JP5818749B2 - Total heat exchange element and total heat exchange device - Google Patents

Total heat exchange element and total heat exchange device Download PDF

Info

Publication number
JP5818749B2
JP5818749B2 JP2012158770A JP2012158770A JP5818749B2 JP 5818749 B2 JP5818749 B2 JP 5818749B2 JP 2012158770 A JP2012158770 A JP 2012158770A JP 2012158770 A JP2012158770 A JP 2012158770A JP 5818749 B2 JP5818749 B2 JP 5818749B2
Authority
JP
Japan
Prior art keywords
rib
ribs
partition plate
flow path
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012158770A
Other languages
Japanese (ja)
Other versions
JP2014020649A (en
Inventor
一 外川
一 外川
裕一 石丸
裕一 石丸
勝 高田
勝 高田
今井 孝典
孝典 今井
大平 光彦
光彦 大平
健 篠▲崎▼
健 篠▲崎▼
幸司 吉瀬
幸司 吉瀬
鴇崎 晋也
晋也 鴇崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012158770A priority Critical patent/JP5818749B2/en
Publication of JP2014020649A publication Critical patent/JP2014020649A/en
Application granted granted Critical
Publication of JP5818749B2 publication Critical patent/JP5818749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、全熱交換素子および全熱交換装置に関するものである。   The present invention relates to a total heat exchange element and a total heat exchange device.

室内の空調の冷暖房効率の損失を抑えた換気方法として、給気流と排気流との間で熱交換を行わせる換気方法がある。熱交換の効率を向上させるためには、給気流と排気流との間で温度(顕熱)とともに湿度(潜熱)の交換も同時に行う全熱交換が有効である。   As a ventilation method that suppresses the loss of cooling and heating efficiency of the indoor air conditioning, there is a ventilation method in which heat exchange is performed between the supply air flow and the exhaust flow. In order to improve the efficiency of heat exchange, it is effective to perform total heat exchange that simultaneously exchanges humidity (latent heat) as well as temperature (sensible heat) between the supply airflow and the exhaust airflow.

全熱交換を行う全熱交換素子では、給気流路と排気流路とが、仕切板を挟んで互いに独立した流路として形成される。給気流路を流れる給気流と、排気流路を流れる排気流との間で全熱交換が行われるため、全熱交換素子を備える全熱交換装置で室内の空気を換気することによって、室内の空調の冷暖房時に使用したエネルギ、また除加湿で使用したエネルギの損失を抑えることができる。   In a total heat exchange element that performs total heat exchange, an air supply channel and an exhaust channel are formed as channels independent of each other with a partition plate interposed therebetween. Since total heat exchange is performed between the supply airflow flowing through the supply air flow path and the exhaust flow flowing through the exhaust flow path, the indoor air is ventilated by a total heat exchange device including a total heat exchange element. Loss of energy used at the time of air conditioning cooling and energy used for dehumidification / humidification can be suppressed.

たとえば、特許文献1には、仕切板の表裏両面にリブを成型し、それぞれの面のリブが直交する構造を備える全熱交換素子が開示されている。また、特許文献2には、枠リブよりも短い間隔リブを仕切板の裏表両面に備える全熱交換素子が開示されている。   For example, Patent Document 1 discloses a total heat exchange element having a structure in which ribs are formed on both front and back surfaces of a partition plate, and the ribs on each surface are orthogonal to each other. Further, Patent Document 2 discloses a total heat exchange element provided with spacing ribs shorter than the frame ribs on both the front and back surfaces of the partition plate.

特開平3−286995号公報Japanese Patent Laid-Open No. 3-28695 特開平8−82495号公報JP-A-8-82495

しかしながら、特許文献1に開示された技術では、間隔保持リブが、間隔保持リブの延在方向の仕切板の寸法と同じ長さで連続して繋がっているため、仕切板の伝熱面積を大きく減らし、全熱交換素子の性能が低くなるという問題点があった。   However, in the technique disclosed in Patent Document 1, since the spacing rib is continuously connected with the same length as the dimension of the partition plate in the extending direction of the spacing rib, the heat transfer area of the partition plate is increased. There is a problem that the performance of the total heat exchange element is reduced.

特許文献2に開示された技術では、リブを成型した後に仕切板を貼付ける工程が必要であるため、製造工程が多くなり、生産性が低いという問題点があった。また、仕切板貼付け工程において、仕切板と成型樹脂の接着を行うため、接着時に仕切板が撓み作業性が悪く、さらに接着部に隙間が生じ気流が漏れてしまうという問題点もあった。   In the technique disclosed in Patent Document 2, a process of attaching a partition plate after molding a rib is necessary, so that the number of manufacturing processes increases and productivity is low. In addition, since the partition plate and the molding resin are bonded in the partition plate attaching step, the partition plate is bent at the time of bonding, and workability is poor, and further, there is a problem that a gap is formed in the bonded portion and airflow leaks.

この発明は、上記に鑑みてなされたもので、従来に比して全熱交換の性能高め、かつ気流漏れが少ない高品質の全熱交換素子およびこれを用いた全熱交換装置を得ることを目的とする。   The present invention has been made in view of the above, and is intended to obtain a high-quality total heat exchange element with improved total heat exchange performance and less airflow leakage than the conventional one, and a total heat exchange apparatus using the same. Objective.

上記目的を達成するため、この発明にかかる全熱交換素子は、仕切板と、前記仕切板に垂直な積層方向に隣接する他の仕切板との間隔を保持し、前記仕切板の両面での流路が互いに直交するように前記仕切板の両面に設けられる樹脂製のリブと、を有する単位素子を、他の単位素子に対して前記仕切板の面内方向に90度回転させて前記積層方向に複数積層してなる全熱交換素子であって、前記単位素子を同じ形状の4つの区画に分割し、そのうちの1つの区画から時計回りに順に第1区画、第2区画、第3区画および第4区画とした場合に、前記第1区画と前記第2区画に設けられる前記リブの形状は、前記仕切板の面内方向に180度回転させるとそれぞれ前記第3区画と前記第4区画に一致し、前記第1区画と前記第区画とを回転させずに重ねたときの前記リブの形状および前記第区画および前記第4区画とを回転させずに重ねたときの前記リブの形状は異なり、前記リブは、前記仕切り板の前記流路の延在方向に垂直な方向の両端に配置される封止リブと、前記流路の幅の中央付近に、前記流路の延在方向に沿って設けられる保持リブと、前記封止リブと前記保持リブとの間に、前記流路の延在方向に沿って、所定の間隔で複数配置され、前記仕切り板の前記流路の延在方向の長さよりも短い所定の長さの飛びリブと、を含み、前記仕切板の第1面の流路の延在方向を、前記積層方向に隣接する他の単位素子の第2面の流路の方向に合わせて前記単位素子を回転させて積層させたときに、前記単位素子の前記第1面に設けられる第1飛びリブと、前記他の単位素子の前記第2面に設けられる第2飛びリブと、が同一軸上に所定の間隔で配置された飛びリブ列が、前記封止リブと前記保持リブとの間に1列以上設けられ、前記仕切り面の第1面の流路の延在方向を、前記他の単位素子の第2面の流路の方向と直交するように重ねたときには、前記第1面に設けられる第1保持リブと前記他の単位素子の前記第2面に設けられる第2保持リブとが干渉するように前記第1保持リブと前記第2保持リブとが配置されることを特徴とする。 In order to achieve the above object, the total heat exchange element according to the present invention maintains a distance between the partition plate and another partition plate adjacent to the partition plate in the stacking direction perpendicular to the partition plate. The unit element having resin ribs provided on both surfaces of the partition plate so that the flow paths are orthogonal to each other is rotated by 90 degrees in the in-plane direction of the partition plate with respect to the other unit elements. A total heat exchange element that is laminated in a plurality of directions, wherein the unit element is divided into four sections having the same shape, and the first section, the second section, and the third section are sequentially clockwise from one section. In the case of the fourth section, the shape of the ribs provided in the first section and the second section is respectively set to the third section and the fourth section by rotating 180 degrees in the in-plane direction of the partition plate. matching, rotating of the said second compartment and said first compartment The shape of the rib is different when the stacked without rotating rib form and said third compartment and said fourth compartment when overlapped without the ribs, extending in the flow path of the partition plate Sealing ribs disposed at both ends in a direction perpendicular to the current direction, holding ribs provided in the vicinity of the center of the width of the flow channel along the extending direction of the flow channel, the sealing rib and the holding A plurality of ribs arranged at a predetermined interval along the extending direction of the flow path between the ribs, and a predetermined length of the jumping rib shorter than the length of the partition plate in the extending direction of the flow path , The unit element is rotated and laminated so that the extending direction of the flow path of the first surface of the partition plate matches the direction of the flow path of the second surface of another unit element adjacent to the stacking direction. The first jump rib provided on the first surface of the unit element and the front of the other unit element. One or more rows of flying ribs arranged at predetermined intervals on the same axis with the second flying ribs provided on the second surface are provided between the sealing rib and the holding rib, and the partition surface The first holding rib provided on the first surface and the other when the extending direction of the flow channel on the first surface of the other unit element is stacked so as to be orthogonal to the direction of the flow channel on the second surface of the other unit element. The first holding rib and the second holding rib are arranged so as to interfere with the second holding rib provided on the second surface of the unit element .

この発明によれば、所定の長さの飛びリブを流路に設けたので、仕切板とリブの接触面積を減らし、伝熱面積を大きくとることができるため、全熱交換の性能を従来に比して高めることができるという効果を有する。また、仕切板と樹脂製のリブとを有する単位素子としたので、気流漏れが少ない高品質の全熱交換素子とすることができるという効果を有する。さらに、単位素子を同じ形状の4つの区画に分割し、第1区画と第2区画に設けられるリブの形状は、仕切板の面内方向に180度回転させるとそれぞれ第3区画と第4区画に一致し、第1区画と第3区画に設けられるリブの形状は、第2区画および第4区画とは異なるようにしたので、1種類の単位素子で、全熱交換素子を構成することができ、全熱交換素子の製造コストを下げることができるという効果も有する。   According to the present invention, since the flying rib having a predetermined length is provided in the flow path, the contact area between the partition plate and the rib can be reduced, and the heat transfer area can be increased, so that the total heat exchange performance has been conventionally achieved. It has the effect that it can raise compared with. Further, since the unit element having the partition plate and the resin rib is used, there is an effect that a high-quality total heat exchange element with less airflow leakage can be obtained. Further, the unit element is divided into four sections having the same shape, and the shapes of the ribs provided in the first section and the second section are respectively set to the third section and the fourth section by rotating 180 degrees in the in-plane direction of the partition plate. And the shape of the ribs provided in the first compartment and the third compartment are different from those in the second compartment and the fourth compartment, so that the total heat exchange element can be constituted by one type of unit element. It is also possible to reduce the manufacturing cost of the total heat exchange element.

図1は、実施の形態による全熱交換素子を複数積層させた状態の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration in a state where a plurality of total heat exchange elements according to the embodiment are stacked. 図2は、全熱交換素子を構成する単位素子の構成の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of the configuration of the unit elements constituting the total heat exchange element. 図3は、図2の単位素子の表面側の平面図である。3 is a plan view of the surface side of the unit element of FIG. 図4は、図2の単位素子の裏面側の平面図である。FIG. 4 is a plan view of the back side of the unit element of FIG. 図5は、単位素子の表面側に形成されるリブと、面内で90度回転させた全熱交換素子の裏面側に形成されるリブと、を重ねて表示した図である。FIG. 5 is a diagram in which the rib formed on the front surface side of the unit element and the rib formed on the back surface side of the total heat exchange element rotated 90 degrees in the plane are displayed in an overlapping manner. 図6は、単位素子の表面側に形成されるリブと裏面側に形成されるリブの位置関係を示す図である。FIG. 6 is a diagram showing the positional relationship between the ribs formed on the front surface side and the ribs formed on the back surface side of the unit element. 図7は、単位素子を区画分けした図である。FIG. 7 is a diagram in which the unit elements are divided. 図8は、単位素子を積層させた場合の隣接する単位素子間の流路に形成される飛びリブと接続飛びリブの配置間隔を示す図である。FIG. 8 is a diagram illustrating an arrangement interval of the jump ribs and connection jump ribs formed in the flow path between adjacent unit elements when the unit elements are stacked. 図9は、単位素子の表裏両面に形成されるリブの接続状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing the connection state of the ribs formed on the front and back surfaces of the unit element. 図10は、実施の形態による全熱交換素子を構成する単位素子の他の構成例を示す上面図である。FIG. 10 is a top view showing another configuration example of the unit elements constituting the total heat exchange element according to the embodiment. 図11は、図10を区画分けした図である。FIG. 11 is a diagram in which FIG. 10 is partitioned. 図12は、実施の形態による全熱交換素子を適用した全熱交換装置の概略構成を示す図である。FIG. 12 is a diagram illustrating a schematic configuration of a total heat exchange device to which the total heat exchange element according to the embodiment is applied.

以下に添付図面を参照して、この発明の実施の形態にかかる全熱交換素子および全熱交換装置を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a total heat exchange element and a total heat exchange device according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は、実施の形態による全熱交換素子を複数積層させた状態の概略構成を示す斜視図であり、図2は、全熱交換素子を構成する単位素子の構成の一例を模式的に示す斜視図であり、図3は、図2の単位素子の表面側の平面図であり、図4は、図2の単位素子の裏面側の平面図である。また、図5は、単位素子の表面側に形成されるリブと、面内で90度回転させた全熱交換素子の裏面側に形成されるリブと、を重ねて表示した図である。図6は、単位素子の表面側に形成されるリブと裏面側に形成されるリブの位置関係を示す図であり、図7は、単位素子を区画分けした図である。図8は、単位素子を積層させた場合の隣接する単位素子間の流路に形成される飛びリブと接続飛びリブの配置間隔を示す図であり、図9は、単位素子の表裏両面に形成されるリブの接続状態を模式的に示す断面図である。なお、この実施の形態では、図2に示されるように、矩形状の単位素子の互いに直交する2つの辺の延在方向をそれぞれX方向とY方向とし、これらの2つの方向に垂直な方向をZ方向とする。すなわち、後述するように、単位素子のZ方向正側(表面側)のリブの延在方向をY方向とし、Z方向負側(裏面側)のリブの延在方向をX方向とする。   FIG. 1 is a perspective view showing a schematic configuration in a state where a plurality of total heat exchange elements according to the embodiment are stacked, and FIG. 2 schematically shows an example of a configuration of unit elements constituting the total heat exchange element. 3 is a perspective view, FIG. 3 is a plan view of the front side of the unit element of FIG. 2, and FIG. 4 is a plan view of the back side of the unit element of FIG. FIG. 5 is a diagram in which the ribs formed on the front surface side of the unit element and the ribs formed on the back surface side of the total heat exchange element rotated 90 degrees in the plane are displayed in an overlapping manner. FIG. 6 is a diagram showing the positional relationship between the ribs formed on the front surface side and the ribs formed on the back surface side of the unit element, and FIG. 7 is a diagram in which the unit elements are divided. FIG. 8 is a diagram showing the spacing between the jump ribs and connection jump ribs formed in the flow path between adjacent unit elements when the unit elements are stacked, and FIG. 9 is formed on both the front and back surfaces of the unit elements. It is sectional drawing which shows typically the connection state of the rib made. In this embodiment, as shown in FIG. 2, the extending directions of two sides of the rectangular unit element that are orthogonal to each other are defined as an X direction and a Y direction, respectively, and directions perpendicular to these two directions. Is the Z direction. That is, as will be described later, the extending direction of the Z-direction positive side (front surface side) rib of the unit element is defined as the Y direction, and the extending direction of the Z-direction negative side (back surface side) rib is defined as the X direction.

この実施の形態の全熱交換素子1は、第1の方向の第1の空気流路(第1の流路)2と、第1の空気流路(第1の流路)2と直交する第2の方向の第2の空気流路(第2の流路)3とが、Z方向に交互に形成されるように、単位素子10がZ方向に複数積層された構造を有する。   The total heat exchange element 1 of this embodiment is orthogonal to the first air flow path (first flow path) 2 in the first direction and the first air flow path (first flow path) 2. A plurality of unit elements 10 are stacked in the Z direction so that second air flow paths (second flow paths) 3 in the second direction are alternately formed in the Z direction.

単位素子10は、略正方形の板状の仕切板11のZ方向正側の第1の面(以下、表面という)12と、表面12に対向する第2の面(以下、裏面という)13と、で表面12と裏面13に形成される流路が交差するようにリブ21〜23,31〜33を有する。単位素子10で見た場合には、表面12側には気流がY方向に流れるようにリブ21〜23が設けられ、裏面13側には気流がX方向に流れるようにリブ31〜33が設けられる。   The unit element 10 includes a first surface (hereinafter referred to as a front surface) 12 on the positive side in the Z direction of a substantially square plate-shaped partition plate 11, and a second surface (hereinafter referred to as a back surface) 13 facing the front surface 12. The ribs 21 to 23 and 31 to 33 are provided so that the flow paths formed on the front surface 12 and the back surface 13 intersect. When viewed from the unit element 10, ribs 21 to 23 are provided on the front surface 12 side so that airflow flows in the Y direction, and ribs 31 to 33 are provided on the back surface 13 side so that airflow flows in the X direction. It is done.

単位素子10(仕切板11)の表面12には、図2と図3に示されるように、封止リブ21と、保持リブ22と、飛びリブ23と、が設けられる。   As shown in FIG. 2 and FIG. 3, a sealing rib 21, a holding rib 22, and a jumping rib 23 are provided on the surface 12 of the unit element 10 (partition plate 11).

封止リブ21は、仕切板11の表面12で、Y方向へガスを流す流路P1を形成するとともに、Y方向に流れるガスの気流漏れを塞ぐように、仕切板11の表面12のX方向両端部に設けられ、Y方向に延在する2列のリブによって構成される。   The sealing rib 21 forms a flow path P1 through which gas flows in the Y direction on the surface 12 of the partition plate 11, and the X direction of the surface 12 of the partition plate 11 so as to block airflow leakage of gas flowing in the Y direction. It is provided with both ends and is constituted by two rows of ribs extending in the Y direction.

保持リブ22は、仕切板11の表面12のX方向の中央付近に、封止リブ21と同じY方向に延在し、流路P1の積層方向の間隔を保持するように設けられる。保持リブ22は、仕切板11のY方向の長さの略半分の長さを有する2本のリブ22a,22bによって構成される。ここでは、2本のリブ22a,22bは一直線上に配置されるのではなく、X方向にリブ22a,22bの太さ分ずらして配置され、Y方向の中央部付近に間隙(嵌合部)22cを有している。   The holding ribs 22 are provided in the vicinity of the center in the X direction on the surface 12 of the partition plate 11 so as to extend in the same Y direction as the sealing ribs 21 and hold the gaps in the stacking direction of the flow paths P1. The holding rib 22 is constituted by two ribs 22a and 22b having a length approximately half of the length of the partition plate 11 in the Y direction. Here, the two ribs 22a and 22b are not arranged in a straight line, but are shifted in the X direction by the thickness of the ribs 22a and 22b, and a gap (fitting portion) is located near the center in the Y direction. 22c.

飛びリブ23は、封止リブ21および保持リブ22と同じY方向に延在し、封止リブ21と保持リブ22との間に複数の列(この例では3列)で配置される。飛びリブ23は、仕切板11の伸びによる流路P1の閉塞を抑制し、かつ伝熱面積をより大きく保つために、流れ方向(Y方向)に細切れに複数設けられる。すなわち、封止リブ21と保持リブ22との間の流路P1に設けられるY方向に延在する複数列のリブにおいて、各列のリブにY方向に所定の間隔で間隙が設けられる構造となっている。   The flying ribs 23 extend in the same Y direction as the sealing ribs 21 and the holding ribs 22 and are arranged in a plurality of rows (three rows in this example) between the sealing ribs 21 and the holding ribs 22. In order to suppress the blockage of the flow path P <b> 1 due to the extension of the partition plate 11 and to keep the heat transfer area larger, a plurality of the jump ribs 23 are provided in the flow direction (Y direction). That is, in a plurality of rows of ribs extending in the Y direction provided in the flow path P1 between the sealing rib 21 and the holding rib 22, a gap is provided in each row of ribs at predetermined intervals in the Y direction. It has become.

単位素子10(仕切板11)の裏面13には、図4に示されるように、接続封止リブ31と、接続保持リブ32と、接続飛びリブ33と、が設けられる。   As shown in FIG. 4, connection sealing ribs 31, connection holding ribs 32, and connection jumping ribs 33 are provided on the back surface 13 of the unit element 10 (partition plate 11).

接続封止リブ31は、仕切板11の裏面13で、X方向へガスを流す流路P2を形成するとともに、X方向に流れるガスの気流漏れを塞ぐように、仕切板11の裏面13のY方向端部に設けられる。接続封止リブ31は、表面12の流路P1と直交するX方向に延在する2列のリブによって構成される。また、接続封止リブ31は、図6や図9に示されるように、その端部で仕切板11を貫通し、表面12に形成される封止リブ21と接続される。   The connection sealing rib 31 forms a flow path P2 through which gas flows in the X direction on the back surface 13 of the partition plate 11, and Y on the back surface 13 of the partition plate 11 so as to block airflow leakage of gas flowing in the X direction. Provided at the direction end. The connection sealing rib 31 is configured by two rows of ribs extending in the X direction orthogonal to the flow path P1 of the surface 12. Further, as shown in FIG. 6 and FIG. 9, the connection sealing rib 31 penetrates the partition plate 11 at the end thereof and is connected to the sealing rib 21 formed on the surface 12.

接続保持リブ32は、仕切板11の裏面13のY方向の中央付近に、接続封止リブ31と同じX方向に延在し、流路P2の積層方向の間隔と構造強度を保持するように設けられる。接続保持リブ32は、仕切板11のX方向の長さに略等しい長さのX方向に延在する1本のリブによって構成される。ただし、X方向の中央付近で、Y方向の位置がリブの1本分の太さだけずれて配置されている。より具体的には、仕切板11のX方向の長さの略半分の長さを有する2本のリブ32a,32bが、Y方向の中央付近に、リブ32a,32bの太さ分だけずらしてX方向に延在して配置され、仕切板11中央部付近で2つのリブ32a,32bの一方の端部が接続部32cによって接続される構造を有している。接続保持リブ32は、図6や図9に示されるように、仕切板11の中央付近で仕切板11を貫通して保持リブ22と接続され、その端部で仕切板11を貫通して封止リブ21と接続される。   The connection holding rib 32 extends in the same X direction as the connection sealing rib 31 in the vicinity of the center in the Y direction of the back surface 13 of the partition plate 11 so as to maintain the interval and the structural strength of the flow path P2 in the stacking direction. Provided. The connection holding rib 32 is configured by a single rib extending in the X direction having a length substantially equal to the length of the partition plate 11 in the X direction. However, in the vicinity of the center in the X direction, the position in the Y direction is shifted by the thickness of one rib. More specifically, the two ribs 32a and 32b having approximately half the length in the X direction of the partition plate 11 are shifted by the thickness of the ribs 32a and 32b in the vicinity of the center in the Y direction. It extends in the X direction and has a structure in which one end of the two ribs 32a and 32b is connected by a connecting portion 32c in the vicinity of the center of the partition plate 11. As shown in FIGS. 6 and 9, the connection holding rib 32 passes through the partition plate 11 in the vicinity of the center of the partition plate 11 and is connected to the holding rib 22. Connected to the retaining rib 21.

接続飛びリブ33は、接続封止リブ31および接続保持リブ32と同じX方向に延在し、接続封止リブ31と接続保持リブ32との間に複数の列(この例では3列)で配置される。接続飛びリブ33は、仕切板11の伸びによる流路P2の閉塞を抑制し、かつ伝熱面積をより大きく保つために、流れ方向(X方向)に細切れに複数設けられる。すなわち、接続封止リブ31と接続保持リブ32との間の流路P2に設けられるX方向に延在する複数列のリブにおいて、各列のリブにX方向に所定の間隔で間隙が設けられる構造となっている。接続飛びリブ33のX方向の両端部は、図6や図9に示されるように、仕切板11を貫通して表面12側に配置される飛びリブ23、封止リブ21または保持リブ22と接続される。   The connection skip ribs 33 extend in the same X direction as the connection sealing ribs 31 and the connection holding ribs 32, and are arranged in a plurality of rows (three rows in this example) between the connection sealing ribs 31 and the connection holding ribs 32. Be placed. In order to suppress the blockage of the flow path P <b> 2 due to the extension of the partition plate 11 and to keep the heat transfer area larger, a plurality of the connecting jump ribs 33 are provided in a small amount in the flow direction (X direction). That is, in the plurality of rows of ribs extending in the X direction provided in the flow path P2 between the connection sealing rib 31 and the connection holding rib 32, gaps are provided in the rows of the ribs at predetermined intervals in the X direction. It has a structure. As shown in FIG. 6 and FIG. 9, both ends of the connecting jump rib 33 in the X direction pass through the partition plate 11 and are arranged on the front surface 12 side with the jump rib 23, the sealing rib 21, or the holding rib 22. Connected.

以上のように、裏面13のリブが表面12のリブと仕切板11を貫通して接続されるようにすることで、後述するようにリブを形成する際に、1回の樹脂の注入で全てのリブを一体的に成形することが可能になる。   As described above, the ribs on the back surface 13 are connected through the ribs on the front surface 12 and the partition plate 11 so that when the ribs are formed as will be described later, all of the resin is injected once. These ribs can be formed integrally.

ここで、飛びリブ23と接続飛びリブ33の長さは、仕切板11の伸びによる風路閉塞の抑制と、伝熱面積の確保と、樹脂成形時の飛びリブ23と接続飛びリブ33への樹脂流動性確保の観点と、から、単位素子10の一辺長さの1/16以上、1/6以下とすることが望ましい。   Here, the lengths of the flying ribs 23 and the connecting flying ribs 33 are to suppress the air passage blockage due to the extension of the partition plate 11, to secure the heat transfer area, and to the flying ribs 23 and the connecting flying ribs 33 at the time of resin molding. From the viewpoint of ensuring resin fluidity, it is desirable that the length of one side of the unit element 10 is 1/16 or more and 1/6 or less.

このような構成を有する単位素子10を、Z方向に順次積層させる。このとき、ある単位素子10の表面12に、Z方向に隣接する他の単位素子10の裏面13が対向するとともに、他の単位素子10がある単位素子10に対してXY面内で90度回転した配置となるように、単位素子10を積層させて、全熱交換素子1を形成する。   The unit elements 10 having such a configuration are sequentially stacked in the Z direction. At this time, the back surface 13 of another unit element 10 adjacent in the Z direction is opposed to the front surface 12 of a certain unit element 10, and the other unit element 10 is rotated 90 degrees in the XY plane with respect to the unit element 10 with the other unit element 10. The unit elements 10 are stacked so that the total heat exchange element 1 is formed so that the arrangement described above is achieved.

このようにZ方向に積層させると、ある単位素子10の表面12の流路P1の方向と、他の単位素子10の裏面13の流路P2の方向とが一致し、1つの流路Pを形成する。そして、Z方向に積層させた単位素子10間の流路Pに形成されるリブは図5に示されるように配置される。この図5では、便宜上、表面12に形成されるリブ21〜23と、裏面13に形成されるリブ31〜33と、が区別可能なように、裏面13に形成されるリブ31〜33にハッチングを付している。   When stacked in the Z direction in this way, the direction of the flow path P1 on the front surface 12 of a certain unit element 10 matches the direction of the flow path P2 on the back surface 13 of the other unit element 10, and one flow path P is formed. Form. And the rib formed in the flow path P between the unit elements 10 laminated | stacked on the Z direction is arrange | positioned as FIG. 5 shows. In FIG. 5, for convenience, the ribs 31 to 33 formed on the back surface 13 are hatched so that the ribs 21 to 23 formed on the front surface 12 and the ribs 31 to 33 formed on the back surface 13 can be distinguished. Is attached.

この図5に示されるように、ある単位素子10の表面12に形成される流路P1と、Z方向に隣接する他の単位素子10の裏面13に形成される流路P2と、が重なることによって形成される流路Pでは、ある単位素子10のY方向に延在する封止リブ21と、他の単位素子10のX方向に延在する接続封止リブ31とが、延在方向が一致するように配置される。ある単位素子10の表面12を基準にすると(以下も同様)、ある単位素子10のX方向の両端に、封止リブ21と接続封止リブ31は配置される。このとき、ある単位素子10の表面12の2列の封止リブ21と他の単位素子10の裏面13の2列の接続封止リブ31とは、それぞれの凹部に一方のリブが嵌め込まれた構造となり、Z方向に隣接する単位素子10間が固定される。これによって、4本のY方向に延在するリブが一塊になって、封止リブとして仕切板11のX方向の端部を支持することになる。   As shown in FIG. 5, the flow path P1 formed on the front surface 12 of a certain unit element 10 and the flow path P2 formed on the back surface 13 of another unit element 10 adjacent in the Z direction overlap. In the flow path P formed by the sealing element 21, the sealing rib 21 extending in the Y direction of a certain unit element 10 and the connecting sealing rib 31 extending in the X direction of another unit element 10 have an extending direction. Arranged to match. When the surface 12 of a certain unit element 10 is used as a reference (and so on), the sealing ribs 21 and the connection sealing ribs 31 are disposed at both ends of the certain unit element 10 in the X direction. At this time, two ribs of the sealing ribs 21 on the front surface 12 of one unit element 10 and the two rows of connection sealing ribs 31 on the back surface 13 of the other unit element 10 have one rib fitted in each recess. The structure is fixed, and the unit elements 10 adjacent in the Z direction are fixed. As a result, the four ribs extending in the Y direction form a lump and support the end portion in the X direction of the partition plate 11 as a sealing rib.

また、Z方向に隣接する2つの単位素子10によって形成される流路Pでは、保持リブ22と接続保持リブ32が、仕切板11のX方向の中央にY方向に延在するように配置される。具体的には、ある単位素子10の表面12の中央部に間隙22cを有するように配置される保持リブ22と、他の単位素子10の裏面13の接続保持リブ32とが、一体化され、1本のY方向に延在する保持リブが形成される。このとき、接続保持リブ32のY方向中央部付近の接続部32cが、保持リブ22の間隙22cに嵌め込まれる。これによって、2本のY方向に延在するリブが一塊となって、保持リブとして仕切板11のX方向の中央部を支持することになる。   Further, in the flow path P formed by two unit elements 10 adjacent in the Z direction, the holding rib 22 and the connection holding rib 32 are arranged to extend in the Y direction at the center of the partition plate 11 in the X direction. The Specifically, the holding rib 22 disposed so as to have a gap 22c in the center of the surface 12 of a certain unit element 10 and the connection holding rib 32 on the back surface 13 of the other unit element 10 are integrated, One holding rib extending in the Y direction is formed. At this time, the connection portion 32 c near the central portion in the Y direction of the connection holding rib 32 is fitted into the gap 22 c of the holding rib 22. As a result, the two ribs extending in the Y direction form a lump and support the central portion in the X direction of the partition plate 11 as a holding rib.

このように、接続保持リブ32と保持リブ22とが嵌め合わされる構造としているため、たとえば積層する際に、ある単位素子10に対して、他の単位素子10をXY面内で90度回転しなかった場合には、接続保持リブ32の一部と保持リブ22の一部とが干渉してしまうことになるので、積層方法を間違えていることを認識しやすくすることができる。また、積層時にはある単位素子10の表面12中央の間隙22cと他の単位素子10の裏面13中央の接続部32cとの嵌合によって位置決めをすることで、単位素子10間の積層ズレを防止することができる。   Since the connection holding rib 32 and the holding rib 22 are thus fitted together, for example, when stacking, another unit element 10 is rotated 90 degrees in the XY plane with respect to a certain unit element 10. If not, a part of the connection holding rib 32 and a part of the holding rib 22 interfere with each other, so that it is easy to recognize that the stacking method is wrong. Further, during stacking, positioning is performed by fitting the gap 22c at the center of the front surface 12 of a certain unit element 10 and the connection portion 32c at the center of the back surface 13 of another unit element 10, thereby preventing stacking misalignment between the unit elements 10. be able to.

これらの一体化された封止リブと一体化された保持リブとの間に、流路Pが形成され、そこに、ある単位素子10の表面12の飛びリブ23と他の単位素子10の裏面13の接続飛びリブ33とが、互いに同列内の同軸上で隙間となった部分を補填し、流路P内の飛びリブ23と接続飛びリブ33は規則正しく互い違いの配置となる。これによって、一体化された封止リブと一体化された保持リブとの間に、Y方向に所定の間隔で配置される一列の飛びリブが、3列形成されることになる。このように飛びリブ23と接続飛びリブ33が流れ方向に同一軸上に揃って配置されるため、また、飛びリブ23と接続飛びリブ33で形成された風路は、リブが細切れになっているため、リブによる気流の摩擦抵抗を小さくでき、各風路を低圧力損失となる形状に形成することができる。さらに、この場合には、ある単位素子10の飛びリブ23は、流路P内に構成される飛びリブ23と接続飛びリブ33の合計の約半数を占めることになる。   A flow path P is formed between the integrated sealing rib and the integrated holding rib, and there is a jump rib 23 on the surface 12 of a certain unit element 10 and the back surface of another unit element 10. 13 connecting jump ribs 33 make up for the gaps on the same axis in the same row, and the jump ribs 23 and the connection jump ribs 33 in the flow path P are regularly and alternately arranged. As a result, three rows of jumping ribs arranged at predetermined intervals in the Y direction are formed between the integrated sealing ribs and the integrated holding ribs. Since the flying ribs 23 and the connecting flying ribs 33 are arranged on the same axis in the flow direction in this way, the air path formed by the flying ribs 23 and the connecting flying ribs 33 is cut into small pieces. Therefore, the frictional resistance of the airflow by the rib can be reduced, and each air passage can be formed in a shape that results in low pressure loss. Further, in this case, the jump ribs 23 of a certain unit element 10 occupy about half of the total of the jump ribs 23 and the connection jump ribs 33 formed in the flow path P.

このようにして形成される流路Pは、その向きによって、図1に示される第1の流路2になったり、第2の流路3になったりする。   The flow path P formed in this way becomes the first flow path 2 or the second flow path 3 shown in FIG.

ここで、単位素子10の表面12と裏面13に形成されるリブの配置について、図6と図7を参照しながら説明する。図6は、1枚の単位素子10の構成の一例を表面側から見た図であり、図7は、図6を区画分けした図である。図6では、裏面側に設けられるリブに、ハッチングを付している。   Here, the arrangement of the ribs formed on the front surface 12 and the back surface 13 of the unit element 10 will be described with reference to FIGS. 6 and 7. FIG. 6 is a view of an example of the configuration of one unit element 10 as viewed from the front side, and FIG. 7 is a view obtained by dividing FIG. In FIG. 6, the rib provided on the back side is hatched.

図7に示されるように、単位素子10の中心を通りX方向に延在する直線と、単位素子10の中心を通りY方向に延在する直線とによって、単位素子10を4つの区画A〜Dに分割する。ここでは、4つに分割した領域の1つを区画Aとし、そこから時計回りに区画B、区画C、区画Dとしている。   As shown in FIG. 7, the unit element 10 is divided into four sections A to A by a straight line extending in the X direction through the center of the unit element 10 and a straight line extending in the Y direction through the center of the unit element 10. Divide into D. Here, one of the four divided areas is defined as section A, and from there, section B, section C, and section D are clockwise.

この実施の形態では、区画AをXY面内で180度回転させると、区画Cと同じ形状となる。同様に区画BをXY平面内で180度回転させると、区画Dと同じ形状となる。つまり、区画A,Bは、それぞれ区画C,Dと回転対称の構造を有している。   In this embodiment, when the section A is rotated 180 degrees in the XY plane, the same shape as the section C is obtained. Similarly, when the section B is rotated 180 degrees in the XY plane, the same shape as the section D is obtained. That is, the sections A and B have a rotationally symmetric structure with the sections C and D, respectively.

また、区画Aと区画B(同様に区画Cと区画D)とは、それぞれ異なる形状を有している。たとえば、区画AをXY面内で90度回転させてBに重ねると、図5(積層した際に形成される流路Pを上面から投影した図)で示すように、流れ方向と並行するように、飛びリブ23と接続飛びリブ33とが流路Pを形成する。このとき、上記したように、飛びリブ23と接続飛びリブ33とは干渉せず、仕切板11の表面12を基準としたときに、Y方向に隣接して配置される飛びリブ23と飛びリブ23の間に接続飛びリブ33が配置され、またはY方向に隣接して配置される接続飛びリブ33と接続飛びリブ33の間に飛びリブ23が配置される。さらに、配置された飛びリブ23と接続飛びリブ33は、封止リブ21,31と保持リブ22,32との間の流路Pに、規則正しく互い違いに配置される。   The section A and the section B (similarly the section C and the section D) have different shapes. For example, when section A is rotated 90 degrees in the XY plane and overlapped with B, as shown in FIG. 5 (a view in which the flow path P formed when stacked is projected from the upper surface), it is parallel to the flow direction. In addition, the flying rib 23 and the connecting flying rib 33 form a flow path P. At this time, as described above, the flying ribs 23 and the connecting flying ribs 33 do not interfere with each other, and the flying ribs 23 and the flying ribs arranged adjacent to each other in the Y direction when the surface 12 of the partition plate 11 is used as a reference. The connecting jump ribs 33 are arranged between the connecting jump ribs 33 or between the connecting jump ribs 33 arranged adjacent to each other in the Y direction. Furthermore, the arranged jump ribs 23 and the connection jump ribs 33 are regularly and alternately arranged in the flow path P between the sealing ribs 21 and 31 and the holding ribs 22 and 32.

このように、同じ形状の単位素子10を90度回転して積層するだけで全熱交換素子1が得られるため、生産性が高い。また、90度回転をせずに積層を試みると、上記したようにリブが干渉するため、誤積層防止となる。   Thus, the total heat exchange element 1 can be obtained simply by rotating the unit elements 10 having the same shape by 90 degrees and stacking them, so that the productivity is high. Further, if the stacking is attempted without rotating by 90 degrees, the ribs interfere as described above, thereby preventing erroneous stacking.

また、図8に示されるように、たとえば仕切板11の表面の流路Pにおいて、飛びリブ23と接続飛びリブ33とが同軸上に形成される位置で、リブ間の仕切板11がフリーになっている流れ方向のスパン(間隔)は、どの位置でも概略同一のαである。さらに、たとえば仕切板11の裏面の流路Pにおいて、飛びリブ23と接続飛びリブ33とが同軸上に形成される位置で、リブ間の仕切板11がフリーになっている流れ方向のスパン(間隔)は、どの位置でも概略同一のβである。このように、流れ方向に沿って、均一にリブの間隔を設けることで、仕切板11の撓みを効率よく抑制することができる。   Further, as shown in FIG. 8, for example, in the flow path P on the surface of the partition plate 11, the partition plate 11 between the ribs is free at a position where the jump rib 23 and the connection jump rib 33 are formed coaxially. The span (interval) in the flow direction is substantially the same α at any position. Further, for example, in the flow path P on the back surface of the partition plate 11, the flow direction span (where the partition plate 11 between the ribs is free) at the position where the jump rib 23 and the connection jump rib 33 are formed coaxially. The interval is approximately the same β at any position. As described above, by uniformly providing the rib interval along the flow direction, the bending of the partition plate 11 can be efficiently suppressed.

ここで、仕切板11として、気体遮蔽性があり透湿性のある、たとえば透湿樹脂と不織布などの基材を貼合わせた複合膜、叩解度を上げたパルプ繊維を用いてすいた紙に、潮解性の吸湿塩(たとえば、塩化リチウムや塩化カルシウムなど)を塗布したシート状の特殊加工紙などを用いることができる。   Here, as the partition plate 11, gas-shielding and moisture-permeable, for example, a composite film obtained by laminating a base material such as a moisture-permeable resin and a non-woven fabric, and paper made using pulp fibers with increased beating degree, A sheet-like specially processed paper coated with a deliquescent moisture-absorbing salt (for example, lithium chloride or calcium chloride) can be used.

また、封止リブ21、保持リブ22、飛びリブ23、接続封止リブ31、接続保持リブ32および接続飛びリブ33は、一体成形された樹脂によって構成され、仕切板11に設けられる。   Further, the sealing rib 21, the holding rib 22, the jumping rib 23, the connection sealing rib 31, the connection holding rib 32, and the connection jumping rib 33 are made of an integrally molded resin and are provided on the partition plate 11.

つぎに、このような単位素子10の作製方法について説明する。単位素子10の表面・裏面の形状をキャビティ・コアにそれぞれ掘り込んである成形金型を用意する。この成形金型に仕切板11を挟み成形することで単位素子10の形状が得られる。このとき、成形樹脂は、たとえば図9に示されるように、仕切板11の表面に設けられた位置決め機構を構成する間隙22cの位置からゲートで注入する。注入された樹脂は保持リブ22、接続保持リブ32を単位素子10の外側に向かって放射状に流れる。保持リブ22を流れる樹脂は、仕切板11を破って途中に存在する接続飛びリブ33に流れ込み、ついで飛びリブ23と伝って(場合によってはさらに接続飛びリブ33、飛びリブ23を何度か繰返し伝って)最終的に再外側の接続封止リブ31に流れる。   Next, a method for manufacturing such a unit element 10 will be described. A molding die is prepared in which the shapes of the front and back surfaces of the unit element 10 are dug into the cavity and the core, respectively. The shape of the unit element 10 is obtained by sandwiching and molding the partition plate 11 in this molding die. At this time, as shown in FIG. 9, for example, the molding resin is injected at the gate from the position of the gap 22c constituting the positioning mechanism provided on the surface of the partition plate 11. The injected resin flows radially through the holding rib 22 and the connection holding rib 32 toward the outside of the unit element 10. The resin flowing through the holding rib 22 breaks the partition plate 11 and flows into the connecting jump rib 33 existing on the way, and then travels to the jump rib 23 (in some cases, the connection jump rib 33 and the jump rib 23 are repeated several times. And finally flow to the outer connection sealing rib 31.

また同様に、ゲートから注入された樹脂は接続保持リブ32を流れ、仕切板11を破って途中にある飛びリブ23に流れ込み、ついで接続飛びリブ33と伝って(場合によってはさらに飛びリブ23、接続飛びリブ33を何度か繰返し伝って)最終的に再外側の封止リブ21に流れる。   Similarly, the resin injected from the gate flows through the connection holding rib 32, breaks the partition plate 11, flows into the flying rib 23 in the middle, and then travels to the connecting flying rib 33 (in some cases, the flying rib 23, It finally flows to the outer sealing rib 21 (repeated several times through the connecting jump rib 33).

その後、樹脂を固化させることで、図9に示されるように、封止リブ21、保持リブ22、飛びリブ23、接続封止リブ31、接続保持リブ32および接続飛びリブ33が一体的に仕切板11の両面に形成された単位素子10が形成される。このように、樹脂が仕切板11を破りながら縫うように流れていくので、特に破られた箇所については、樹脂と仕切板11の接合強度が非常に強く、環境ストレス耐力を得ることができる。   Thereafter, by solidifying the resin, as shown in FIG. 9, the sealing rib 21, the holding rib 22, the jumping rib 23, the connection sealing rib 31, the connection holding rib 32 and the connection jumping rib 33 are integrally partitioned. Unit elements 10 formed on both surfaces of the plate 11 are formed. As described above, the resin flows so as to sew while breaking the partition plate 11, and therefore, particularly at the broken portion, the bonding strength between the resin and the partition plate 11 is very strong, and environmental stress resistance can be obtained.

そして、作製された単位素子10を、表面のリブの延在方向が、下に配置された単位素子10の表面のリブの延在方向に対して90度回転するように、Z方向に配置する。このとき、下に配置された単位素子10の表面の保持リブ22の間隙22cに、上に配置される単位素子10の裏面の接続保持リブ32の接続部32cが嵌るように重ね合わせる。この処理を単位素子10を所定の数重ねるまで行うことによって、全熱交換素子1が形成される。   Then, the manufactured unit element 10 is arranged in the Z direction so that the extending direction of the rib on the surface rotates 90 degrees with respect to the extending direction of the rib on the surface of the unit element 10 arranged below. . At this time, it is overlapped so that the connection portion 32c of the connection holding rib 32 on the back surface of the unit element 10 disposed above fits in the gap 22c of the holding rib 22 on the surface of the unit element 10 disposed below. By performing this process until a predetermined number of unit elements 10 are stacked, the total heat exchange element 1 is formed.

なお、保持リブ22、接続保持リブ32を増やすことで、単位素子10の強度を増すことができる。図10は、実施の形態による全熱交換素子を構成する単位素子の他の構成例を示す上面図であり、図11は、図10を区画分けした図である。この例では、一対の封止リブ(封止リブ21と接続封止リブ31とが一体化された封止リブ)間に、3本の保持リブを配置し、隣接する封止リブと保持リブとの間、または隣接する保持リブの間に、それぞれ3列の飛びリブ23および接続飛びリブ33を配置している。   Note that the strength of the unit element 10 can be increased by increasing the holding ribs 22 and the connection holding ribs 32. FIG. 10 is a top view showing another configuration example of the unit elements constituting the total heat exchange element according to the embodiment, and FIG. 11 is a diagram in which FIG. 10 is divided. In this example, three holding ribs are arranged between a pair of sealing ribs (sealing ribs in which the sealing ribs 21 and the connection sealing ribs 31 are integrated), and the adjacent sealing ribs and holding ribs are arranged. Three rows of jumping ribs 23 and connecting jumping ribs 33 are arranged between the adjacent holding ribs.

この場合でも、図11の区画AをXY面内で180度回転すると区画Cと一致し、区画BをXY面内で180度回転すると区画Dと一致し、区画Aと区画B(区画Cと区画D)とが一致しないように、保持リブ22、飛びリブ23、接続保持リブ32および接続飛びリブ33が配置される。この例では、各区画A〜Dは、それぞれさらに小区画A1〜A4,B1〜B4,C1〜C4,D1〜D4に区分される。その結果、単位素子10は、16個の小区画に区分されることになる。   Even in this case, when section A in FIG. 11 is rotated 180 degrees in the XY plane, it coincides with section C, and when section B is rotated 180 degrees in the XY plane, it coincides with section D, and section A and section B (section C and section C). The holding rib 22, the jump rib 23, the connection holding rib 32 and the connection jump rib 33 are arranged so as not to coincide with the section D). In this example, each of the sections A to D is further divided into small sections A1 to A4, B1 to B4, C1 to C4, and D1 to D4. As a result, the unit element 10 is divided into 16 small sections.

各区画A〜Dに属する小区画は、全て同じリブの配置を有している。すなわち、区画Aを構成する小区画A1〜A4は、全て同じリブの配置を有しており、区画Bを構成する小区画B1〜B4は、全て同じリブの配置を有しており、区画Cを構成する小区画C1〜C4は、全て同じリブの配置を有しており、区画Dを構成する小区画D1〜D4は、全て同じリブの配置を有している。その結果、領域Aと領域Cは回転対称の形状となり、領域Bと領域Dは回転対称の形状となる。   All of the small sections belonging to the sections A to D have the same rib arrangement. That is, the small sections A1 to A4 constituting the section A all have the same rib arrangement, and the small sections B1 to B4 constituting the section B all have the same rib arrangement, and the section C. All of the small sections C1 to C4 constituting the same section have the same rib arrangement, and all of the small sections D1 to D4 constituting the section D have the same rib arrangement. As a result, region A and region C have a rotationally symmetric shape, and region B and region D have a rotationally symmetric shape.

このように、単位素子10の分割数を増加させても、仕切板11を4分割した区画A〜Dについて、上記した規則で配置を行うことによって、上記と同一の効果を得ることができる。一般的に、単位素子10に形成する封止リブ21,31と保持リブ22,32との間の流路、または保持リブ22,32間の流路の数をmとすると、小区画の数Nは、次式(1)で示される。
N=m2 ・・・(1)
Thus, even if the number of divisions of the unit element 10 is increased, the same effect as described above can be obtained by arranging the sections A to D obtained by dividing the partition plate 11 into four according to the above-described rules. Generally, if the number of channels between the sealing ribs 21 and 31 and the holding ribs 22 and 32 formed in the unit element 10 or the number of channels between the holding ribs 22 and 32 is m, the number of small sections N is represented by the following formula (1).
N = m 2 (1)

このような形状を取ることで、生産性が高く、また仕切板11の伸びを抑制しつつ性能が高い全熱交換素子1を得ることができる。なお、上記した説明では、単位素子10は、正方形の形状の仕切板11によって構成されているが、これに限定されるものではなく、上記した実施の形態の特徴を有するものであれば、矩形状の仕切板によって構成されていてもよい。また、上記した例では、仕切板11の中心を通り、各辺に平行な直線によって各区画に分割していたが、仕切板11を4等分することができ、180度回転させて同じ形状となるものであれば、分割の仕方は特に問われない。   By taking such a shape, the total heat exchange element 1 with high productivity and high performance while suppressing the elongation of the partition plate 11 can be obtained. In the above description, the unit element 10 is configured by the square-shaped partition plate 11. However, the unit element 10 is not limited to this, and any rectangular element can be used as long as it has the characteristics of the above-described embodiment. You may be comprised by the shape partition plate. In the above example, the partition plate 11 is divided into sections by straight lines that pass through the center of the partition plate 11 and are parallel to each side. However, the partition plate 11 can be divided into four equal parts and rotated by 180 degrees to have the same shape. If it becomes, it will not ask | require especially the method of a division | segmentation.

つぎに、実施の形態による全熱交換素子1を適用した全熱交換装置について説明する。図12は、実施の形態による全熱交換素子を適用した全熱交換装置の概略構成を示す図である。   Below, the total heat exchange apparatus to which the total heat exchange element 1 by embodiment is applied is demonstrated. FIG. 12 is a diagram illustrating a schematic configuration of a total heat exchange device to which the total heat exchange element according to the embodiment is applied.

全熱交換装置100の内部には、上記した全熱交換素子1が収容される。全熱交換装置100の内部には、室外の空気を室内に給気するための給気流路102が、全熱交換素子1の第1の空気流路2を含めて形成される。また、全熱交換装置100の内部には、室内の空気を室外に排気するための排気流路103が、全熱交換素子1の第2の空気流路3を含めて構成される。給気流路102には、室外から室内に向けた空気の流れを発生させる給気送風機110が設けられる。すなわち、給気送風機110は、室外から給気流路102(第1の流路2)を介して室内へ向かう気流を第1の気流106として発生させる。排気流路103には、室内から室外に向けた空気の流れを発生させる排気送風機120が設けられる。すなわち、排気送風機120は、室内から排気流路103(第2の流路3)を介して室外へ向かう気流を第2の気流107として発生させる。   The total heat exchange device 1 is accommodated in the total heat exchange device 100. Inside the total heat exchange device 100, an air supply channel 102 for supplying outdoor air into the room is formed including the first air channel 2 of the total heat exchange element 1. In addition, an exhaust flow path 103 for exhausting indoor air to the outside including the second air flow path 3 of the total heat exchange element 1 is configured inside the total heat exchange device 100. The air supply flow path 102 is provided with an air supply blower 110 that generates a flow of air from the outside to the room. In other words, the air supply blower 110 generates an air flow from the outside to the room as the first air flow 106 via the air supply flow path 102 (first flow path 2). The exhaust flow path 103 is provided with an exhaust blower 120 that generates a flow of air from the room toward the outside. That is, the exhaust blower 120 generates an air flow that goes from the room to the outside through the exhaust flow path 103 (second flow path 3) as the second air flow 107.

全熱交換装置100が運転されると、給気送風機110と排気送風機120とが作動する。これにより、たとえば冷たくて乾燥した室外の空気が給気流(第1の気流106)として給気流路102に通され、暖かくて湿気の高い室内の空気が排気流(第2の気流107)として排気流路103に通される。給気流および排気流の各気流(2種の気流)が、全熱交換素子1の仕切板11を隔てて流れる。このとき、仕切板11を介して各気流の間で熱が伝わり、仕切板11を水蒸気が透過することで、給気流と排気流との間で顕熱および潜熱の熱交換が行われる。これにより、給気流は暖められるとともに加湿されて室内に供給され、排気流は冷やされるとともに減湿されて室外へ排出される。したがって、全熱交換装置100で換気を行うことで、室内の空調の冷暖房効率の損失を抑えて、室外と室内との空気を換気することができる。   When total heat exchanger 100 is operated, supply air blower 110 and exhaust air blower 120 operate. Thus, for example, cold and dry outdoor air is passed as a supply airflow (first airflow 106) through the air supply passage 102, and warm and humid indoor air is exhausted as an exhaust airflow (second airflow 107). It is passed through the flow path 103. Each airflow (two types of airflows) of the supply airflow and the exhaust airflow flows through the partition plate 11 of the total heat exchange element 1. At this time, heat is transmitted between the airflows via the partition plate 11, and water vapor passes through the partition plate 11, whereby sensible heat and latent heat are exchanged between the supply airflow and the exhaust stream. As a result, the supply airflow is warmed and humidified and supplied to the room, and the exhaust stream is cooled and dehumidified and discharged outside the room. Therefore, by performing ventilation with the total heat exchange device 100, it is possible to suppress the loss of the cooling and heating efficiency of the indoor air conditioning and to ventilate the air between the outside and the room.

この実施の形態では、矩形状の仕切板11を、同じ形状の4つの区画に分割し、互いに隣接する2つの区画を、XY面内で180度回転させると、残りの2つの区画となるように、仕切板11にリブを設けた。そして、リブとして、仕切板11の端部に配置される封止リブ21および接続封止リブ31と、仕切板11の面内で仕切板11の辺に沿って配置される保持リブ22および接続保持リブ32と、封止リブ21(接続封止リブ31)と保持リブ22(接続保持リブ32)との間で、流路Pに沿って細切れ状態で設けられる飛びリブ23および接続飛びリブ33と、を設けた。これによって、仕切板11とリブの接触面積を減らし、伝熱面積を大きくとることができるため、高性能である全熱交換素子1を得ることができるという効果を有する。また、その単位素子10は、金型で仕切板11の表裏面にリブを一体成形することで製造でき、仕切板11の貼合わせを必要としないので、仕切板11の貼り付け工程を減らすことができる。その結果、生産性を上げることができるという効果を奏する。   In this embodiment, when the rectangular partition plate 11 is divided into four sections having the same shape and two adjacent sections are rotated 180 degrees in the XY plane, the remaining two sections are formed. In addition, ribs were provided on the partition plate 11. And as a rib, the sealing rib 21 and the connection sealing rib 31 which are arrange | positioned at the edge part of the partition plate 11, and the holding rib 22 and the connection which are arrange | positioned along the edge of the partition plate 11 within the surface of the partition plate 11 Between the holding rib 32, the sealing rib 21 (connection sealing rib 31) and the holding rib 22 (connection holding rib 32), the jump rib 23 and the connection jump rib 33 provided along the flow path P in a chopped state. And provided. As a result, the contact area between the partition plate 11 and the rib can be reduced and the heat transfer area can be increased, so that the high-performance total heat exchange element 1 can be obtained. Further, the unit element 10 can be manufactured by integrally forming ribs on the front and back surfaces of the partition plate 11 with a mold, and does not require pasting of the partition plate 11, thereby reducing the step of attaching the partition plate 11. Can do. As a result, there is an effect that productivity can be increased.

通常、全熱交換素子1の性能を向上させるためには、単位素子10を薄く作製し、同一高さ内に積層枚数を多く敷き詰める必要がある。しかし、本形状を用いることで、飛びリブ23および接続飛びリブ33の厚みを減らすことなく、かつ飛びリブ23および接続飛びリブ33と仕切板11との接触面積を必要以上に増やすこともなく、樹脂流動性を確保することが可能になる。その結果、成形時のゲート点数削減や、成形樹脂の選定のしやすさなど、製造上の難易度も下げることができる。   Usually, in order to improve the performance of the total heat exchange element 1, it is necessary to make the unit element 10 thin and spread a large number of stacked layers within the same height. However, by using this shape, the thickness of the flying rib 23 and the connecting flying rib 33 is not reduced, and the contact area between the flying rib 23 and the connecting flying rib 33 and the partition plate 11 is not increased more than necessary. It becomes possible to ensure resin fluidity. As a result, it is possible to reduce manufacturing difficulty such as reduction in the number of gates during molding and ease of selection of molding resin.

以上のように、この発明にかかる全熱交換素子は、2種の流体間での熱交換に有用である。   As described above, the total heat exchange element according to the present invention is useful for heat exchange between two kinds of fluids.

1 全熱交換素子、2 第1の空気流路(第1の流路)、3 第2の空気流路(第2の流路)、10 単位素子、11 仕切板、21 封止リブ、22 保持リブ、22a,22b,32a,32b リブ、22c 間隙、23 飛びリブ、31 接続封止リブ、32 接続保持リブ、32c 接続部、33 接続飛びリブ、100 全熱交換装置、102 給気流路、103 排気流路、106 第1の気流、107 第2の気流、110 給気送風機、120 排気送風機、P,P1,P2 流路。   DESCRIPTION OF SYMBOLS 1 Total heat exchange element, 2 1st air flow path (1st flow path), 3nd 2nd air flow path (2nd flow path), 10 unit element, 11 Partition plate, 21 Sealing rib, 22 Holding ribs, 22a, 22b, 32a, 32b ribs, 22c gaps, 23 jump ribs, 31 connection sealing ribs, 32 connection holding ribs, 32c connection parts, 33 connection jump ribs, 100 total heat exchange device, 102 air supply flow path, 103 Exhaust flow path, 106 1st air current, 107 2nd air current, 110 Supply air blower, 120 Exhaust air blower, P, P1, P2 flow path.

Claims (5)

仕切板と、前記仕切板に垂直な積層方向に隣接する他の仕切板との間隔を保持し、前記仕切板の両面での流路が互いに直交するように前記仕切板の両面に設けられる樹脂製のリブと、を有する単位素子を、他の単位素子に対して前記仕切板の面内方向に90度回転させて前記積層方向に複数積層してなる全熱交換素子であって、
前記単位素子を同じ形状の4つの区画に分割し、そのうちの1つの区画から時計回りに順に第1区画、第2区画、第3区画および第4区画とした場合に、前記第1区画と前記第2区画に設けられる前記リブの形状は、前記仕切板の面内方向に180度回転させるとそれぞれ前記第3区画と前記第4区画に一致し、前記第1区画と前記第区画とを回転させずに重ねたときの前記リブの形状および前記第区画および前記第4区画とを回転させずに重ねたときの前記リブの形状は異なり、
前記リブは、前記仕切り板の前記流路の延在方向に垂直な方向の両端に配置される封止リブと、前記流路の幅の中央付近に、前記流路の延在方向に沿って設けられる保持リブと、前記封止リブと前記保持リブとの間に、前記流路の延在方向に沿って、所定の間隔で複数配置され、前記仕切り板の前記流路の延在方向の長さよりも短い所定の長さの飛びリブと、を含み、
前記仕切板の第1面の流路の延在方向を、前記積層方向に隣接する他の単位素子の第2面の流路の方向に合わせて前記単位素子を回転させて積層させたときに、前記単位素子の前記第1面に設けられる第1飛びリブと、前記他の単位素子の前記第2面に設けられる第2飛びリブと、が同一軸上に所定の間隔で配置された飛びリブ列が、前記封止リブと前記保持リブとの間に1列以上設けられ、
前記仕切り面の第1面の流路の延在方向を、前記他の単位素子の第2面の流路の方向と直交するように重ねたときには、前記第1面に設けられる第1保持リブと前記他の単位素子の前記第2面に設けられる第2保持リブとが干渉するように前記第1保持リブと前記第2保持リブとが配置されることを特徴とする全熱交換素子。
Resin provided on both sides of the partition plate so as to maintain a gap between the partition plate and another partition plate adjacent to the partition plate in the stacking direction perpendicular to the partition plate so that the flow paths on both sides of the partition plate are orthogonal to each other A total heat exchanging element formed by laminating a plurality of unit elements in the laminating direction by rotating a unit element having a rib made of 90 degrees in the in-plane direction of the partition plate with respect to other unit elements,
When the unit element is divided into four sections of the same shape, and the first section, the second section, the third section, and the fourth section are sequentially clockwise from one of the sections, the first section and the section The shapes of the ribs provided in the second compartment coincide with the third compartment and the fourth compartment, respectively, when rotated 180 degrees in the in-plane direction of the partition plate, and the first compartment and the second compartment are the rib shape when overlaid shape of the ribs when the superposed without rotating and with said third compartment and said fourth compartment without rotating is different,
The ribs include sealing ribs disposed at both ends of the partition plate in a direction perpendicular to the direction in which the flow path extends, and in the vicinity of the center of the width of the flow path, along the direction in which the flow path extends. Between the holding rib provided, the sealing rib and the holding rib, a plurality of them are arranged at a predetermined interval along the extending direction of the flow path, and the extending direction of the flow path of the partition plate A flying rib having a predetermined length shorter than the length , and
When the unit element is rotated and laminated so that the extending direction of the flow path on the first surface of the partition plate matches the direction of the flow path on the second surface of another unit element adjacent to the stacking direction. The first jump rib provided on the first surface of the unit element and the second jump rib provided on the second surface of the other unit element are arranged at predetermined intervals on the same axis. One or more rib rows are provided between the sealing rib and the holding rib,
The first holding rib provided on the first surface when the extending direction of the flow path of the first surface of the partition surface is overlapped so as to be orthogonal to the direction of the flow path of the second surface of the other unit element. The total heat exchange element , wherein the first holding rib and the second holding rib are arranged such that the first holding rib and the second holding rib provided on the second surface of the other unit element interfere with each other .
前記リブは、前記積層方向に隣接し、前記他の単位素子の前記リブと互いに干渉しないように、前記仕切板の両面に配置されることを特徴とする請求項1に記載の全熱交換素子。 The rib is adjacent to the stacking direction, before SL so as not to interfere with each other and the ribs of the other unit elements, the total heat exchange of claim 1, characterized in that disposed on both sides of the partition plate element. 前記積層方向に隣接する前記単位素子間に形成される前記流路に対して、前記リブの延在方向が平行となるように、前記リブが前記仕切板の両面に配置されることを特徴とする請求項1または2に記載の全熱交換素子。   The ribs are arranged on both surfaces of the partition plate so that the extending direction of the ribs is parallel to the flow path formed between the unit elements adjacent in the stacking direction. The total heat exchange element according to claim 1 or 2. 前記飛びリブ列における前記流路の延在方向の前記飛びリブ間の間隔は同じであることを特徴とする請求項1から3のいずれか1つに記載の全熱交換素子。 The total heat exchange element according to any one of claims 1 to 3, wherein the spacing between the jump ribs in the extending direction of the flow path in the jump rib row is the same. 請求項1から4のいずれか1つに記載の全熱交換素子と、
前記全熱交換素子に設けられる第1の方向に延在する第1の流路に、室外から室内に向けた気流の流れを発生させる給気送風機と、
前記全熱交換素子に設けられる前記第1の方向に直交する第2の方向に延在する第2の流路に、前記室内から前記室外に向けた気流の流れを発生させる排気送風機と、
を備えることを特徴とする全熱交換装置。
A total heat exchange element according to any one of claims 1 to 4,
An air supply blower for generating a flow of airflow from the outside to the inside of the first flow path extending in the first direction provided in the total heat exchange element;
An exhaust blower for generating a flow of airflow from the room toward the outside in a second flow path extending in a second direction orthogonal to the first direction provided in the total heat exchange element;
A total heat exchange device comprising:
JP2012158770A 2012-07-17 2012-07-17 Total heat exchange element and total heat exchange device Active JP5818749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158770A JP5818749B2 (en) 2012-07-17 2012-07-17 Total heat exchange element and total heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158770A JP5818749B2 (en) 2012-07-17 2012-07-17 Total heat exchange element and total heat exchange device

Publications (2)

Publication Number Publication Date
JP2014020649A JP2014020649A (en) 2014-02-03
JP5818749B2 true JP5818749B2 (en) 2015-11-18

Family

ID=50195743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158770A Active JP5818749B2 (en) 2012-07-17 2012-07-17 Total heat exchange element and total heat exchange device

Country Status (1)

Country Link
JP (1) JP5818749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308081B2 (en) 2019-06-04 2023-07-13 Thk株式会社 Conveyor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7126617B2 (en) * 2019-06-27 2022-08-26 三菱電機株式会社 Heat exchange element and heat exchange ventilator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215406B2 (en) * 1990-03-30 2001-10-09 松下精工株式会社 Heat exchanger
JPH08291990A (en) * 1995-04-24 1996-11-05 Matsushita Seiko Co Ltd Heat-exchanger element
JP2006029692A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Heat exchanger
JP5472234B2 (en) * 2011-08-12 2014-04-16 マックス株式会社 Heat exchange ventilator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308081B2 (en) 2019-06-04 2023-07-13 Thk株式会社 Conveyor system

Also Published As

Publication number Publication date
JP2014020649A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
CA2664832C (en) Heat exchanging element
JP4877016B2 (en) Heat exchange element
JP2006329499A (en) Heat exchanger
JP5818749B2 (en) Total heat exchange element and total heat exchange device
JP4928295B2 (en) Sensible heat exchange element
US9863710B2 (en) Laminated total heat exchange element
JP7333875B2 (en) Total heat exchange element and ventilator
JP2017062094A (en) Heat exchange element
JP2008070070A (en) Total heat exchanger
JP2000111279A (en) Frame body for total heat exchanger and total heat exchanger using the same
JP2023105326A (en) Heat exchange element and heat exchange type ventilating device using the same
JP6509338B2 (en) Heat exchange ventilation system
JP6537760B1 (en) Heat exchange element and heat exchange ventilator
JP2021071206A (en) Heat exchange element and heat exchange type ventilation device using the same
CN217131940U (en) Heat exchanger with sealed frame
JP7126617B2 (en) Heat exchange element and heat exchange ventilator
JP2020139650A (en) Heat exchange element and heat exchange-type ventilation device using the same
JP2006064342A (en) Heat exchange element
JP7372472B2 (en) Heat exchange elements and heat exchange ventilation equipment
WO2022172339A1 (en) Partition plate for countercurrent total heat exchange elements, countercurrent total heat exchange element and heat exchange ventilation device
KR101536076B1 (en) Frame of air-to-air heat exchanger comprising joint member
KR101377584B1 (en) Sensible heat exchangers used in ventilation ducts sensible device settings Device
JPH04273993A (en) Heat exchanger
JP4289071B2 (en) Heat exchange element
KR20150144965A (en) Frame structure of air-to-air heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250