JP5809417B2 - Adsorbent capable of regenerating light and its use - Google Patents

Adsorbent capable of regenerating light and its use Download PDF

Info

Publication number
JP5809417B2
JP5809417B2 JP2011032453A JP2011032453A JP5809417B2 JP 5809417 B2 JP5809417 B2 JP 5809417B2 JP 2011032453 A JP2011032453 A JP 2011032453A JP 2011032453 A JP2011032453 A JP 2011032453A JP 5809417 B2 JP5809417 B2 JP 5809417B2
Authority
JP
Japan
Prior art keywords
adsorbent
alkali metal
photocatalyst
mass
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011032453A
Other languages
Japanese (ja)
Other versions
JP2011200857A (en
Inventor
清水 康弘
康弘 清水
時夫 大井
時夫 大井
信幸 谷
信幸 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2011032453A priority Critical patent/JP5809417B2/en
Publication of JP2011200857A publication Critical patent/JP2011200857A/en
Application granted granted Critical
Publication of JP5809417B2 publication Critical patent/JP5809417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602

Description

本発明は、空気中に存在する臭い成分その他の汚染ガス成分を吸着して除去する吸着材とその利用に関し、さらには当該吸着材を好適に製造する製造方法に関する。詳しくは、光触媒作用によりガス吸着能力を再生(回復)可能な吸着材に関する。   The present invention relates to an adsorbent that adsorbs and removes odorous components and other pollutant gas components present in the air, and uses thereof, and further relates to a production method for suitably producing the adsorbent. Specifically, the present invention relates to an adsorbent capable of regenerating (recovering) gas adsorption capacity by photocatalysis.

空気中(例えば工場内における閉鎖された作業雰囲気や一般家庭内の区画された室内雰囲気を包含する。以下同じ。)から不快な臭い成分や健康に有害な成分となり得る汚染ガスを除去する目的に種々の内容の吸着材が利用されている。例えば、種々のガス種を吸着・除去する目的に適する多孔質体、例えば活性炭、シリカゲル、活性アルミナ、ゼオライトその他の鉱物系多孔質体が、吸着材として古くから利用されている。
また、近年、ホルムアルデヒド、アセトアルデヒド等の低級アルデヒドガスや酢酸、プロピオン酸等の酸性ガスの吸着性能を向上させるため、上記多孔質体にアルカリ金属を担持した吸着材の開発が行われている(例えば特許文献1)。
或いはまた、酸化チタン等の光触媒を上記多孔質体に担持することによって、多孔質体の吸着作用に加えて光触媒作用によるガス成分の分解除去を行うことのできる吸着材が開発されている(例えば特許文献2)。かかる構成の吸着材では、多孔質体に吸着されたガス成分が光照射時の光触媒作用で分解されることにより、結果、当該多孔質体の吸着活性を吸着前の初期状態に戻すこと、即ち再生(回復)することができる(特許文献2)。
この種の吸着材のその他の従来技術として、例えば以下の特許文献3〜6に記載される技術が挙げられる。
For the purpose of removing unpleasant odorous components and pollutant gases that can be harmful to health from the air (including closed working atmospheres in factories and partitioned indoor atmospheres in general households; the same shall apply hereinafter) Adsorbents with various contents are used. For example, porous materials suitable for the purpose of adsorbing and removing various gas species, such as activated carbon, silica gel, activated alumina, zeolite, and other mineral-based porous materials have long been used as adsorbents.
In recent years, in order to improve the adsorption performance of lower aldehyde gases such as formaldehyde and acetaldehyde, and acidic gases such as acetic acid and propionic acid, an adsorbent carrying an alkali metal on the porous body has been developed (for example, Patent Document 1).
Alternatively, an adsorbent capable of decomposing and removing a gas component by photocatalysis in addition to the adsorption of the porous body by supporting a photocatalyst such as titanium oxide on the porous body has been developed (for example, Patent Document 2). In the adsorbent having such a configuration, the gas component adsorbed on the porous body is decomposed by the photocatalytic action at the time of light irradiation, and as a result, the adsorption activity of the porous body is returned to the initial state before the adsorption, that is, It can be regenerated (recovered) (Patent Document 2).
As other conventional techniques of this type of adsorbent, for example, techniques described in the following Patent Documents 3 to 6 can be cited.

特開2007−275292号公報JP 2007-275292 A 特開平6−170220号公報JP-A-6-170220 特開2006−007156号公報JP 2006-007156 A 特開2005−170687号公報JP 2005-170687 A 特開2003−199810号公報JP 2003-199810 A 特開2000−312809号公報JP 2000-312809 A

しかしながら、上述したような従来の吸着材は、種々のガス成分の吸着効率に関しまだまだ改善の余地があり十分なものとはいえない。特にアルデヒド(例えばホルムアルデヒドのような人体に有害な低級アルデヒド)等の健康上好ましくないガス成分の除去効率の向上が望まれる。また、ガス成分の吸着処理後の吸着材の再生(吸着能力回復)の程度を高めることに関しても改善の余地がある。
本発明は、かかる課題を解決すべく創出されたものであり、従来よりも種々のガス成分の吸着効率(特に低級アルデヒド類)の向上を実現する吸着材の提供を目的とする。また、対象とするガス成分を吸着した後の再生(吸着能力回復)効率の向上を実現する吸着材の提供を他の目的とする。また、ここで開示される吸着材を好適に製造し得る製造方法の提供を他の目的とする。また、ここで開示される吸着材を用いて空気を清浄する方法を提供することを他の目的とする。また、そのような吸着材を用いて空気を清浄する方法を実行する空気清浄装置の提供を他の目的とする。
However, the conventional adsorbents as described above are still not enough because there is still room for improvement with respect to the adsorption efficiency of various gas components. In particular, it is desired to improve the removal efficiency of unfavorable gas components such as aldehydes (for example, lower aldehydes harmful to the human body such as formaldehyde). Further, there is room for improvement with regard to increasing the degree of regeneration (adsorption capacity recovery) of the adsorbent after the adsorption treatment of the gas component.
The present invention has been created to solve such problems, and an object of the present invention is to provide an adsorbent material that can improve the adsorption efficiency (particularly, lower aldehydes) of various gas components as compared with the conventional art. Another object of the present invention is to provide an adsorbent that improves the regeneration (adsorption capacity recovery) efficiency after adsorbing the target gas component. Another object is to provide a production method capable of suitably producing the adsorbent disclosed herein. Another object is to provide a method for cleaning air using the adsorbent disclosed herein. It is another object of the present invention to provide an air cleaning device that executes a method of cleaning air using such an adsorbent.

本発明者らは、吸着材を構成する要素について様々な角度から検討を加え、上記目的を実現することのできる本発明を創出するに至った。
即ち、ここで開示される一つの吸着材は、少なくとも一種のガス種を吸着可能な多孔質基材を備える吸着材であって、少なくとも1種のアルカリ金属化合物と少なくとも1種の光触媒とが互いに混在した状態で当該多孔質基材に担持されていることを特徴とする。
かかる構成の吸着材では、アルカリ金属化合物と光触媒とが互いに混在した状態(即ち、互いに分画されることなく入り交じって存在している状態)で多孔質基材の外表面及び/又は細孔内壁面に担持されている。かかる構成によると、アルカリ金属化合物(以下「アルカリ金属成分」ともいう。)に吸着された物質(例えばホルムアルデヒドのような低級アルデヒド分子)を当該アルカリ金属成分に接して存在する光触媒によって効率よく分解・除去することができる。このため、ここで開示される吸着材によると、当該アルカリ金属成分の吸着効果を効果的に再生し、高い吸着能力(特に低級アルデヒドや酢酸等のアルカリ金属成分に吸着され易いガス種に対する吸着能力)を長期にわたって維持することができる。
The present inventors have studied the elements constituting the adsorbent from various angles and have come to create the present invention capable of realizing the above object.
That is, one adsorbent disclosed herein is an adsorbent comprising a porous substrate capable of adsorbing at least one gas species, and at least one alkali metal compound and at least one photocatalyst are mutually connected. The porous substrate is supported in a mixed state.
In the adsorbent having such a configuration, the outer surface and / or the pores of the porous substrate in a state where the alkali metal compound and the photocatalyst are mixed with each other (that is, in a state where the alkali metal compound and the photocatalyst are mixed without being separated from each other). It is carried on the inner wall surface. According to such a configuration, a substance (for example, a lower aldehyde molecule such as formaldehyde) adsorbed on an alkali metal compound (hereinafter also referred to as “alkali metal component”) is efficiently decomposed / dissolved by a photocatalyst existing in contact with the alkali metal component. Can be removed. For this reason, according to the adsorbent disclosed here, the adsorption effect of the alkali metal component is effectively regenerated, and a high adsorption capability (especially an adsorption capability for gas species that are easily adsorbed by alkali metal components such as lower aldehydes and acetic acid) ) Can be maintained over a long period of time.

ここで開示される吸着材の好ましい一態様では、上記担持されている光触媒は、平均粒子径(典型的には光散乱法によって求められる平均粒子径。以下同じ。)が100nm以下の酸化チタン粒子である。
このようなナノメートルサイズの酸化チタン粒子を光触媒として採用することにより、多孔質基材の外表面及び/又は細孔内壁面に好適に分散配置(担持)させることができる。従って、本構成の吸着材は、好適な光触媒活性を発揮することができる。また、ナノ粒子を用いることにより単位質量あたりの表面積がマイクロメートルサイズの粒子よりも大きくなり、結果、多孔質基材の単位容積あたりの光触媒活性を向上させることができる。
In a preferred embodiment of the adsorbent disclosed herein, the supported photocatalyst has an average particle size (typically an average particle size determined by a light scattering method; the same applies hereinafter) titanium oxide particles having a size of 100 nm or less. It is.
By employing such nanometer-sized titanium oxide particles as a photocatalyst, it can be suitably dispersed and supported (supported) on the outer surface and / or the inner wall surface of the pores of the porous substrate. Therefore, the adsorbent of this structure can exhibit suitable photocatalytic activity. Further, by using nanoparticles, the surface area per unit mass becomes larger than that of micrometer-sized particles, and as a result, the photocatalytic activity per unit volume of the porous substrate can be improved.

ここで開示される吸着材の好ましい一態様では、上記担持されているアルカリ金属化合物は、不揮発性のアルカリ成分として存在する。
このようなアルカリ成分を含むことにより、当該アルカリ金属成分の揮発による吸着材の光触媒性能劣化を防止し、吸着材の性能及び耐久性を向上させることができる。
In a preferred embodiment of the adsorbent disclosed herein, the supported alkali metal compound is present as a nonvolatile alkali component.
By including such an alkali component, deterioration of the photocatalytic performance of the adsorbent due to volatilization of the alkali metal component can be prevented, and the performance and durability of the adsorbent can be improved.

ここで開示される吸着材の好ましい一態様では、上記担持されているアルカリ金属化合物は、ナトリウム及び/又はカリウムの水酸化物、炭酸水素塩、炭酸塩若しくはケイ酸塩である。
このようなアルカリ金属化合物は、不揮発成分であり、水溶液の形態で多孔質基材の外表面や細孔内に容易に供給され得る。従って、本構成の吸着材では、多孔質基材の外表面及び/又は細孔内壁面の広範囲にわたって均質にアルカリ金属成分が配置され、当該アルカリ金属成分によって効率よく捕捉対象のガス成分(例えば酸性ガス)を吸着することができる。
In a preferred embodiment of the adsorbent disclosed herein, the supported alkali metal compound is sodium and / or potassium hydroxide, bicarbonate, carbonate or silicate.
Such an alkali metal compound is a non-volatile component, and can be easily supplied to the outer surface and pores of the porous substrate in the form of an aqueous solution. Therefore, in the adsorbent of this configuration, the alkali metal component is uniformly arranged over a wide range of the outer surface of the porous substrate and / or the inner wall surface of the pore, and the gas component to be captured (for example, acidic component) is efficiently obtained by the alkali metal component. Gas) can be adsorbed.

ここで開示される吸着材の好ましい一態様では、上記多孔質基材の質量を100質量%としたときのアルカリ金属化合物の含有割合が少なくとも1質量%(より好適には少なくとも2質量%)であり、且つ、該多孔質基材の質量を100質量%としたときの光触媒の含有割合が0.2〜2質量%である。
このような含有割合でアルカリ金属化合物(アルカリ金属成分)と光触媒(例えば酸化チタン)とを多孔質基材の外表面及び/又は細孔内に含ませることにより、当該多孔質基材のガス吸着性能を好適レベルに維持しつつ、アルカリ金属成分によるガス吸着性能と光触媒による光触媒活性を効果的に発揮させることができる。
In a preferred embodiment of the adsorbent disclosed herein, the content of the alkali metal compound is at least 1% by mass (more preferably at least 2% by mass) when the mass of the porous substrate is 100% by mass. And the content rate of a photocatalyst when the mass of this porous base material is 100 mass% is 0.2-2 mass%.
By including an alkali metal compound (alkali metal component) and a photocatalyst (for example, titanium oxide) in such a content ratio on the outer surface and / or pores of the porous substrate, gas adsorption of the porous substrate is performed. The gas adsorption performance by the alkali metal component and the photocatalytic activity by the photocatalyst can be effectively exhibited while maintaining the performance at a suitable level.

ここで開示される吸着材の好ましい一態様では、上記多孔質基材がBET法に基づく比表面積が900m/g以上の活性炭である。
このような表面積の大きい多孔質基材を用いることにより、より高性能なガス吸着を実現することができる。
In a preferred embodiment of the adsorbent disclosed herein, the porous base material is activated carbon having a specific surface area based on the BET method of 900 m 2 / g or more.
By using such a porous substrate having a large surface area, higher-performance gas adsorption can be realized.

また、ここで開示される吸着材の好ましい他の一態様では、低級アルデヒドガスを吸着する他の少なくとも1種の吸着用物質(以下「アルデヒド吸着用物質」ともいう。)をさらに備える。
上述した構成(多孔質基材、アルカリ金属成分、光触媒)に加え、アルデヒド吸着用物質をさらに備えることにより、より効率よくホルムアルデヒド、アセトアルデヒド等の低級アルデヒドを吸着・除去することができる。
この場合において、アルカリ金属化合物と光触媒とが担持されている多孔質基材と、上記アルデヒド吸着用物質が担持されている多孔質基材とを別個に用意し、適当な比率で両者を混合させて成る吸着材がより好適である。
In another preferred embodiment of the adsorbent disclosed herein, the adsorbent further includes at least one other adsorbing substance that adsorbs the lower aldehyde gas (hereinafter also referred to as “aldehyde adsorbing substance”).
In addition to the above-described configuration (porous substrate, alkali metal component, photocatalyst), by further providing a substance for aldehyde adsorption, lower aldehydes such as formaldehyde and acetaldehyde can be more efficiently adsorbed and removed.
In this case, separately prepare a porous substrate on which an alkali metal compound and a photocatalyst are supported and a porous substrate on which the aldehyde-adsorbing substance is supported, and mix them at an appropriate ratio. The adsorbent material is more preferable.

本発明は上記目的を実現するため、吸着材の製造方法を提供する。即ち、ここで開示される製造方法は、少なくとも一種のガス種を吸着可能な多孔質基材を備える吸着材を製造する方法である。そして、上記多孔質基材に少なくとも1種のアルカリ金属化合物と少なくとも1種の光触媒とが混在する状態の混合材料を供給すること、および、上記供給した混合材料中の上記アルカリ金属化合物及び上記光触媒を上記多孔質基材の外表面及び/又は細孔内壁面(典型的には外表面と細孔内壁面の両方)に担持させること、を包含する吸着材製造方法である。
かかる構成の製造方法によって、上述した作用効果を奏する本発明の吸着材を好適に製造することができる。
In order to achieve the above object, the present invention provides a method for producing an adsorbent. That is, the manufacturing method disclosed here is a method for manufacturing an adsorbent including a porous substrate capable of adsorbing at least one gas species. And supplying the mixed material in a state in which at least one alkali metal compound and at least one photocatalyst are mixed in the porous substrate, and the alkali metal compound and the photocatalyst in the supplied mixed material Is supported on the outer surface of the porous substrate and / or the inner wall surface of the pore (typically both the outer surface and the inner wall surface of the pore).
By the manufacturing method having such a configuration, the adsorbent of the present invention having the above-described effects can be preferably manufactured.

ここで開示される吸着材製造方法において、好ましくは、上記混合材料として水溶性アルカリ金属化合物(典型的にはナトリウム及び/又はカリウムを構成元素とする水溶性化合物)を含む水溶液に光触媒から成る粒子を分散させて成るゾルを使用する。
かかるゾル(即ちアルカリ水溶液に光触媒粒子が分散したコロイド状態の混合材料)を多孔質基材の外表面や細孔内に供給することにより、多孔質基材の外表面及び/又は細孔内壁面に光触媒とアルカリ金属成分とをよく混在させた状態で容易にほぼ均質に分散配置(担持)することができる。
さらに好ましくは、上記光触媒の平均粒子径は100nm以下、より好ましくは5〜80nmである。そのような平均粒子径の酸化チタン粒子を使用することが特に好ましい。このようなナノメートルサイズの粒子(ナノ粒子)を使用することにより、より好ましい形態のゾルを調製することができ、多孔質基材の外表面や細孔内壁面にほぼ均質に光触媒を分散配置(担持)することがさらに容易になる。また、ナノ粒子を用いることにより単位質量あたりの表面積がマイクロメートルサイズの粒子よりも大きくなり、結果、多孔質基材の単位容積あたりの光触媒活性を向上させることができる。
In the adsorbent production method disclosed herein, preferably, particles comprising a photocatalyst in an aqueous solution containing a water-soluble alkali metal compound (typically a water-soluble compound containing sodium and / or potassium as a constituent element) as the mixed material. A sol formed by dispersing is used.
By supplying such a sol (that is, a colloidal mixed material in which photocatalyst particles are dispersed in an alkaline aqueous solution) to the outer surface and / or pores of the porous substrate, the outer surface and / or the inner wall surface of the porous substrate. In addition, the photocatalyst and the alkali metal component can be easily and substantially uniformly dispersed (supported) in a state where the photocatalyst and the alkali metal component are mixed.
More preferably, the average particle size of the photocatalyst is 100 nm or less, more preferably 5 to 80 nm. It is particularly preferable to use titanium oxide particles having such an average particle size. By using such nanometer-sized particles (nanoparticles), a more preferable form of sol can be prepared, and the photocatalyst is distributed almost uniformly on the outer surface of the porous substrate and the inner wall surface of the pores. It becomes easier to carry (carry). Further, by using nanoparticles, the surface area per unit mass becomes larger than that of micrometer-sized particles, and as a result, the photocatalytic activity per unit volume of the porous substrate can be improved.

また、ここで開示される吸着材製造方法において、好ましくは、多孔質基材の質量を100質量%としたときのアルカリ金属化合物の含有割合が少なくとも1質量%(より好適には少なくとも2質量%)となり且つ該多孔質基材の質量を100質量%としたときの光触媒の含有割合が0.2〜2質量%となるように、上記混合材料を多孔質基材の外表面及び/又は細孔内に供給する。
このような含有率でアルカリ金属化合物(アルカリ金属成分)と光触媒(例えば酸化チタン)とを多孔質基材に含ませることにより、当該多孔質基材のガス吸着性能を好適レベルに維持しつつアルカリ金属成分によるガス吸着性能と光触媒による光触媒活性を効果的に発揮させ得る吸着材を製造することができる。
好ましくは、多孔質基材としてBET法に基づく比表面積が900m/g以上(例えば900〜2000m/g程度)である活性炭を使用する。このような表面積の大きい基材は本発明の目的を実現するうえで特に好ましい。
In the adsorbent production method disclosed herein, the content of the alkali metal compound is preferably at least 1% by mass (more preferably at least 2% by mass) when the mass of the porous substrate is 100% by mass. And the mixed material is mixed with the outer surface of the porous substrate and / or finely so that the content of the photocatalyst is 0.2 to 2% by mass when the mass of the porous substrate is 100% by mass. Supply into the hole.
By including an alkali metal compound (alkali metal component) and a photocatalyst (for example, titanium oxide) in the porous base material at such a content rate, an alkali is maintained while maintaining the gas adsorption performance of the porous base material at a suitable level. An adsorbent capable of effectively exhibiting the gas adsorption performance by the metal component and the photocatalytic activity by the photocatalyst can be produced.
Preferably, the specific surface area based on BET method as porous substrate using activated carbon is 900 meters 2 / g or more (e.g. 900~2000m about 2 / g). Such a substrate having a large surface area is particularly preferable for realizing the object of the present invention.

また、ここで開示される吸着材製造方法において、好ましくは、上記アルカリ金属化合物及び光触媒を担持している多孔質基材の外表面及び/又は細孔内に、若しくは該アルカリ金属化合物及び光触媒を担持していない多孔質基材の外表面及び/又は細孔内に、該アルカリ金属化合物以外の低級アルデヒドガスを吸着し得る少なくとも1種の吸着用物質(アルデヒド吸着用物質)を供給すること、をさらに包含する。
かかる構成の製造方法によると、アルカリ金属化合物及び光触媒を担持させた多孔質基材の外表面や細孔内に更にアルデヒド吸着用物質(例えばp−アミノ安息香酸塩やアニリン、p-アミノベンゼンスルホン酸)を供給することによって、或いは、当該アルカリ金属化合物及び光触媒を担持している多孔質基材と、該アルカリ金属化合物及び光触媒を担持させていない多孔質基材の外表面及び/又は細孔内壁面にアルデヒド吸着用物質を担持させた多孔質基材とを組み合わせることによって、ホルムアルデヒドやアセトアルデヒド等の低級アルデヒドを吸着・除去する能力により優れる吸着材を製造することができる。
In the adsorbent production method disclosed herein, preferably, the alkali metal compound and the photocatalyst are placed on the outer surface and / or pores of the porous substrate carrying the alkali metal compound and the photocatalyst. Supplying at least one adsorbing substance (aldehyde adsorbing substance) capable of adsorbing a lower aldehyde gas other than the alkali metal compound into the outer surface and / or pores of the porous substrate not supported; Is further included.
According to the production method having such a configuration, a substance for adsorbing aldehyde (for example, p-aminobenzoate, aniline, p-aminobenzenesulfone, etc.) is further provided on the outer surface or pores of the porous substrate carrying the alkali metal compound and the photocatalyst. Acid) or a porous substrate carrying the alkali metal compound and the photocatalyst, and an outer surface and / or pores of the porous substrate not carrying the alkali metal compound and the photocatalyst By combining a porous base material having an aldehyde-adsorbing substance supported on the inner wall surface, an adsorbent having an excellent ability to adsorb and remove lower aldehydes such as formaldehyde and acetaldehyde can be produced.

また、本発明は、ここで開示される何れかの吸着材、若しくはここで開示される製造方法により製造される吸着材を備える空気清浄装置(空気清浄機)を提供する。
かかる構成の空気清浄装置によると、目的とするガス成分、特に吸着材を構成する上記多孔質基材(例えば活性炭)に担持されるアルカリ金属成分によって吸着されるガス種(例えばNOx、SOx等の酸化物、酢酸等の酸性ガス)を好適に吸着・除去し、さらに光触媒作用によって多孔質基材内に吸着されたガス成分(分子)を分解・除去することにより、多孔質基材自体や該基材に担持されるアルカリ金属化合物のガス吸着能力を再生する(復帰させる)ことができる。このため、高耐久性(高寿命)を実現することができる。
また、本発明は、ここで開示されるいずれかの吸着材(典型的にはここで開示される製造方法により製造されるいずれかの吸着材)に、処理対象の空気を導入する(流通させる)ことを特徴とする空気清浄方法を提供する。例えば、少なくとも低級アルデヒドガス若しくは酸性ガスを含む空気を吸着材に導入することにより、当該ガス成分を好適に吸着・除去して空気の清浄を行うことができる。
The present invention also provides an air purifier (air purifier) including any adsorbent disclosed herein or an adsorbent manufactured by the manufacturing method disclosed herein.
According to the air cleaning device having such a configuration, the gas species (for example, NOx, SOx, etc.) adsorbed by the target metal component, particularly the alkali metal component supported on the porous base material (for example, activated carbon) constituting the adsorbent. By suitably adsorbing / removing acid gases such as oxides and acetic acid), and further decomposing / removing gas components (molecules) adsorbed in the porous substrate by photocatalysis, the porous substrate itself and the The gas adsorption capacity of the alkali metal compound supported on the substrate can be regenerated (returned). For this reason, high durability (long life) can be realized.
Further, the present invention introduces (circulates) the air to be treated into any of the adsorbents disclosed herein (typically, any of the adsorbents manufactured by the manufacturing method disclosed herein). An air cleaning method is provided. For example, by introducing air containing at least a lower aldehyde gas or an acid gas into the adsorbent, the gas component can be adsorbed and removed suitably to clean the air.

一実施形態に係る空気清浄装置の大まかな構成を模式的に説明する図である。It is a figure which illustrates typically the rough structure of the air purifying apparatus which concerns on one Embodiment. 一実施例に係る吸着材の紫外光(UV)照射前後のアセトアルデヒドガス除去率(%)の変化を示すグラフである。It is a graph which shows the change of the acetaldehyde gas removal rate (%) before and behind ultraviolet light (UV) irradiation of the adsorbent which concerns on one Example. アルカリ金属成分を含んでいない吸着材の酸化チタン担持量(横軸:%)と光再生能(縦軸:回復度合、即ち後述するUV照射直後のアセトアルデヒド除去率(%)からUV照射前(劣化処理後)のアセトアルデヒド除去率(%)を単純に差し引いた数値)との関係を示すグラフである。The amount of titanium oxide supported by the adsorbent containing no alkali metal component (horizontal axis:%) and light regeneration ability (vertical axis: recovery degree, ie, acetaldehyde removal rate (%) immediately after UV irradiation described later) before UV irradiation (deterioration) It is a graph which shows a relationship with the numerical value which simply subtracted the acetaldehyde removal rate (%) of (after a process). アルカリ金属成分を添加した吸着材の酸化チタン担持量(横軸:%)と光再生能(縦軸:回復度合(%))との関係を示すグラフである。It is a graph which shows the relationship between the titanium oxide carrying amount (horizontal axis:%) of the adsorbent which added the alkali metal component, and optical regeneration ability (vertical axis: recovery degree (%)). 吸着材のアルカリ金属化合物担持量(横軸:%)と光再生能(縦軸:回復度合(%))との関係を示すグラフである。It is a graph which shows the relationship between the alkali metal compound carrying amount (horizontal axis:%) of an adsorbent, and optical regeneration ability (vertical axis: recovery degree (%)). 幾つかの実施例に係る吸着材と比較例に係る吸着材との間での光再生能(縦軸:回復度合(%))の違いを示すグラフである。It is a graph which shows the difference in the light reproduction ability (vertical axis: recovery degree (%)) between the adsorbent which concerns on some Examples, and the adsorbent which concerns on a comparative example. 一実施例に係る吸着材と一比較例に係る吸着材との間での光触媒効果による耐久性能の違いを示すグラフであり、縦軸に日本電機工業会規格(JEM1467)に基づく除去率(たばこ5本分からの総合除去率)を示し、横軸にJEM1467に基づくガス吸着処理のサイクル(繰り返し)数を示す。It is a graph which shows the difference in the durability performance by the photocatalyst effect between the adsorbent which concerns on one Example, and the adsorbent which concerns on a comparative example, and the removal rate (tobacco based on Japan Electrical Manufacturers' Association standard (JEM1467) on a vertical axis | shaft The total removal rate from 5 lines) is shown, and the horizontal axis shows the number of cycles (repetition) of gas adsorption treatment based on JEM1467. 複数の実施例に係る吸着材のガス吸着性能と、酸化チタン含有率との関係を示すグラフであり、縦軸に日本電機工業会規格(JEM1467)に基づく総合除去率(%)を示し、横軸に吸着材全体に対する酸化チタン含有率(質量%)を示す。It is a graph which shows the relationship between the gas adsorption performance of the adsorbent which concerns on a some Example, and a titanium oxide content rate, and shows the comprehensive removal rate (%) based on Japan Electrical Manufacturers' Association standard (JEM1467) on the vertical axis, The axis indicates the titanium oxide content (% by mass) relative to the entire adsorbent. 複数の実施例に係る吸着材の光再生能(縦軸:回復度合(%))と酸化チタン含有率(横軸:質量%)との関係を示すグラフである。It is a graph which shows the relationship between the optical regeneration ability (vertical axis: recovery degree (%)) and titanium oxide content rate (horizontal axis: mass%) of the adsorbent according to a plurality of examples.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば吸着材の組成や吸着物質の種類)以外の事柄であって本発明の実施に必要な事柄(例えば、空気清浄装置の構造や組立方法に関するような一般的事項)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
ここで開示される吸着材は、上述した構成のとおり、少なくとも一種のガス種を吸着可能な多孔質基材と、その多孔質基材の外表面及び/又は細孔内壁面(典型的には外表面と細孔内壁面の両方)に少なくとも1種のアルカリ金属化合物と少なくとも1種の光触媒とが互いに混在した状態(即ち相互に区分けされておらず互いに入り交じって存在する状態)で担持されていることで特徴付けられる吸着材である。
Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than matters specifically mentioned in the present specification (for example, the composition of the adsorbent and the type of adsorbent) and matters necessary for the implementation of the present invention (for example, the structure and assembly method of the air cleaning device) Such general matters) can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
As described above, the adsorbent disclosed herein includes a porous base material capable of adsorbing at least one gas species, an outer surface of the porous base material, and / or a pore inner wall surface (typically At least one alkali metal compound and at least one photocatalyst are supported on both the outer surface and the inner wall surface of the pores in a mixed state (that is, they are not separated from each other and are intermingled with each other). It is an adsorbent characterized by

かかる吸着材の主体となる多孔質基材としては、目的とするガス成分(ガス種を構成する分子)を吸着できる多孔質体であって、その細孔内壁面(典型的には細孔内に加えて多孔質体の外表面)にアルカリ金属成分と光触媒(典型的にはナノ粒子状の光触媒)を担持可能な材質であれば特に制限無く種々の性状の基材を用いることができる。
例えば、活性炭、ゼオライトその他の鉱物系多孔質体が、ここで開示される吸着材を構成する多孔質基材として好ましい。なかでも活性炭は非常に大きい比表面積(例えばBET法に基づく比表面積値が500m/g以上)を有するため特に好ましい基材である。例えば、BET法に基づく比表面積が900m/g以上、例えば900〜2000m/g程度である活性炭が好ましい。例えばヤシ殻活性炭は、このような大きい比表面積を有し、更に硬度も高いため好ましい材料である。或いは、比表面積自体はヤシ殻活性炭よりもやや低い(例えば500〜900m/g)ものの、孔サイズが概ね2nm未満のようなミクロ孔のほかに、それよりも孔サイズが大きいメソ孔(例えば孔サイズが2nm以上50nm未満)やマクロ孔(例えば孔サイズが50nm以上のもの)を高率に有する石炭活性炭は、細孔内に光触媒粒子やアルカリ金属化合物を容易に供給(導入)させることができるという観点から好ましい。
なお、使用する活性炭その他の多孔質基材の形状は、目的に応じて異ならせればよく特に制限はない。例えば、粉末状(顆粒状)、粒状、ペレット状、シート状、ハニカム構造体等の形状の多孔質基材を用いることができる。
The porous base material that is the main component of the adsorbent is a porous body that can adsorb the target gas component (molecules constituting the gas species), and its inner wall surface (typically in the pores). In addition, any material having various properties can be used as long as it is a material capable of supporting an alkali metal component and a photocatalyst (typically a nanoparticulate photocatalyst) on the outer surface of the porous body.
For example, activated carbon, zeolite, and other mineral-based porous materials are preferable as the porous substrate constituting the adsorbent disclosed herein. Among them, activated carbon is a particularly preferable substrate because it has a very large specific surface area (for example, a specific surface area value based on the BET method is 500 m 2 / g or more). For example, the specific surface area based on BET method 900 meters 2 / g or more, such as activated carbon is 900~2000m 2 / g is preferably about. For example, coconut shell activated carbon is a preferable material because it has such a large specific surface area and also has a high hardness. Alternatively, although the specific surface area itself is slightly lower than coconut shell activated carbon (for example, 500 to 900 m 2 / g), in addition to micropores having a pore size of generally less than 2 nm, mesopores having a larger pore size (for example, Coal activated carbon having a high rate of pore sizes of 2 nm or more and less than 50 nm) or macropores (for example, those having a pore size of 50 nm or more) can easily supply (introduce) photocatalyst particles and alkali metal compounds into the pores. It is preferable from the viewpoint that it can be performed.
The shape of the activated carbon or other porous substrate to be used is not particularly limited as long as it varies depending on the purpose. For example, a porous substrate in the form of powder (granular), granular, pellet, sheet, honeycomb structure or the like can be used.

また、多孔質基材の外表面及び/又は細孔内壁面に担持させるアルカリ金属化合物としては、酸性ガスや低級アルデヒド等のガスを吸着する性能を有する限りにおいて、種々の組成のものを用いることができる。例えば、取り扱いが比較的容易で且つ安価であるナトリウム化合物やカリウム化合物が好適である。特にナトリウム化合物が好ましい。
化合物の種類は特に限定されないが、光触媒と混在した状態の混合材料を容易に形成することが可能であり、且つ、当該混合材料を活性炭等の多孔質基材の外表面や細孔内に容易に供給し得るという観点からは、水溶性の化合物が好ましい。例えば、ナトリウム及び/又はカリウムを構成金属元素とする水酸化物、炭酸塩、炭酸水素塩、ケイ酸塩等が好ましい。特に水酸化ナトリウムや水酸化カリウムのようなアルカリ金属の水酸化物が好適である。この種の水溶性化合物を用いることにより溶液のpHを中性域からアルカリ性域(例えばpH8以上、典型的にはpH8〜13、例えばpH8〜11程度)にシフトさせることができる。このようなpHが中性域からアルカリ性域となる混合材料(例えば上記のゾル)を用いることにより、多孔質基材に担持される光触媒の光触媒活性を向上させることができる。
In addition, as the alkali metal compound supported on the outer surface of the porous substrate and / or the inner wall surface of the pore, those having various compositions should be used as long as they have the ability to adsorb gas such as acid gas and lower aldehyde. Can do. For example, sodium compounds and potassium compounds that are relatively easy to handle and inexpensive are suitable. Particularly preferred are sodium compounds.
The type of compound is not particularly limited, but it is possible to easily form a mixed material mixed with a photocatalyst, and the mixed material can be easily formed on the outer surface or pores of a porous substrate such as activated carbon. From the viewpoint of being able to be supplied to water, a water-soluble compound is preferable. For example, hydroxides, carbonates, hydrogen carbonates, silicates and the like containing sodium and / or potassium as constituent metal elements are preferable. In particular, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are suitable. By using this type of water-soluble compound, the pH of the solution can be shifted from a neutral region to an alkaline region (for example, pH 8 or higher, typically pH 8 to 13, for example, about pH 8 to 11). By using a mixed material (for example, the sol described above) in which the pH is in a neutral range to an alkaline range, the photocatalytic activity of the photocatalyst supported on the porous substrate can be improved.

一方、ここで開示される吸着材を構成するのに使用される光触媒は、従来から光触媒として認められている物質であれば特に制限なく用いることができるが、好ましい光触媒としては酸化チタン(二酸化チタンともいう:TiO)が挙げられる。特にアナターゼ型結晶構造の酸化チタンを高割合で使用することが光触媒活性を向上させ得るので好ましい。ただしルチル型結晶構造の酸化チタンの使用を否定するものではない。全体の質量の50%以上がアナターゼ型結晶構造であることが好ましく、全体の70〜100%がアナターゼ型であることが特に好ましい。
また、使用する光触媒としては、平均粒子径が小さい所謂ナノサイズの超微粒子(ナノ粒子)形状のものが好ましい。このような光触媒粒子を適当な媒体(典型的には水)に分散して成るゾル(コロイド)の利用が多孔質基材の特に細孔内に光触媒を供給するという観点から好ましい。
例えばレーザ回折式の粒度測定装置のような光散乱法に基づく測定により求められる平均粒子径が100nm以下(より好ましくは5〜80nm)の酸化チタンその他の光触媒の使用(典型的にはゾルとしての使用)が好ましい。
On the other hand, the photocatalyst used for constituting the adsorbent disclosed herein can be used without particular limitation as long as it is a substance that has been conventionally recognized as a photocatalyst, but preferred photocatalyst is titanium oxide (titanium dioxide). Also referred to as: TiO 2 ). In particular, it is preferable to use a high proportion of titanium oxide having an anatase type crystal structure because the photocatalytic activity can be improved. However, the use of titanium oxide having a rutile crystal structure is not denied. 50% or more of the total mass is preferably an anatase type crystal structure, and 70 to 100% of the total mass is particularly preferably an anatase type.
In addition, the photocatalyst used preferably has a so-called nano-sized ultrafine particle (nanoparticle) shape with a small average particle diameter. Use of a sol (colloid) obtained by dispersing such photocatalyst particles in an appropriate medium (typically water) is preferable from the viewpoint of supplying the photocatalyst into the pores of the porous substrate.
For example, use of titanium oxide or other photocatalyst having an average particle size of 100 nm or less (more preferably 5 to 80 nm) obtained by measurement based on a light scattering method such as a laser diffraction particle size measurement device (typically as a sol) Use) is preferred.

上記のような材料を用いて吸着材を製造することができる。好ましくは、適当な光触媒とアルカリ金属化合物とを含む混合材料を調製し、当該混合材料を対象とする多孔質基材(活性炭等)に供給する。
供給の形態は多孔質基材の組成や形状に応じて異なり得るため特に限定しないが、好ましい供給形態として、例えば、平均粒子径100nm以下の光触媒粒子を水等の媒体に分散して成るコロイドの形態が挙げられ、上記ゾルの形態、若しくはスラリーを使用する形態が挙げられる。例えば、水酸化ナトリウム等の水溶性化合物を使用して予めアルカリ金属イオンが含まれる水溶液を調製しておき、当該水溶液に適当なサイズの粒状光触媒を添加することによりゾル若しくはスラリーを調製する。或いは、予め調製された光触媒のゾル若しくはスラリーに水溶性のアルカリ金属化合物(例えばナトリウムやカリウムの水酸化物、炭酸水素塩、炭酸塩、ケイ酸塩)を添加してもよい。
このようにしてpHが中性域からアルカリ性域(例えばpH8以上、典型的にはpH8〜13、例えばpH8〜10)となった水系光触媒ゾル若しくはスラリーを調製することができる。このような高pHの混合材料を使用することにより、pHが7以下の酸性域の材料と比較して、多孔質基材に担持された光触媒の光触媒活性を向上させることができる。
An adsorbent can be manufactured using the above materials. Preferably, a mixed material containing an appropriate photocatalyst and an alkali metal compound is prepared, and the mixed material is supplied to a porous substrate (activated carbon or the like).
Although the supply form may vary depending on the composition and shape of the porous substrate, it is not particularly limited. However, as a preferred supply form, for example, a colloid formed by dispersing photocatalyst particles having an average particle diameter of 100 nm or less in a medium such as water. The form is mentioned, The form of the said sol or the form using a slurry is mentioned. For example, an aqueous solution containing alkali metal ions is prepared in advance using a water-soluble compound such as sodium hydroxide, and a sol or slurry is prepared by adding a granular photocatalyst having an appropriate size to the aqueous solution. Alternatively, a water-soluble alkali metal compound (for example, sodium or potassium hydroxide, bicarbonate, carbonate, or silicate) may be added to a sol or slurry of a photocatalyst prepared in advance.
In this manner, an aqueous photocatalyst sol or slurry having a pH in a neutral region to an alkaline region (for example, pH 8 or higher, typically pH 8 to 13, for example, pH 8 to 10) can be prepared. By using such a high pH mixed material, the photocatalytic activity of the photocatalyst supported on the porous substrate can be improved as compared with a material in an acidic region having a pH of 7 or less.

而して、調製した混合材料を、対象とする多孔質基材に供給する工程を行う。供給方法としては特に制限はないが、一般的なスプレー噴霧による供給に加え、基材の細孔内にも十分に混合材料(即ち光触媒とアルカリ金属化合物)が行き渡る方法が好ましい。例えば、多孔質基材の細孔内部を負圧状態とし、当該基材に所定量のゾル若しくはスラリーを供給することにより、効率よく、多孔質基材の外表面及び細孔内に水系媒体とともに光触媒とアルカリ金属化合物(典型的にはイオン形態)を供給することができる。或いは、調製したスラリーやゾル中に多孔質基材を浸漬し、毛細管現象等により細孔内に導入してもよい。かかる供給手段自体は特に限定されるものではなく、混合材料や多孔質基材の性状、あるいは使用量等に応じて適宜選択し決定することができる。
供給量は、特に限定するものでないが、供給対象である多孔質基材の質量を100質量%としたときのアルカリ金属化合物の含有割合は、少なくとも1質量%(例えば概ね1〜10質量%)が適当であり、好ましくは少なくとも2質量%(例えば概ね2〜10質量%、より好ましくは2〜5質量%)である。また、多孔質基材の質量を100質量%としたときの光触媒の含有割合は、概ね0.1〜5質量%が適当であり、好ましくは概ね0.2〜2質量%となるように、上記混合材料を多孔質基材の細孔内に供給するとよい。
Thus, a step of supplying the prepared mixed material to the target porous substrate is performed. Although there is no restriction | limiting in particular as a supply method, In addition to the supply by general spray atomization, the method by which a mixed material (namely, photocatalyst and alkali metal compound) spreads enough also in the pore of a base material is preferable. For example, by setting the inside of the pores of the porous substrate to a negative pressure state and supplying a predetermined amount of sol or slurry to the substrate, the porous substrate is efficiently put together with the aqueous medium in the outer surface and pores of the porous substrate. A photocatalyst and an alkali metal compound (typically in ionic form) can be supplied. Alternatively, the porous substrate may be immersed in the prepared slurry or sol and introduced into the pores by capillary action or the like. Such supply means itself is not particularly limited, and can be appropriately selected and determined according to the properties of the mixed material or the porous substrate, the amount used, or the like.
Although the supply amount is not particularly limited, the content ratio of the alkali metal compound when the mass of the porous base material to be supplied is 100% by mass is at least 1% by mass (for example, approximately 1 to 10% by mass). Is preferably at least 2% by weight (eg, approximately 2-10% by weight, more preferably 2-5% by weight). Further, the content ratio of the photocatalyst when the mass of the porous substrate is 100% by mass is suitably about 0.1 to 5% by mass, preferably about 0.2 to 2% by mass, The mixed material may be supplied into the pores of the porous substrate.

上記混合材料の供給工程終了後、多孔質基材を乾燥させて混合材料中に含まれていた水分を除く処理を行う。かかる乾燥工程の過程において、光触媒ならびにアルカリ金属化合物(典型的にはナトリウムイオン、カリウムイオン等のアルカリ金属成分)が多孔質基材の外表面や細孔内壁面に担持(固定)される。乾燥工程は、使用する多孔質基材の性状に応じて、室温条件で行ってもよいし或いは加熱(典型的には50〜150℃程度、例えば100〜130℃)して行ってもよい。活性炭やゼオライト等の鉱物系の多孔質基材を用いる場合は、加熱乾燥することにより強固な担持が実現され得るので好ましい。   After completion of the mixed material supplying step, the porous substrate is dried to remove water contained in the mixed material. In the course of the drying step, a photocatalyst and an alkali metal compound (typically alkali metal components such as sodium ions and potassium ions) are supported (fixed) on the outer surface and inner wall surface of the porous substrate. The drying step may be performed under room temperature conditions or heated (typically about 50 to 150 ° C., for example, 100 to 130 ° C.) depending on the properties of the porous substrate to be used. In the case of using a mineral-based porous substrate such as activated carbon or zeolite, it is preferable because strong support can be realized by heating and drying.

また、好ましくは、ガス吸着性能を向上させるべく、他の少なくとも1種の吸着用物質を加えてもよい。例えば、多孔質基材に担持させたアルカリ金属成分とともに、低級アルデヒド(典型的には炭素原子数が5以下のアルデヒド類をいう。)、例えばホルムアルデヒドやアセトアルデヒドを効果的に吸着し得る物質(アルデヒド吸着用物質)を備えることが好ましい。
この種の物質としては、p−アミノ安息香酸、アニリン、アジピン酸ジヒドラジド、エタノールアミンやメチルアミン塩酸塩等のアミン系物質、炭酸グアニジンやリン酸グアニジン等のグアニジン化合物、ヒドラジン、ヒドロキノン、p-アミノベンゼンスルホン酸又はそのアンモニウム塩、等が好適例として挙げられる。
このような付加的な吸着物質(典型的には上記アルデヒド吸着用物質)は、上述のようにしてアルカリ金属化合物及び光触媒を既に担持している多孔質基材の外表面及び/又は細孔内に、同様のプロセスによって供給・担持することができる。例えばアルデヒド吸着用物質を含む溶液若しくは分散液を当該多孔質基材に供給し、乾燥処理を行うことにより当該基材の外表面及び/又は細孔内壁面に担持することができる。或いは、アルカリ金属化合物及び光触媒を含む混合材料にアルデヒド吸着用物質その他の付加的な吸着物質を予め混合させておいてもよい。アルデヒド吸着用物質その他の付加的な吸着物質の担持量は特に限定されず、目的に応じて或いは使用する物質の性状に応じて適宜決定することができる。
Preferably, at least one other substance for adsorption may be added in order to improve the gas adsorption performance. For example, a substance capable of effectively adsorbing a lower aldehyde (typically an aldehyde having 5 or less carbon atoms), such as formaldehyde or acetaldehyde, together with an alkali metal component supported on a porous substrate. It is preferable to provide a substance for adsorption.
Such substances include p-aminobenzoic acid, aniline, adipic acid dihydrazide, amine substances such as ethanolamine and methylamine hydrochloride, guanidine compounds such as guanidine carbonate and guanidine phosphate, hydrazine, hydroquinone, p-amino. Preferred examples include benzenesulfonic acid or its ammonium salt.
Such an additional adsorbing material (typically the aldehyde adsorbing material) is formed on the outer surface and / or in the pores of the porous substrate already supporting the alkali metal compound and the photocatalyst as described above. In addition, it can be supplied and supported by the same process. For example, by supplying a solution or dispersion containing an aldehyde-adsorbing substance to the porous substrate and performing a drying treatment, it can be supported on the outer surface and / or the inner wall surface of the pore. Alternatively, a mixed material containing an alkali metal compound and a photocatalyst may be mixed in advance with an aldehyde-adsorbing substance or other additional adsorbing substance. The amount of the aldehyde-adsorbing substance or other additional adsorbing substance supported is not particularly limited, and can be appropriately determined according to the purpose or according to the properties of the substance to be used.

或いはまた、アルカリ金属化合物及び光触媒を担持していない多孔質基材を別途用意しておき、該基材の外表面及び/又は細孔内にアルデヒド吸着用物質その他の付加的な吸着物質を含む溶液若しくは分散液を供給し、乾燥処理を行うことにより当該基材の外表面及び/又は細孔内壁面にアルデヒド吸着用物質その他の付加的な吸着物質を担持させてもよい。この場合には、アルカリ金属化合物と光触媒とが担持されている多孔質基材と、上記アルデヒド吸着用物質その他の付加的な吸着物質が担持されている多孔質基材とを所定の割合で混合することにより、好適な吸着材を製造することができる。このように、アルカリ金属化合物と光触媒とが担持されている多孔質基材と、上記アルデヒド吸着用物質その他の付加的な吸着物質が担持されている多孔質基材とを別個に製造して所定の割合で混合する態様は、アルデヒド吸着用物質その他の付加的な吸着物質と光触媒とが互いに反応することを防止し、アルデヒド吸着用物質その他の付加的な吸着物質の吸着性能に及ぼす光触媒の影響を未然に回避して当該吸着物質の吸着性能を良好に維持することができるために特に好ましい。
この場合において、アルカリ金属化合物と光触媒とが担持されている多孔質基材と、上記アルデヒド吸着用物質その他の付加的な吸着物質が担持されている多孔質基材との混合比は特に限定されない。例えば、特に粉末状、粒状若しくは繊維状の多孔質基材(活性炭等)を使用するような場合には、種々の混合比で両者を混合することができる。好ましくは、アルカリ金属化合物と光触媒とが担持されている多孔質基材は、上記アルデヒド吸着用物質その他の付加的な吸着物質が担持されている多孔質基材との混合により供給される吸着材全体に対して、全体の10質量%以上、典型的には10質量%〜90質量%(例えば10質量%〜50質量%又はそれ以上)に相当する量を配合することができる。
また、光触媒の含有量(含有割合)は、上記混合により供給される吸着材全体に対して0.03質量%以上1.8質量%以下(好ましくは0.04質量%以上1質量%以下、例えば0.05質量%以上0.8質量%以下)とすることが望ましい。さらに、アルカリ金属化合物の含有量(含有割合)は、上記混合後の吸着材全体に対して0.05質量%以上(例えば0.05質量%以上3質量%以下、好ましくは0.1質量%以上2質量%以下)とすることが望ましい。光触媒、及びアルカリ金属化合物の含有量を上記範囲とすることにより、アルカリ金属成分及び光触媒によるガス吸着性能と、アルデヒド吸着用物質その他の付加的な吸着物質によるガス吸着性能のバランスが取れ、種々の臭い成分その他の汚染ガス成分(例えば、低級アルデヒド、酢酸など。)を効率よく浄化することができる。さらに上記範囲とすることにより、UV光照射による高いガス吸着性能回復能力を示す。
Alternatively, a porous substrate not supporting an alkali metal compound and a photocatalyst is prepared separately, and an aldehyde-adsorbing substance or other additional adsorbing substance is included in the outer surface and / or pores of the substrate. An aldehyde-adsorbing substance or other additional adsorbing substance may be supported on the outer surface and / or the inner wall surface of the pore by supplying a solution or dispersion and performing a drying treatment. In this case, the porous substrate carrying the alkali metal compound and the photocatalyst and the porous substrate carrying the aldehyde adsorbing substance and other additional adsorbing substances are mixed at a predetermined ratio. By doing so, a suitable adsorbent can be produced. As described above, the porous base material on which the alkali metal compound and the photocatalyst are supported and the porous base material on which the aldehyde adsorbing substance and other additional adsorbing substances are supported are separately manufactured and predetermined. The ratio of the aldehyde adsorbing substance and other additional adsorbing substances and the photocatalyst are prevented from reacting with each other, and the effect of the photocatalyst on the adsorption performance of the aldehyde adsorbing substance and other additional adsorbing substances. This is particularly preferable because the adsorption performance of the adsorbing substance can be maintained well by avoiding the above.
In this case, the mixing ratio of the porous base material on which the alkali metal compound and the photocatalyst are supported and the porous base material on which the aldehyde adsorbing substance and other additional adsorbing substances are supported is not particularly limited. . For example, when using a powdery, granular or fibrous porous substrate (activated carbon or the like), both can be mixed at various mixing ratios. Preferably, the porous substrate on which the alkali metal compound and the photocatalyst are supported is an adsorbent supplied by mixing with the porous substrate on which the aldehyde-adsorbing material or other additional adsorbing material is supported. An amount corresponding to 10% by mass or more of the whole, typically 10% by mass to 90% by mass (for example, 10% by mass to 50% by mass or more) can be blended with respect to the whole.
In addition, the content (content ratio) of the photocatalyst is 0.03% by mass or more and 1.8% by mass or less (preferably 0.04% by mass or more and 1% by mass or less) with respect to the entire adsorbent supplied by the above mixing. For example, it is desirable to set it as 0.05 mass% or more and 0.8 mass% or less. Further, the content (content ratio) of the alkali metal compound is 0.05% by mass or more (for example, 0.05% by mass or more and 3% by mass or less, preferably 0.1% by mass) with respect to the entire adsorbent after mixing. It is desirable that the amount be 2% by mass or less. By adjusting the content of the photocatalyst and the alkali metal compound within the above range, the gas adsorption performance by the alkali metal component and the photocatalyst can be balanced with the gas adsorption performance by the aldehyde-adsorbing substance and other additional adsorbing substances. Odor components and other pollutant gas components (for example, lower aldehyde, acetic acid, etc.) can be efficiently purified. Furthermore, by setting it as the said range, the high gas adsorption performance recovery capability by UV light irradiation is shown.

ここで開示される吸着材は、種々の環境中、例えば家庭内、工場内、各種の実験を行っている研究施設内等において種々の形態で使用することができる。
例えば図1に模式的に示すように、空気清浄装置1におけるガス成分除去部4を構成する材料として使用することができる。即ち、図1に示す空気清浄装置1では、筐体(ケーシング)2の内部に設けられた送風用ファン8の作用により筐体2の前方部に設けられた集塵フィルター(例えばHEPAフィルター)3を通過して筐体2内に導入された空気がガス成分除去部4に導入される。かかるガス成分除去部4に例えば粉末状の本発明の吸着材を充填しておくことにより導入空気中の有害なガス成分を吸着・除去することができる。そしてガス成分除去部4を通過した空気(浄化空気)は、送風用ファン8の作用により筐体2の後方に設けられた排出部2Aから外部に放出される。
ここで、図示されるように、ガス成分除去部4に近接する部位において光触媒を励起させるための光エネルギーを放出するランプ(典型的には紫外光を放射するUVランプ)7Aを備えた光源部7が設けられている。かかる光源部7のランプ7Aから照射された光(典型的にはUV光)により、ガス成分除去部4に充填された吸着材に含まれる光触媒が励起され、当該吸着材中の多孔質基材に吸着されているガス成分(例えば低級アルデヒド)を分解除去することができる。このため、図1に示すような空気清浄装置1では、所定時間の空気浄化運転を行った後に、ランプを点灯し、捕捉(吸着)したガス成分を分解することによって、吸着材のガス吸着能力の機能を再生(回復)することができる。
なお、図1には本発明の技術的内容(技術思想)とは直接関係のない電源回路や本装置を適切に運転させるための制御部(マイコン部、ガスセンサ部等)を示していないが、かかる電源回路や適切な制御部を備え得ることは従来の空気清浄装置と変わりがない。
The adsorbent disclosed herein can be used in various forms in various environments, for example, in homes, factories, and research facilities where various experiments are performed.
For example, as schematically shown in FIG. 1, it can be used as a material constituting the gas component removing unit 4 in the air cleaning device 1. That is, in the air purifying apparatus 1 shown in FIG. 1, a dust collection filter (for example, HEPA filter) 3 provided in the front portion of the casing 2 by the action of the blower fan 8 provided in the casing (casing) 2. The air introduced into the housing 2 through the gas is introduced into the gas component removing unit 4. By filling the gas component removing unit 4 with, for example, a powdery adsorbent of the present invention, harmful gas components in the introduced air can be adsorbed and removed. And the air (purified air) which passed the gas component removal part 4 is discharge | released outside from the discharge part 2A provided in the back of the housing | casing 2 by the effect | action of the fan 8 for ventilation.
Here, as shown in the drawing, a light source unit including a lamp (typically a UV lamp that emits ultraviolet light) 7A that emits light energy for exciting the photocatalyst at a site close to the gas component removing unit 4. 7 is provided. The photocatalyst contained in the adsorbent filled in the gas component removing unit 4 is excited by light (typically UV light) emitted from the lamp 7A of the light source unit 7, and the porous substrate in the adsorbent It is possible to decompose and remove gas components (for example, lower aldehydes) adsorbed on the surface. For this reason, in the air purifying apparatus 1 as shown in FIG. 1, after performing the air purifying operation for a predetermined time, the lamp is turned on to decompose the trapped (adsorbed) gas component, thereby desorbing the gas adsorbing capacity of the adsorbent. Can be played back (recovered).
In addition, although FIG. 1 does not show a power supply circuit that is not directly related to the technical content (technical idea) of the present invention and a control unit (microcomputer unit, gas sensor unit, etc.) for appropriately operating this device, The fact that such a power supply circuit and an appropriate control unit can be provided is the same as a conventional air purifier.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<吸着材の製造例(1)>
光触媒としては、市販のアナターゼ型酸化チタン微粒子(光散乱法に基づく平均粒子径が5〜50nm程度のナノ粒子)を濃度10〜45質量%で含有する溶媒が水系のゾルを使用した。具体的には、濃度30質量%で酸化チタンナノ粒子を含むゾルを使用した。
多孔質基材としては、市販の粒状ヤシ殻活性炭(粒度:4〜8メッシュ)を使用した。 また、アルカリ金属成分としては水酸化ナトリウム(NaOH)を使用した。
本実施例では、使用するヤシ殻活性炭量を100質量%として、該活性炭に含有(担持)させる水酸化ナトリウムの含有量(含有割合)をヤシ殻活性炭使用量の2質量%に相当する量と設定した。また、使用するヤシ殻活性炭量を100質量%として、該活性炭に含有(担持)させる酸化チタンの含有量(含有割合)をヤシ殻活性炭使用量の0.6質量%に相当する量と設定した。
<Production example of adsorbent (1)>
As a photocatalyst, a solvent containing a commercially available anatase-type titanium oxide fine particle (nanoparticles having an average particle diameter of about 5 to 50 nm based on a light scattering method) at a concentration of 10 to 45% by mass was an aqueous sol. Specifically, a sol containing titanium oxide nanoparticles at a concentration of 30% by mass was used.
As the porous substrate, commercially available granular coconut shell activated carbon (particle size: 4 to 8 mesh) was used. Further, sodium hydroxide (NaOH) was used as the alkali metal component.
In this example, the amount of coconut shell activated carbon used is 100% by mass, and the content (content ratio) of sodium hydroxide contained (supported) in the activated carbon is equivalent to 2% by mass of the amount of coconut shell activated carbon used. Set. Further, the amount of coconut shell activated carbon used was set to 100% by mass, and the content (content ratio) of titanium oxide contained (supported) in the activated carbon was set to an amount corresponding to 0.6% by mass of the amount of coconut shell activated carbon used. .

具体的には、ヤシ殻活性炭100質量部に対して、上記ゾル2質量部(即ち酸化チタン0.6質量部)と試薬特級レベルの水酸化ナトリウム2質量部とが供給されるように、当該質量部に相当する量のゾルと水酸化ナトリウムとを水で希釈してpHが概ね10〜14となる混合材料を調製した。
次いで、得られた混合材料の全量を100質量部のヤシ殻活性炭に吸引することにより、上記質量比で光触媒(酸化チタン)と水酸化ナトリウムとをアルカリ性条件下(高pH条件下)において活性炭外表面及び/又は細孔内に供給した。
その後、活性炭を110℃のオーブン内で乾燥し、供給された光触媒とアルカリ金属成分(Naイオン)を活性炭に担持させた。
上記の一連のプロセスにより製造された吸着材を実施例1の吸着材とする。
Specifically, with respect to 100 parts by mass of coconut shell activated carbon, 2 parts by mass of the sol (that is, 0.6 parts by mass of titanium oxide) and 2 parts by mass of reagent-grade sodium hydroxide are supplied. An amount of sol corresponding to part by mass and sodium hydroxide were diluted with water to prepare a mixed material having a pH of approximately 10-14.
Next, the total amount of the obtained mixed material is sucked into 100 parts by mass of coconut shell activated carbon, so that the photocatalyst (titanium oxide) and sodium hydroxide are mixed with the above mass ratio outside the activated carbon under alkaline conditions (high pH conditions). Feed into the surface and / or pores.
Thereafter, the activated carbon was dried in an oven at 110 ° C., and the supplied photocatalyst and alkali metal component (Na ion) were supported on the activated carbon.
The adsorbent produced by the above series of processes is used as the adsorbent of Example 1.

また、比較対象として、水酸化ナトリウムを添加しないこと以外は上記実施例1と同様のプロセスと質量比により、アルカリ金属成分を含まない吸着材(比較例1)を製造した。
また、異なる比較対象として、上記ゾルを使用しないこと以外は上記実施例1と同様のプロセスと質量比により、ヤシ殻活性炭100質量部に対して2質量部の水酸化ナトリウムを担持して成る吸着材(比較例2)を製造した。即ち、比較例2に係る吸着材は、アルカリ金属成分(水酸化ナトリウム)のみが担持された吸着材である。
Moreover, as a comparison object, an adsorbent containing no alkali metal component (Comparative Example 1) was manufactured by the same process and mass ratio as in Example 1 except that sodium hydroxide was not added.
Further, as a different comparison object, an adsorption formed by supporting 2 parts by mass of sodium hydroxide with respect to 100 parts by mass of coconut shell activated carbon by the same process and mass ratio as in Example 1 except that the sol is not used. A material (Comparative Example 2) was produced. That is, the adsorbent according to Comparative Example 2 is an adsorbent on which only an alkali metal component (sodium hydroxide) is supported.

<性能評価試験(1)>
上記のようにして製造した実施例1ならびに比較例1及び2の吸着材を用い、光触媒とアルカリ金属成分とが互いに混在した状態で活性炭に担持されたことを特徴とする実施例1に係る吸着材の紫外光(UV)照射によるガス吸着性能回復能力を評価した。
即ち、所定サイズの円筒形カラムに実施例1、比較例1若しくは比較例2の吸着材を充填した。そして、空気に10ppmのアセトアルデヒドガスを混入させた試験用ガスを、室温条件下で上記カラムに通し、ガスクロマトグラフ装置による分析値に基づいてアセトアルデヒドガス除去率(%)が40〜45%になるまで各吸着材の性能を劣化させた。
次いで、各カラムから吸着材を取り出し、酸化チタンを励起させ得る波長域のUV光を該吸着材に対して6時間照射した。
かかるUV光照射処理後、再び、カラムに吸着材を戻し、上記試験ガスをカラムに導入し、室温条件下でのアセトアルデヒドガスの除去率をガスクロマトグラフ装置により求めた。結果を表1及び図2に示す。なお、表1中の回復度合は、UV照射直後のアセトアルデヒド除去率(%)からUV照射前(上記劣化処理後)のアセトアルデヒド除去率(%)を単純に差し引いた数値である。
<Performance evaluation test (1)>
Adsorption according to Example 1 characterized in that the adsorbents of Example 1 and Comparative Examples 1 and 2 produced as described above were supported on activated carbon in a state where the photocatalyst and the alkali metal component were mixed with each other. The ability of gas adsorption performance recovery by ultraviolet light (UV) irradiation of the material was evaluated.
That is, the adsorbent of Example 1, Comparative Example 1 or Comparative Example 2 was packed into a cylindrical column of a predetermined size. Then, a test gas in which 10 ppm of acetaldehyde gas is mixed into the air is passed through the column under room temperature conditions until the acetaldehyde gas removal rate (%) reaches 40 to 45% based on the analysis value by the gas chromatograph apparatus. The performance of each adsorbent was degraded.
Next, the adsorbent was taken out from each column, and the adsorbent was irradiated with UV light in a wavelength region capable of exciting titanium oxide for 6 hours.
After this UV light irradiation treatment, the adsorbent was returned to the column again, the test gas was introduced into the column, and the removal rate of acetaldehyde gas under room temperature conditions was determined by a gas chromatograph apparatus. The results are shown in Table 1 and FIG. The degree of recovery in Table 1 is a numerical value obtained by simply subtracting the acetaldehyde removal rate (%) before UV irradiation (after the deterioration treatment) from the acetaldehyde removal rate (%) immediately after UV irradiation.

Figure 0005809417
Figure 0005809417

表1及び図2に示す結果から明らかなように、実施例1に係る吸着材は上記UV光照射後にアセトアルデヒド除去率が94%まで回復した。一方、比較例1及び比較例2に係る吸着材では、このような高い回復は認められなかった。このことは、光触媒とアルカリ金属成分とが互いに混在した状態で活性炭に担持された実施例1の吸着材では、吸着されたアセトアルデヒドがアルカリ金属成分と光触媒によって分解され、アルカリ金属成分の吸着活性が再生されたことを示すものである。従って、ここで開示される吸着材によると、優れた耐久性(長寿命性)を実現することができる。   As is clear from the results shown in Table 1 and FIG. 2, the adsorbent according to Example 1 recovered the acetaldehyde removal rate to 94% after the UV light irradiation. On the other hand, in the adsorbents according to Comparative Example 1 and Comparative Example 2, such a high recovery was not recognized. This is because, in the adsorbent of Example 1 supported on activated carbon in a state where the photocatalyst and the alkali metal component are mixed together, the adsorbed acetaldehyde is decomposed by the alkali metal component and the photocatalyst, and the adsorption activity of the alkali metal component is increased. It indicates that it has been played back. Therefore, according to the adsorbent disclosed here, excellent durability (long life) can be realized.

<参考例>
次に、参考試験として、上記比較例1と同様の製造プロセス(即ち水酸化ナトリウム等のアルカリ金属化合物は未添加)により、酸化チタンの担持量が異なる複数の吸着材を製造した。
具体的には、使用するヤシ殻活性炭量を100質量%としたときの該活性炭に担持させる酸化チタン量を、ヤシ殻活性炭使用量の0.2質量%(比較例3)、0.6質量%(比較例4、即ち比較例1と同じ)、1.2質量%(比較例5)、ならびに2.0質量%(比較例6)相当量とした計4種類の吸着材を製造した。あわせて酸化チタンを担持させていない活性炭のみである吸着材を製造した(比較例7)。
而して、かかる5種類の吸着材(比較例3〜7)を用いて上記性能評価試験(1)と同じ試験を行った。結果を表2及び図3に示す。
表2及び図3に示す結果から明らかなように、活性炭量を100質量%としたときの好適な光触媒担持量(含有割合)は、該活性炭使用量の概ね0.2〜2.0質量%に相当する量であることがわかる。本参考例において特に好ましくは0.4〜1.2質量%(例えば0.6〜0.8質量%程度)であった。
<Reference example>
Next, as a reference test, a plurality of adsorbents with different loadings of titanium oxide were manufactured by the same manufacturing process as in Comparative Example 1 (that is, no alkali metal compound such as sodium hydroxide was added).
Specifically, the amount of titanium oxide supported on the activated carbon when the amount of activated carbon in the coconut shell used is 100% by mass is 0.2% by mass of the amount of activated carbon in the coconut shell (Comparative Example 3), 0.6% by mass. 4 types of adsorbents in total (equivalent to Comparative Example 4, ie, Comparative Example 1), 1.2% by mass (Comparative Example 5), and 2.0% by mass (Comparative Example 6) were produced. In addition, an adsorbent consisting only of activated carbon not supporting titanium oxide was produced (Comparative Example 7).
Thus, the same test as the performance evaluation test (1) was performed using the five kinds of adsorbents (Comparative Examples 3 to 7). The results are shown in Table 2 and FIG.
As is apparent from the results shown in Table 2 and FIG. 3, the preferred amount of supported photocatalyst (content ratio) when the amount of activated carbon is 100% by mass is approximately 0.2 to 2.0% by mass of the amount of activated carbon used. It can be seen that the amount is equivalent to. In this reference example, it was particularly preferably 0.4 to 1.2% by mass (for example, about 0.6 to 0.8% by mass).

Figure 0005809417
Figure 0005809417

<性能評価試験(2)>
次に、所定の含有率でアルカリ金属成分を含む活性炭について、添加する酸化チタン量を変化させたときのガス吸着性能回復能力の変化を調べた。即ち、上記実施例1と同様の製造プロセスにおいて、上記活性炭量に対する酸化チタンの担持量が異なる複数の吸着材を製造した。このとき、該製造プロセスにおいて光触媒と同時に担持させるアルカリ金属成分については、該活性炭量に対するアルカリ金属成分の担持量を一定とした。
具体的には、使用するヤシ殻活性炭量を100質量%としたときの該活性炭に担持させるアルカリ金属成分(Naイオン)量を1.9〜2.1質量%相当量の範囲となるように設定し、該活性炭に担持させる酸化チタン量を0.2質量%(実施例2)、0.6質量%(即ち上述の実施例1)、1.2質量%(実施例3)、2.0質量%(実施例4)、ならびに2.3質量%(実施例5)相当量とした計5種類の吸着材を製造した。
かかる5種類の吸着材を用いて上記性能評価試験(1)と同じ試験を行った。結果を表3及び図4に示す。
表3及び図4に示す結果から明らかなように、活性炭に光触媒及びアルカリ金属成分を担持させた吸着材に関して、該活性炭量を100質量%としたとき2.0質量%に相当するアルカリ金属成分を担持させた場合における好適な光触媒担持量(含有割合)は、該活性炭使用量の概ね0.2〜2.0質量%に相当する量であることがわかる。本試験結果において特に好ましくは0.4〜1.2質量%(例えば0.6〜1.2質量%程度)であった。
<Performance evaluation test (2)>
Next, the activated carbon containing an alkali metal component at a predetermined content was examined for changes in the ability to recover the gas adsorption performance when the amount of titanium oxide to be added was changed. That is, in the same manufacturing process as in Example 1, a plurality of adsorbents with different amounts of supported titanium oxide relative to the amount of activated carbon were manufactured. At this time, with respect to the alkali metal component supported simultaneously with the photocatalyst in the production process, the supported amount of the alkali metal component relative to the amount of the activated carbon was made constant.
Specifically, when the amount of coconut shell activated carbon used is 100% by mass, the amount of alkali metal component (Na ion) supported on the activated carbon is in the range of 1.9 to 2.1% by mass. 1. The amount of titanium oxide to be set and supported on the activated carbon is 0.2% by mass (Example 2), 0.6% by mass (that is, Example 1 described above), 1.2% by mass (Example 3). A total of five types of adsorbents were produced in amounts equivalent to 0% by mass (Example 4) and 2.3% by mass (Example 5).
Using the five kinds of adsorbents, the same test as the performance evaluation test (1) was performed. The results are shown in Table 3 and FIG.
As apparent from the results shown in Table 3 and FIG. 4, the alkali metal component corresponding to 2.0% by mass when the amount of the activated carbon is 100% by mass with respect to the adsorbent in which the activated carbon carries the photocatalyst and the alkali metal component. It can be seen that a suitable amount (content ratio) of the photocatalyst supported when the is supported is approximately 0.2 to 2.0% by mass of the amount of the activated carbon used. In this test result, it was particularly preferably 0.4 to 1.2% by mass (for example, about 0.6 to 1.2% by mass).

Figure 0005809417
Figure 0005809417

<性能評価試験(3)>
次に、所定の含有率で酸化チタンを含有する活性炭について、添加するアルカリ金属化合物量を変化させたときのガス吸着性能回復能力の変化を調べた。即ち、上記実施例1と同様の製造プロセスにおいて、使用する所定量のヤシ殻活性炭に対するアルカリ金属成分の担持量が異なる複数の吸着材を製造した。このとき、上記製造プロセスにおいてアルカリ金属成分と同時に担持させる酸化チタンについては、所定活性炭量に対する酸化チタン担持量を一定とした。
具体的には、使用するヤシ殻活性炭量を100質量%としたときの該活性炭に担持させる酸化チタン量を0.6質量%相当量と設定し、該活性炭に担持させるアルカリ金属成分を1.0質量%(実施例6)、2.0質量%(即ち上記実施例1)、3.0質量%(実施例7)、4.0質量%(実施例8)、ならびに6.0質量%(実施例9)相当量とした計5種類の吸着材を製造した。また、あわせてアルカリ金属成分を担持させていない吸着材(即ち上述の比較例1)を比較対象とした。
かかる6種類の吸着材を用いて上記性能評価試験(1)と同じ試験を行った。結果を表4及び図5に示す。
表4及び図5に示す結果から明らかなように、活性炭に光触媒及びアルカリ金属成分を担持させた吸着材に関し、該活性炭量を100質量%としたとき0.6質量%に相当する酸化チタンを担持させた場合、該活性炭量に対してアルカリ金属成分担持量が1質量%以上の範囲であれば回復度合はほぼ一定となり、十分な光再生能力を維持する。よって、当該場合における好適なアルカリ金属成分担持量(含有割合)は、該活性炭使用量の概ね1質量%以上であることがわかる。
<Performance evaluation test (3)>
Next, the activated carbon containing titanium oxide at a predetermined content was examined for changes in the ability to recover the gas adsorption performance when the amount of the alkali metal compound to be added was changed. That is, in the same manufacturing process as in Example 1, a plurality of adsorbents with different amounts of alkali metal components supported on a predetermined amount of coconut shell activated carbon used were manufactured. At this time, about the titanium oxide supported simultaneously with an alkali metal component in the said manufacturing process, the titanium oxide carrying amount with respect to the predetermined activated carbon amount was made constant.
Specifically, the amount of titanium oxide to be supported on the activated carbon when the amount of activated carbon in the coconut shell used is 100% by mass is set to 0.6% by mass, and the alkali metal component to be supported on the activated carbon is 1. 0% by weight (Example 6), 2.0% by weight (ie, Example 1 above), 3.0% by weight (Example 7), 4.0% by weight (Example 8), and 6.0% by weight (Example 9) A total of five types of adsorbents were produced in considerable amounts. In addition, an adsorbent that does not carry an alkali metal component (that is, Comparative Example 1 described above) was used as a comparison target.
Using the six kinds of adsorbents, the same test as the performance evaluation test (1) was performed. The results are shown in Table 4 and FIG.
As is clear from the results shown in Table 4 and FIG. 5, regarding the adsorbent in which the photocatalyst and the alkali metal component are supported on activated carbon, titanium oxide corresponding to 0.6% by mass when the amount of activated carbon is 100% by mass. When supported, if the alkali metal component loading is in the range of 1% by mass or more with respect to the amount of the activated carbon, the degree of recovery is almost constant, and sufficient light regeneration capability is maintained. Therefore, it turns out that the suitable alkali metal component carrying amount (content ratio) in this case is approximately 1% by mass or more of the amount of the activated carbon used.

Figure 0005809417
Figure 0005809417

<性能評価試験(4)>
さらに、活性炭に光触媒及びアルカリ成分を担持させたときの、アルカリ成分の違いによるガス吸着性能回復能力の違いを調べた。即ち上記実施例1と同様の製造プロセスにおいて、アルカリ成分として複数の塩基性の異なるアルカリ金属化合物、又はアルカリ金属化合物ではない揮発性アルカリ成分など種々の性質が異なるアルカリ成分を選択し、複数の吸着材を製造した。
具体的には、実施例1における製造プロセスにおいてアルカリ金属成分として用いた水酸化ナトリウムの代わりに、水酸化カリウム(実施例10)、炭酸カリウム(実施例11)、炭酸水素カリウム(実施例12)を用い、当該アルカリ金属成分の種類を変更したこと以外は実施例1と同様の製造プロセス及び質量比により、光触媒とアルカリ金属成分が担持した吸着材を製造した。また、あわせて実施例1に係る吸着材を製造した。
さらに、上記実施例1に係る製造プロセスにおいて、水酸化ナトリウムの代わりにアンモニア水(比較例8)を用い、当該アルカリ成分の種類を変更したこと以外は実施例1と同様の製造プロセス及び質量比により、光触媒とアルカリ成分(アンモニア)が担持した吸着材を製造した。
これらの場合において、酸化チタン担持量及びアルカリ成分担持量は活性炭量を100重量%としたとき、0.6質量%及び2.0質量%相当量となるように調製した。また比較のため、なんらアルカリ成分を加えないで、その他は実施例1と同様の製造プロセスにより製造した吸着材(即ち上述する比較例1)を製造した。
かかる6種類の吸着材を用いて上記性能評価試験(1)と同じ試験を行った。結果を表5及び図6に示す。
表5及び図6に示す結果から明らかなように、アルカリ成分としてアルカリ金属化合物を選択した場合、即ち水酸化ナトリウム(実施例1)、水酸化カリウム(実施例10)、炭酸カリウム(実施例11)、及び炭酸水素カリウム(実施例12)を使用した場合は、アルカリ成分を含有しない吸着材(比較例1)及びアルカリ成分としてアンモニア水を使用した吸着材(比較例8)と比較し、顕著に高い回復性能を示した。このことから、本発明の実施に採用されるアルカリ成分としては塩基性の強さ、即ち強アルカリ化合物であるか、あるいは弱アルカリ化合物であるかに関わらず、アルカリ金属化合物が挙げられ、何れか一種のアルカリ金属化合物であれば十分な回復効果を発揮することができる。例えば好適なアルカリ成分として、ナトリウム又はカリウムの水酸化物、炭酸水素塩、炭酸塩若しくはケイ酸塩などのアルカリ金属化合物が挙げられる。また、これらアルカリ金属化合物を使用した場合、アンモニア水を使用した場合(比較例8)よりも回復性能が優れていることから、より好適なアルカリ成分は不揮発性のアルカリ成分である。
<Performance evaluation test (4)>
Furthermore, the difference in the ability to recover the gas adsorption performance due to the difference in the alkali component when the photocatalyst and the alkali component were supported on the activated carbon was investigated. That is, in the same production process as in Example 1, a plurality of alkali components having different basic properties such as a plurality of alkali metal compounds having different basicity or a volatile alkali component that is not an alkali metal compound are selected as a plurality of adsorption components. The material was manufactured.
Specifically, potassium hydroxide (Example 10), potassium carbonate (Example 11), potassium bicarbonate (Example 12) instead of sodium hydroxide used as an alkali metal component in the production process in Example 1 The adsorbent carrying the photocatalyst and the alkali metal component was produced by the same production process and mass ratio as in Example 1 except that the kind of the alkali metal component was changed. In addition, the adsorbent according to Example 1 was manufactured.
Furthermore, in the manufacturing process according to Example 1, ammonia water (Comparative Example 8) was used instead of sodium hydroxide, and the manufacturing process and mass ratio were the same as in Example 1 except that the type of the alkaline component was changed. Thus, an adsorbent carrying a photocatalyst and an alkali component (ammonia) was produced.
In these cases, the amount of titanium oxide supported and the amount of alkali component supported were adjusted to be 0.6% by mass and 2.0% by mass, when the amount of activated carbon was 100% by weight. For comparison, an adsorbent produced by the same production process as in Example 1 (that is, Comparative Example 1 described above) was produced without adding any alkali component.
Using the six kinds of adsorbents, the same test as the performance evaluation test (1) was performed. The results are shown in Table 5 and FIG.
As is apparent from the results shown in Table 5 and FIG. 6, when an alkali metal compound is selected as the alkali component, that is, sodium hydroxide (Example 1), potassium hydroxide (Example 10), potassium carbonate (Example 11). ), And potassium hydrogen carbonate (Example 12), compared with an adsorbent containing no alkali component (Comparative Example 1) and an adsorbent using aqueous ammonia as the alkali component (Comparative Example 8), Showed high recovery performance. Therefore, the alkali component employed in the practice of the present invention includes an alkali metal compound regardless of whether it is a basic strength, that is, a strong alkali compound or a weak alkali compound. If it is a kind of alkali metal compound, a sufficient recovery effect can be exhibited. For example, suitable alkali components include alkali metal compounds such as sodium or potassium hydroxide, bicarbonate, carbonate or silicate. Further, when these alkali metal compounds are used, recovery performance is superior to that when ammonia water is used (Comparative Example 8), and therefore, a more preferable alkali component is a nonvolatile alkali component.

Figure 0005809417
Figure 0005809417

<吸着材の製造例(2)>
次に、光触媒とアルカリ金属成分に加え、さらにアルデヒド吸着用物質を備える吸着材を製造した。
即ち、アルデヒド吸着用物質としてのp−アミノ安息香酸塩を全体の概ね4質量%相当になる量を上記活性炭に浸漬法により担持させ、p−アミノ安息香酸担持活性炭を製造した。次いで、かかるp−アミノ安息香酸担持活性炭(A)と実施例1に係る吸着材(B)とを質量比A:Bが7:3となるように混合し、実施例13に係る吸着材を製造した。
また、比較対象として、上記実施例1に係る吸着材に代えて上記比較例2に係る吸着材(即ち光触媒である酸化チタンが担持されていない吸着材)を使用して上記と同じ質量比でp−アミノ安息香酸担持活性炭と混合し、比較例9に係る吸着材を製造した。
<Example of production of adsorbent (2)>
Next, in addition to the photocatalyst and the alkali metal component, an adsorbent further comprising an aldehyde-adsorbing substance was produced.
That is, p-aminobenzoic acid salt as an aldehyde-adsorbing substance was supported on the activated carbon in an amount corresponding to approximately 4% by mass of the whole by the dipping method to produce p-aminobenzoic acid-supported activated carbon. Next, the p-aminobenzoic acid-supported activated carbon (A) and the adsorbent (B) according to Example 1 are mixed so that the mass ratio A: B is 7: 3, and the adsorbent according to Example 13 is obtained. Manufactured.
In addition, as an object for comparison, instead of the adsorbent according to Example 1, the adsorbent according to Comparative Example 2 (that is, the adsorbent on which titanium oxide as a photocatalyst is not supported) is used, and the same mass ratio as above. The adsorbent according to Comparative Example 9 was produced by mixing with p-aminobenzoic acid-supported activated carbon.

<性能評価試験(5)>
上記のようにして製造した実施例13ならびに比較例9の吸着材を用い、紫外光(UV)照射によるガス吸着性能回復能力を評価した。
即ち、本試験では、供試吸着材40gを平板状のフィルターケースに充填し、簡易フィルターを作製した。かかる簡易フィルターを1m容積のチャンバーボックスに収容し、社団法人日本電機工業会のJEM1467に準じてガス吸着性能(除去率)を測定した。
具体的には、チャンバーボックス内に所定量のタバコ煙を含むガスを注入し、ファンでよく攪拌させた後にチャンバーボックス内のガス濃度を測定し、タバコ5本分の煙に含まれているガス成分に換算して総合除去率として算出した。かかる処理を12回繰り返すことにより、各吸着材(実施例13,比較例9)の劣化の程度を調べた。この繰り返しの過程において、かかる処理を3回(サイクル数3)繰り返した後(換算タバコ本数が5×3=15本)、6回(サイクル数6)繰り返した後(換算タバコ本数:30本)ならびに9回(サイクル数9)繰り返した後(換算タバコ本数:45本)の時点で、酸化チタンを励起させ得る波長域のUV光を吸着材に対して6時間照射した。かかる照射後のガス吸着処理(即ち、サイクル数4,7,10)の結果を図7に示す。
図7に示すグラフから明らかなように、比較例9に係る吸着材はUV光照射に影響されることなく徐々にガス吸着能が低下し、10サイクル後には55%程度にまで除去率が低下した。
他方、光再生機能を有する実施例13に係る吸着材は、UV光照射により顕著にガス吸着能力が回復し、長寿命を実現した。即ち、10サイクル後にも70〜75%の除去率を維持していた。
<Performance evaluation test (5)>
Using the adsorbents of Example 13 and Comparative Example 9 produced as described above, the gas adsorption performance recovery ability by ultraviolet light (UV) irradiation was evaluated.
That is, in this test, 40 g of the test adsorbent was filled in a flat filter case to produce a simple filter. This simple filter was housed in a 1 m 3 volume chamber box, and the gas adsorption performance (removal rate) was measured according to JEM1467 of the Japan Electrical Manufacturers' Association.
Specifically, a gas containing a predetermined amount of tobacco smoke is injected into the chamber box, and after thoroughly stirring with a fan, the gas concentration in the chamber box is measured, and the gas contained in the smoke of five cigarettes The total removal rate was calculated in terms of components. By repeating this process 12 times, the degree of deterioration of each adsorbent (Example 13, Comparative Example 9) was examined. In this repeating process, after repeating this process 3 times (cycle number 3) (converted tobacco number is 5 × 3 = 15) and after 6 times (cycle number 6) (converted tobacco number: 30) In addition, after repeating 9 times (number of cycles 9) (converted number of cigarettes: 45), the adsorbent was irradiated with UV light in a wavelength region capable of exciting titanium oxide for 6 hours. FIG. 7 shows the result of the gas adsorption treatment after irradiation (namely, the cycle numbers 4, 7, and 10).
As is apparent from the graph shown in FIG. 7, the adsorbent according to Comparative Example 9 gradually decreases in gas adsorption capacity without being affected by UV light irradiation, and the removal rate decreases to about 55% after 10 cycles. did.
On the other hand, the adsorbent according to Example 13 having a light regeneration function significantly recovered the gas adsorbing ability by UV light irradiation and realized a long life. That is, the removal rate of 70 to 75% was maintained even after 10 cycles.

<性能評価試験(6)>
さらに、アルカリ金属成分と光触媒とが担持されている多孔質基材と、アルデヒド吸着用物質が担持されている多孔質基材と、の配合比を種々に変化させて吸着材を製造し、ガス吸着性能及び、UV光照射によるガス吸着性能回復能力を評価した。
即ち、上記実施例13と同様の製造プロセス(吸着材の製造例(2))において、上記p−アミノ安息香酸担持活性炭(A)と実施例1に係る吸着材(B)を、質量比A:Bが9:1(実施例14)、7:3(即ち上記実施例13)、1:9(実施例15)となるように混合することにより、合計3種類の吸着材(実施例13〜15)を製造した。
また、上記p−アミノ安息香酸担持活性炭(A)と上記実施例4に係る吸着材(C)とを混合した吸着材についても製造した。
即ち、上記実施例13に係る製造プロセスにおいて調製した上記p−アミノ安息香酸担持活性炭(A)と、実施例4に係る吸着材(C)を、質量比A:Cが9:1(実施例16)、5:5(実施例17)、1:9(実施例18)となるように混合することにより、合計3種類の吸着材(実施例16〜18)を製造した。また比較のため、上記p−アミノ安息香酸担持活性炭(A)を混合していない、実施例4に係る吸着材を製造した。
得られた各吸着材(実施例4、13〜18)におけるp−アミノ安息香酸担持活性炭(A)、及び実施例1または4に係る吸着材(B又はC)の配合比(質量%)を表6に示す。合わせて、吸着材全体(即ち、A+B、又はA+C)に対する酸化チタン含有率(質量%)及びアルカリ金属成分含有率(質量%)についても表6に示す。
<Performance evaluation test (6)>
Further, the adsorbent is manufactured by changing the compounding ratio of the porous base material on which the alkali metal component and the photocatalyst are supported and the porous base material on which the aldehyde-adsorbing substance is supported, The adsorption performance and the ability to recover the gas adsorption performance by UV light irradiation were evaluated.
That is, in the same manufacturing process as in Example 13 (Adsorbent Production Example (2)), the p-aminobenzoic acid-supported activated carbon (A) and the adsorbent (B) according to Example 1 were mixed in a mass ratio A. : B was mixed to be 9: 1 (Example 14), 7: 3 (that is, Example 13 above), and 1: 9 (Example 15), so that a total of three types of adsorbents (Example 13) were obtained. To 15).
Further, an adsorbent obtained by mixing the p-aminobenzoic acid-supported activated carbon (A) and the adsorbent (C) according to Example 4 was also produced.
That is, the p-aminobenzoic acid-supported activated carbon (A) prepared in the production process according to Example 13 and the adsorbent (C) according to Example 4 were mixed at a mass ratio A: C of 9: 1 (Examples). 16) A total of three types of adsorbents (Examples 16 to 18) were produced by mixing so as to be 5: 5 (Example 17) and 1: 9 (Example 18). For comparison, an adsorbent according to Example 4 in which the p-aminobenzoic acid-supported activated carbon (A) was not mixed was produced.
The blending ratio (mass%) of the p-aminobenzoic acid-supported activated carbon (A) and the adsorbent (B or C) according to Example 1 or 4 in each of the obtained adsorbents (Examples 4 and 13 to 18). Table 6 shows. In addition, Table 6 also shows the titanium oxide content (mass%) and alkali metal component content (mass%) with respect to the entire adsorbent (ie, A + B or A + C).

Figure 0005809417
Figure 0005809417

而して、かかる7種類の吸着材(実施例4、13〜18)を用いて上記性能評価試験(5)と同様に、社団法人日本電機工業会のJEM1467に準じてガス吸着性能(除去率)を測定した。
具体的には、上記性能評価試験(5)と同様の評価装置内に各吸着材(実施例4、13〜18)を設置し、該評価装置内に所定量のタバコ煙を含むガスを注入することにより、吸着材に該ガスを吸着させる処理を3回(サイクル数3)繰り返した(換算タバコ本数:15本)。その後、評価装置内のガス濃度を測定し、上記性能評価試験(5)と同様の方法により、総合除去率(%)を算出した。かかるサイクル数3の総合浄化率の結果を表7に示すとともに、該結果と吸着材全体に対する酸化チタン含有率(%)との関係を図8に示す。
Thus, using these seven kinds of adsorbents (Examples 4 and 13 to 18), gas adsorption performance (removal rate) according to JEM1467 of the Japan Electrical Manufacturers' Association, as in the performance evaluation test (5). ) Was measured.
Specifically, each adsorbent (Examples 4, 13 to 18) is installed in an evaluation apparatus similar to the performance evaluation test (5), and a gas containing a predetermined amount of tobacco smoke is injected into the evaluation apparatus. Thus, the process of adsorbing the gas to the adsorbent was repeated 3 times (number of cycles 3) (converted number of cigarettes: 15). Thereafter, the gas concentration in the evaluation apparatus was measured, and the total removal rate (%) was calculated by the same method as in the performance evaluation test (5). The result of the total purification rate of the number of cycles 3 is shown in Table 7, and the relationship between the result and the titanium oxide content rate (%) with respect to the entire adsorbent is shown in FIG.

Figure 0005809417
Figure 0005809417

図8に示す結果から明らかなように、アルカリ金属成分及び光触媒を担持させた多孔質基材と、アルデヒド吸着用物質が担持された多孔質基材と、の混合により作製した吸着材に関して、優れたガス吸着性能を示すために好適な酸化チタン含有率は、0.03質量%以上1.8質量%以下であることがわかる。上記酸化チタン含有率が1.8質量%より多すぎる場合は、相対的に吸着材におけるアルデヒド吸着用物質の絶対量が不足し、アルデヒド除去率が低下したことにより総合除去率が低下したと考えられる。また、上記酸化チタン含有率が0.03質量%より少なすぎる場合、酸化チタンと併せてアルカリ金属成分の含有率も低下するため、酢酸ガスなどの酸性ガス除去率が低下したことにより総合除去率が低下したと考えられる。   As is apparent from the results shown in FIG. 8, the adsorbent produced by mixing the porous substrate carrying the alkali metal component and the photocatalyst with the porous substrate carrying the aldehyde-adsorbing substance was excellent. It can be seen that the titanium oxide content suitable for exhibiting gas adsorption performance is 0.03% by mass or more and 1.8% by mass or less. When the titanium oxide content is more than 1.8% by mass, it is considered that the absolute removal amount of the aldehyde-adsorbing substance in the adsorbent is relatively insufficient, and the overall removal rate is lowered due to the reduced aldehyde removal rate. It is done. In addition, when the titanium oxide content is less than 0.03% by mass, the content of alkali metal components is also reduced in combination with titanium oxide, so that the overall removal rate is reduced by reducing the acid gas removal rate such as acetic acid gas. Is thought to have declined.

次に、UV光照射による吸着材のガス吸着性能回復能力を評価するために、各吸着材(実施例4、13〜18)のUV光照射後のガス吸着性能を測定した。
具体的には、上記性能評価試験におけるサイクル数3(換算タバコ本数:15本)のガス吸着後の各吸着材(実施例4、13〜18)に対し、酸化チタンを励起させ得る波長域のUV光を6時間照射し、かかる照射後の吸着材について再びガス吸着処理(即ち、サイクル数4)を行い、総合除去率(%)を算出した。上記試験により算出したUV光照射後の総合除去率(%)(即ち、サイクル数4の除去率)から、UV光照射前の総合除去率(%)(即ち、サイクル数3の除去率)を単純に差し引いた数値を回復度合(%)として算出した。かかる回復度合の結果を表7、及び図9に示す。
図9に示す結果から明らかなように、アルカリ金属成分及び光触媒を担持させた多孔質基材と、アルデヒド吸着用物質が担持された多孔質基材と、の混合により作製した吸着材に関して、酸化チタン含有率が概ね0.06質量%以上で良好な回復度合を示すことがわかる。
Next, in order to evaluate the gas adsorption performance recovery capability of the adsorbent by UV light irradiation, the gas adsorption performance after UV light irradiation of each adsorbent (Examples 4 and 13 to 18) was measured.
Specifically, for each adsorbent (Examples 4, 13 to 18) after the gas adsorption of 3 cycles (converted tobacco number: 15) in the performance evaluation test, a wavelength region in which titanium oxide can be excited. Irradiation with UV light was performed for 6 hours, and the adsorbent after the irradiation was again subjected to gas adsorption treatment (that is, cycle number 4), and the total removal rate (%) was calculated. From the total removal rate (%) after UV light irradiation calculated by the above test (ie, the removal rate after 4 cycles), the overall removal rate (%) before UV light irradiation (ie, the removal rate after 3 cycles) is calculated. The numerical value simply deducted was calculated as the degree of recovery (%). The results of the degree of recovery are shown in Table 7 and FIG.
As is apparent from the results shown in FIG. 9, the adsorbent produced by mixing the porous substrate carrying the alkali metal component and the photocatalyst with the porous substrate carrying the aldehyde-adsorbing substance was oxidized. It can be seen that when the titanium content is approximately 0.06% by mass or more, a good degree of recovery is exhibited.

以上に説明したように、ここで開示される吸着材は、アルカリ金属化合物(アルカリ金属成分)と光触媒とが互いに混在した状態で多孔質基材の外表面及び/又は細孔内壁面に担持されていることにより、吸着されたガス種、特にホルムアルデヒドのような低級アルデヒドを当該アルカリ金属成分に接して存在する光触媒によって効率よく分解・除去することができる。このため、長期にわたって高い吸着能力(特に低級アルデヒド、酸性ガス等のアルカリ金属成分に吸着され易いガス種に対する吸着能力)を維持することができる。このため、かかる吸着材を使用することによって、長期にわたって高いガス吸着能力を維持し得る空気清浄装置(ガス吸着装置)を提供することができる。   As described above, the adsorbent disclosed here is supported on the outer surface of the porous substrate and / or the inner wall surface of the pore in a state where the alkali metal compound (alkali metal component) and the photocatalyst are mixed together. Therefore, the adsorbed gas species, particularly lower aldehydes such as formaldehyde, can be efficiently decomposed and removed by the photocatalyst existing in contact with the alkali metal component. For this reason, high adsorption ability (especially adsorption ability with respect to gas species which are easily adsorbed by alkali metal components such as lower aldehydes and acidic gases) can be maintained over a long period of time. For this reason, by using such an adsorbent, it is possible to provide an air cleaning device (gas adsorption device) that can maintain a high gas adsorption capacity over a long period of time.

1 空気清浄装置
2 筐体
2A 排出部
3 集塵フィルター
4 ガス成分除去部
7 光源部
7A ランプ
8 送風用ファン
DESCRIPTION OF SYMBOLS 1 Air purifier 2 Case 2A Discharge part 3 Dust collection filter 4 Gas component removal part 7 Light source part 7A Lamp 8 Fan for ventilation

Claims (14)

少なくとも一種のガス種を吸着可能な多孔質基材を備える吸着材であって、
少なくとも1種のアルカリ金属化合物と少なくとも1種の光触媒とが、互いに混在した状態で前記多孔質基材に担持されていることを特徴とする、吸着材。
An adsorbent comprising a porous substrate capable of adsorbing at least one gas species,
An adsorbent, wherein at least one alkali metal compound and at least one photocatalyst are supported on the porous substrate in a mixed state.
前記担持されている光触媒は、平均粒子径が100nm以下の酸化チタン粒子である、請求項1に記載の吸着材。   The adsorbent according to claim 1, wherein the supported photocatalyst is a titanium oxide particle having an average particle diameter of 100 nm or less. 前記担持されているアルカリ金属化合物は、不揮発性のアルカリ成分として存在する、請求項1又は2に記載の吸着材。   The adsorbent according to claim 1, wherein the supported alkali metal compound is present as a non-volatile alkali component. 前記担持されているアルカリ金属化合物は、ナトリウム及び/又はカリウムの水酸化物、炭酸水素塩、炭酸塩若しくはケイ酸塩である、請求項1〜3のいずれかに記載の吸着材。   The adsorbent according to any one of claims 1 to 3, wherein the supported alkali metal compound is a hydroxide, bicarbonate, carbonate or silicate of sodium and / or potassium. 前記アルカリ金属化合物とは異なる炭素原子数が5以下のアルデヒドガスを吸着する他の少なくとも1種の吸着用物質をさらに備える、請求項1〜4のいずれかに記載の吸着材。 The adsorbent according to any one of claims 1 to 4, further comprising at least one other adsorbing substance that adsorbs an aldehyde gas having 5 or less carbon atoms different from the alkali metal compound. 少なくとも一種のガス種を吸着可能な多孔質基材に少なくとも1種のアルカリ金属化合物と少なくとも1種の光触媒とが混在する状態の混合材料を供給すること、
前記供給した混合材料中の前記アルカリ金属化合物及び前記光触媒を前記多孔質基材の外表面及び/又は細孔内壁面に担持させること、
を包含する、前記アルカリ金属化合物と光触媒とが互いに混在した状態で前記多孔質基材に担持された吸着材を製造する方法。
Supplying a mixed material in a state where at least one alkali metal compound and at least one photocatalyst are mixed in a porous substrate capable of adsorbing at least one gas species;
Carrying the alkali metal compound and the photocatalyst in the supplied mixed material on the outer surface and / or inner wall surface of the pore,
A method for producing an adsorbent supported on the porous substrate in a state where the alkali metal compound and the photocatalyst are mixed with each other.
前記混合材料として、水溶性アルカリ金属化合物を含む水溶液に光触媒から成る粒子を分散させて成るゾルを使用し、該ゾルを前記多孔質基材の細孔内に供給する、請求項6に記載の方法。   The sol obtained by dispersing particles composed of a photocatalyst in an aqueous solution containing a water-soluble alkali metal compound is used as the mixed material, and the sol is supplied into the pores of the porous substrate. Method. 前記光触媒として、平均粒子径が100nm以下の酸化チタン粒子を使用する、請求項7に記載の方法。   The method according to claim 7, wherein titanium oxide particles having an average particle diameter of 100 nm or less are used as the photocatalyst. 前記多孔質基材の質量を100質量%としたときの前記アルカリ金属化合物の含有割合が少なくとも1質量%となり、且つ、該多孔質基材の質量を100質量%としたときの前記光触媒の含有割合が0.2〜2質量%となるように、前記混合材料を前記多孔質基材の細孔内に供給する、請求項6〜8のいずれかに記載の方法。   The content of the alkali metal compound when the mass of the porous substrate is 100% by mass is at least 1% by mass, and the content of the photocatalyst when the mass of the porous substrate is 100% by mass The method according to any one of claims 6 to 8, wherein the mixed material is supplied into the pores of the porous substrate so that the ratio is 0.2 to 2% by mass. 前記多孔質基材として、BET法に基づく比表面積が900m/g以上の活性炭を使用する、請求項6〜9のいずれかに記載の方法。 The method according to any one of claims 6 to 9, wherein activated carbon having a specific surface area based on the BET method of 900 m 2 / g or more is used as the porous substrate. 前記アルカリ金属化合物及び光触媒を担持している多孔質基材の外表面及び/又は細孔内に、若しくは前記アルカリ金属化合物及び光触媒を担持していない多孔質基材の外表面及び/又は細孔内に、該アルカリ金属化合物以外の炭素原子数が5以下のアルデヒドガスを吸着し得る少なくとも1種の吸着用物質を供給すること、
をさらに包含する、請求項6〜10のいずれかに記載の方法。
The outer surface and / or the pores of the porous substrate carrying the alkali metal compound and the photocatalyst, or the outer surface and / or the pores of the porous substrate not carrying the alkali metal compound and the photocatalyst Supplying at least one adsorbing substance capable of adsorbing an aldehyde gas having 5 or less carbon atoms other than the alkali metal compound,
The method according to claim 6, further comprising:
請求項1〜5のいずれかに記載の吸着材または請求項6〜11のいずれかに記載の方法によって製造された吸着材を備えることを特徴とする、空気清浄装置。   An air cleaning apparatus comprising the adsorbent according to any one of claims 1 to 5 or the adsorbent produced by the method according to any one of claims 6 to 11. 請求項1〜5のいずれかに記載の吸着材または請求項6〜11のいずれかに記載の方法によって製造された吸着材に、処理対象の空気を導入することを特徴とする、空気清浄方法。   Air to be treated is introduced into the adsorbent according to any one of claims 1 to 5 or the adsorbent produced by the method according to any one of claims 6 to 11. . 少なくとも炭素原子数が5以下のアルデヒドガス若しくは酸性ガスを含む空気を前記吸着材に導入する、請求項13に記載の空気清浄方法。
The air cleaning method according to claim 13, wherein air containing at least an aldehyde gas or an acid gas having 5 or less carbon atoms is introduced into the adsorbent.
JP2011032453A 2010-03-03 2011-02-17 Adsorbent capable of regenerating light and its use Expired - Fee Related JP5809417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032453A JP5809417B2 (en) 2010-03-03 2011-02-17 Adsorbent capable of regenerating light and its use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010046884 2010-03-03
JP2010046884 2010-03-03
JP2011032453A JP5809417B2 (en) 2010-03-03 2011-02-17 Adsorbent capable of regenerating light and its use

Publications (2)

Publication Number Publication Date
JP2011200857A JP2011200857A (en) 2011-10-13
JP5809417B2 true JP5809417B2 (en) 2015-11-10

Family

ID=44598356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032453A Expired - Fee Related JP5809417B2 (en) 2010-03-03 2011-02-17 Adsorbent capable of regenerating light and its use

Country Status (3)

Country Link
JP (1) JP5809417B2 (en)
KR (1) KR20110100169A (en)
CN (1) CN102188955B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517702B (en) * 2013-09-13 2017-12-29 东丽株式会社 Adsorbent and gas suction sheet and air cleaner
CN110198744A (en) * 2017-03-21 2019-09-03 株式会社科特拉 Except aldehyde adsorbent and deodoring materials and their manufacturing method
CN107349744A (en) * 2017-08-31 2017-11-17 无锡风正科技有限公司 A kind of Compositional type methyl aldehyde adsorption material and preparation method thereof
CN108273344A (en) * 2018-03-13 2018-07-13 张世红 A kind of integrated-type organic waste gas treatment device
ES2880409T3 (en) * 2018-07-05 2021-11-24 Taurus Res And Development S L U Air filter to remove aldehyde-type VOCs from indoor air
CN111715301B (en) * 2019-03-19 2023-09-08 株式会社东芝 Photocatalyst article
KR102608313B1 (en) * 2021-10-28 2023-12-01 건국대학교 산학협력단 Volatile organic compound adsorbent and adsorption filter renewable by light energy, and manufacturing method thereof
FR3128887A1 (en) * 2021-11-10 2023-05-12 Fabrice Mendez Filter material and its application
WO2023084448A1 (en) * 2021-11-10 2023-05-19 Fabrice Mendez Filter material and use thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547224B2 (en) * 1995-08-21 2004-07-28 富士電機システムズ株式会社 Photocatalyst sheet for pollutant removal
JPH09182782A (en) * 1995-12-28 1997-07-15 Goyo Paper Working Co Ltd Deodorant sheet
JP4011705B2 (en) * 1996-12-10 2007-11-21 Toto株式会社 Photocatalyst compound, photocatalyst-containing material, photocatalyst function material and method for producing the same
JP4385439B2 (en) * 1999-05-18 2009-12-16 株式会社エクォス・リサーチ Activated carbon filter for vehicle
JP4726360B2 (en) * 2001-09-04 2011-07-20 株式会社キャタラー Adsorbent
JP3823807B2 (en) * 2001-10-31 2006-09-20 東芝ライテック株式会社 Deodorizing device
EP1462169A4 (en) * 2001-12-21 2006-06-28 Showa Denko Kk High active photocatalyst particle, method for production thereof and use thereof
CN1386578A (en) * 2002-04-08 2002-12-25 中国科学院山西煤炭化学研究所 Process for preparing activated carbon fibres to remove aldehyde-containing gas
JP2004216255A (en) * 2003-01-14 2004-08-05 Matsushita Electric Ind Co Ltd Deodorization element, manufacturing method therefor, and refrigeration cycle apparatus using deodorization element
CN1218778C (en) * 2003-08-28 2005-09-14 上海交通大学 Preparation method of load type photocatalytic purification net block
JP2006007156A (en) * 2004-06-29 2006-01-12 Toray Ind Inc Functional coating film and producing method thereof
JP5037843B2 (en) * 2005-03-31 2012-10-03 日本無機株式会社 Method for producing photocatalyst-supported gas-adsorbing filter medium
US7316732B2 (en) * 2005-07-14 2008-01-08 Access Business Group International Llc Air treatment filter and related method
JP2007275292A (en) * 2006-04-06 2007-10-25 Bridgestone Corp Deodorization filter and deodorizing device
CN101244383A (en) * 2008-03-13 2008-08-20 同济大学 Process for producing absorbent charcoal loading titanium dioxide photocatalyst

Also Published As

Publication number Publication date
CN102188955B (en) 2015-12-09
CN102188955A (en) 2011-09-21
JP2011200857A (en) 2011-10-13
KR20110100169A (en) 2011-09-09

Similar Documents

Publication Publication Date Title
JP5809417B2 (en) Adsorbent capable of regenerating light and its use
JP7344270B2 (en) Surface-modified carbon and adsorbents for improved efficiency in removing gaseous pollutants
US10898879B2 (en) Visible light-activated photocatalytic coating composition and air purification filter
JP5398525B2 (en) Photocatalytic material, photocatalytic member and purification apparatus using the same
CN107555481B (en) Manganese oxide material and preparation method thereof
JP4922042B2 (en) Plasma electrode having photocatalytic activity, photocatalytic apatite activation method, gas purification method, and gas purification device
KR20160047609A (en) Porous copper-manganese filter media and the preparation of the same
JP3710323B2 (en) Deodorizing device
JPWO2004045660A1 (en) Air purification device
JP3997745B2 (en) Regeneration method of ozonolysis type gas adsorbent
JP4806108B2 (en) Deodorizing device
JP2002136811A (en) Photocatalyst deodorizing filter
JPH11221442A (en) Composite deodorizing and dust collecting filter
JP4296529B2 (en) Titanium oxide photocatalyst for basic gas removal
KR100773913B1 (en) Preparing method of filter member for heat exchanger
KR20160039135A (en) A Photocatalytic Filter for Efficient Removal of Mixed Gas and Manufacturing Method thereof
JP6066176B2 (en) Cigarette odor deodorant filter
JPH11137656A (en) Deodorant catalyst element and its production
JP3521748B2 (en) Air purification filter and air purifier
JP2017192429A (en) Catalyst filter, deodorization device and air cleaning device
JP2010115499A (en) Air cleaning device
JP5017779B2 (en) Organic compound adsorption remover and method for producing the same
JP2016154640A (en) Deodorant filter
KR102454332B1 (en) Air purifier
TWI314473B (en) High activity chemical filter, its preparation and use in removing hazard gas by adsorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees