JP5809475B2 - Light transmissive conductive material - Google Patents

Light transmissive conductive material Download PDF

Info

Publication number
JP5809475B2
JP5809475B2 JP2011166240A JP2011166240A JP5809475B2 JP 5809475 B2 JP5809475 B2 JP 5809475B2 JP 2011166240 A JP2011166240 A JP 2011166240A JP 2011166240 A JP2011166240 A JP 2011166240A JP 5809475 B2 JP5809475 B2 JP 5809475B2
Authority
JP
Japan
Prior art keywords
conductive
disconnection
mesh
pattern
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011166240A
Other languages
Japanese (ja)
Other versions
JP2013030378A (en
Inventor
武宣 吉城
武宣 吉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011166240A priority Critical patent/JP5809475B2/en
Priority to KR1020147004531A priority patent/KR101587486B1/en
Priority to PCT/JP2012/068298 priority patent/WO2013018549A1/en
Priority to CN201280037890.2A priority patent/CN103797449B/en
Priority to US14/235,223 priority patent/US9629242B2/en
Priority to TW101126754A priority patent/TWI587374B/en
Publication of JP2013030378A publication Critical patent/JP2013030378A/en
Application granted granted Critical
Publication of JP5809475B2 publication Critical patent/JP5809475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

本発明は、タッチパネル、有機EL材料、太陽電池などに用いられる光透過性導電材料に関し、特に投影型静電容量方式タッチパネルに好適に用いられる光透過性導電材料に関するものである。   The present invention relates to a light transmissive conductive material used for a touch panel, an organic EL material, a solar cell, and the like, and particularly to a light transmissive conductive material suitably used for a projected capacitive touch panel.

パーソナル・デジタル・アシスタント(PDA)、ノートPC、OA機器、医療機器、あるいはカーナビゲーションシステム等の電子機器においては、これらのディスプレイに入力手段としてタッチパネルが広く用いられている。   In electronic devices such as personal digital assistants (PDAs), notebook PCs, OA devices, medical devices, and car navigation systems, touch panels are widely used as input means for these displays.

タッチパネルには、位置検出の方法により光学方式、超音波方式、静電容量方式、抵抗膜方式などがある。抵抗膜方式のタッチパネルは、光透過性導電材料と透明導電体層付ガラスとがスペーサーを介して対向配置されており、光透過性導電材料に電流を流し光透過性導電層付ガラスに於ける電圧を計測するような構造となっている。一方、静電容量方式のタッチパネルは、基材上に透明導電体層を有するものを基本的構成とし、可動部分がないことが特徴であり、高耐久性、高透過率を有するため、例えば車載用途等において適用されている。   The touch panel includes an optical method, an ultrasonic method, a capacitance method, a resistance film method, and the like depending on a position detection method. In the resistive film type touch panel, a light-transmitting conductive material and a glass with a transparent conductor layer are arranged to face each other with a spacer interposed therebetween. It has a structure that measures voltage. On the other hand, a capacitive touch panel is basically characterized by having a transparent conductor layer on a substrate, has no moving parts, and has high durability and high transmittance. It is applied in applications.

タッチパネル用途の透明電極(光透過性導電材料)としては、一般にITOからなる光透過性導電膜が基材上に形成されたものが使用されてきた。しかしながらITO導電膜は屈折率が大きく、光の表面反射が大きいため、全光線透過率が低下する問題や、可撓性が低いため屈曲した際にITO導電膜に亀裂が生じて電気抵抗値が高くなる問題があった。   As a transparent electrode (light transmissive conductive material) for use in a touch panel, a material in which a light transmissive conductive film made of ITO is generally formed on a substrate has been used. However, since the ITO conductive film has a large refractive index and a large surface reflection of light, there is a problem that the total light transmittance is lowered, and since the flexibility is low, the ITO conductive film cracks when bent and the electric resistance value is low. There was a problem of getting higher.

ITOに代わる透明導電材料として、基板上に薄い触媒層を形成し、その上にレジストパターンを形成した後、めっき法によりレジスト開口部に金属層を積層し、最後にレジスト層およびレジスト層で保護された下地金属を除去することにより、導電性パターンを形成するセミアディティブ方法が、例えば特開2007−287994号公報、特開2007−287953号公報などに開示されている。   As a transparent conductive material that replaces ITO, a thin catalyst layer is formed on the substrate, a resist pattern is formed on it, and then a metal layer is deposited on the resist opening by plating, and finally protected by the resist layer and resist layer. For example, Japanese Patent Application Laid-Open Nos. 2007-287994 and 2007-287953 disclose a semi-additive method for forming a conductive pattern by removing the underlying metal.

また近年、銀塩拡散転写法を用いた銀塩写真感光材料を導電性材料前駆体として用いる方法も提案されている。例えば特開2003−77350号公報、特開2005−250169号公報や特開2007−188655号公報等では、基材上に物理現像核層とハロゲン化銀乳剤層を少なくともこの順に有する導電性材料前駆体に、可溶性銀塩形成剤および還元剤をアルカリ液中で作用させて、金属銀パターンを形成させる技術が開示されている。この方式によるパターニングは均一な線幅を再現することができることに加え、銀は金属の中で最も導電性が高いため、他方式に比べ、より細い線幅で高い導電性を得ることができる。さらにこの方法で得られた銀パターン膜はITO導電膜よりも可撓性が高く折り曲げに強いという利点がある。   In recent years, a method using a silver salt photographic light-sensitive material using a silver salt diffusion transfer method as a conductive material precursor has also been proposed. For example, in JP-A-2003-77350, JP-A-2005-250169, JP-A-2007-188655, etc., a conductive material precursor having a physical development nucleus layer and a silver halide emulsion layer at least in this order on a substrate. A technique for forming a metallic silver pattern by allowing a soluble silver salt forming agent and a reducing agent to act on the body in an alkaline solution is disclosed. Patterning by this method can reproduce a uniform line width, and since silver has the highest conductivity among metals, higher conductivity can be obtained with a narrower line width than other methods. Furthermore, the silver pattern film obtained by this method has an advantage that it is more flexible and resistant to bending than the ITO conductive film.

投影型静電容量方式を用いたタッチパネルは、複数の電極が同一平面上にパターニングされた光透過性導電材料を2枚貼り合わせることでタッチセンサーを製造している。タッチパネルは通常作業者が画面を凝視し操作するため、導電部と非導電部との差が目に映ってしまう(視認性が高い)という問題があった。特に、光透過性導電材料として網目状金属パターンを用いる場合、金属パターン自体が目に映るという問題もあり、さらに網目状金属パターンからなる光透過性導電材料を用いて上記投影型静電容量方式のタッチパネルを作製した場合、導電部と非導電部が目に映ってしまう(視認性が高い)という問題がとりわけ顕著に現れる。   A touch panel using a projected capacitive method manufactures a touch sensor by bonding two light transmissive conductive materials in which a plurality of electrodes are patterned on the same plane. The touch panel usually has a problem that a worker stares at the screen and operates it, so that a difference between the conductive part and the non-conductive part is visible (high visibility). In particular, when a mesh metal pattern is used as the light transmissive conductive material, there is a problem that the metal pattern itself is visible. When the touch panel is manufactured, the problem that the conductive part and the non-conductive part are visible to the eye (high visibility) is particularly noticeable.

この問題に対し、特開2006−344163号公報(特許文献1)ではスリットにより網目状金属細線パターンを区切ることで導電部を設けるが、その際にスリット幅を20μm以上かつ網目の最大寸法以下にし、なおかつスリットが網目の交点を通らないようすることで、視認性を下げようとしている。しかしながら、スリット幅が20μmであっても輪郭は視認され、またスリットが交点を通らないようにしても、視認性を十分に下げることはできなかった。また特開2011−59771号公報(特許文献2)では直線的な輪郭(スリット)の視認性を下げるため、輪郭を直線的に作らないよう工夫することが提案されているが、視認性についてはやはり不十分であった。さらに特開2011−59772号公報(特許文献3)では同じ網目状金属パターンを2つ準備し、一方の網目状パターンから所望の形状を切り取り、同じ形状を他方の網目状パターンから切り取り、ただし、2つの切り取った網目状パターンは、両者をちょうど重ねた時に、パターン模様が重ならないようするなどの手順によって確定される網目状パターンが提案されている。しかしながら、この方法は非常に複雑な手順をとるために、パターンの設計に手間がかかる上に、輪郭部分で網目状構造が変わる点で違和感が残ることもあり、視認性の問題の解決とはならなかった。   In order to solve this problem, in Japanese Patent Application Laid-Open No. 2006-344163 (Patent Document 1), a conductive portion is provided by dividing a mesh-like metal fine line pattern with a slit. Moreover, the visibility is reduced by preventing the slit from passing through the intersection of the mesh. However, even if the slit width is 20 μm, the outline is visually recognized, and even if the slit does not pass through the intersection, the visibility cannot be sufficiently lowered. In addition, JP 2011-59771 A (Patent Document 2) proposes to devise not to make the contour linear in order to reduce the visibility of the linear contour (slit). After all it was insufficient. Furthermore, in Japanese Patent Application Laid-Open No. 2011-59772 (Patent Document 3), two identical mesh metal patterns are prepared, a desired shape is cut from one mesh pattern, and the same shape is cut from the other mesh pattern, As the two cut-out mesh patterns, there is proposed a mesh pattern determined by a procedure such that pattern patterns do not overlap when the two patterns are just overlapped. However, since this method takes a very complicated procedure, it takes time to design the pattern, and in addition, there may be a sense of incongruity in that the mesh structure changes at the contour part. did not become.

一方、特開2010−198799号公報(特許文献4)においては、網目状金属メッシュの一部を断線し、抵抗膜式タッチパネルに好適な光透過性導電材料に用いる方法が提案されている。   On the other hand, Japanese Patent Application Laid-Open No. 2010-198799 (Patent Document 4) proposes a method in which a part of a mesh metal mesh is disconnected and used as a light-transmitting conductive material suitable for a resistive touch panel.

特開2006−344163号公報JP 2006-344163 A 特開2011−59771号公報JP 2011-59771 A 特開2011−59772号公報JP 2011-59772 A 特開2010−198799号公報JP 2010-198799 A

本発明の課題は、静電容量方式を用いたタッチパネルの透明電極として好適な、視認性の低い光透過性導電材料を提供することである。   An object of the present invention is to provide a light-transmitting conductive material with low visibility, which is suitable as a transparent electrode of a touch panel using a capacitance method.

本発明の上記課題は、以下の発明によって達成される。
(1)基材上に導電部と非導電部を隣接して有する光透過性導電材料であって、該導電部と非導電部が網目状金属パターンからなり、該網目状金属パターンは幾何学模様(以下、単位図形と称す)の繰り返しから構成され、該非導電部の網目状金属パターンは、該パターンの一部が断線した網目状金属パターンであり、該網目状金属パターンの単位図形1ヶあたりに断線部が入る個数を割合として算出する断線の程度(断線部が複数の単位図形にわたって入る場合には、断線部の個数はその断線部を共有する単位図形の個数で割って算出)が50〜200%であり、該断線部は単位図形の角部に設けられ、かつ導電部と非導電部の開口率の差が1%以内であることを特徴とする光透過性導電材料。
(2)上記導電部の網目状金属パターンの線間隔が非導電部の網目状金属パターンの線間隔の80〜120%であることを特徴とする(1)記載の光透過性導電材料。
The above object of the present invention is achieved by the following invention.
(1) A light-transmitting conductive material having a conductive part and a non-conductive part adjacent to each other on a base material, wherein the conductive part and the non-conductive part are composed of a mesh metal pattern, and the mesh metal pattern is geometric pattern (hereinafter, referred to as unit graphic) composed of repeating, reticulated metal pattern of the non-conductive portion, a mesh-like metal pattern der partially broken of the pattern is, unit figure 1 the net-th-shaped metal pattern Degree of disconnection calculated as a percentage of the number of disconnections per unit (when the disconnection includes multiple unit figures, the number of disconnections is calculated by dividing the number of unit figures sharing the disconnection) Is 50 to 200%, the disconnected portion is provided at a corner of the unit figure , and the difference in aperture ratio between the conductive portion and the nonconductive portion is within 1%.
(2) The light-transmitting conductive material according to (1), wherein the line interval of the mesh-like metal pattern of the conductive part is 80 to 120% of the line interval of the mesh-like metal pattern of the non-conductive part.

本発明により、静電容量方式を用いたタッチパネルの透明電極として好適な、視認性の低い光透過性導電材料を提供することができる。   According to the present invention, it is possible to provide a light-transmitting conductive material with low visibility, which is suitable as a transparent electrode of a touch panel using a capacitance method.

本発明の光透過性導電材料の一例An example of the light-transmitting conductive material of the present invention 単位図形が正方形である網目状パターンの一例An example of a mesh pattern in which the unit figure is a square 単位図形が正方形である網目状パターンの一例An example of a mesh pattern in which the unit figure is a square 単位図形が六角形でかつ単位図形が10×10並んだ網目状パターンの一例An example of a mesh pattern in which unit graphic is hexagonal and unit graphic is 10 × 10 実施例で使用した透過原稿Transparent document used in the example 実施例で使用した透過原稿Transparent document used in the example 実施例11で使用した導電部の断線網目パターンDisconnected mesh pattern of the conductive part used in Example 11

以下、本発明について詳細に説明する。
本発明の光透過性導電材料は基材上に網目状金属パターンを有している。網目状金属パターンとしては公知の形状を用いることができ、例えば正三角形、二等辺三角形、直角三角形などの三角形、正方形、長方形、菱形、平行四辺形、台形などの四角形、(正)六角形、(正)八角形、(正)十二角形、(正)二十角形などの(正)n角形、円、楕円、星形などを組み合わせた模様でありこれらの単位の単独の繰り返しあるいは2種類以上の組み合わせパターンなどを用いることができる。また、辺が直線でなくとも例えばジグザグ線、波線などで構成されていても良い。さらに特開2002−223095号公報で開示されているような、ストライプ状、煉瓦積み模様状のパターンも用いることができる。本発明ではこれらいずれの形状も用いることができるが、好ましくは正方形、正三角形、正六角形である。
Hereinafter, the present invention will be described in detail.
The light-transmitting conductive material of the present invention has a mesh-like metal pattern on a substrate. A known shape can be used as the mesh metal pattern, for example, a triangle such as a regular triangle, an isosceles triangle, a right triangle, a square, a rectangle, a rhombus, a parallelogram, a quadrangle such as a trapezoid, a (positive) hexagon, It is a combination of (positive) n-gons such as (positive) octagons, (positive) dodecagons, (positive) icosahedrons, circles, ellipses, stars, etc., and these units are repeated alone or in two types The above combination patterns can be used. Further, even if the side is not a straight line, it may be constituted by, for example, a zigzag line or a wavy line. Furthermore, a stripe pattern or a brickwork pattern as disclosed in Japanese Patent Application Laid-Open No. 2002-223095 can also be used. Any of these shapes can be used in the present invention, but a square, a regular triangle, and a regular hexagon are preferable.

本発明の光透過性導電材料の説明をするにあたり、図を用いて説明する。図1は本発明の光透過性導電材料の一例である。本発明の光透過性導電材料1は基材2の上に少なくとも前述の網目状金属パターンからなる導電部11と、同じく網目状金属パターンからなる非導電部12を隣接して有する。さらに導電部以外にもパターンのない非画像部13やベタ部からなる配線部14、15なども有することもできる。非導電部12は該網目状パターンに断線部が入ることで静電容量タッチパネルの電極全体として電気が流れなくなる。該網目状パターンは前述の通り、幾何模様の繰り返しから構成され(以下この幾何模様を単位図形と称す)、断線部は単位図形の角部(交点部)および、辺部いずれに入れても良いが、導電性材料を製造する際の開口率に対する影響が少ない角部(交点部)に断線部を設けることが好ましい。また断線部の長さはパターンの線幅の半分〜10倍の長さであることが好ましい。   The light-transmitting conductive material of the present invention will be described with reference to the drawings. FIG. 1 shows an example of the light-transmitting conductive material of the present invention. The light-transmitting conductive material 1 of the present invention has at least a conductive portion 11 made of the above-mentioned mesh-like metal pattern and a non-conductive portion 12 also made of a mesh-like metal pattern on a base material 2 adjacent to each other. Furthermore, it can also have the non-image part 13 without a pattern other than a conductive part, the wiring parts 14 and 15 which consist of a solid part, etc. The non-conductive portion 12 does not flow electricity as a whole electrode of the capacitive touch panel when the disconnection portion enters the mesh pattern. As described above, the mesh pattern is composed of repeating geometric patterns (hereinafter, this geometric pattern is referred to as a unit graphic), and the disconnection portion may be placed at either the corner (intersection) or the side of the unit graphic. However, it is preferable to provide a disconnection portion at a corner portion (intersection portion) that has little influence on the aperture ratio when the conductive material is manufactured. Moreover, it is preferable that the length of a disconnection part is half to 10 times the line width of a pattern.

本発明の光透過性導電材料の導電部11と非導電部12の開口率の差は1%以内、好ましくは0.78%以内である。より好ましくは0.5%以内である。本発明において開口率とは一つの連続した導電部、もしくは非導電部の面積に対する金属パターンのない部分の面積の割合をいう。例えば図1においては、7つの導電部11と一つの非導電部12から形成されており、開口率はそれぞれについて求めることとなる。このように導電部と非導電部が複数ある場合、導電部間の開口率の差が1%以内である導電部の面積の和が、全ての導電部の面積の和の80%以上を占め、また非導電部間の開口率の差が1%以内である非導電部の面積の和が、全ての非導電部の面積の和の80%以上を占めることが好ましく、全ての導電部の開口率が等しく、かつ全ての非導電部の開口率が等しいことがより好ましい。また、このように複数の導電部と非導電部がある場合であっても、本発明における導電部と非導電部の開口率は、隣接する導電部と非導電部どうしで比較するものとする。また、開口率の算出においては、網目状金属パターン中に恣意的に設けたロゴ部分などは除くものとする。   The difference in aperture ratio between the conductive portion 11 and the non-conductive portion 12 of the light transmissive conductive material of the present invention is within 1%, preferably within 0.78%. More preferably, it is within 0.5%. In the present invention, the aperture ratio refers to the ratio of the area of a part without a metal pattern to the area of one continuous conductive part or non-conductive part. For example, in FIG. 1, it is formed of seven conductive portions 11 and one nonconductive portion 12, and the aperture ratio is obtained for each. When there are a plurality of conductive parts and non-conductive parts in this way, the sum of the areas of the conductive parts whose difference in aperture ratio between the conductive parts is within 1% accounts for 80% or more of the sum of the areas of all the conductive parts. In addition, it is preferable that the sum of the areas of the non-conductive portions where the difference in aperture ratio between the non-conductive portions is within 1% occupies 80% or more of the sum of the areas of all the non-conductive portions. More preferably, the aperture ratios are equal and the aperture ratios of all non-conductive portions are equal. Further, even when there are a plurality of conductive parts and non-conductive parts in this way, the aperture ratios of the conductive parts and non-conductive parts in the present invention are compared between adjacent conductive parts and non-conductive parts. . In the calculation of the aperture ratio, a logo portion arbitrarily provided in the mesh metal pattern is excluded.

本発明においては非導電部12を電極全体として電気の流れない非導電部分とするため、網目状金属パターンには断線部を設ける。導電部11と非導電部12で同じ形状単位図形を用い、非導電部12の網目状金属パターンに断線部を設けると、開口率は非導電部12の方が高くなる。導電部11と非導電部12との開口率の差を1%以内にするには、非導電部12の断線部分の割合を減らして、断線部による開口部の面積率の上昇を抑える方法や、あるいは導電部11と非導電部12の単位図形を変え、導電部11の方が開口率の高い単位図形を持つ網目状金属パターンを用い、非導電部の断線による開口率の上昇を補償する方法などを用いることで達成される。   In the present invention, since the non-conductive portion 12 is a non-conductive portion where the entire electrode does not flow electricity, the mesh-shaped metal pattern is provided with a disconnected portion. When the same shape unit graphic is used for the conductive portion 11 and the nonconductive portion 12 and a broken portion is provided in the mesh metal pattern of the nonconductive portion 12, the non-conductive portion 12 has a higher aperture ratio. In order to make the difference in aperture ratio between the conductive portion 11 and the non-conductive portion 12 within 1%, the ratio of the disconnected portion of the non-conductive portion 12 is decreased to suppress the increase in the area ratio of the opening due to the disconnected portion, Alternatively, the unit graphic of the conductive part 11 and the non-conductive part 12 is changed, and a mesh metal pattern having a unit graphic with a higher aperture ratio is used in the conductive part 11 to compensate for an increase in the aperture ratio due to disconnection of the non-conductive part. This is achieved by using a method or the like.

本発明の光透過性導電材料には断線部の入った非導電部12を有する。本発明では断線部の作製方法にも好ましい態様があり、このための単位図形に入れる断線部の程度の計算方法を説明する。図2は単位図形が正方形の網目状パターンの一例である。断線部の程度は単位図形1ヶあたり、断線部の長さに関係なく、断線部が入る個数を割合として出し、これを断線部の程度とする。第二に断線部が複数の単位図形にわたって入る場合、断線部の個数はその断線部を共有する単位図形の個数で割って計算する。図2aは断線部のない、網目状パターンである。図2bの場合、断線部22は単位図形(正方形)に2ヶ存在するが、この断線部はどちらも二つの単位図形に共有されているので1つあたり1/2個となり、断線部の程度としては(1/2)×2=100%となる。図2cの場合、断線部22は四つの単位図形に共有されているので1つあたり1/4個となり、単位図形の角4カ所に存在するので(1/4)×4=100%となる。第三に断線部が全ての単位図形に均等に入らない場合、断線部を含めた単位図形が繰り返される最小単位での平均した断線の程度をその非導電部の断線の程度とする。例えば図2dのように5×5の単位図形となる正方形から網目状パターンは形成されてはいるが、断線部22は単位図形全て同じではなく、図2dの太線で囲った正方形部分23の繰り返しとなっている。この場合は単位図形4個あたり1/4個の断線部が4ヶと1個の断線部が1ヶあるので、(1/4×4+1×1)÷4=50%となる。図3は同じく単位図形が正方形の網目状パターンの一例であり、断線パターンも含めると8×8の繰り返し構造31を取っている(図に太線で示した部分31)。この場合の断線の程度は(1/4×4+1/2×12+1×15)÷64=34.375%となる。   The light transmissive conductive material of the present invention has a non-conductive portion 12 with a broken portion. In the present invention, there is a preferable mode for the method of manufacturing the disconnection portion, and a calculation method for the degree of the disconnection portion to be included in the unit graphic will be described. FIG. 2 is an example of a mesh pattern in which the unit graphic is a square. The degree of the disconnection portion is the ratio of the number of disconnection portions per unit graphic, irrespective of the length of the disconnection portion, and this is the extent of the disconnection portion. Secondly, when the disconnection part enters over a plurality of unit graphics, the number of disconnection parts is calculated by dividing the number of unit graphics sharing the disconnection part. FIG. 2a is a mesh pattern without a disconnection. In the case of FIG. 2b, there are two disconnection portions 22 in the unit graphic (square), but since both of these disconnection portions are shared by two unit graphics, the number of disconnection portions is ½ per one. (1/2) × 2 = 100%. In the case of FIG. 2c, since the disconnection part 22 is shared by four unit graphics, it becomes 1/4 per one, and is present at four corners of the unit graphic, so (1/4) × 4 = 100%. . Third, when the disconnection portion does not uniformly enter all unit graphics, the average degree of disconnection in the minimum unit in which the unit graphic including the disconnection portion is repeated is defined as the disconnection level of the non-conductive portion. For example, as shown in FIG. 2d, a mesh pattern is formed from a square that is a 5 × 5 unit graphic, but the broken portion 22 is not the same in all unit graphics, and the square portion 23 surrounded by the thick line in FIG. 2d is repeated. It has become. In this case, since there are four 1/4 disconnection portions and one disconnection portion per four unit graphics, (1/4 × 4 + 1 × 1) ÷ 4 = 50%. FIG. 3 is an example of a mesh pattern having a square unit graphic, and an 8 × 8 repetitive structure 31 is taken including a broken pattern (a portion 31 indicated by a thick line in the figure). In this case, the degree of disconnection is (1/4 × 4 + 1/2 × 12 + 1 × 15) ÷ 64 = 34.375%.

本発明において非導電部とは隣接する単位図形10×10からなる網目状パターンにおいて、外縁部の任意の一点とその一点に相対する外縁部に位置するもう一点とを選んだ時、その点間に導通が取れない状態の網目状パターンのことをいう。例えば前述した図3においては二重線で囲った10×10の繰り返し構造32において、例えば任意の点Aを選び、それに相対する任意の点Bを選ぶと、A−B間には必ず断線部があるので、この図形は非導電部となる。図4は単位図形が六角形でかつ単位図形が10×10並んだ網目状パターンの一例である。図4においては外縁部の任意の点としてCと相対するDを選ぶとここでは導通は取れないが、EとFを選ぶと導通が取れるので、これは非導電部にはならない。   In the present invention, the non-conductive portion is a mesh pattern composed of adjacent unit graphics 10 × 10, and when an arbitrary point on the outer edge and another point located on the outer edge opposite to the one point are selected, It means a mesh pattern in a state where no electrical continuity can be obtained. For example, in FIG. 3 described above, in the 10 × 10 repetitive structure 32 surrounded by the double line, for example, when an arbitrary point A is selected and an arbitrary point B opposite to it is selected, a disconnection portion is always between A and B. Therefore, this figure becomes a non-conductive part. FIG. 4 shows an example of a mesh pattern in which unit graphics are hexagonal and unit graphics are arranged 10 × 10. In FIG. 4, if D is selected as an arbitrary point on the outer edge, D is not conductive, but if E and F are selected, this is not a non-conductive part.

本発明において非導電部の断線の程度は20%以上であることが好ましく、さらに好ましくは50〜200%、より好ましくは80〜120%である。また、非導電部のシート抵抗はJIS K7134の四端子法(端子間隔5mm)で測定した際の値で10KΩ/□以上であり、より好ましくは1MΩ/□以上であり、さらに好ましくは1GΩ/□以上であって、所謂絶縁体といわれる領域にあるものが好ましい。   In the present invention, the degree of disconnection of the nonconductive portion is preferably 20% or more, more preferably 50 to 200%, and more preferably 80 to 120%. Further, the sheet resistance of the non-conductive portion is 10 KΩ / □ or more, more preferably 1 MΩ / □ or more, more preferably 1 GΩ / □ as measured by the four-terminal method (terminal interval 5 mm) of JIS K7134. What is in the above-mentioned area | region called what is called an insulator is preferable.

本発明において線間隔は単位図形が正方形の場合、その正方形の1辺の長さとする。また単位図形が正方形でない場合は、その単位図形と同じ面積になる正方形を算出し、その1辺の長さをその単位図形での線間隔とする。本発明において非導電部の網目状パターンの線間隔は300μm以下が好ましい。また非導電部の網目状パターンの線幅は20μm以下が好ましく、より好ましくは1〜15μm、さらに好ましくは1〜10μmである。また開口率は80%以上が好ましく、より好ましくは90%以上、さらに好ましくは95%以上である。   In the present invention, when the unit graphic is a square, the line interval is the length of one side of the square. If the unit graphic is not a square, a square having the same area as the unit graphic is calculated, and the length of one side is set as the line interval in the unit graphic. In the present invention, the line spacing of the mesh pattern of the non-conductive portion is preferably 300 μm or less. The line width of the mesh pattern of the non-conductive portion is preferably 20 μm or less, more preferably 1 to 15 μm, and still more preferably 1 to 10 μm. The aperture ratio is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.

本発明において導電部は前述の通り、網目状金属パターンからなる。導電部においても断線部は入っていても良いが、断線部は少なくとも10%以下とするのが好ましく、全くないのがさらに好ましい。   In the present invention, as described above, the conductive portion is composed of a mesh metal pattern. Even in the conductive portion, a disconnection portion may be included, but the disconnection portion is preferably at least 10% or less, and more preferably not at all.

本発明において導電部11の網目状パターンの線間隔は300μm以下が好ましい。また導電部11の網目状パターンの線幅は20μm以下が好ましく、より好ましくは1〜15μm、さらに好ましくは1〜10μmである。また、本発明において導電部と非導電部は同じ形状の単位図形から構成されていることが好ましい。また導電部の線間隔は非導電部の線間隔の80〜120%であることが好ましく、さらに好ましくは90〜110%である。導電部のシート抵抗はJIS K7134の四端子法(端子間隔5mm)で測定した際の値で500Ω/□以下であり、より好ましくは200Ω/□以下であり、さらに100Ω/□以下が好ましい。   In the present invention, the line spacing of the mesh pattern of the conductive portion 11 is preferably 300 μm or less. The line width of the mesh pattern of the conductive portion 11 is preferably 20 μm or less, more preferably 1 to 15 μm, and still more preferably 1 to 10 μm. In the present invention, the conductive part and the non-conductive part are preferably composed of unit figures having the same shape. Further, the line interval of the conductive part is preferably 80 to 120% of the line interval of the non-conductive part, and more preferably 90 to 110%. The sheet resistance of the conductive part is 500Ω / □ or less, more preferably 200Ω / □ or less, more preferably 100Ω / □ or less, as measured by the four-terminal method of JIS K7134 (terminal interval 5 mm).

本発明において網目状パターンは金属、特に金、銀、銅、ニッケル、アルミニウム、およびこれらの複合材からなることが好ましい。これら網目状金属パターンを形成する方法としては、銀塩感光材料を用いる方法、同方法を用いさらに得られた銀画像に無電解めっきや電解めっきを施す方法、スクリーン印刷法を用いて銀ペーストなどの導電性インキを印刷する方法、銀インクなどの導電性インクをインクジェット法で印刷する方法、無電解めっき等で銅などの金属からなる導電性層を形成する方法、あるいは蒸着やスパッタなどで導電性層を形成し、その上にレジスト膜を形成し、露光、現像、エッチング、レジスト層除去することで得る方法、銅箔などの金属箔を貼り、さらにその上にレジスト膜を形成し、露光、現像、エッチング、レジスト層除去することで得る方法など、公知の方法を用いることができる。中でも製造される金属パターンの厚みが薄くでき、さらに極微細な金属パターンも容易に形成できる銀塩拡散転写法を用いることが好ましい。これらの手法で作製した網目状金属パターンの厚みは厚すぎると後工程が困難になる場合があり、また薄すぎるとタッチパネルとして必要な導電性を確保し難くなる。よって、その厚みは0.05〜5μmが好ましく、より好ましくは0.1〜1μmである。   In the present invention, the mesh pattern is preferably made of a metal, particularly gold, silver, copper, nickel, aluminum, or a composite material thereof. As a method for forming these network metal patterns, a method using a silver salt photosensitive material, a method of applying electroless plating or electrolytic plating to a silver image obtained using the same method, a silver paste using a screen printing method, etc. Conductive ink printing method, silver ink or other conductive ink printing method, electroless plating or other method of forming a conductive layer made of metal such as copper, or deposition or sputtering. Forming a resist layer, forming a resist film thereon, exposure, development, etching, a method obtained by removing the resist layer, attaching a metal foil such as copper foil, and further forming a resist film thereon and exposing , Development, etching, and a method obtained by removing the resist layer can be used. Among them, it is preferable to use a silver salt diffusion transfer method that can reduce the thickness of the metal pattern to be manufactured and can easily form an extremely fine metal pattern. If the thickness of the mesh-like metal pattern produced by these methods is too thick, the post-process may be difficult, and if it is too thin, it will be difficult to ensure the conductivity necessary for the touch panel. Therefore, the thickness is preferably 0.05 to 5 μm, more preferably 0.1 to 1 μm.

投影型静電容量タッチパネルのように複数枚の光透過性導電材料を用いる場合、1枚の光透過性導電材料の中で、導電部と非導電部の開口率の差が1%以内であれば本発明の目的は達成できる。複数の光透過性導電材料の全ての導電部と非導電部の開口率の差が1%以内に収まっていることが好ましいが、別の光透過性導電材料に設けられた導電部と非導電部の開口率の差が1%以上あっても良い。   When using a plurality of light transmissive conductive materials such as a projected capacitive touch panel, the difference in aperture ratio between the conductive portion and the non-conductive portion within one light transmissive conductive material should be within 1%. The object of the present invention can be achieved. It is preferable that the difference in aperture ratio between all the conductive parts and the non-conductive parts of the plurality of light-transmitting conductive materials is within 1%. However, the conductive part provided in another light-transmitting conductive material and the non-conductive part The difference in the aperture ratio of the part may be 1% or more.

本発明の光透過性導電材料に用いる基材としては、プラスチック、ガラス、ゴム、セラミックス等が好ましく用いられる。これら基材は全光線透過率が60%以上であるものが好ましい。プラスチックの中でも、フレキシブル性を有する樹脂フィルムは、取扱い性が優れている点で好適に用いられる。基材として使用される樹脂フィルムの具体例としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリカーボネート樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート樹脂、ポリ塩化ビニル、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、環状ポリオレフィン樹脂等からなる厚さ50〜300μmの樹脂フィルムが挙げられる。基材には易接着層など公知の層が設けられていても良い。   As a base material used for the light-transmitting conductive material of the present invention, plastic, glass, rubber, ceramics and the like are preferably used. These substrates preferably have a total light transmittance of 60% or more. Among plastics, a resin film having flexibility is preferably used in terms of excellent handleability. Specific examples of the resin film used as the substrate include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins, epoxy resins, fluorine resins, silicone resins, polycarbonate resins, diacetate resins, Examples thereof include resin films having a thickness of 50 to 300 μm made of triacetate resin, polyarylate resin, polyvinyl chloride, polysulfone resin, polyether sulfone resin, polyimide resin, polyamide resin, polyolefin resin, cyclic polyolefin resin, and the like. A known layer such as an easy-adhesion layer may be provided on the substrate.

本発明の光透過性導電材料は基材とその上に位置する網目状パターン以外にも、ハードコート層、反射防止層、粘着層、防眩層など公知の層を網目状パターンの上(基材から遠い側)、あるいは基材の網目状パターンとは反対の側に設けることができる。また、基材と網目状パターンとの間に、物理現像核層、易接着層、接着剤層など公知の層を設けることができる。   In addition to the substrate and the mesh pattern located thereon, the light-transmitting conductive material of the present invention has a known layer such as a hard coat layer, an antireflection layer, an adhesive layer and an antiglare layer on the mesh pattern. It can be provided on the side far from the material) or on the side opposite to the mesh pattern of the substrate. In addition, a known layer such as a physical development nucleus layer, an easy adhesion layer, or an adhesive layer can be provided between the substrate and the mesh pattern.

以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded.

<実施例1>
基材として、厚み100μmのポリエチレンテレフタレートフィルムを用いた。なおこの基材の全光線透過率は91%であった。
<Example 1>
A polyethylene terephthalate film having a thickness of 100 μm was used as the substrate. The total light transmittance of this substrate was 91%.

次に下記処方に従い、物理現像核層塗液を作製し、基材上に塗布、乾燥して物理現像核層を設けた。   Next, according to the following prescription, a physical development nucleus layer coating solution was prepared, applied onto a substrate, and dried to provide a physical development nucleus layer.

<硫化パラジウムゾルの調製>
A液 塩化パラジウム 5g
塩酸 40ml
蒸留水 1000ml
B液 硫化ソーダ 8.6g
蒸留水 1000ml
A液とB液を撹拌しながら混合し、30分後にイオン交換樹脂の充填されたカラムに通し硫化パラジウムゾルを得た。
<Preparation of palladium sulfide sol>
Liquid A Palladium chloride 5g
Hydrochloric acid 40ml
1000ml distilled water
B liquid sodium sulfide 8.6g
1000ml distilled water
Liquid A and liquid B were mixed with stirring, and 30 minutes later, the solution was passed through a column filled with an ion exchange resin to obtain palladium sulfide sol.

<物理現像核層塗液の調製>各1mあたり
前記硫化パラジウムゾル 0.4mg
2質量%グリオキザール水溶液 0.2ml
界面活性剤(S−1) 4mg
デナコールEX−830 50mg
(ナガセケムテックス(株)製ポリエチレングリコールジグリシジルエーテル)
10質量%SP−200水溶液 0.5mg
((株)日本触媒製ポリエチレンイミン;平均分子量10,000)
<Preparation of physical development nucleus layer coating solution> per 1 m 2 of the palladium sulfide sol
0.2% aqueous 2 mass% glyoxal solution
Surfactant (S-1) 4mg
Denacol EX-830 50mg
(Polyethylene glycol diglycidyl ether manufactured by Nagase ChemteX Corporation)
10 mass% SP-200 aqueous solution 0.5 mg
(Nippon Shokubai Polyethyleneimine; average molecular weight 10,000)

続いて、基材に近い方から順に下記組成の中間層、ハロゲン化銀乳剤層、および保護層を上記物理現像核液層の上に塗布、乾燥して、銀塩感光材料1を得た。ハロゲン化銀乳剤は、写真用ハロゲン化銀乳剤の一般的なダブルジェット混合法で製造した。このハロゲン化銀乳剤は、塩化銀95モル%と臭化銀5モル%で、平均粒径が0.15μmになるように調製した。このようにして得られたハロゲン化銀乳剤を定法に従いチオ硫酸ナトリウムと塩化金酸を用い、金イオウ増感を施した。こうして得られたハロゲン化銀乳剤は銀1gあたり0.5gのゼラチンを含む。   Subsequently, an intermediate layer having the following composition, a silver halide emulsion layer, and a protective layer were coated on the physical development nucleus solution layer in order from the side closer to the substrate and dried to obtain a silver salt photosensitive material 1. The silver halide emulsion was prepared by a general double jet mixing method for photographic silver halide emulsions. This silver halide emulsion was prepared with 95 mol% of silver chloride and 5 mol% of silver bromide, and an average grain size of 0.15 μm. The silver halide emulsion thus obtained was subjected to gold sulfur sensitization using sodium thiosulfate and chloroauric acid according to a conventional method. The silver halide emulsion thus obtained contains 0.5 g of gelatin per gram of silver.

<中間層組成/1mあたり>
ゼラチン 0.5g
界面活性剤(S−1) 5mg
染料1
<Intermediate layer composition / per 1 m 2 >
Gelatin 0.5g
Surfactant (S-1) 5mg
Dye 1

<ハロゲン化銀乳剤層1組成/1mあたり>
ゼラチン 0.5g
ハロゲン化銀乳剤 3.0g銀相当
1−フェニル−5−メルカプトテトラゾール 3mg
界面活性剤(S−1) 20mg
<Silver halide emulsion layer 1 composition / m 2 >
Gelatin 0.5g
Silver halide emulsion 3.0g Silver equivalent 1-Phenyl-5-mercaptotetrazole 3mg
Surfactant (S-1) 20mg

<保護層1組成/1mあたり>
ゼラチン 1g
不定形シリカマット剤(平均粒径3.5μm) 10mg
界面活性剤(S−1) 10mg
<1 composition of protective layer / 1 m 2 >
1g of gelatin
Amorphous silica matting agent (average particle size 3.5μm) 10mg
Surfactant (S-1) 10mg

このようにして得た銀塩感光材料1と、図5と図6のパターンを同一平面上に有する透過原稿を密着し、水銀灯を光源とする密着プリンターで400nm以下の光をカットする樹脂フィルターを介して露光した。なお、図5、図6のパターンは導電部11、非導電部12ともに線幅7μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部11の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは10μmとした(交点部から全ての辺に対し5μmの長さの断線部を有する)。   A silver filter photosensitive material 1 obtained in this manner and a transparent original having the patterns of FIGS. 5 and 6 on the same plane are in close contact, and a resin filter that cuts light of 400 nm or less with a contact printer using a mercury lamp as a light source is provided. Exposed through. 5 and 6, both the conductive part 11 and the non-conductive part 12 are made of a square grid mesh having a unit width of 7 μm and a line interval of 300 μm. The degree of disconnection of the conductive part 11 is 0% and non-conductive. The part is 100% of the disconnection with all four corners of the square as shown in FIG. 2c being disconnected, and the disconnection length is 10 μm (the disconnection part having a length of 5 μm from the intersection to all sides). Have).

その後、下記拡散転写現像液中に20℃で60秒間浸漬した後、続いてハロゲン化銀乳剤層、中間層、および保護層を40℃の温水で水洗除去し、乾燥処理した。こうして図5と図6の形状を持つ銀パターンを有する光透過性導電材料1を得た。なお、得られた光透過性導電材料の線幅、線間隔は透過原稿と全く同じ形状、線幅の画像になっていた。金属パターンの膜厚は共焦点顕微鏡で調べ、0.1μmであった。   Thereafter, the film was immersed in the following diffusion transfer developer at 20 ° C. for 60 seconds, and then the silver halide emulsion layer, intermediate layer, and protective layer were washed away with warm water at 40 ° C. and dried. Thus, a light-transmitting conductive material 1 having a silver pattern having the shapes of FIGS. 5 and 6 was obtained. The obtained light-transmitting conductive material had an image with the same line width and line width as the transparent original. The film thickness of the metal pattern was examined with a confocal microscope and found to be 0.1 μm.

<拡散転写現像液組成>
水酸化カリウム 25g
ハイドロキノン 18g
1−フェニル−3−ピラゾリドン 2g
亜硫酸カリウム 80g
N−メチルエタノールアミン 15g
臭化カリウム 1.2g
全量を水で1000ml
pH=12.2に調整する。
<Diffusion transfer developer composition>
Potassium hydroxide 25g
Hydroquinone 18g
1-phenyl-3-pyrazolidone 2g
Potassium sulfite 80g
N-methylethanolamine 15g
Potassium bromide 1.2g
Total volume 1000ml with water
Adjust to pH = 12.2.

<実施例2>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは14μm(交点部から全ての辺に対し7μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料2を得た。
<Example 2>
5 and FIG. 6, the conductive original 11 and the non-conductive part 12 both have a unit width of 10 .mu.m and a line interval of 300 .mu.m formed of a square lattice mesh, and the degree of disconnection of the conductive part is 0. %, The non-conductive part is 100% of the disconnection where all four corners of the square as shown in FIG. 2c are disconnected, and the disconnection length is 14 μm (disconnection of 7 μm from the intersection to all sides) A light-transmitting conductive material 2 was obtained in the same manner as in Example 1 except that a transparent original having a portion was used.

<実施例3>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは20μm(交点部から全ての辺に対し10μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料3を得た。
<Example 3>
5 and FIG. 6, the conductive original 11 and the non-conductive part 12 both have a unit width of 10 .mu.m and a line interval of 300 .mu.m formed of a square lattice mesh, and the degree of disconnection of the conductive part is 0. %, The non-conductive portion is 100% of the disconnection with all four corners of the square as shown in FIG. 2c being disconnected, and the disconnection length is 20 μm (disconnection of 10 μm in length from the intersection to all sides) A light-transmitting conductive material 3 was obtained in the same manner as in Example 1 except that a transparent original having a portion was used.

<実施例4>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは27.5μm(交点部から全ての辺に対し13.75μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料4を得た。
<Example 4>
5 and FIG. 6, the conductive original 11 and the non-conductive part 12 both have a unit width of 10 .mu.m and a line interval of 300 .mu.m formed of a square lattice mesh, and the degree of disconnection of the conductive part is 0. %, The non-conductive portion is 100% of the disconnection with all four corners of the square as shown in FIG. 2c being disconnected, and the disconnection length is 27.5 μm (13.75 μm from the intersection to all sides) A light-transmitting conductive material 4 was obtained in the same manner as in Example 1 except that a transparent original having a broken line portion was used.

<実施例5>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは40μm(交点部から全ての辺に対し20μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料5を得た。
<Example 5>
5 and FIG. 6, the conductive original 11 and the non-conductive part 12 both have a unit width of 10 .mu.m and a line interval of 300 .mu.m formed of a square lattice mesh, and the degree of disconnection of the conductive part is 0. %, The non-conductive portion is 100% of the disconnection with all four corners of the square as shown in FIG. 2c being disconnected, and the disconnection length is 40 μm (disconnection of 20 μm from the intersection to all sides) A light-transmitting conductive material 5 was obtained in the same manner as in Example 1 except that a transparent original having a portion was used.

<実施例6>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは50μm(交点部から全ての辺に対し25μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料6を得た。
<Example 6>
5 and FIG. 6, the conductive original 11 and the non-conductive part 12 both have a unit width of 10 .mu.m and a line interval of 300 .mu.m formed of a square lattice mesh, and the degree of disconnection of the conductive part is 0. %, The non-conductive portion is 100% of the disconnection where all four corners of the square as shown in FIG. 2c are disconnected, and the disconnection length is 50 μm (disconnection of 25 μm from the intersection to all sides) A light-transmitting conductive material 6 was obtained in the same manner as in Example 1 except that a transparent original having a portion was used.

<比較例1>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは60μm(交点部から全ての辺に対し30μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして比較光透過性導電材料1を得た。
<Comparative Example 1>
5 and FIG. 6, the conductive original 11 and the non-conductive part 12 both have a unit width of 10 .mu.m and a line interval of 300 .mu.m formed of a square lattice mesh, and the degree of disconnection of the conductive part is 0. %, The non-conductive portion is 100% of the disconnection with all four corners of the square as shown in FIG. 2c being disconnected, and the disconnection length is 60 μm (disconnection of 30 μm from the intersection to all sides) A comparative light-transmitting conductive material 1 was obtained in the same manner as in Example 1 except that a transparent original having a portion was used.

<実施例7>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔230μmの単位図形が正方形、断線の程度は0%の格子メッシュからなり、非導電部12は線幅14μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、かつ非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは23μm(交点部から全ての辺に対し11.5μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料7を得た。
<Example 7>
5 and FIG. 6, the conductive portion 11 is made of a grid mesh having a unit width of 10 μm, a line interval of 230 μm, a square and a degree of disconnection of 0%, and the non-conductive portion 12 is a line. The unit figure having a width of 14 μm and a line interval of 300 μm is composed of a square grid mesh, and the non-conductive portion is 100% of the disconnection in which all four corners of the square as shown in FIG. A light-transmitting conductive material 7 was obtained in the same manner as in Example 1 except that a transmission original having a thickness of 23 μm (having a disconnection portion having a length of 11.5 μm with respect to all sides from the intersection) was used.

<実施例8>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔240μmの単位図形が正方形、断線の程度は0%の格子メッシュからなり、非導電部は線幅13μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、かつ非導電部12は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは21μm(交点部から全ての辺に対し10.5μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料8を得た。
<Example 8>
5 and FIG. 6, the conductive portion 11 is made of a grid mesh having a line width of 10 μm, a unit figure with a line interval of 240 μm being square, and the degree of disconnection being 0%, and the non-conductive portion has a line width. The unit figure of 13 μm and the line interval of 300 μm consists of a square grid mesh, and the non-conductive part 12 is 100% of the disconnection with all the four corners of the square as shown in FIG. A light-transmitting conductive material 8 was obtained in the same manner as in Example 1 except that a transparent original having a thickness of 21 μm (having a disconnection portion having a length of 10.5 μm with respect to all sides from the intersection) was used.

<実施例9>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔270μmの単位図形が正方形、断線の程度は0%の格子メッシュからなり、非導電部12は線幅12μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、かつ非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは24μm(交点部から全ての辺に対し12μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料9を得た。
<Example 9>
5 and FIG. 6, the conductive portion 11 is made of a lattice mesh having a unit figure with a line width of 10 μm, a line interval of 270 μm, and a degree of disconnection of 0%, and the non-conductive portion 12 is a line. The unit figure having a width of 12 μm and a line interval of 300 μm is composed of a square grid mesh, and the non-conductive portion is 100% of the disconnection in which all four corners of the square as shown in FIG. A light-transmitting conductive material 9 was obtained in the same manner as in Example 1 except that a transparent original having a thickness of 24 μm (having a disconnection portion having a length of 12 μm with respect to all sides from the intersection) was used.

<実施例10>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔300μmの単位図形が正方形、断線の程度は0%の格子メッシュからなり、非導電部は線幅10μm、線間隔273μmの単位図形が正方形の格子メッシュからなり、かつ非導電部12は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは25μm(交点部から全ての辺に対し12.5μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料10を得た。
<Example 10>
5 and FIG. 6, the conductive part 11 is made of a grid mesh having a line width of 10 μm, a unit figure with a line interval of 300 μm being square, and the degree of disconnection being 0%, and the non-conductive part has a line width. The unit figure of 10 μm and the line interval of 273 μm consists of a square grid mesh, and the non-conductive part 12 is 100% of the disconnection with all four corners of the square as shown in FIG. A light-transmitting conductive material 10 was obtained in the same manner as in Example 1 except that a transparent original having a thickness of 25 μm (having a disconnection portion having a length of 12.5 μm with respect to all sides from the intersection) was used.

<実施例11>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔300μmの単位図形が正方形、断線の程度は0%の格子メッシュからなり、非導電部12は線幅9μm、線間隔250μmの単位図形が正方形の格子メッシュからなり、かつ非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは19μm(交点部から全ての辺に対し9.5μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料11を得た。
<Example 11>
5 and FIG. 6, the conductive portion 11 is made of a grid mesh having a unit width of 10 μm, a line interval of 300 μm, a square, and a disconnection degree of 0%, and the non-conductive portion 12 is a line. The unit figure having a width of 9 μm and a line interval of 250 μm is composed of a square grid mesh, and the non-conductive part is 100% of the disconnection with all four corners of the square as shown in FIG. A light-transmitting conductive material 11 was obtained in the same manner as in Example 1 except that a transparent original having a thickness of 19 μm (having a broken portion having a length of 9.5 μm with respect to all sides from the intersection) was used.

<実施例12>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔300μmの単位図形が正方形、断線の程度は0%の格子メッシュからなり、非導電部12は線幅9μm、線間隔240μmの単位図形が正方形の格子メッシュからなり、かつ非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは33μm(交点部から全ての辺に対し16.5μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料12を得た。
<Example 12>
5 and FIG. 6, the conductive portion 11 is made of a grid mesh having a unit width of 10 μm, a line interval of 300 μm, a square, and a disconnection degree of 0%, and the non-conductive portion 12 is a line. The unit figure having a width of 9 μm and a line interval of 240 μm is composed of a square grid mesh, and the non-conductive portion is 100% of the disconnection in which all four corners of the square as shown in FIG. A light-transmitting conductive material 12 was obtained in the same manner as in Example 1 except that a transparent original having a thickness of 33 μm (having a disconnection portion having a length of 16.5 μm with respect to all sides from the intersection) was used.

<比較例2>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12に相当する部分ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部ならびに非導電部に相当する部分、共に断線の程度は0%とし、導電部の輪郭部分に幅30μmのスリット(スリット部分にはメッシュは存在しない)を入れた透過原稿を用いる以外は実施例1と同様にして比較光透過性導電材料2を得た。
<Comparative Example 2>
5 and FIG. 6 is a transparent manuscript, the unit corresponding to the conductive portion 11 and the non-conductive portion 12 is composed of a square grid mesh having a line width of 10 μm and a line interval of 300 μm. The portion corresponding to the conductive portion, the degree of disconnection in both portions is 0%, and the same as in Example 1 except that a transparent original having a slit of 30 μm width (no mesh exists in the slit portion) is used in the contour portion of the conductive portion Thus, a comparative light transmissive conductive material 2 was obtained.

<比較例3>
図5と図6のパターンを有する透過原稿であるが、導電部11、非導電部12に相当する部分ともに線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、導電部の断線の程度は0%、非導電部は図2cで示すような正方形の4つ角全てを断線部とした断線の程度100%とし、断線長さは20μm(交点部から全ての辺に対し10μmの長さの断線部を有する)とし、さらに導電部の輪郭部分に幅30μmのスリット(スリット部分にはメッシュは存在しない)を入れた透過原稿を用いる以外は実施例1と同様にして比較光透過性導電材料3を得た。
<Comparative Example 3>
5 and FIG. 6 is a transparent manuscript, the unit corresponding to the conductive portion 11 and the non-conductive portion 12 is composed of a square grid mesh having a line width of 10 μm and a line interval of 300 μm, and the conductive portion is disconnected. The non-conductive part is 100% of the degree of disconnection in which all four corners of the square as shown in FIG. 2c are disconnected, and the disconnection length is 20 μm (10 μm from the intersection part to all sides). Comparative Example 1 is used in the same manner as in Example 1 except that a transparent original having a slit having a width of 30 μm (a mesh does not exist in the slit portion) is used in the contour portion of the conductive portion. Conductive material 3 was obtained.

<実施例13>
図5と図6のパターンを有する透過原稿であるが、導電部11は線幅10μm、線間隔300μmの単位図形が正方形であり、かつ図7のように5×5の正方形が並んで、その中で2カ所14μmの断線の入った断線の程度は92%の格子メッシュからなり、一方非導電部12は線幅10μm、線間隔300μmの単位図形が正方形の格子メッシュからなり、かつ非導電部は図2dで示すような断線部とした断線の程度50%とし、断線長さは14μm(交点部から全ての辺に対し7μmの長さの断線部を有する)とした透過原稿を用いる以外は実施例1と同様にして光透過性導電材料13を得た。
<Example 13>
5 and FIG. 6, the conductive portion 11 has a square unit graphic with a line width of 10 μm and a line interval of 300 μm, and 5 × 5 squares are arranged as shown in FIG. Among them, the degree of breakage including breakage of 14 μm at two places is composed of a lattice mesh of 92%, while the non-conductive portion 12 is composed of a square lattice mesh having a unit width of 10 μm and a line interval of 300 μm, and the non-conductive portion 2d, except that a transparent manuscript having a disconnection portion of 50% and a disconnection length of 14 μm (having a disconnection portion having a length of 7 μm on all sides from the intersection) is used. In the same manner as in Example 1, a light transmissive conductive material 13 was obtained.

実施例1〜13、比較例1、2で作製した光透過性導電材料の導電部のシート抵抗を測定した。結果を表1に記載する。また、導電部と非導電部の開口率の計算は、例えば実施例1で作製した光透過性導電材料においては、導電部は線間隔300μm、面積90000μmの単位図形中に4151μmの網目状パターンが存在するので、(90000−4151)÷90000=95.39%となる。これらの計算結果も表1に記載する。また非導電部は断線部があるので、網目状パターン面積は4060μmとなり、開口率は同様の計算をして95.49%となる。次に、実施例1〜13、比較例1、2で作製した光透過性導電材料の図5と図6のパターンを切り出し、それぞれを重ね、視認性を確認した。導電部と非導電部の差がはっきり判るものを1、少し見れば判るものを2、良く見れば判るものを3、注視しないと判らないものを4、全く判らないものを5とした。結果を表1に示す。 The sheet resistance of the conductive part of the light-transmitting conductive material prepared in Examples 1 to 13 and Comparative Examples 1 and 2 was measured. The results are listed in Table 1. The calculation of the aperture ratio of the conductive portion and the non-conductive portion is, for example, in the light-transmitting conductive material manufactured in Example 1, the conductive portion has a mesh shape of 4151 μm 2 in a unit graphic having a line interval of 300 μm and an area of 90000 μm 2 . Since there is a pattern, (90000-4151) ÷ 90000 = 95.39%. These calculation results are also shown in Table 1. Further, since the non-conductive portion has a disconnected portion, the mesh pattern area is 4060 μm 2 and the aperture ratio is 95.49% by the same calculation. Next, the patterns of FIGS. 5 and 6 of the light-transmitting conductive materials prepared in Examples 1 to 13 and Comparative Examples 1 and 2 were cut out and overlapped to confirm the visibility. The difference between the conductive part and the non-conductive part is 1 for clearly showing, 2 for understanding a little, 3 for understanding well, 4 for not knowing without paying attention, and 5 for not knowing at all. The results are shown in Table 1.

表1の結果から、静電容量方式を用いたタッチパネルの透明電極として好適な、視認性の低い光透過性導電材料が得られることが判る。   From the results in Table 1, it can be seen that a light-transmitting conductive material with low visibility, which is suitable as a transparent electrode of a touch panel using a capacitance method, can be obtained.

<実施例14>
実施例1で作製した図5のパターンと実施例2で使用した図6のパターンを重ね、その視認性を評価したところ、5の評価であった。
<Example 14>
When the pattern of FIG. 5 produced in Example 1 and the pattern of FIG. 6 used in Example 2 were overlapped and the visibility was evaluated, the evaluation was 5.

1 光透過性導電材料
2 基材
11 導電部
12 非導電部
13 非画像部
14、15 配線部
21 金属パターン
22 断線部
23 正方形部
31 8×8の繰り返し構造
32 10×10の繰り返し構造
A〜F 任意の点
DESCRIPTION OF SYMBOLS 1 Light transmission electrically-conductive material 2 Base material 11 Conductive part 12 Non-conductive part 13 Non-image part 14, 15 Wiring part 21 Metal pattern 22 Disconnection part 23 Square part 31 8 * 8 repetitive structure 32 10 * 10 repetitive structure A- F Any point

Claims (2)

基材上に導電部と非導電部を隣接して有する光透過性導電材料であって、該導電部と非導電部が網目状金属パターンからなり、該網目状金属パターンは幾何学模様(以下、単位図形と称す)の繰り返しから構成され、該非導電部の網目状金属パターンは、該パターンの一部が断線した網目状金属パターンであり、該網目状金属パターンの単位図形1ヶあたりに断線部が入る個数を割合として算出する断線の程度(断線部が複数の単位図形にわたって入る場合には、断線部の個数はその断線部を共有する単位図形の個数で割って算出)が50〜200%であり、該断線部は単位図形の角部に設けられ、かつ導電部と非導電部の開口率の差が1%以内であることを特徴とする光透過性導電材料。 A light-transmitting conductive material having a conductive part and a non-conductive part adjacent to each other on a base material, wherein the conductive part and the non-conductive part are composed of a mesh metal pattern, and the mesh metal pattern is a geometric pattern (hereinafter referred to as a geometric pattern). , is composed of repeating referred to as unit graphics), network-like metal pattern of the non-conductive portion, a mesh-like metal pattern der partially broken of the pattern is, the unit figures per month of net-th-shaped metal pattern The degree of disconnection calculated as a percentage of the number of disconnection portions (when the disconnection portion covers a plurality of unit graphics, the number of disconnection portions is calculated by dividing by the number of unit graphics sharing the disconnection portion) 50 to The light-transmitting conductive material is characterized in that it is 200%, the disconnection portion is provided at a corner of the unit graphic , and the difference in aperture ratio between the conductive portion and the non-conductive portion is within 1%. 導電部の網目状金属パターンの線間隔が非導電部の網目状金属パターンの線間隔の80〜120%であることを特徴とする請求項1記載の光透過性導電材料。   2. The light-transmitting conductive material according to claim 1, wherein the line interval of the mesh-like metal pattern of the conductive part is 80 to 120% of the line interval of the mesh-like metal pattern of the non-conductive part.
JP2011166240A 2011-07-29 2011-07-29 Light transmissive conductive material Expired - Fee Related JP5809475B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011166240A JP5809475B2 (en) 2011-07-29 2011-07-29 Light transmissive conductive material
KR1020147004531A KR101587486B1 (en) 2011-07-29 2012-07-19 Translucent electrode
PCT/JP2012/068298 WO2013018549A1 (en) 2011-07-29 2012-07-19 Translucent electrode
CN201280037890.2A CN103797449B (en) 2011-07-29 2012-07-19 Optical transparent electrode
US14/235,223 US9629242B2 (en) 2011-07-29 2012-07-19 Optically transparent electrode
TW101126754A TWI587374B (en) 2011-07-29 2012-07-25 Optically transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166240A JP5809475B2 (en) 2011-07-29 2011-07-29 Light transmissive conductive material

Publications (2)

Publication Number Publication Date
JP2013030378A JP2013030378A (en) 2013-02-07
JP5809475B2 true JP5809475B2 (en) 2015-11-11

Family

ID=47787221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166240A Expired - Fee Related JP5809475B2 (en) 2011-07-29 2011-07-29 Light transmissive conductive material

Country Status (1)

Country Link
JP (1) JP5809475B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009050B (en) * 2013-02-27 2018-09-21 未来奈米科技股份有限公司 Using the touch harden structure of the electrostatic capacitance Touch Screen of dummy pattern
CN103247366B (en) * 2013-03-28 2015-04-08 南昌欧菲光科技有限公司 Capacitance transparent conductive film and manufacturing method thereof
JP6089889B2 (en) * 2013-03-29 2017-03-08 凸版印刷株式会社 Touch sensor, touch panel, and display device
US20160092004A1 (en) * 2013-05-16 2016-03-31 Mitsubishi Paper Mills Limited Conductive pattern and electrode pattern of single-layer capacitive touchscreen
KR101474543B1 (en) * 2013-06-17 2014-12-22 (주)이엔에이치 Electrostatic capacity type double side touch screen panel
JP6314404B2 (en) * 2013-10-01 2018-04-25 大日本印刷株式会社 Method for producing conductive mesh sheet and photomask
KR101849149B1 (en) * 2014-01-16 2018-04-16 미쓰비시 세이시 가부시키가이샤 Light-transmissive conductive material
JP2015232819A (en) * 2014-06-10 2015-12-24 株式会社ジャパンディスプレイ Display device with sensor
JP6441046B2 (en) 2014-11-26 2018-12-19 三菱製紙株式会社 Light transmissive conductive material
JP6404153B2 (en) 2015-03-19 2018-10-10 三菱製紙株式会社 Light transmissive conductive material
JP6529329B2 (en) * 2015-05-01 2019-06-12 株式会社ブイ・テクノロジー Touch panel manufacturing method, glass substrate for touch panel, and mask for touch panel manufacturing
KR102036426B1 (en) 2015-06-29 2019-10-24 미쓰비시 세이시 가부시키가이샤 Light transmissive conductive material
WO2018146963A1 (en) * 2017-02-09 2018-08-16 コニカミノルタ株式会社 Touch screen and method for manufacturing touch screen
JP6815300B2 (en) 2017-09-22 2021-01-20 三菱製紙株式会社 Light-transmitting conductive material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2257969B1 (en) * 2008-02-28 2017-12-20 3M Innovative Properties Company Methods of patterning a conductor on a substrate
US8599150B2 (en) * 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration

Also Published As

Publication number Publication date
JP2013030378A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5809475B2 (en) Light transmissive conductive material
KR101587486B1 (en) Translucent electrode
WO2015163364A1 (en) Light-transmissive electroconductive material
JP2013246723A (en) Light-transmissive electrode for capacitance touch panel
WO2014129298A1 (en) Light-transmissive electrode
KR101867972B1 (en) Light-transmitting conductive material
JP5876351B2 (en) Light transmissive electrode
JP6404153B2 (en) Light transmissive conductive material
JP6415992B2 (en) Light transmissive conductive material
WO2016098683A1 (en) Light-transmitting electroconductive material
JP6441046B2 (en) Light transmissive conductive material
JP6033671B2 (en) Light transmissive conductive material
JP2013178655A (en) Optical transparent electrode
JP6571594B2 (en) Light transmissive conductive material
JP6165693B2 (en) Light transmissive conductive material
JP2017162262A (en) Light-transmissive conductive material laminate
JP6401127B2 (en) Light transmissive conductive material
WO2019059025A1 (en) Light-transmissive conductive material
JP2019105955A (en) Light transmitting conductive material
JP2017033369A (en) Light transmissive conductive material laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees