JP5816061B2 - Rolling bearing lubrication system - Google Patents

Rolling bearing lubrication system Download PDF

Info

Publication number
JP5816061B2
JP5816061B2 JP2011250448A JP2011250448A JP5816061B2 JP 5816061 B2 JP5816061 B2 JP 5816061B2 JP 2011250448 A JP2011250448 A JP 2011250448A JP 2011250448 A JP2011250448 A JP 2011250448A JP 5816061 B2 JP5816061 B2 JP 5816061B2
Authority
JP
Japan
Prior art keywords
bearing
spacer
oil
rolling
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011250448A
Other languages
Japanese (ja)
Other versions
JP2013104520A (en
Inventor
康由 林
康由 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2011250448A priority Critical patent/JP5816061B2/en
Priority to PCT/JP2012/072853 priority patent/WO2013042552A1/en
Priority to TW101133760A priority patent/TW201335500A/en
Publication of JP2013104520A publication Critical patent/JP2013104520A/en
Application granted granted Critical
Publication of JP5816061B2 publication Critical patent/JP5816061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Description

この発明は、例えば、工作機械主軸を回転自在に支持する転がり軸受の潤滑装置に関する。   The present invention relates to a rolling bearing lubrication device that rotatably supports a machine tool spindle, for example.

軸受の冷却と、軸受に対する潤滑油の給排油を行う機構を有する潤滑装置が提案されている(特許文献1)。この潤滑装置では、図9(A)に示すように、内輪端面に接する内輪間座50を設け、外輪端面に接する潤滑油導入部材51を設けている。内輪52のうち前記内輪端面から内輪軌道面に繋がる斜面に円周溝53を設けると共に、前記潤滑油導入部材51にノズル54を設け、このノズル54から前記円周溝53内に軸受冷却媒体を兼ねる潤滑油を吐出するようになっている。同図(A)において、矢印は潤滑油の流れを示す。潤滑油導入部材51に導入された潤滑油を円周溝53内に吐出することで、内輪52を冷却する。潤滑油導入部材51から軸受内に延びる被さり部55と前記斜面との間の隙間から、円周溝53の一部の潤滑油を軸受内に供給する。   There has been proposed a lubricating device having a mechanism for cooling a bearing and supplying and discharging lubricating oil to and from the bearing (Patent Document 1). In this lubrication apparatus, as shown in FIG. 9A, an inner ring spacer 50 is provided in contact with the inner ring end face, and a lubricating oil introducing member 51 is provided in contact with the outer ring end face. A circumferential groove 53 is provided on the slope of the inner ring 52 from the inner ring end face to the inner ring raceway surface, a nozzle 54 is provided in the lubricating oil introduction member 51, and a bearing cooling medium is provided from the nozzle 54 into the circumferential groove 53. It is designed to discharge lubricating oil. In FIG. 2A, the arrow indicates the flow of the lubricating oil. The inner ring 52 is cooled by discharging the lubricating oil introduced into the lubricating oil introducing member 51 into the circumferential groove 53. A part of the lubricating oil in the circumferential groove 53 is supplied into the bearing from the gap between the cover portion 55 extending from the lubricating oil introduction member 51 into the bearing and the inclined surface.

特開2008−240946号公報JP 2008-240946 A

図9(A)の軸受を立軸に使用する場合、図9(B)に示すように、潤滑油が滞留する高さAよりも排油口の高さBの方が高い。このため、排油を十分に行えない。このとき、排油されない多量の潤滑油が軸受内に浸入する。すると、攪拌抵抗が増加し、軸受内部の温度が上昇して、高速運転が困難な場合がある。
また軸受内に少量の潤滑油を流入させても、流入した潤滑油の排出効率が悪いと、軸受内で潤滑油が飽和し、軸受内に一定量の潤滑油の滞留が発生する。この滞留油が転動体に接触すると、攪拌抵抗が大きくなり、動力損失、昇温の原因となる。
When the bearing of FIG. 9A is used for the vertical shaft, as shown in FIG. 9B, the height B of the oil discharge port is higher than the height A where the lubricating oil stays. For this reason, the oil cannot be discharged sufficiently. At this time, a large amount of lubricating oil that is not discharged enters the bearing. Then, the stirring resistance increases, the temperature inside the bearing rises, and high speed operation may be difficult.
Even if a small amount of lubricating oil is allowed to flow into the bearing, if the flowing efficiency of the flowing lubricating oil is poor, the lubricating oil is saturated in the bearing, and a certain amount of lubricating oil stays in the bearing. When this staying oil comes into contact with the rolling elements, the stirring resistance increases, which causes power loss and temperature rise.

図10は、軸受内に潤滑油が滞留するイメージを概略示す断面図であり、図11は、同軸受の外輪間座の平面図である。本件出願人は、図10に示すように、軸方向に並べて複数の転がり軸受を配置し、各転がり軸受は、内輪に軸方向に延びる内輪延長部56を設けると共に、外輪に隣接し且つ内周面が内輪延長部56に対向する間座57を設け、これら内輪延長部56と間座57とにわたって給排油機構を設けた転がり軸受の潤滑装置を提案している。前記給排油機構は、軸受冷却媒体を兼ねる潤滑油を、各転がり軸受内の軸受空間に供給すると共に軸受外に排出する機構である。   FIG. 10 is a cross-sectional view schematically illustrating an image in which lubricating oil stays in the bearing, and FIG. 11 is a plan view of an outer ring spacer of the bearing. As shown in FIG. 10, the present applicant arranges a plurality of rolling bearings arranged in the axial direction, and each rolling bearing is provided with an inner ring extending portion 56 extending in the axial direction on the inner ring, adjacent to the outer ring and on the inner circumference. A rolling bearing lubrication device has been proposed in which a spacer 57 whose surface faces the inner ring extension 56 is provided, and an oil supply / discharge oil mechanism is provided between the inner ring extension 56 and the spacer 57. The supply / discharge oil mechanism is a mechanism that supplies lubricating oil that also serves as a bearing cooling medium to the bearing space in each rolling bearing and discharges it to the outside of the bearing.

軸受内に侵入した潤滑油が滞留する箇所(1),(2)と要因を以下に示す。
(1) 転動体上部
軸受の高速回転時には、潤滑油に対し、転動体58、保持器59が壁となり、排出の抵抗となる。よって、図10の(1)にて表記する転動体上部に潤滑油が滞留する。
(2) 外輪間座上部
・軸受の外輪間座57に径方向に貫通して設けた、潤滑油の排出口57aの断面積が小さく、同図の(2)にて表記する軸受下部に一定量の潤滑油が滞留する。滞留した潤滑油の液面が保持器59、転動体58に干渉すると、軸受内部の攪拌抵抗が増加し、昇温の原因となる。
・排出口57aと、外輪間座57の上部における油受け面の高さが同じであるため、自然排油では排出口57aに潤滑油が流れにくい
・軸受空間を通った潤滑油は、外輪間座57の上面に落ち、図11矢符にて示す回転方向に流れる。同図11に示すように、潤滑油の排出口57aは、外輪間座端面の円周方向の一部に径方向に沿って切欠き形成されている。この排出口57aは、前記回転方向に対し垂直に設けられているため、潤滑油の回収効率が悪く外輪間座上面(軸受下部)に潤滑油が滞留する。
The locations (1) and (2) where the lubricant that has entered the bearing stays and the causes are shown below.
(1) Upper part of rolling element When the bearing rotates at a high speed, the rolling element 58 and the cage 59 act as walls against the lubricating oil, thereby providing resistance to discharge. Accordingly, the lubricating oil stays on the upper part of the rolling element represented by (1) in FIG.
(2) The outer area of the outer ring spacer and the outer ring spacer 57 of the bearing are provided in a radial direction in the outer ring spacer 57. An amount of lubricating oil is retained. When the liquid level of the accumulated lubricating oil interferes with the cage 59 and the rolling element 58, the stirring resistance inside the bearing increases, causing a temperature rise.
・ Since the height of the oil receiving surface in the upper part of the outlet 57a and the outer ring spacer 57 is the same, it is difficult for the lubricating oil to flow into the outlet 57a with natural draining oil. It falls on the upper surface of the seat 57 and flows in the rotational direction indicated by the arrow in FIG. As shown in FIG. 11, the lubricating oil discharge port 57 a is notched along the radial direction at a part of the outer ring spacer end surface in the circumferential direction. Since the discharge port 57a is provided perpendicular to the rotation direction, the recovery efficiency of the lubricating oil is poor and the lubricating oil stays on the upper surface of the outer ring spacer (bearing lower portion).

この発明の目的は、潤滑油を十分に排油して攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とする転がり軸受の潤滑装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a rolling bearing lubrication device that sufficiently drains lubricating oil to prevent an increase in stirring resistance, suppresses a temperature rise inside the bearing, and enables high-speed operation. .

この発明の転がり軸受の潤滑装置は、軸方向に並べて複数の転がり軸受を配置し、各転がり軸受は、内外輪の軌道面間に、保持器に保持された複数の転動体を介在させ、前記内輪に軸方向に延びる内輪延長部を設けると共に、外輪に隣接し且つ内周面が前記内輪延長部に対向する間座を設け、これら内輪延長部と間座とにわたって軸受冷却媒体を兼ねる潤滑油を前記各転がり軸受内の軸受空間に供給すると共に軸受外に排出する給排油機構を設け、各転がり軸受のうち、内輪延長部とは軸方向逆側の内外輪の端面に対し、隣接して配置した転がり軸受における間座の端面に、前記隣接する転がり軸受内の軸受空間に連通して同軸受内の潤滑油を排出する油溝を設けたことを特徴とする。
前記「内輪延長部」は、内輪のうち軸受としての必要な強度を満たす部分に対して、軸方向に延長された部分を指す。
A rolling bearing lubrication device according to the present invention includes a plurality of rolling bearings arranged in an axial direction, and each rolling bearing includes a plurality of rolling elements held by a cage between raceway surfaces of inner and outer rings, Lubricating oil provided with an inner ring extension extending in the axial direction on the inner ring, a spacer adjacent to the outer ring and having an inner peripheral surface facing the inner ring extension, and serving as a bearing cooling medium across the inner ring extension and the spacer Is provided to the bearing space in each rolling bearing and discharged to the outside of the bearing, and each rolling bearing is adjacent to the end face of the inner and outer rings on the opposite side of the inner ring extension from the inner ring extension. An oil groove for discharging the lubricating oil in the bearing is provided on the end face of the spacer in the rolling bearing arranged in such a manner as to communicate with the bearing space in the adjacent rolling bearing.
The “inner ring extension” refers to a portion of the inner ring that extends in the axial direction with respect to a portion that satisfies the required strength as a bearing.

この構成によると、給排油機構により軸受内に導入された潤滑油は、軸受を冷却し軸受外に排出される。導入された潤滑油の一部は、転がり軸受内の軸受空間に供給され潤滑に供される。この転がり軸受の潤滑に供された潤滑油の一部は、前記転がり軸受に隣接して配置した転がり軸受における間座の端面の油溝に沿って流れ、軸受外に排出される。このように隣接する軸受の間座の端面に油溝を設けることで、転がり軸受内の軸受空間における、隣接する軸受との境界付近に、潤滑油が滞留することを防止し得る。したがって、潤滑油の滞留した液面が前記転がり軸受の保持器、転動体に干渉することを未然に防止し、軸受内部の攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とすることができる。   According to this configuration, the lubricating oil introduced into the bearing by the supply / discharge oil mechanism cools the bearing and is discharged outside the bearing. A part of the introduced lubricating oil is supplied to the bearing space in the rolling bearing for lubrication. Part of the lubricating oil used for lubrication of the rolling bearing flows along the oil groove on the end face of the spacer in the rolling bearing disposed adjacent to the rolling bearing, and is discharged outside the bearing. By providing the oil groove on the end face of the spacer between the adjacent bearings in this way, it is possible to prevent the lubricating oil from staying in the vicinity of the boundary with the adjacent bearing in the bearing space in the rolling bearing. Therefore, the liquid level in which the lubricating oil stays prevents the rolling bearing retainer and rolling element from interfering with each other, prevents an increase in the stirring resistance inside the bearing, suppresses the temperature rise inside the bearing, High speed operation can be made possible.

前記油溝は、前記転がり軸受における、軸心および転動体中心を含む断面における、内輪延長部とは軸方向逆側の外輪内周面、転動体外周面、保持器外周面を含む仮想の円筒面、および前記間座の端面で形成される断面積よりも大きい断面積を有するものであっても良い。この場合、油溝に一定量の潤滑油が溜まり、軸受内部に潤滑油が滞留することを防ぐことができる。   The oil groove is a virtual cylinder including an outer ring inner circumferential surface, a rolling element outer circumferential surface, and a cage outer circumferential surface on the opposite side to the inner ring extension in the cross section including the shaft center and the rolling element center in the rolling bearing. The cross-sectional area larger than the cross-sectional area formed by the surface and the end face of the spacer may be used. In this case, it is possible to prevent a certain amount of lubricating oil from accumulating in the oil groove and to retain the lubricating oil inside the bearing.

前記間座に、油溝に連通して油溝内の潤滑油を軸受外に排出する排出口を設けても良い。転がり軸受の潤滑に供された潤滑油の一部は、隣接する転がり軸受における間座の端面の油溝に沿って流れ、この油溝から排出口を通って軸受外に排出される。
前記排出口は、油溝の深さ寸法よりも大きい深さ寸法を有するものであっても良い。この場合、油溝を流れる潤滑油は、重力の作用で排出口に流れ易くなり、この排出口から潤滑油を円滑に軸受外に排出することが可能となる。
前記間座に排出口を2個以上設けても良い。この場合、潤滑油を2個以上の排出口からさらに円滑に排出し得る。
The spacer may be provided with a discharge port that communicates with the oil groove and discharges the lubricating oil in the oil groove to the outside of the bearing. Part of the lubricating oil used for lubricating the rolling bearing flows along the oil groove on the end face of the spacer in the adjacent rolling bearing, and is discharged from the oil groove to the outside through the discharge port.
The discharge port may have a depth dimension larger than the depth dimension of the oil groove. In this case, the lubricating oil flowing through the oil groove easily flows to the discharge port due to the action of gravity, and the lubricating oil can be smoothly discharged from the discharge port to the outside of the bearing.
Two or more discharge ports may be provided in the spacer. In this case, the lubricating oil can be discharged more smoothly from the two or more discharge ports.

前記各転がり軸受のうち、間座に隣接する外輪の端面における円周方向の一部に、軸受径方向に貫通する切欠きを設けても良い。軸受の高速回転時に、転動体、保持器が潤滑油を排出する際の抵抗となり得るが、前記切欠きを介して潤滑油の一部を軸受外に排出するため、軸受の高速回転時に、軸受空間における間座に隣接する転動体の片側部分に、潤滑油が滞留することを抑制することができる。これにより、軸受内部の攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とすることができる。
前記外輪に切欠きを2個以上設けても良い。この場合、潤滑油の一部を2個以上の切欠きを介してさらに円滑に軸受外に排出することができる。
Of each of the rolling bearings, a notch penetrating in the bearing radial direction may be provided in a part of the end surface of the outer ring adjacent to the spacer in the circumferential direction. Although rolling elements and cages can become a resistance when draining lubricating oil during high-speed rotation of the bearing, a part of the lubricating oil is discharged out of the bearing through the notch, so that when the bearing rotates at high speed, the bearing It is possible to prevent the lubricating oil from staying in one side portion of the rolling element adjacent to the spacer in the space. As a result, an increase in the stirring resistance inside the bearing can be prevented, a temperature rise inside the bearing can be suppressed, and high speed operation can be achieved.
Two or more notches may be provided in the outer ring. In this case, a part of the lubricating oil can be discharged out of the bearing more smoothly through two or more notches.

前記間座に、油溝に連通して油溝内の潤滑油を軸受外に排出する排出口を設けると共に、前記間座のうち、油溝と排出口とが連通する交差部に、潤滑油の油溝に沿う流れを規制する壁部を設けても良い。軸受空間から油溝に流入した潤滑油は、軸受の回転方向に流れが生じる。油溝と排出口とが連通する交差部に壁部を設けることで、前記回転方向に流れる潤滑油の流れを規制し、潤滑油を排出口に円滑に導くことができる。
前記壁部を、間座の排出口の周方向長さの中央部に配設しても良い。軸受が逆回転する場合にも、油溝に沿って逆回転方向に流れる潤滑油を前記壁部で規制し、排出口に円滑に導くことができる。
The spacer is provided with a discharge port that communicates with the oil groove and discharges the lubricating oil in the oil groove to the outside of the bearing, and a lubricating oil is provided at an intersection of the spacer where the oil groove and the discharge port communicate with each other. You may provide the wall part which controls the flow along an oil groove. The lubricating oil that has flowed into the oil groove from the bearing space flows in the rotational direction of the bearing. By providing the wall portion at the intersection where the oil groove and the discharge port communicate with each other, the flow of the lubricating oil flowing in the rotation direction can be regulated and the lubricating oil can be smoothly guided to the discharge port.
You may arrange | position the said wall part in the center part of the circumferential direction length of the discharge port of a spacer. Even when the bearing rotates in the reverse direction, the lubricating oil flowing in the reverse rotation direction along the oil groove can be regulated by the wall portion and smoothly guided to the discharge port.

前記いずれかの転がり軸受の潤滑装置は、工作機械の主軸の支持に用いられるものであっても良い。   Any of the rolling bearing lubrication devices may be used for supporting the spindle of a machine tool.

この発明の転がり軸受の潤滑装置は、軸方向に並べて複数の転がり軸受を配置し、各転がり軸受は、内外輪の軌道面間に、保持器に保持された複数の転動体を介在させ、前記内輪に軸方向に延びる内輪延長部を設けると共に、外輪に隣接し且つ内周面が前記内輪延長部に対向する間座を設け、これら内輪延長部と間座とにわたって軸受冷却媒体を兼ねる潤滑油を前記各転がり軸受内の軸受空間に供給すると共に軸受外に排出する給排油機構を設け、各転がり軸受のうち、内輪延長部とは軸方向逆側の内外輪の端面に対し、隣接して配置した転がり軸受における間座の端面に、前記隣接する転がり軸受内の軸受空間に連通して同軸受内の潤滑油を排出する油溝を設けた。このため、潤滑油を十分に排油して攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とすることができる。   A rolling bearing lubrication device according to the present invention includes a plurality of rolling bearings arranged in an axial direction, and each rolling bearing includes a plurality of rolling elements held by a cage between raceway surfaces of inner and outer rings, Lubricating oil provided with an inner ring extension extending in the axial direction on the inner ring, a spacer adjacent to the outer ring and having an inner peripheral surface facing the inner ring extension, and serving as a bearing cooling medium across the inner ring extension and the spacer Is provided to the bearing space in each rolling bearing and discharged to the outside of the bearing, and each rolling bearing is adjacent to the end face of the inner and outer rings on the opposite side of the inner ring extension from the inner ring extension. An oil groove that communicates with the bearing space in the adjacent rolling bearing and discharges the lubricating oil in the bearing is provided on the end face of the spacer in the rolling bearing arranged in this manner. For this reason, it is possible to drain the lubricating oil sufficiently to prevent an increase in the stirring resistance, suppress a temperature rise inside the bearing, and enable high speed operation.

この発明の第1の実施形態に係る転がり軸受の潤滑装置における要部の断面図である。It is sectional drawing of the principal part in the lubricating device of the rolling bearing which concerns on 1st Embodiment of this invention. 同転がり軸受の潤滑装置の給排油機構を示す断面図である。It is sectional drawing which shows the supply / discharge oil mechanism of the lubricating device of the rolling bearing. 同給排油機構の要部の拡大断面図である。It is an expanded sectional view of the principal part of the supply and discharge oil mechanism. (A)は、同転がり軸受の潤滑装置の要部の水平断面図、(B)は、同転がり軸受の給排油機構の給油口付近を示す間座の要部の正面図、(C)は、同給排油機構の排油口付近を示す間座の要部の正面図である。(A) is a horizontal sectional view of the main part of the lubrication device for the rolling bearing, (B) is a front view of the main part of the spacer showing the vicinity of the oil supply port of the oil supply / discharge mechanism of the rolling bearing, (C). These are the front views of the principal part of the spacer which shows the oil discharge port vicinity of the same oil supply and discharge mechanism. 同転がり軸受の潤滑装置の間座の平面図である。It is a top view of the spacer of the lubricating device of the rolling bearing. 同転がり軸受の潤滑装置の油溝付近を示す拡大断面図である。It is an expanded sectional view which shows the oil groove vicinity of the lubricating device of the rolling bearing. 同転がり軸受の潤滑装置の要部の断面図である。It is sectional drawing of the principal part of the lubricating device of the rolling bearing. いずれかの実施形態に係る転がり軸受の潤滑装置を、立型の工作機械の主軸の支持に用いた例を概略示す断面図である。It is sectional drawing which shows schematically the example which used the lubricating device of the rolling bearing which concerns on any embodiment for the main shaft of a vertical machine tool. (A)は、従来例の転がり軸受の潤滑装置の給油側の断面図、(B)は同潤滑装置の排油側の断面図である。(A) is sectional drawing by the side of the oil supply of the lubricating device of the rolling bearing of a prior art example, (B) is sectional drawing by the side of the oil drain of the lubricating device. 軸受内に潤滑油が滞留するイメージを概略示す断面図である。It is sectional drawing which shows roughly the image in which lubricating oil stagnates in a bearing. 同軸受の外輪間座の平面図である。It is a top view of the outer ring spacer of the same bearing.

この発明の第1の実施形態を図1ないし図7と共に説明する。この実施形態に係る転がり軸受の潤滑装置は、例えば、立型の工作機械の主軸の支持に用いられる。但し、立型の工作機械の主軸用に限定されるものではなく、横型の工作機械主軸を支持する用途に用いても良い。図1に示すように、転がり軸受の潤滑装置は、軸方向に並べて複数(この例では2つ)配置される転がり軸受BRと、各転がり軸受BRにそれぞれ設けられる給排油機構KUとを含む。   A first embodiment of the present invention will be described with reference to FIGS. The rolling bearing lubrication device according to this embodiment is used, for example, for supporting a main shaft of a vertical machine tool. However, the present invention is not limited to the vertical machine tool spindle, and may be used for supporting a horizontal machine tool spindle. As shown in FIG. 1, the rolling bearing lubrication device includes a plurality of (two in this example) rolling bearings BR arranged in the axial direction, and a supply / discharge oil mechanism KU provided to each rolling bearing BR. .

図2に示すように、各転がり軸受BRは、内外輪1,2と、内外輪1,2の軌道面1a,2a間に介在する複数の転動体3と、これら転動体3を保持するリング状の保持器4とを有する。この転がり軸受BRはアンギュラ玉軸受からなり、転動体3として、鋼球やセラミックス球等からなる玉が適用される。   As shown in FIG. 2, each rolling bearing BR includes inner and outer rings 1 and 2, a plurality of rolling elements 3 interposed between the raceway surfaces 1 a and 2 a of the inner and outer rings 1 and 2, and a ring that holds these rolling elements 3. -Shaped cage 4. This rolling bearing BR is an angular ball bearing, and a ball made of a steel ball, a ceramic ball or the like is applied as the rolling element 3.

内輪1は、内輪本体部5と、内輪延長部6とを有する。内輪本体部5は、軸受としての必要な強度を満たすと共に、例えば、軸受の呼び番号毎に定められる主要寸法である内輪内径寸法および幅寸法に設けられる。但し、これら内輪内径寸法および幅寸法に必ずしも限定されるものではない。内輪本体部5における外周面の中央部に軌道面1aが形成されている。内輪本体部5の外周面のうち、軌道面1aに繋がりこの軌道面1aに対して接触角を成す作用線L1の偏り側に、斜面1bが形成されている。この斜面1bは、軌道面1a側に向かうに従って大径となるように傾斜する断面形状に形成されている。内輪本体部5の外周面のうち、軌道面1aに繋がりこの軌道面1aに対して接触角を成す作用線L1の反偏り側に、平坦な外径面1cが形成されている。この内輪本体部5の内輪背面側および内輪正面側に、内輪延長部6が軸方向一方に延びるように一体に設けられる。内輪延長部6は、内輪本体部5よりも軸方向に突出した部分であり、具体的には、例えば、外輪2の端面よりも軸方向に突出する部分である。   The inner ring 1 has an inner ring main body part 5 and an inner ring extension part 6. The inner ring main body 5 satisfies the required strength as a bearing, and is provided, for example, at an inner ring inner diameter dimension and a width dimension, which are main dimensions determined for each bearing identification number. However, it is not necessarily limited to these inner ring inner diameter dimensions and width dimensions. A raceway surface 1 a is formed at the center of the outer peripheral surface of the inner ring main body 5. Of the outer peripheral surface of the inner ring main body 5, an inclined surface 1b is formed on the biased side of the line of action L1 that is connected to the track surface 1a and forms a contact angle with the track surface 1a. The inclined surface 1b is formed in a cross-sectional shape that is inclined so as to have a larger diameter toward the raceway surface 1a side. Of the outer peripheral surface of the inner ring main body 5, a flat outer diameter surface 1c is formed on the non-biased side of the action line L1 connected to the raceway surface 1a and forming a contact angle with the raceway surface 1a. The inner ring extension 6 is integrally provided on the inner ring back side and the inner ring front side of the inner ring main body 5 so as to extend in one axial direction. The inner ring extension portion 6 is a portion protruding in the axial direction from the inner ring main body portion 5, and specifically, for example, is a portion protruding in the axial direction from the end surface of the outer ring 2.

外輪2の軌道面2aの軸方向両側に、外輪内径面2bと、斜面状のカウンタボア2cとがそれぞれ形成されている。前記外輪内径面2bに保持器4が案内されるように構成されている。   On the both sides in the axial direction of the raceway surface 2a of the outer ring 2, an outer ring inner surface 2b and an inclined counter bore 2c are formed. The cage 4 is configured to be guided to the outer ring inner surface 2b.

給排油機構KUは、軸受冷却媒体を兼ねる潤滑油を各転がり軸受BR内の軸受空間S1に供給すると共に軸受外に排出する機構である。転がり軸受の潤滑装置を例えば図2に示す立軸で使用する場合、各転がり軸受BRにおいて軸受空間S1よりも上部に給排油機構KUを配設する。外輪2の軸方向端に隣接して、外輪2とは別体の間座7を設け、この間座7の内周面を、内輪延長部6の外周面に対向させている。これら内輪延長部6と間座7とにわたって給排油機構KUを設けている。   The supply / discharge oil mechanism KU is a mechanism that supplies lubricating oil that also serves as a bearing cooling medium to the bearing space S1 in each rolling bearing BR and discharges it to the outside of the bearing. When the rolling bearing lubrication device is used with, for example, the vertical shaft shown in FIG. 2, the oil supply / discharge mechanism KU is disposed above the bearing space S1 in each rolling bearing BR. A spacer 7 separate from the outer ring 2 is provided adjacent to the axial end of the outer ring 2, and the inner peripheral surface of the spacer 7 is opposed to the outer peripheral surface of the inner ring extension 6. A supply / discharge oil mechanism KU is provided across the inner ring extension 6 and the spacer 7.

給排油機構KUは、内輪円周溝8と、給油路9と、径方向すきまδ1と、排油口10とを有する。これらのうち内周円周溝8は、内輪延長部6の外周面に設けられている。
図2左側に示すように、間座7のうち円周方向の一部に、潤滑油を内輪円周溝8へ向けて吐出する給油口11を有する給油路9が形成されている。図2および図4(B)に示すように、この給油路9は、間座7の外周面から、径方向に貫通する段付きの貫通孔状に形成されている。図3に示すように、軸受空間と内輪円周溝8とを区画する区画壁6aが内輪延長部6に設けられている。(1) 給油路9から供給された潤滑油は、(2) 給油口11から吐出されて内輪円周溝8に当たり、(3) 回転側の軌道輪である内輪1から遠心力を受けて間座7の内周面に当たる。(4) この潤滑油は、内輪延長部6の外周面と間座7の内周面との間の径方向すきまδ1から、転がり軸受内の軸受空間S1に供給される。径方向すきまδ1から軸受内に導入された潤滑油は、斜面1b等を経由して内輪軌道面1aに導かれる。
The oil supply / discharge oil mechanism KU includes an inner ring circumferential groove 8, an oil supply passage 9, a radial clearance δ 1, and an oil discharge port 10. Of these, the inner circumferential circumferential groove 8 is provided on the outer circumferential surface of the inner ring extension 6.
As shown on the left side of FIG. 2, an oil supply passage 9 having an oil supply port 11 that discharges lubricating oil toward the inner ring circumferential groove 8 is formed in a part of the spacer 7 in the circumferential direction. As shown in FIGS. 2 and 4B, the oil supply passage 9 is formed in a stepped through hole shape that penetrates in the radial direction from the outer peripheral surface of the spacer 7. As shown in FIG. 3, a partition wall 6 a that partitions the bearing space and the inner ring circumferential groove 8 is provided in the inner ring extension 6. (1) The lubricating oil supplied from the oil supply passage 9 is (2) discharged from the oil supply port 11 and hits the inner ring circumferential groove 8, and (3) receives centrifugal force from the inner ring 1 which is the rotating raceway ring. It hits the inner peripheral surface of the seat 7. (4) This lubricating oil is supplied from the radial clearance δ1 between the outer peripheral surface of the inner ring extension 6 and the inner peripheral surface of the spacer 7 to the bearing space S1 in the rolling bearing. The lubricating oil introduced into the bearing from the radial clearance δ1 is guided to the inner ring raceway surface 1a via the slope 1b and the like.

図4(A),(C)に示すように、間座7のうち、前記給油路9とは異なる円周方向位置には、潤滑油を外部に排出する排油口10が形成されている。排油口10は、図2右側に示すように、間座7の外周面から径方向に貫通して内輪円周溝8に連通するように形成されている。図4(A)に示すように、給油路9に対し、排油口10の位相が所定の位相角度α(この例ではα=270度)となるように設けられている。   As shown in FIGS. 4 (A) and 4 (C), an oil discharge port 10 for discharging the lubricating oil to the outside is formed at a circumferential position different from the oil supply passage 9 in the spacer 7. . As shown in the right side of FIG. 2, the oil discharge port 10 is formed so as to penetrate from the outer peripheral surface of the spacer 7 in the radial direction and communicate with the inner ring circumferential groove 8. As shown in FIG. 4 (A), the oil supply passage 9 is provided such that the phase of the oil discharge port 10 is a predetermined phase angle α (α = 270 degrees in this example).

図1に示すように、間座7の端面における径方向中間部には、環状溝から成る油溝12が設けられている。各転がり軸受BRのうち、内輪延長部6とは軸方向逆側の内外輪1,2の端面に対し、隣接して配置した転がり軸受BRにおける間座7の端面に、前記隣接する転がり軸受BR内の軸受空間S1に連通して同軸受内の潤滑油を排出する油溝12が設けられている。またこの例では、図1下側の転がり軸受BRにおける間座7だけでなく、図1上側の転がり軸受BRにおける間座7の端面にも、油溝12が設けられている。油溝12は、転がり軸受BRにおける、内輪延長部6とは軸方向逆側の外輪内周面2b、転動体外周面、保持器外周面を含む仮想の円筒面4a、および間座7の端面7aで形成される断面積よりも大きい断面積を有する。   As shown in FIG. 1, an oil groove 12 made of an annular groove is provided in the radial intermediate portion of the end surface of the spacer 7. Among the rolling bearings BR, the adjacent rolling bearings BR are arranged on the end surfaces of the spacers 7 in the rolling bearings BR arranged adjacent to the end surfaces of the inner and outer rings 1 and 2 on the side opposite to the inner ring extension 6 in the axial direction. An oil groove 12 is provided in communication with the inner bearing space S1 for discharging the lubricating oil in the bearing. In this example, the oil groove 12 is provided not only on the spacer 7 in the lower rolling bearing BR of FIG. 1 but also on the end surface of the spacer 7 in the upper rolling bearing BR of FIG. The oil groove 12 includes, in the rolling bearing BR, an outer ring inner peripheral surface 2b that is axially opposite to the inner ring extension 6, an imaginary cylindrical surface 4a including a rolling element outer peripheral surface, a cage outer peripheral surface, and an end surface of the spacer 7. It has a larger cross-sectional area than that formed by 7a.

図5に示すように、間座7には、油溝12に連通して油溝内の潤滑油を軸受外に排出する排出口13が設けられている。この例の排出口13は、間座7の端面における円周上の一箇所について、油溝12の一部から半径方向外方に平面視矩形状に切欠き形成されて成る。図1は、図5のB−B線断面図であり、図7は、図5のA−A線断面図である。図7に示すように、排出口13は、油溝12の深さ寸法Daよりも大きい深さ寸法Dbを有し、油溝12の底面12aに段差部を介して排出口13の底面13aが繋がっている。   As shown in FIG. 5, the spacer 7 is provided with a discharge port 13 that communicates with the oil groove 12 and discharges the lubricating oil in the oil groove to the outside of the bearing. In this example, the discharge port 13 is formed by cutting out a portion of the circumference of the end surface of the spacer 7 from the part of the oil groove 12 in a rectangular shape in plan view outward in the radial direction. 1 is a cross-sectional view taken along line BB in FIG. 5, and FIG. 7 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 7, the discharge port 13 has a depth dimension Db larger than the depth dimension Da of the oil groove 12, and the bottom surface 13a of the discharge port 13 is connected to the bottom surface 12a of the oil groove 12 via a step portion. It is connected.

図5に示すように、間座7のうち、油溝12と排出口13とが連通する交差部には、潤滑油の油溝12に沿う流れを規制する壁部14が設けられている。つまり間座7のうち、排出口13が設けられる円周上の一箇所において、前記壁部14は、油溝12を形成する一周面部12bから前記段差部または段差部付近に至る距離半径方向外方に突出するように設けられている。この壁部14を軸受軸心を含む断面で切断して見た断面積は、油溝12の断面積と略同等の断面積としている。また図7に示す、壁部14の円周方向両端における、油溝12と排出口13とが連通する交差部を、軸受軸心を含む断面で切断して見た断面積は、図6に示す油溝12の断面積よりも大きいものとしている。前記壁部14は、間座7の排出口13の周方向長さL2の中央部に配設されている。   As shown in FIG. 5, a wall portion 14 that restricts the flow of the lubricating oil along the oil groove 12 is provided at the intersection of the spacer 7 where the oil groove 12 and the discharge port 13 communicate with each other. In other words, in the spacer 7, at one location on the circumference where the discharge port 13 is provided, the wall portion 14 extends radially outward from the circumferential surface portion 12 b forming the oil groove 12 to the stepped portion or the vicinity of the stepped portion. It protrudes toward the direction. A cross-sectional area of the wall portion 14 as viewed by cutting along a cross section including the bearing axis is a cross-sectional area substantially equal to the cross-sectional area of the oil groove 12. Moreover, the cross-sectional area seen by cut | disconnecting the cross | intersection part which the oil groove 12 and the discharge port 13 in FIG. It is assumed that it is larger than the cross-sectional area of the oil groove 12 shown. The wall portion 14 is disposed at the center portion of the circumferential length L2 of the discharge port 13 of the spacer 7.

図7に示すように、間座7に隣接する外輪2の端面における円周方向の一部には、軸受径方向外方に貫通する切欠き2dが設けられている。この切欠き2dは、外輪2の円周方向の一部において、軌道面2aに対して接触角を成す作用線L1の反偏り側のカウンタボア2cを、転動体3のある軌道面付近(少なくとも軌道面2aの転動体3との接触楕円に干渉しない範囲)まで深く切欠き形成している。   As shown in FIG. 7, a notch 2d penetrating outward in the bearing radial direction is provided in a part of the end surface of the outer ring 2 adjacent to the spacer 7 in the circumferential direction. This notch 2d has a counter bore 2c on the opposite side of the acting line L1 that forms a contact angle with the raceway surface 2a in a part of the outer ring 2 in the circumferential direction, near the raceway surface where the rolling element 3 is located (at least A notch is formed deeply to the extent that the raceway surface 2a does not interfere with the contact ellipse with the rolling element 3.

ラビリンス機構について説明する。
図6に示すように、内輪延長部6および間座7には、例えば、隣接する軸受内に潤滑油が漏洩することを抑制するラビリンス機構15を設けている。このラビリンス機構15は、給油路9および排油口10(図2)に連通し、広部と狭部とが軸方向に連なるものとしている。前記広部は、内輪延長部6における他方側肩部の外周面に設けられる円周溝16と、この円周溝16に対向する間座7の内周面とを含んで構成される。前記円周溝16は、軸方向に間隔をあけて複数(この例では2つ)配設される。各円周溝16は、内輪延長部6の端面側(図6の上側)に向かうに従って小径となる、換言すると溝が深くなるように傾斜する断面形状に形成されている。前記狭部は、内輪延長部6における前記外周面の突出先端部17と、この突出先端部17に対向する間座7の内周面とを含んで構成される。
The labyrinth mechanism will be described.
As shown in FIG. 6, the inner ring extension 6 and the spacer 7 are provided with, for example, a labyrinth mechanism 15 that suppresses leakage of lubricating oil into adjacent bearings. The labyrinth mechanism 15 communicates with the oil supply passage 9 and the oil discharge port 10 (FIG. 2), and the wide portion and the narrow portion are continuous in the axial direction. The wide portion includes a circumferential groove 16 provided on the outer circumferential surface of the other shoulder portion of the inner ring extension portion 6 and an inner circumferential surface of the spacer 7 facing the circumferential groove 16. A plurality (two in this example) of the circumferential grooves 16 are arranged at intervals in the axial direction. Each circumferential groove 16 has a cross-sectional shape that becomes smaller in diameter toward the end face side (upper side in FIG. 6) of the inner ring extension 6, in other words, is inclined so that the groove becomes deeper. The narrow portion includes a protruding tip 17 of the outer peripheral surface of the inner ring extension 6 and an inner peripheral surface of the spacer 7 facing the protruding tip 17.

各円周溝16が前記のように傾斜する断面形状に形成されているため、給油路9から供給されてラビリンス機構15に浸入した潤滑油は、内輪回転による遠心力により円周溝16の傾斜面に沿って漏れ側とは反対方向に移動する。このようなラビリンス機構15により、隣接する軸受内に潤滑油が漏洩することを抑制し得る。なお、円周溝16は、3つ以上であっても良いし1つであっても良い。内輪延長部6に円周溝16を設ける構成に代えて、間座7における断面凹形状の前記他方側肩部に、円周溝を設けても良い。また内輪延長部6および間座7にそれぞれ円周溝を設けても良い。   Since each circumferential groove 16 is formed in an inclined cross-sectional shape as described above, the lubricating oil supplied from the oil supply passage 9 and entering the labyrinth mechanism 15 is inclined by the centrifugal force due to the inner ring rotation. Move along the surface in the opposite direction to the leak side. Such a labyrinth mechanism 15 can prevent the lubricating oil from leaking into the adjacent bearing. Note that the number of circumferential grooves 16 may be three or more, or one. Instead of the configuration in which the circumferential groove 16 is provided in the inner ring extension 6, a circumferential groove may be provided in the other shoulder portion having a concave cross section in the spacer 7. Moreover, you may provide a circumferential groove in the inner ring extension part 6 and the spacer 7, respectively.

作用効果について説明する。
軸受運転時、間座7の給油路9から潤滑油を供給すると、内輪延長部6の外周面の内輪円周溝8に沿って潤滑油が流れる。これにより軸受を冷却する。軸受を冷却した潤滑油は、円周溝8に沿って流れ、排油口10に向かい円滑に排出される。また軸受潤滑のための潤滑油が、径方向すきまδ1を介して転がり軸受内の軸受空間S1に供給される。
この転がり軸受BRの潤滑に供された潤滑油の一部は、前記転がり軸受BRに隣接して配置した転がり軸受BRにおける間座7の端面の油溝12に沿って流れ、この油溝12から排出口13を通って軸受外に排出される。このように隣接する軸受の間座7の端面に油溝12を設けることで、転がり軸受内の軸受空間S1における、隣接する軸受との境界付近に、潤滑油が滞留することを防止し得る。したがって、潤滑油の滞留した液面が前記転がり軸受BRの保持器4、転動体3に干渉することを未然に防止し、軸受内部の攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とすることができる。
The effect will be described.
When the lubricating oil is supplied from the oil supply passage 9 of the spacer 7 during the bearing operation, the lubricating oil flows along the inner ring circumferential groove 8 on the outer peripheral surface of the inner ring extension 6. This cools the bearing. The lubricating oil that has cooled the bearing flows along the circumferential groove 8 and is smoothly discharged toward the oil discharge port 10. Also, lubricating oil for bearing lubrication is supplied to the bearing space S1 in the rolling bearing through the radial clearance δ1.
Part of the lubricating oil used for lubrication of the rolling bearing BR flows along the oil groove 12 on the end surface of the spacer 7 in the rolling bearing BR arranged adjacent to the rolling bearing BR. It is discharged out of the bearing through the discharge port 13. Thus, by providing the oil groove 12 on the end face of the spacer 7 of the adjacent bearing, it is possible to prevent the lubricating oil from staying near the boundary with the adjacent bearing in the bearing space S1 in the rolling bearing. Accordingly, it is possible to prevent the liquid level in which the lubricating oil stays from interfering with the cage 4 and the rolling element 3 of the rolling bearing BR, to prevent an increase in the stirring resistance inside the bearing, and to suppress a temperature rise inside the bearing. Thus, high speed operation can be achieved.

油溝12は、転がり軸受BRにおける、軸心および転動体中心を含む断面における、内輪延長部6とは軸方向逆側の外輪内周面2b、転動体外周面、保持器外周面を含む仮想の円筒面4a、および前記間座7の端面7aで形成される断面積よりも大きい断面積を有するため、油溝12に一定量の潤滑油が溜まり、軸受内部に潤滑油が滞留することを防ぐことができる。
前記排出口13は、油溝12の深さ寸法Daよりも大きい深さ寸法Dbを有するため、油溝12を流れる潤滑油は、重力の作用で排出口13に流れ易くなり、この排出口13から潤滑油を円滑に軸受外に排出することが可能となる。
The oil groove 12 is a virtual bearing including an outer ring inner peripheral surface 2b, a rolling element outer peripheral surface, and a cage outer peripheral surface on the opposite side to the inner ring extension 6 in a cross section including the shaft center and the rolling element center in the rolling bearing BR. Since the cross-sectional area larger than the cross-sectional area formed by the cylindrical surface 4a and the end surface 7a of the spacer 7 is constant, a certain amount of lubricating oil accumulates in the oil groove 12, and the lubricating oil stays inside the bearing. Can be prevented.
Since the discharge port 13 has a depth dimension Db larger than the depth dimension Da of the oil groove 12, the lubricating oil flowing through the oil groove 12 easily flows to the discharge port 13 due to the action of gravity. Therefore, the lubricating oil can be smoothly discharged out of the bearing.

軸受の高速回転時に、転動体3、保持器4が潤滑油を排出する際の抵抗となり得るが、各転がり軸受BRのうち、間座7に隣接する外輪2の端面における円周方向の一部に、軸受径方向に貫通する切欠き2dを設けたため、この切欠き2dを介して潤滑油の一部を軸受外に排出することができる。このため、軸受の高速回転時に、軸受空間S1における間座7に隣接する転動体3の片側部分に、潤滑油が滞留することを抑制することができる。これにより、軸受内部の攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とすることができる。   While the rolling element 3 and the cage 4 can discharge the lubricating oil during high-speed rotation of the bearing, a part of the rolling bearing BR in the circumferential direction on the end face of the outer ring 2 adjacent to the spacer 7 can be provided. Further, since the notch 2d penetrating in the bearing radial direction is provided, a part of the lubricating oil can be discharged out of the bearing through the notch 2d. For this reason, at the time of high-speed rotation of a bearing, it can suppress that lubricating oil retains in the one side part of the rolling element 3 adjacent to the spacer 7 in bearing space S1. As a result, an increase in the stirring resistance inside the bearing can be prevented, a temperature rise inside the bearing can be suppressed, and high speed operation can be achieved.

間座7のうち、油溝12と排出口13とが連通する交差部に、潤滑油の油溝12に沿う流れを規制する壁部14を設けたため、軸受の回転方向に流れる潤滑油の流れを前記壁部14で規制し、潤滑油を排出口13に円滑に導くことができる。この壁部14を、間座7の排出口13の周方向長さL2の中央部に配設したため、軸受が図5点線矢印のように逆回転する場合にも、油溝12に沿って逆回転方向に流れる潤滑油を前記壁部14で規制し、排出口13に円滑に導くことができる。   Since the wall portion 14 for restricting the flow of the lubricating oil along the oil groove 12 is provided at the intersection of the spacer 7 where the oil groove 12 and the discharge port 13 communicate with each other, the flow of the lubricating oil flowing in the rotation direction of the bearing Can be regulated by the wall portion 14 and the lubricating oil can be smoothly guided to the discharge port 13. Since the wall portion 14 is disposed at the center portion of the circumferential length L2 of the discharge port 13 of the spacer 7, even when the bearing rotates backward as indicated by the dotted line arrow in FIG. Lubricating oil flowing in the rotational direction can be regulated by the wall portion 14 and smoothly guided to the discharge port 13.

他の実施形態について説明する。
以下の説明において、構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
間座7に排出口13を2個以上設けても良い。各排出口13は、それぞれ油溝12に連通して油溝内の潤滑油を軸受外に排出可能となっている。この場合、潤滑油を2個以上の排出口13からさらに円滑に排出し得る。
間座7に隣接する外輪2の端面における円周方向複数箇所に、それぞれ切欠き2dを設けても良い。この場合、潤滑油の一部を2個以上の切欠き2dを介してさらに円滑に軸受外に排出することができる。
アンギュラ玉軸受を背面組合せ、正面組合せ、または並列組合せのいずれの組合せにしても良い。またアンギュラ玉軸受を3列以上の組合せにしても良い。
Another embodiment will be described.
In the following description, when only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
Two or more discharge ports 13 may be provided in the spacer 7. Each discharge port 13 communicates with the oil groove 12 and can discharge the lubricating oil in the oil groove to the outside of the bearing. In this case, the lubricating oil can be discharged more smoothly from the two or more discharge ports 13.
Notches 2d may be provided at a plurality of locations in the circumferential direction on the end face of the outer ring 2 adjacent to the spacer 7 respectively. In this case, a part of the lubricating oil can be discharged out of the bearing more smoothly through the two or more notches 2d.
Angular ball bearings may be any combination of a rear combination, a front combination, or a parallel combination. Further, the angular ball bearings may be combined in three or more rows.

図10は、いずれかの実施形態に係る転がり軸受の潤滑装置を、工作機械の主軸の支持に用いた例を概略示す断面図である。この例では、並列組合せした2列のアンギュラ玉軸受同士を、互いに背面組み合わせとした4列(いわゆるDTBT組合せ)のアンギュラ玉軸受を軸方向に並べてハウジングHsに設置し、これらの軸受により主軸Shを回転自在に支持する。この組合せアンギュラ玉軸受では、2列または3列のアンギュラ玉軸受を組み合わせた構成よりも、ラジアル剛性およびアキシアル剛性を大きくし且つ高速運転可能に構成される。これらの内外輪1,2は内輪押え18および外輪押え19等により主軸ShおよびハウジングHsにそれぞれ固定されている。   FIG. 10 is a cross-sectional view schematically illustrating an example in which the rolling bearing lubrication device according to any of the embodiments is used to support the spindle of a machine tool. In this example, four rows of angular contact ball bearings combined in parallel with each other and four rows of so-called DTBT combination angular contact ball bearings are arranged in the axial direction in the housing Hs. Support for rotation. This combined angular contact ball bearing is configured to increase radial rigidity and axial rigidity and to enable high-speed operation, compared to a configuration in which two or three rows of angular ball bearings are combined. These inner and outer rings 1 and 2 are fixed to the main shaft Sh and the housing Hs by an inner ring presser 18 and an outer ring presser 19, respectively.

ハウジングHsには、潤滑油を給排油機構KUに供給する給油経路20と、軸受を冷却した潤滑油である冷却油を排出する冷却油経路21と、軸受内で潤滑に供された潤滑油を排出する排油経路(図示せず)とが設けられている。給油経路20は、各給油路9に繋がると共にハウジングHs外に設置される給油ポンプ22に配管接続されている。この給油ポンプ22を用いて、潤滑油を給油源から給油経路20を介して各給油路9に強制的に圧送し得る。
冷却油経路21は、各排油口10に繋がると共にハウジングHs外に設置される排油ポンプ23に配管接続されている。軸受を冷却した潤滑油は、排油ポンプ23を用いて、排油経路21を介してハウジングHs外に排出し得る。
In the housing Hs, an oil supply path 20 for supplying lubricating oil to the supply / exhaust oil mechanism KU, a cooling oil path 21 for discharging cooling oil that is the lubricating oil that has cooled the bearing, and a lubricating oil used for lubrication in the bearing And an oil discharge path (not shown) for discharging the oil. The oil supply path 20 is connected to each oil supply path 9 and connected to an oil supply pump 22 installed outside the housing Hs by piping. Using the oil supply pump 22, the lubricating oil can be forcibly pumped from the oil supply source to each oil supply passage 9 via the oil supply passage 20.
The cooling oil passage 21 is connected to each oil outlet 10 and connected to a drain oil pump 23 installed outside the housing Hs. The lubricating oil that has cooled the bearing can be discharged out of the housing Hs through the oil discharge path 21 using the oil discharge pump 23.

前記排油経路は、各排出口13および各切欠き2dに繋がり、軸受内で潤滑に供された潤滑油を重力および内輪回転による遠心力によりハウジングHs外に排出する。このように軸受内で潤滑に供された潤滑油をポンプ等を用いることなく、重力および遠心力により排出することができるため、軸受内部に過度の潤滑油が流入することがなくなる。   The oil discharge path is connected to each discharge port 13 and each notch 2d, and discharges lubricating oil used for lubrication in the bearing to the outside of the housing Hs by gravity and centrifugal force due to rotation of the inner ring. Thus, since the lubricating oil provided for lubrication in the bearing can be discharged by gravity and centrifugal force without using a pump or the like, excessive lubricating oil does not flow into the bearing.

以上説明した構成によると、いずれかの実施形態に係る転がり軸受の潤滑装置を、工作機械の主軸Shの支持に用いた場合、各間座7の端面にそれぞれ油溝12を設けたため、転がり軸受内の軸受空間S1における、隣接する軸受との境界付近に、潤滑油が滞留することを防止し得る。また、間座7に隣接する外輪2の端面における円周方向の一部に、軸受径方向に貫通する切欠き2dを設けたため、この切欠き2dを介して潤滑油の一部を軸受外に排出することができる。このため、軸受の高速回転時に、軸受空間S1における間座7に隣接する転動体3の片側部分に、潤滑油が滞留することを抑制することができる。したがって、軸受内部の攪拌抵抗の増加を防止し、軸受内部の温度上昇を抑制して、高速運転を可能とすることができる。   According to the configuration described above, when the rolling bearing lubrication device according to any of the embodiments is used to support the main shaft Sh of the machine tool, the oil grooves 12 are provided on the end surfaces of the spacers 7, respectively. In the inner bearing space S1, the lubricating oil can be prevented from staying near the boundary with the adjacent bearing. Further, since a notch 2d penetrating in the radial direction of the bearing is provided in a part of the end surface of the outer ring 2 adjacent to the spacer 7 in the circumferential direction, a part of the lubricating oil is removed from the bearing through the notch 2d. Can be discharged. For this reason, at the time of high-speed rotation of a bearing, it can suppress that lubricating oil retains in the one side part of the rolling element 3 adjacent to the spacer 7 in bearing space S1. Therefore, it is possible to prevent an increase in the stirring resistance inside the bearing, suppress a temperature rise inside the bearing, and enable high-speed operation.

1…内輪
2…外輪
1a,2a…軌道面
2d…切欠き
3…転動体
4…保持器
6…内輪延長部
7…間座
12…油溝
13…排出口
14…壁部
BR…転がり軸受
KU…給排油機構
Sh…主軸
S1…軸受空間
DESCRIPTION OF SYMBOLS 1 ... Inner ring 2 ... Outer ring 1a, 2a ... Raceway surface 2d ... Notch 3 ... Rolling body 4 ... Cage 6 ... Inner ring extension part 7 ... Spacer 12 ... Oil groove 13 ... Discharge port 14 ... Wall part BR ... Rolling bearing KU ... Oil supply / discharge mechanism Sh ... Spindle S1 ... Bearing space

Claims (10)

軸方向に並べて複数の転がり軸受を配置し、各転がり軸受は、内外輪の軌道面間に、保持器に保持された複数の転動体を介在させ、前記内輪に軸方向に延びる内輪延長部を設けると共に、外輪に隣接し且つ内周面が前記内輪延長部に対向する間座を設け、これら内輪延長部と間座とにわたって軸受冷却媒体を兼ねる潤滑油を前記各転がり軸受内の軸受空間に供給すると共に軸受外に排出する給排油機構を設け、
各転がり軸受のうち、内輪延長部とは軸方向逆側の内外輪の端面に対し、隣接して配置した転がり軸受における間座の端面に、前記隣接する転がり軸受内の軸受空間に連通して同軸受内の潤滑油を排出する油溝を設けたことを特徴とする転がり軸受の潤滑装置。
A plurality of rolling bearings are arranged side by side in the axial direction, and each rolling bearing has a plurality of rolling elements held by a cage interposed between the raceway surfaces of the inner and outer rings, and an inner ring extension extending in the axial direction on the inner ring. In addition, a spacer is provided adjacent to the outer ring and whose inner peripheral surface is opposed to the inner ring extension, and lubricating oil that also serves as a bearing cooling medium is provided in the bearing space in each rolling bearing over the inner ring extension and the spacer. Supply and discharge oil supply mechanism to supply and discharge outside the bearing,
Among the rolling bearings, the end face of the spacer in the rolling bearing disposed adjacent to the end face of the inner and outer rings opposite to the inner ring extension portion communicates with the bearing space in the adjacent rolling bearing. A rolling bearing lubrication device comprising an oil groove for discharging lubricating oil in the bearing.
請求項1において、前記油溝は、前記転がり軸受における、軸心および転動体中心を含む断面における、内輪延長部とは軸方向逆側の外輪内周面、転動体外周面、保持器外周面を含む仮想の円筒面、および前記間座の端面で形成される断面積よりも大きい断面積を有する転がり軸受の潤滑装置。   2. The oil groove according to claim 1, wherein the oil groove includes an outer ring inner circumferential surface, a rolling element outer circumferential surface, and a cage outer circumferential surface on the opposite side of the inner ring extension in the cross section including the shaft center and the rolling element center in the rolling bearing. A rolling bearing lubrication device having a virtual cylindrical surface including a cross-sectional area larger than a cross-sectional area formed by an end surface of the spacer. 請求項1または請求項2において、前記間座に、油溝に連通して油溝内の潤滑油を軸受外に排出する排出口を設けた転がり軸受の潤滑装置。   The rolling bearing lubrication device according to claim 1 or 2, wherein the spacer is provided with a discharge port that communicates with the oil groove and discharges the lubricating oil in the oil groove to the outside of the bearing. 請求項3において、前記排出口は、油溝の深さ寸法よりも大きい深さ寸法を有する転がり軸受の潤滑装置。   4. The rolling bearing lubrication device according to claim 3, wherein the discharge port has a depth dimension larger than a depth dimension of the oil groove. 請求項3または請求項4において、前記間座に排出口を2個以上設けた転がり軸受の潤滑装置。   5. The rolling bearing lubrication device according to claim 3, wherein the spacer has two or more discharge ports. 請求項1ないし請求項5のいずれか1項において、前記各転がり軸受のうち、間座に隣接する外輪の端面における円周方向の一部に、軸受径方向に貫通する切欠きを設けた転がり軸受の潤滑装置。   The rolling according to any one of claims 1 to 5, wherein, in each of the rolling bearings, a notch penetrating in the radial direction of the bearing is provided in a part of the end surface of the outer ring adjacent to the spacer in the circumferential direction. Bearing lubrication equipment. 請求項6において、前記外輪に切欠きを2個以上設けた転がり軸受の潤滑装置。   7. The rolling bearing lubrication device according to claim 6, wherein the outer ring has two or more notches. 請求項1ないし請求項7のいずれか1項において、前記間座に、油溝に連通して油溝内の潤滑油を軸受外に排出する排出口を設けると共に、前記間座のうち、油溝と排出口とが連通する交差部に、潤滑油の油溝に沿う流れを規制する壁部を設けた転がり軸受の潤滑装置。   8. The spacer according to claim 1, wherein the spacer is provided with a discharge port that communicates with the oil groove and discharges the lubricating oil in the oil groove to the outside of the bearing. A lubrication device for a rolling bearing in which a wall portion for restricting a flow of lubricating oil along an oil groove is provided at an intersection where the groove and the discharge port communicate with each other. 請求項8において、前記壁部を、間座の排出口の周方向長さの中央部に配設した転がり軸受の潤滑装置。   9. The lubricating device for a rolling bearing according to claim 8, wherein the wall portion is disposed at a central portion of a circumferential length of the outlet of the spacer. 請求項1ないし請求項9のいずれか1項において、工作機械の主軸の支持に用いられるものである転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 1 to 9, wherein the lubricating device is used for supporting a spindle of a machine tool.
JP2011250448A 2011-09-22 2011-11-16 Rolling bearing lubrication system Expired - Fee Related JP5816061B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011250448A JP5816061B2 (en) 2011-11-16 2011-11-16 Rolling bearing lubrication system
PCT/JP2012/072853 WO2013042552A1 (en) 2011-09-22 2012-09-07 Roller bearing device
TW101133760A TW201335500A (en) 2011-09-22 2012-09-14 Rolling contact bearing and lubrication system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250448A JP5816061B2 (en) 2011-11-16 2011-11-16 Rolling bearing lubrication system

Publications (2)

Publication Number Publication Date
JP2013104520A JP2013104520A (en) 2013-05-30
JP5816061B2 true JP5816061B2 (en) 2015-11-17

Family

ID=48624224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250448A Expired - Fee Related JP5816061B2 (en) 2011-09-22 2011-11-16 Rolling bearing lubrication system

Country Status (1)

Country Link
JP (1) JP5816061B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958005B2 (en) * 2015-10-13 2018-05-01 Shimadzu Corporation Oil-lubricated bearing device and vacuum pump
CN106594249A (en) * 2016-12-13 2017-04-26 宁波海天精工股份有限公司 Structure applied to cooling, lubricating, sealing and backflow of speed-changing gear box bearing
CN107489697A (en) * 2017-07-05 2017-12-19 徐州博丰轴承有限公司 A kind of rolling bearing
JP7087335B2 (en) 2017-10-13 2022-06-21 株式会社ジェイテクト Anomaly detection method for rolling bearing devices and bearings
CN110357013B (en) * 2018-04-11 2024-04-26 南京恒昌包装机械有限公司 Good-lubrication roll sealing roller and flanging swing shaft device provided with roll sealing roller
CN110173511A (en) * 2019-06-14 2019-08-27 中国船舶重工集团公司第七0四研究所 The uniform oil supply structure of toroidal cavity of vertical installation rolling bearing
CN112025402A (en) * 2020-09-01 2020-12-04 广东工业大学 Lubricating device for working bearing of numerical control machine tool
JP2022087751A (en) * 2020-12-01 2022-06-13 本田技研工業株式会社 Rotary electric machine and movable body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396037B2 (en) * 2000-04-20 2010-01-13 日本精工株式会社 Lubricating device for rolling bearings
JP2004332755A (en) * 2003-04-30 2004-11-25 Ntn Corp Air oil lubricating structure of roller bearing
JP2008082496A (en) * 2006-09-28 2008-04-10 Ntn Corp Lubricating device of roll bearing
JP2008075882A (en) * 2007-12-11 2008-04-03 Nsk Ltd Bearing device

Also Published As

Publication number Publication date
JP2013104520A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5816061B2 (en) Rolling bearing lubrication system
KR101968714B1 (en) Rolling bearing
WO2013042552A1 (en) Roller bearing device
RU2585125C2 (en) Rolling bearing assembly
JP2008240938A (en) Lubrication device for rolling bearing
KR102116058B1 (en) Bearing device and rotating machine
JP4983402B2 (en) Rolling bearing device
WO2018034245A1 (en) Bearing device, and spindle device for machine tool
JP5675263B2 (en) Rolling bearing
WO2016025508A1 (en) Reverse bypass cooling for tilted pad journal and tilting pad thrust bearings
JP5183059B2 (en) Multi-row rolling bearing device
JP2008240947A (en) Lubricating device for angular ball bearing
JP2010091067A (en) Lubrication structure of angular contact ball bearing
JP2008133898A (en) Rolling bearing
JP5321052B2 (en) Rolling bearing device
JP2007024258A (en) Lubricating device of rolling bearing
JP2009162341A (en) Rolling bearing
JP6200722B2 (en) Tilting pad bearing device
JP2008082496A (en) Lubricating device of roll bearing
JP2006200675A (en) Roller bearing and bearing oil supply method
JP2008240946A (en) Lubricating device for rolling bearing
JP5852379B2 (en) Spindle device
JP2010090981A (en) Lubricating structure of angular contact ball bearing
JP2008082497A (en) Lubricating device of roll bearing
JP2008082495A (en) Lubricating device of rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150925

R150 Certificate of patent or registration of utility model

Ref document number: 5816061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees