect the magnetized particles in a beaker. The recovery of the magnetized particles from water and the counting of the quantity were performed in the same manner as in the inventive examples. The results are shown in Table 1.
As shown in Table 1, in the inventive example, the number of recovered magnetic particles was significantly larger than that in the comparative example, and it was confirmed that the inventive example was able to recover the magnetic particles more efficiently.

Figure 0005823152
Figure 0005823152

本発明は、シリカやアルミナなどの非着磁性粒子中に含まれる着磁性粒子を効率よく捕集、回収することが出来る方法および装置に関し、本発明により回収した着磁性粒子の個数や大きさを測定することで非着磁性粒子中の着磁性粒子の数量を把握することに役立つだけでなく、形状や組成を分析することにより発生源を特定することができる。そしてこれらの分析結果を用いて更なる着磁性粒子発生源の対策に役立たせることができ、各種非着磁性粒子の製造開発、特に半導体封止材用のフィラー製造に利用できる。 The present invention relates to a method and apparatus capable of efficiently collecting and recovering magnetized particles contained in non-magnetized particles such as silica and alumina. The number and size of magnetized particles recovered by the present invention are as follows. The measurement not only helps to grasp the quantity of the magnetized particles in the non-magnetized particles, but also identifies the generation source by analyzing the shape and composition. These analysis results can be used for further countermeasures against the generation source of magnetized particles, and can be used for the production development of various non-magnetized particles, particularly for the manufacture of fillers for semiconductor encapsulants.

1 樋
2 突起
3 磁石
4 鞘
5 流路
1 樋 2 projection 3 magnet 4 sheath 5 flow path

Claims (2)

U字型の溝を有する樋と、磁石を固定する為に該溝に設けられた複数の突起を有し、該突起に磁石を固定することにより、前記樋と磁石との間にスラリーの流路を設けたことを特徴とする、非着磁性粒子中の着磁性粒子の捕集装置。   A gutter having a U-shaped groove and a plurality of protrusions provided in the groove for fixing the magnet. By fixing the magnet to the protrusion, the flow of the slurry between the gutter and the magnet An apparatus for collecting magnetized particles in non-magnetized particles, wherein a path is provided. 請求項1の捕集装置を用いることを特徴とする、非着磁性粒子中の着磁性粒子の捕集方法。
A method for collecting magnetized particles in non-magnetized particles, wherein the collecting device according to claim 1 is used.
JP2011084123A 2011-04-06 2011-04-06 Method and apparatus for collecting magnetized particles in non-magnetized particles Active JP5823152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084123A JP5823152B2 (en) 2011-04-06 2011-04-06 Method and apparatus for collecting magnetized particles in non-magnetized particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084123A JP5823152B2 (en) 2011-04-06 2011-04-06 Method and apparatus for collecting magnetized particles in non-magnetized particles

Publications (2)

Publication Number Publication Date
JP2012217888A JP2012217888A (en) 2012-11-12
JP5823152B2 true JP5823152B2 (en) 2015-11-25

Family

ID=47270015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084123A Active JP5823152B2 (en) 2011-04-06 2011-04-06 Method and apparatus for collecting magnetized particles in non-magnetized particles

Country Status (1)

Country Link
JP (1) JP5823152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813709B2 (en) 2012-09-28 2017-11-07 Nippon Telegraph And Telephone Corporation Intra-prediction encoding method, intra-prediction decoding method, intra-prediction encoding apparatus, intra-prediction decoding apparatus, program therefor and recording medium having program recorded thereon

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206000A (en) * 1978-11-21 1980-06-03 Western Electric Company, Inc. Method and apparatus for filtering magnetic debris out of work-functioning baths
JPS60128741U (en) * 1984-02-09 1985-08-29 ブンリ工業株式会社 Magnetic material separation equipment
JP3538640B2 (en) * 2001-04-24 2004-06-14 大阪大学長 Magnetic separation method and magnetic separation device
JP2007319735A (en) * 2006-05-30 2007-12-13 Fuji Xerox Co Ltd Microreactor and method for cleaning micro flow path
JP2011020078A (en) * 2009-07-17 2011-02-03 Sanyo Electric Co Ltd Magnetic impurity separator
JP5212413B2 (en) * 2010-04-01 2013-06-19 新日鐵住金株式会社 Method for magnetic separation of fine particles and microwell for magnetic separation

Also Published As

Publication number Publication date
JP2012217888A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
TWI449665B (en) Methods to recover and purify silicon particles from saw kerf
US9370782B2 (en) Method and apparatus for separation of mixture
JP5280626B2 (en) Method for measuring the number of magnetized particles in non-magnetic metal oxide powder
JP5823152B2 (en) Method and apparatus for collecting magnetized particles in non-magnetized particles
CN102205965A (en) Method for recovering silicon powder
JP6375544B2 (en) Magnetic chip conveyor
CA2830441A1 (en) Acoustic standing wave particle size or distribution detection
CN102229113A (en) Method for recovering sapphire powder
JP5883921B2 (en) Dry separation / concentration method and dry separation / concentration system
CN102275930A (en) Recycling method for silicon powder
CN107224754A (en) Cleaning fluid regenerating unit
JP5826162B2 (en) Filtration device that uses a flat filtration tank as the filtration tank into which used cutting oil is introduced
US10322418B2 (en) Magnetic separator apparatus
CN1585898A (en) Separation apparatus, method of separation, and process for producing separation apparatus
NL2004717C2 (en) DEVICE AND METHOD FOR SEPARATING FIXED MATERIALS ON THE BASIS OF A DENSITY DIFFERENCE.
Okada et al. Fundamental study on recovery of resources by magnetic separation using superconducting bulk magnet
JP6546386B2 (en) Inorganic filler, method for producing the same, resin composition, and molded article
CN108180172A (en) A kind of self priming pump
JP4775913B2 (en) Cyclone filter
RU2263548C1 (en) Method of extraction of magnetic particles and a magnetic separator for its realization
JP2007231333A (en) Method for wet classification of powdery material and granular material of metal and/or metal compound
TWI775612B (en) Reclamation of silicon carbide from abrasive slurry
JP2009297677A (en) Magnetic granule separator
CN214132173U (en) Washing white alundum production is with device that improves deironing and mix with efficiency
Zhang et al. Investigations on the trajectories of magnetic abrasive grains in magnetic induction-free abrasive wire sawing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R150 Certificate of patent or registration of utility model

Ref document number: 5823152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250