JP5798359B2 - Seismic device with built-in damper with deformation limiting function - Google Patents

Seismic device with built-in damper with deformation limiting function Download PDF

Info

Publication number
JP5798359B2
JP5798359B2 JP2011092915A JP2011092915A JP5798359B2 JP 5798359 B2 JP5798359 B2 JP 5798359B2 JP 2011092915 A JP2011092915 A JP 2011092915A JP 2011092915 A JP2011092915 A JP 2011092915A JP 5798359 B2 JP5798359 B2 JP 5798359B2
Authority
JP
Japan
Prior art keywords
deformation
damper
structural members
plastic
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011092915A
Other languages
Japanese (ja)
Other versions
JP2012225411A (en
Inventor
山田 俊一
俊一 山田
泰嗣 黒川
泰嗣 黒川
栗野 治彦
治彦 栗野
幹 清水
幹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2011092915A priority Critical patent/JP5798359B2/en
Publication of JP2012225411A publication Critical patent/JP2012225411A/en
Application granted granted Critical
Publication of JP5798359B2 publication Critical patent/JP5798359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は構造物の内部、あるいは外部において地震や風荷重等により構造物が水平力を受けたときに相対変形を生ずる複数の構造部材と、隣接する構造部材間に跨設され、変形制限機能付きのダンパーとで構成される変形制限機能付きダンパー内蔵耐震装置に関するものである。   The present invention has a deformation limiting function that spans between a plurality of structural members that cause relative deformation when the structure receives a horizontal force due to an earthquake or wind load inside or outside the structure and between adjacent structural members. The present invention relates to a damper with a built-in damper with a deformation limiting function, which is composed of a damper with a damper.

例えば構造物内の基本的な耐震要素である柱・梁のフレーム(架構)には大地震時にも架構の崩壊を生じさせない必要から、終局時にまで塑性変形能力を発揮し得るような靱性が要求され、塑性変形能力の発揮によるエネルギ吸収効果が期待される。柱と梁はそれぞれの部材端部である接合部において水平力伝達のために互いに剛に接合されることから、せん断力と曲げモーメントの負担により部材端部に生ずる応力度が最大になるため、部材全長の内、部材端部に塑性化が生じ易い。   For example, column and beam frames (frames), which are basic seismic elements in structures, need to be strong enough to exhibit plastic deformation ability until the end because they do not cause the frame to collapse even during a large earthquake. Therefore, an energy absorption effect is expected due to the plastic deformation ability. Since the column and beam are rigidly joined to each other for the transmission of horizontal force at the joint, which is the end of each member, the degree of stress generated at the end of the member due to the shear force and bending moment is maximized. Of the total length of the member, plasticization tends to occur at the end of the member.

塑性化が想定される構造部材の端部においては、上記の崩壊回避の目的から、変形の増大と繰り返し加力による塑性座屈や塑性破断等の顕著な耐力低下が起こらないよう、十分な塑性変形能力を有する断面で設計される。この結果、構造部材は大地震時に応力が大きくなる部材両端部、もしくはその近傍の最大2箇所で塑性化しながらも、粘りのある塑性変形を起こすことにより振動エネルギの吸収能力を発揮する。   At the ends of structural members that are supposed to be plasticized, for the purpose of avoiding the above-mentioned collapse, sufficient plasticity should be ensured so that there is no significant decrease in yield strength such as plastic buckling or plastic rupture due to increased deformation and repeated application of force. Designed with a cross-section with deformation capability. As a result, the structural member exhibits the ability to absorb vibration energy by causing sticky plastic deformation while plasticizing at both ends of the member where stress increases during a large earthquake, or at a maximum of two locations in the vicinity thereof.

一方、例えば上記フレーム、あるいはフレーム内に架設されるブレース、間柱等のフレーム以外の、互いに分離している耐震要素(構造部材)間にエネルギ吸収装置としてのダンパーを跨設する場合には(特許文献1、2参照)、ダンパーによるエネルギ吸収効率を高める目的で、ダンパーに変形が集中するよう、ダンパー周辺の耐震要素全体の剛性と耐力がダンパーより相対的に高く設定される。ダンパーが降伏(塑性化)する以前に耐震要素が塑性化すれば、耐震要素がダンパーに塑性化を生じさせるだけの外力を加えることができず、ダンパーのエネルギ吸収能力が発揮されなくなることによる。   On the other hand, for example, when a damper as an energy absorbing device is straddled between seismic elements (structural members) separated from each other other than the above-mentioned frame or a frame such as a brace or a stud arranged in the frame (patent) For the purpose of increasing the energy absorption efficiency by the damper, the rigidity and the proof strength of the entire seismic element around the damper are set to be relatively higher than the damper so as to concentrate the deformation on the damper. If the seismic element plasticizes before the damper yields (plasticizes), the seismic element cannot apply an external force to cause the damper to plasticize, and the energy absorbing ability of the damper cannot be exhibited.

また仮に耐震要素である構造部材の塑性化が想定される箇所である部材端部等に塑性化を生じにくくする補強を施したとしても、構造部材全体の剛性が一様に確保されていない限り、補強箇所以外の部分の剛性が相対的に低下することになり得るため、構造部材からダンパーに塑性化を生じさせるだけの力を加えることができなくなり、結果としてダンパーのエネルギ吸収能力を発揮させることができなくなる。   In addition, even if reinforcement is made to make it difficult to cause plasticization at the end of the member that is supposed to be plasticized of a structural member that is an earthquake resistant element, as long as the rigidity of the entire structural member is not secured uniformly Since the rigidity of the portion other than the reinforcing portion may be relatively lowered, it is impossible to apply a force that causes plasticization from the structural member to the damper, and as a result, the energy absorbing ability of the damper is exhibited. I can't do that.

特開平1−203543号公報(第1図、第6図、第9図、第10図)JP-A-1-203543 (FIG. 1, FIG. 6, FIG. 9, FIG. 10) 特開2000−73495公報(段落0009〜0011、図1、図6)Japanese Unexamined Patent Publication No. 2000-73495 (paragraphs 0009 to 0011, FIGS. 1 and 6)

上記した靱性指向型の構造物内において、架構を構成する柱・梁のような耐震要素(構造部材)は部材端部に塑性化が生じ易いことから、部材端部の断面が持つ塑性化後の塑性変形能力(エネルギ吸収能力)が期待されるため、累積する塑性変形(塑性エネルギ)に対して塑性座屈や塑性破断が生じないような処理を要することもある。しかしながら、構造物が地震力を受けたときのあらゆる挙動を予測した耐震設計を構造物に施せる訳ではなく、予測を超える事態が起こり得ることも想定される。   In the toughness-oriented structure, seismic elements (structural members) such as columns and beams that form the frame are easily plasticized at the end of the member. Since the plastic deformation capability (energy absorption capability) is expected, a process that does not cause plastic buckling or plastic rupture to the accumulated plastic deformation (plastic energy) may be required. However, it is not possible to apply seismic design that predicts every behavior when a structure is subjected to seismic force to the structure, and it is assumed that a situation exceeding the prediction may occur.

例えばこれまで地震動に共振しない前提で設計されていた長周期構造物に固有周期に近い長周期の地震動が入力する可能性の存在が判明したこともあり、累積塑性変形を考慮する設計の必要性が生じている。具体的には構造物内の架構を構成する構造部材単位で言えば、部材端部の塑性変形能力を高めるための補強をすることが求められることになるが、部材単位での部分的な補強では、前記のように部材全体の塑性変形能力が一様に確保されることにはならず、必ずしも効果的な補強とは言えない。   For example, the existence of the possibility that long-period ground motions close to the natural period may be input to long-period structures that have been designed on the premise that they do not resonate with ground motions so far is necessary. Has occurred. Specifically, in terms of the structural member units constituting the frame in the structure, it is required to reinforce the plastic deformation capacity at the end of the member, but partial reinforcement in the member unit. Then, as described above, the plastic deformation ability of the entire member is not ensured uniformly, and it cannot be said that it is necessarily an effective reinforcement.

本発明は上記背景より、構造部材の一部にダンパーを組み込むことで、構造部材とダンパーにエネルギ吸収の機能を分担させ、構造部材全体の塑性変形能力を確保することを可能にし、各塑性変形部における累積塑性変形を軽減させるダンパー内蔵耐震装置を提案するものである。   In the present invention, by incorporating a damper into a part of the structural member, it is possible to share the energy absorption function between the structural member and the damper, and to ensure the plastic deformation capacity of the entire structural member. We propose a damper built-in seismic device that reduces cumulative plastic deformation.

請求項1に記載の発明の変形制限機能付きダンパー内蔵耐震装置は、
構造物の内部、あるいは外部において材軸方向に互いに分離した状態で対向し、前記構造物が水平力を受けたときに互いに材軸に直交する方向に相対変形を生ずる複数の構造部材と、この複数の構造部材の内、材軸方向に隣接する構造部材間に跨って両構造部材に接合され、降伏耐力が前記構造部材の降伏耐力より小さく、前記両構造部材間の材軸に直交する方向の正負の向きの相対変形時に、その相対変形方向に面内方向にせん断変形を生じ、塑性変形する弾塑性型のダンパーと、前記両構造部材間に跨った状態で前記ダンパーの前記せん断変形方向の両側に配置され、いずれか一方の構造部材に、他方の構造部材側へ張り出した状態で接合され、前記両構造部材が前記正負の向きの相対変形を生ずるときの前記ダンパーの一定量を超える塑性変形量を制限する変形制限材とを備え、
前記隣接する構造部材の内の少なくともいずれかの構造部材、もしくは前記隣接する構造部材間に跨設される接合部材は前記構造物の柱・梁からなる架構、もしくは前記架構内の上下間に架設される耐震要素を構成し、前記いずれかの構造部材、もしくは接合部材の全長の内、一部は他より相対的に降伏耐力が低下した塑性化部分になっており、
前記ダンパーは前記変形制限材から制限を受けるまでの塑性変形時に、その変形量に応じたエネルギ吸収能力を発揮し、制限を受けた後に前記塑性変形を生じたまま、変形の進行が抑えられた剛性の高い部材として機能し、前記隣接する構造部材の内の少なくともいずれかの前記構造部材、もしくは前記接合部材の一部である前記塑性化部分を前記構造部材の材軸に直交する方向に塑性変形させ、この塑性化部分にエネルギ吸収能力を発揮させることを構成要件とする。
請求項2に記載の発明の変形制限機能付きダンパー内蔵耐震装置は、
構造物の内部、あるいは外部において材軸方向に互いに分離した状態で対向し、前記構造物が水平力を受けたときに互いに材軸に直交する方向に相対変形を生ずる複数の構造部材と、この複数の構造部材の内、材軸方向に隣接する構造部材間に跨って両構造部材に接合され、降伏耐力が前記構造部材の降伏耐力より小さく、前記両構造部材間の材軸に直交する方向の正負の向きの相対変形時に、その相対変形方向に面内方向にせん断変形を生じ、塑性変形する弾塑性型のダンパーと、前記ダンパーの前記せん断変形方向の両側に形成され、前記ダンパーの前記せん断変形時に互いに接触する部分の組み合わせからなり、前記隣接する構造部材が前記正負の向きの相対変形を生ずるときの前記ダンパーの一定量を超える塑性変形量を制限する変形制限材とを備え、
前記隣接する構造部材の内の少なくともいずれかの構造部材、もしくは前記隣接する構造部材間に跨設される接合部材は前記構造物の柱・梁からなる架構、もしくは前記架構内の上下間に架設される耐震要素を構成し、前記いずれかの構造部材、もしくは接合部材の全長の内、一部は他より相対的に降伏耐力が低下した塑性化部分になっており、
前記ダンパーは前記変形制限材から制限を受けるまでの塑性変形時に、その変形量に応じたエネルギ吸収能力を発揮し、制限を受けた後に前記塑性変形を生じたまま、変形の進行が抑えられた剛性の高い部材として機能し、前記隣接する構造部材の内の少なくともいずれかの前記構造部材、もしくは前記接合部材の一部である前記塑性化部分を前記構造部材の材軸に直交する方向に塑性変形させ、この塑性化部分にエネルギ吸収能力を発揮させることを構成要件とする。
The damper built-in seismic resistance device with a deformation limiting function of the invention according to claim 1,
A plurality of structural members that face each other in the state of being separated from each other in the material axis direction inside or outside the structure, and that cause relative deformation in a direction perpendicular to the material axis when the structure receives a horizontal force; A direction in which the yield strength is smaller than the yield strength of the structural member and is orthogonal to the material axis between the two structural members. In the relative deformation in the positive and negative directions, an elastic-plastic damper that causes shear deformation in the in-plane direction in the relative deformation direction, and the shear deformation direction of the damper in a state straddling between the two structural members It is arranged on both sides of the damper, joined to one of the structural members in a state of projecting to the other structural member, and exceeds a certain amount of the damper when the two structural members cause relative deformation in the positive and negative directions. And a deformation limiting member that limits the sexual deformation amount,
At least one of the adjacent structural members, or a joining member straddling between the adjacent structural members, is a frame made of columns or beams of the structure, or between the upper and lower sides of the frame. The seismic element to be constructed, of any of the structural members, or the total length of the joining member, part of which is a plasticized portion having a lower yield strength than others,
When the damper is plastically deformed until it is restricted by the deformation restricting material, the damper exhibits an energy absorption capability according to the amount of deformation, and the progress of deformation is suppressed while the plastic deformation occurs after being restricted. functions as a member having high rigidity, plastic wherein at least one of the structural members of the adjacent structural member, or the plastic moiety which is part of the joining member in a direction orthogonal to the wood axis of the structural member It is a constituent requirement that the plasticized portion is deformed to exhibit energy absorbing ability.
The damper built-in seismic resistance device with a deformation limiting function of the invention according to claim 2,
A plurality of structural members that face each other in the state of being separated from each other in the material axis direction inside or outside the structure, and that cause relative deformation in a direction perpendicular to the material axis when the structure receives a horizontal force; A direction in which the yield strength is smaller than the yield strength of the structural member and is orthogonal to the material axis between the two structural members. Is formed on both sides of the damper in the shear deformation direction, and an elastic-plastic type damper that undergoes shear deformation in the in-plane direction in the relative deformation direction at the time of relative deformation in the positive and negative directions of the damper, This is a combination of portions that come into contact with each other at the time of shear deformation, and is a variable that limits the amount of plastic deformation exceeding a certain amount when the adjacent structural member undergoes relative deformation in the positive and negative directions. And a restriction material,
At least one of the adjacent structural members, or a joining member straddling between the adjacent structural members, is a frame made of columns or beams of the structure, or between the upper and lower sides of the frame. The seismic element to be constructed, of any of the structural members, or the total length of the joining member, part of which is a plasticized portion having a lower yield strength than others,
When the damper is plastically deformed until it is restricted by the deformation restricting material, the damper exhibits an energy absorption capability according to the amount of deformation, and the progress of deformation is suppressed while the plastic deformation occurs after being restricted. functions as a member having high rigidity, plastic wherein at least one of the structural members of the adjacent structural member, or the plastic moiety which is part of the joining member in a direction orthogonal to the wood axis of the structural member It is a constituent requirement that the plasticized portion is deformed to exhibit energy absorbing ability.

「構造部材」は主として地震時や風荷重時等に構造物が受ける水平力に対し、曲げモーメント、せん断力、軸方向力を負担することにより抵抗力を発揮し得る、ブレース、間柱、耐震壁等を含む耐震要素であり、構造物の骨組(架構)を構成する柱と梁等の構造部材も含む。「複数の構造部材」はダンパー内蔵耐震装置を構成する構造部材が構造物内、あるいは架構内に複数(2以上)、配置されることの意味であるが、複数の構造部材の内、基本的に隣接する二つの構造部材が対になり、両構造部材間にダンパーが介在する、もしくは跨ることにより耐震要素とダンパーの組み合わせからなる「耐震装置」として機能する。   “Structural members” are braces, studs, and earthquake-resistant walls that can exert resistance by bearing bending moment, shearing force and axial force against the horizontal force that the structure receives mainly during earthquakes and wind loads. It also includes structural members such as columns and beams that constitute the framework of the structure. “Multiple structural members” means that a plurality of structural members (two or more) constituting the damper built-in seismic device are arranged in the structure or frame. Two structural members adjacent to each other are paired, and a damper is interposed between the two structural members, or functions as a “seismic device” composed of a combination of a seismic element and a damper.

ダンパー4が、変形の進行が抑えられた後に変形を生じさせる対象にはこれらの構造部材1、2の他、図6−(d)に示すようにダンパー4と共にこれらの構造部材1、2(2、3)間に跨り、構造部材1、2(2、3)同士を接合するためのプレート等の接合部材(継手部材)10Aが含まれるため、対になる二つの構造部材1、2、またはそれに加えて構造部材1、2間に跨る接合部材10Aが最小のダンパー内蔵耐震装置5を構成する。以下ではダンパー内蔵耐震装置5の構成要素として、接合部材10Aを含めて「二つの構造部材」と言うこともある(「二つの構造部材」に接合部材10Aを含ませることもある)。   In addition to these structural members 1 and 2, the damper 4 may be deformed after the progress of the deformation is suppressed, as well as the structural members 1 and 2 ( 2, 3), and a joining member (joint member) 10 </ b> A such as a plate for joining the structural members 1, 2 (2, 3) to each other is included. Or in addition to that, the joining member 10 </ b> A straddling between the structural members 1 and 2 constitutes the smallest built-in damper earthquake-proof device 5. Hereinafter, as a component of the damper built-in seismic device 5, the joint member 10A including the joint member 10A may be referred to as “two structural members” (the “two structural members” may include the joint member 10A).

構造物の内部、もしくは外部において、ダンパー内蔵耐震装置5が図6−(a)、(b)に示すように3以上の構造部材1〜3から架構を成立させる場合は、一架構(構造物)内に、対になる二つの構造部材1、2(2、3)の組み合わせが2通り以上、存在することになる。「構造物の内部、あるいは外部において」とは、構造部材1〜3が構造物の内部(屋内)に配置される場合と、構造物の外部(屋外)に耐震補強架構の一部等として付加的に配置される場合があることを言う。構造物の内部に配置される場合も、外部に配置される場合も、構造物は新設の場合と既存の場合がある。   When the built-in damper earthquake-proof device 5 establishes a frame from three or more structural members 1 to 3 as shown in FIGS. 6A and 6B inside or outside the structure, one frame (structure ), There are two or more combinations of two structural members 1, 2 (2, 3) to be paired. “Inside or outside the structure” means that the structural members 1 to 3 are placed inside the structure (indoors) or added to the outside of the structure (outdoors) as part of the seismic reinforcement frame. Say that there is a case to be placed. Whether arranged inside the structure or outside, the structure may be newly established or existing.

「複数の構造部材1〜3」は具体的には例えば図5−(a)、図6−(c)に示すように柱・梁の架構(フレーム)内で隣接する柱間に架設され、互いに分離する梁部材として、または図5−(b)、図6−(b)、(d)に示すように上下に隣接する梁(梁部材)の中間部間に鉛直方向に架設され、互いに分離する間柱や壁として、あるいは図5−(c)に示すように柱・梁のフレーム内に架設されるブレースと、その一部が接続されるべきフレームのいずれかの部位(構造部材)等として配置される。   Specifically, the “plural structural members 1 to 3” are installed between adjacent columns in a column / beam frame (frame) as shown in FIGS. 5A and 6C, for example. As beam members that are separated from each other, or as shown in FIGS. 5- (b), 6- (b), and (d), they are installed in the vertical direction between intermediate portions of beams (beam members) that are vertically adjacent to each other. As a separating pillar or wall to be separated, or as shown in FIG. 5- (c), a brace constructed in a pillar / beam frame and any part (structural member) of the frame to which a part thereof should be connected Arranged as.

この他、「複数の構造部材1〜3」は図6−(a)に示すように柱・梁のフレームを構成する柱とそれに接合され、梁の一部を構成するブラケット9、及びブラケット9、9間に架設される梁部材として、または図6−(b)、(d)に示すように上下に隣接する梁の中間部に接合されるブラケット9と、そのブラケット9、9間に架設される柱部材としても配置される。いずれの例においてもダンパー4が接合される部材が「ダンパーが跨る構造部材」である。   In addition, as shown in FIG. 6A, the “plural structural members 1 to 3” are connected to the pillars constituting the pillar / beam frame, the bracket 9 constituting a part of the beam, and the bracket 9. As shown in FIGS. 6 (b) and 6 (d), a bracket 9 joined to the middle portion of the beam adjacent vertically and the bracket 9 between the brackets 9 and 9 are installed. It is also arranged as a pillar member. In any example, the member to which the damper 4 is joined is the “structural member on which the damper straddles”.

図6−(d)は(b)に示す間柱状の柱部材を(ブラケット9、9に)上下に2分割し、その分割箇所にダンパー4を跨設した場合の例を示している。図6−(d)では図6−(b)において上下の梁部材に接続したブラケット9と間柱状の柱部材(ブラケット9)との間のフランジ間に跨設されている継手部材10を、ダンパー4の降伏等による一定の変形後にダンパー4に代わって変形を生じさせるための前記接合部材10Aに置き換えている。接合部材10Aはダンパー4が変形制限を受けた時点以降にダンパー4に代わって塑性変形し、エネルギ吸収能力を発揮する。   FIG. 6- (d) shows an example of a case where the columnar column member shown in (b) is divided into two vertically (to the brackets 9 and 9) and the damper 4 is laid across the divided portion. In FIG. 6- (d), the joint member 10 straddled between the flanges between the bracket 9 connected to the upper and lower beam members in FIG. 6- (b) and the inter-columnar column member (bracket 9), It replaces with the said joining member 10A for producing a deformation | transformation instead of the damper 4 after the fixed deformation | transformation by the yield of the damper 4, etc. The joining member 10A plastically deforms in place of the damper 4 after the time when the damper 4 is subjected to deformation restriction, and exhibits energy absorption capability.

対になる、隣接する二つの構造部材1、2(2、3)は構造物が水平力を負担して弾性変形を起こしたときに相対変形を生ずるいずれかの部位間に配置され、互いに分離し、間隔を保持した状態で、それぞれ構造物のいずれかの部位に接合される。ダンパー4は複数の構造部材の内、いずれか隣接する二つの構造部材間1、2(2、3)に跨って設置されることで、その隣接する構造部材1、2(2、3)間の相対変形時に自ら対変形を起こし、形が進行することにより振動エネルギを吸収する。 Two adjacent structural members 1, 2 (2, 3) to be paired are arranged between any parts that cause relative deformation when the structure undergoes elastic deformation by bearing a horizontal force and separated from each other. In the state where the gap is maintained, each part is joined to any part of the structure. The damper 4 is installed across two adjacent structural members 1, 2 (2, 3) among a plurality of structural members, so that between the adjacent structural members 1, 2 (2, 3) cause their phase-to deformation during the deformation of the relative, to absorb vibration energy by the deformation progresses.

ダンパー4が「自ら変形すること」は図1〜図4に示すようにダンパー4が単体である場合に弾性変形から塑性変形することを言い、この場合、ダンパー4は塑性変形時の履歴ループによりエネルギを吸収する The damper 4 “deforms itself” means that the damper 4 is plastically deformed from elastic deformation when the damper 4 is a single piece as shown in FIGS. 1 to 4. In this case, the damper 4 is caused by a hysteresis loop at the time of plastic deformation. Absorb energy .

ダンパーには鋼材、鉛、合金等の金属材料を使用した弾塑性ダンパーエネルギ吸収装置として使用され。ダンパーは弾塑性ダンパーのように単一の材料(部材)から構成される The damper steel, lead, elastoplastic damper using a metal material such as alloy Ru is used as an energy absorbing device. The damper is composed of a single material (member) like an elastoplastic damper .

「両構造部材間の相対変形方向に変形を生ずる(ダンパー)」とは、ダンパー4自身が図示するように金属材料からなる単一の部材で構成されている場合に、単体のダンパー4自体が曲げ変形、せん断変形、引張変形等の変形を単独で、あるいは複合して生ずることを言う。単体のダンパー自体が変形することは、ダンパー自体がせん断変形、曲げ変形等の相対変形を生ずることであり、下、「変形」単体のダンパー自体の変形を言う“Deformation in the direction of relative deformation between both structural members (damper)” means that the damper 4 itself is composed of a single member made of a metal material as shown in the figure. It means that deformation such as bending deformation, shear deformation, and tensile deformation is generated alone or in combination. The single damper itself is deformed, the damper itself is shear deformation, is to produce a relative deformation of the deformable such as bending, below, it refers to variations of "deformation" single damper itself.

金属材料からなる単体のダンパーは単独で相対変形することで、設定(想定)された一定の外力(荷重)を負担したときに、降伏(塑性化)することにより履歴ループによるエネルギ吸収能力を発揮する A single damper made of a metal material undergoes relative deformation alone, and when it is subjected to a set (assumed) constant external force (load), it yields (plasticizes) and exhibits energy absorption capability by a hysteresis loop. To do .

二つの構造部材1、2(2、3)は前記のように両構造部材1、2間にダンパー4が介在した状態で、エネルギ吸収装置としてのダンパー4が一体化した構造の耐震要素(耐震装置)になる。このダンパー4付きの二つの構造部材1、2からなる最小の「ダンパー内蔵耐震装置5」を一つ(単一)の耐震要素(耐震装置)として見れば、「耐震装置5」はダンパーの内蔵により見かけ上、少なくとも1段階にエネルギ吸収能力を発揮し得る部分(ダンパー:エネルギ吸収装置)を有する構造になる。   The two structural members 1, 2 (2, 3) have the structure in which the damper 4 as an energy absorbing device is integrated with the damper 4 interposed between the structural members 1, 2 as described above. Device). If we look at the smallest “damping built-in seismic device 5” consisting of two structural members 1 and 2 with the damper 4 as one (single) seismic element (seismic device), the “seismic device 5” is built in the damper. Apparently, a structure having a portion (damper: energy absorbing device) capable of exhibiting energy absorbing capability in at least one stage is obtained.

但し、ダンパー4は自らが有する、あるいは後述のように構造部材1、2のいずれかが有する変形制限材6から付与される変形制限機能によりダンパー4自身の変形量に制限が課せられていることで、制限を受けるまでは変形が進行するものの、制限を受けた後にはそれ以上、相対変形量が増大(進行)することが抑制されるため、後述のように剛性の高い部材として挙動し、構造部材1、2に塑性化を誘発させる。 However, the damper 4 itself has a restriction on the deformation amount of the damper 4 itself by the deformation restriction function provided from the deformation restriction material 6 that the damper 4 has or the structural member 1 or 2 has as described later. In this case, the deformation progresses until it is restricted, but after receiving the restriction, the relative deformation amount is suppressed from increasing (progressing), so that it behaves as a highly rigid member as described later. The structural members 1 and 2 are plasticized.

従って「ダンパー内蔵耐震装置5」であるダンパー4付きの二つの構造部材1、2は構造部材1、2に先行してエネルギ吸収能力を発揮するダンパー4と、ダンパー4がエネルギ吸収能力を発揮し終え、変形量が制限された後にダンパー4に代わってエネルギ吸収能力を発揮する、接合部材10Aを含む構造部材1、2の内の少なくとも一部である塑性化部分の2通りのエネルギ吸収装置を有する構造になる。結局、ダンパー4付きの二つの構造部材1、2は構造部材1、2が負担する外力の程度に応じ、ダンパー4と塑性化する構造部材1、2の2段階にエネルギ吸収能力を発揮することになり、エネルギ吸収の機能をダンパーと構造部材が分担する。   Accordingly, the two structural members 1 and 2 with the damper 4 that is the “damped earthquake proofing device 5” are the damper 4 that exhibits the energy absorbing ability in advance of the structural members 1 and 2, and the damper 4 exhibits the energy absorbing ability. After finishing and limiting the amount of deformation, the two energy absorbing devices of the plasticized portion, which is at least a part of the structural members 1 and 2 including the joining member 10A, exhibiting energy absorbing ability instead of the damper 4 are shown. It becomes the structure which has. After all, the two structural members 1 and 2 with the damper 4 exhibit energy absorbing ability in two stages of the damper 4 and the plasticized structural members 1 and 2 according to the degree of external force borne by the structural members 1 and 2. Thus, the damper and the structural member share the energy absorption function.

ダンパーは前記のように元々、塑性化するか、減衰力を発生することによりエネルギ吸収能力を発揮することを想定された部材(部位)、あるいは装置であるから、二つの構造部材間に跨った状態で構造部材内に組み込まれることで、上記「耐震装置」の構成要素としては相対的に剛性と耐力の低下した部分になり、ダンパーが跨る二つの構造部材が塑性化(降伏)する以前に先行して塑性化するとによりエネルギ吸収能力を発揮する。上記の通り、「塑性化」はダンパーが鋼材や鉛等の金属材料からなる場合のエネルギ吸収能力発揮時の様子を言The damper is originally a member (part) or device that is supposed to exhibit energy absorption capacity by plasticizing or generating a damping force as described above, so that it straddles between two structural members. By being incorporated in the structural member in a state, the above-mentioned “seismic device” becomes a part where the rigidity and proof strength are relatively reduced, and before the two structural members straddling the damper are plasticized (yield) prior to exert the energy absorption capability by and the child to be plasticized by. As described above, the "plasticized" is intends saying the situation at the time of the energy absorption capacity demonstrated in the case of the damper is made of a metal material such as steel or lead.

「ダンパーが、隣接する構造部材が相対変形を生ずるときの自らの一定量を超える変形量を制限する変形制限機能を持つ」とは、ダンパーが跨る構造部材間の相対変形に伴ってダンパーに生ずる一定量を超える変形量を制限する変形制限機能をダンパー自身が備える変形制限材により固有の機能として持つか、またはダンパーが接合されるいずれかの構造部材が備える変形制限材によって付与されることを言い、変形制限機能の発揮によりダンパーの塑性変形量、もしくは相対変形量がほぼ一定量以下に制限される。 “The damper has a deformation limiting function that limits the amount of deformation exceeding a certain amount when the adjacent structural member undergoes relative deformation” means that the damper occurs in the damper due to relative deformation between the structural members straddled by the damper. It has a deformation limiting function that limits the amount of deformation exceeding a certain amount as a function inherent to the deformation limiting material provided in the damper itself, or is provided by a deformation limiting material provided in any structural member to which the damper is joined. In other words, the amount of plastic deformation or relative deformation of the damper is limited to a substantially constant amount or less by exerting the deformation limiting function.

「変形制限機能」は1〜図4に示すようにダンパー4と構造部材1、2との間に跨っていずれかに付加される「変形制限材6」がストッパのように例えばダンパー4の一定量を超える変形の進行を阻止するか、停止させる等、強制的に揮させられる。 As shown in FIGS . 1 to 4, the “deformation limiting function” has a “deformation limiting material 6” that is added between the damper 4 and the structural members 1, 2, for example, as a stopper. or inhibiting the progression of deformation above a certain amount, such as stopping, Ru forced to originating volatilization.

ダンパー4は「変形制限機能」により変形量が制限されることで、一定量の変形(塑性変形と部材間の相対変形を含む)に到達した後には、それを超える変形が進行せず、外力を負担する剛性の高い部材として挙動し、自らが負担する外力を構造部材1、2に伝達し、構造部材1、2に変形を生じさせる働きをする。ここで言う「一定量の変形量」はダンパー4の変形量として想定された、あるいは設定された変形量であるが、その変形はダンパー4が跨り、ダンパー4を保持する構造部材1、2から与えられるため、構造部材1、2間に発生する相対変形量でもあり、変形制限機能はこの想定量(一定量)を超える量の変形を制限する。   Since the amount of deformation of the damper 4 is limited by the “deformation limiting function”, after reaching a certain amount of deformation (including plastic deformation and relative deformation between members), the deformation beyond that does not proceed, and the external force It acts as a highly rigid member that bears the load, transmits an external force that it bears to the structural members 1 and 2, and causes the structural members 1 and 2 to be deformed. Here, the “definite amount of deformation” is a deformation amount assumed or set as the deformation amount of the damper 4, but the deformation is from the structural members 1 and 2 that hold the damper 4 across the damper 4. Therefore, it is also a relative deformation amount generated between the structural members 1 and 2, and the deformation limiting function limits deformation exceeding the assumed amount (a constant amount).

変形制限機能はダンパー4の形態(種類)に応じて異なり、例えばダンパー4が図示するような弾塑性ダンパーである場合には、ダンパー4が降伏(塑性化)し、塑性変形が進行するときに、何らかの形によって変形の進行を阻止することであり、その機能は前記したようにダンパー4の一部等に形成される高剛性領域、あるいは付加(接合)される、変形の進行を停止させるストッパとしての「変形制限材6」によって確保される。「変形制限材6」は前記のようにダンパー4自身が有する場合(請求項2)と、ダンパー4とは別に、構造部材1、2とダンパー4との間に跨るように付加(外付け)される場合(請求項3)がある。   The deformation limiting function varies depending on the form (type) of the damper 4. For example, when the damper 4 is an elasto-plastic damper as illustrated, when the damper 4 yields (plasticizes) and the plastic deformation proceeds. This is to prevent the progress of the deformation in some form, and its function is a high-rigidity area formed in a part of the damper 4 as described above, or a stopper that stops the progress of the deformation that is added (joined). Is secured by the “deformation restricting member 6”. When the damper 4 itself has the “deformation restricting member 6” as described above (Claim 2), it is added (externally attached) so as to straddle between the structural members 1, 2 and the damper 4 separately from the damper 4. (Claim 3).

「ダンパー自身が変形制限材を有する」とは、ダンパー4に変形制限材6が付加、あるいは形成されることを言う。具体的には例えばダンパー4が図3、図4に示すような板状の鋼材ダンパーであり、面内方向のせん断力を負担することによりせん断変形して塑性化するせん断変形型の弾塑性ダンパーである場合には、ダンパー4自体が外力を受けて変形するため、変形制限材6は図1、図2に示すようにその変形を生ずる領域の、せん断変形の進行の向き(側)に、一定量のせん断変形を許容するためのクリアランスを確保して配置される。   “The damper itself has a deformation limiting material” means that the deformation limiting material 6 is added to or formed on the damper 4. Specifically, for example, the damper 4 is a plate-shaped steel damper as shown in FIGS. 3 and 4, and is a shear deformation type elastic-plastic damper that is plastically deformed by shearing by bearing a shearing force in the in-plane direction. In this case, since the damper 4 itself is deformed by receiving an external force, the deformation limiting member 6 is in the direction (side) of the progress of the shear deformation in the region where the deformation is generated as shown in FIGS. It is arranged with a clearance to allow a certain amount of shear deformation.

この場合の変形制限材6はダンパー4自体のせん断変形による固定位置とダンパー4のいずれかの部分との間の相対変形(相対変位)に伴い、ダンパー4のいずれかの部分に接触することによりダンパー4に対する移動(変位)が停止させられ、ダンパー4のせん断変形を一定以上に進行させない働きをする。変形制限材6がダンパー4の塑性化後、一定の塑性変形を超えるダンパー4の変形を制限することはダンパー4が曲げモーメント(曲げ変形)により、あるいは軸方向力(伸縮)により降伏する場合も同じである。   In this case, the deformation limiting member 6 comes into contact with any part of the damper 4 due to relative deformation (relative displacement) between the fixed position due to shear deformation of the damper 4 itself and any part of the damper 4. The movement (displacement) with respect to the damper 4 is stopped, and the shear deformation of the damper 4 works so as not to proceed beyond a certain level. Limiting the deformation of the damper 4 beyond a certain plastic deformation after the deformation limiting material 6 is plasticized may be caused by the damper 4 yielding due to a bending moment (bending deformation) or due to an axial force (stretching). The same.

示するように構造部材1、2に変形制限材6が付加される場合も変形制限材6の働きは同様であり、ダンパー4が一定量以上の変形を生じたときに、変形制限材6はダンパー4の変形の進行を阻止する位置に配置されることで、ダンパー4の変形を一定以上に進行させない働きをする。 Work of deformation limiting member 6 even if the deformation limit member 6 to the structural members 1 and 2 in FIG Shimesuru so is added is the same, when the damper 4 has occurred more than a certain amount of deformation, deformation limiting member 6 Is disposed at a position where the progress of the deformation of the damper 4 is prevented, thereby preventing the deformation of the damper 4 from progressing beyond a certain level.

ダンパー4の一定量を超える変形が「変形制限機能」(変形制限材6)によって制限されることで、それ以降のダンパー4は変形が制限された剛性の高い材料(部材)として挙動するため、ダンパー4はそれが接合されている構造部材1、2に外力を作用させる。構造部材1、2は変形を制限された後のダンパー4から外力を受けることで変形を生じ、降伏耐力の低い部分において最終的に降伏(塑性化)し、エネルギ吸収能力を発揮する。ダンパー内蔵耐震装置5を構成する構造部材1、2には、塑性化が期待されることから、主に鋼材等、金属材料が使用されるが、必ずしもその必要もない。   Since deformation exceeding a certain amount of the damper 4 is limited by the “deformation limiting function” (deformation limiting material 6), the subsequent damper 4 behaves as a highly rigid material (member) with limited deformation. The damper 4 applies an external force to the structural members 1 and 2 to which the damper 4 is joined. The structural members 1 and 2 are deformed by receiving an external force from the damper 4 after the deformation is restricted, and finally yield (plasticize) in a portion having a low yield strength, and exhibit energy absorbing ability. Since the structural members 1 and 2 constituting the damper built-in seismic device 5 are expected to be plastic, a metal material such as steel is mainly used, but it is not always necessary.

ダンパー内蔵耐震装置5は外力の負担の程度に応じ、ダンパー4が先行してエネルギ吸収能力を発揮し、その後に構造部材1、2の少なくともいずれか一方が塑性化してエネルギ吸収能力を発揮することで、2段階にエネルギ吸収機構を備えるため、エネルギ吸収機構として機能するダンパー4と構造部材1、2が負担すべき外力の大きさ(範囲)を相違させることが可能になる。   In the damper built-in seismic device 5, the damper 4 precedes and exhibits energy absorption capability according to the degree of external force load, and then at least one of the structural members 1 and 2 plasticizes to exhibit energy absorption capability. Since the energy absorbing mechanism is provided in two stages, the magnitude (range) of the external force that should be borne by the damper 4 functioning as the energy absorbing mechanism and the structural members 1 and 2 can be made different.

例えばダンパー4が塑性変形制限に達するときに受ける応力を、構造部材1、2のいずれかの部分が降伏するときに受ける応力に近付ける設定をしておけば、ダンパー4のエネルギ吸収能力を、構造部材1、2のエネルギ吸収能力の発揮直前まで発揮させることができ、併せてダンパー内蔵耐震装置5に作用する広範囲の荷重に対して効率的にエネルギ吸収効果を発揮させることが可能である。従ってダンパー4と構造部材1、2がエネルギ吸収能力を発揮するときの外力と変形量が累積することがないため、ダンパー4と構造部材1、2のそれぞれに対して累積塑性変形の影響を軽減することができ、ダンパー内蔵耐震装置5が過度の累積塑性変形を受けることによる柱・梁架構(構造物)の崩壊の可能性も少なくなる。   For example, if the setting is made so that the stress received when the damper 4 reaches the plastic deformation limit is made close to the stress received when any part of the structural members 1 and 2 yields, the energy absorption capacity of the damper 4 is increased. The energy absorbing ability of the members 1 and 2 can be exhibited immediately before the energy absorbing ability is exhibited, and the energy absorbing effect can be efficiently exhibited against a wide range of loads acting on the damper built-in seismic resistance device 5. Accordingly, since the external force and the deformation amount are not accumulated when the damper 4 and the structural members 1 and 2 exhibit the energy absorbing ability, the influence of the cumulative plastic deformation is reduced on the damper 4 and the structural members 1 and 2 respectively. In addition, the possibility of collapse of the column / beam frame (structure) due to excessive accumulated plastic deformation of the damper built-in seismic resistance device 5 is reduced.

またダンパー4はエネルギ吸収能力を発揮した後には塑性変形を進行させることがなく、剛性の高い部材として挙動するため、ダンパー内蔵耐震装置5はダンパーがエネルギ吸収能力を発揮した後、構造部材1、2も塑性化した後に塑性変形の進行箇所が複数に亘るような不安定構造化することがない。このことから、一組のダンパー内蔵耐震装置5内にエネルギ吸収能力を発揮するときに負担する応力の相違する、例えば降伏耐力の相違する複数のダンパー4を内蔵した場合に、全ダンパー4にそれぞれの耐力に応じたエネルギ吸収能力を有効に発揮させることが可能である。   Further, since the damper 4 does not proceed with plastic deformation after exhibiting the energy absorbing ability and behaves as a highly rigid member, the damper built-in seismic resistance device 5 is the structural member 1 after the damper exhibits the energy absorbing ability. After 2 is also plasticized, there is no unstable structure in which there are a plurality of places where plastic deformation proceeds. From this, when a plurality of dampers 4 with different stresses, for example, with different yield strengths, are incorporated in each of the dampers 4 in each set of the built-in damper seismic resistance device 5, It is possible to effectively exhibit the energy absorption capability according to the proof stress.

例えば従来のようにダンパー内蔵耐震装置内に降伏耐力の相違する複数のダンパーを内蔵した場合には、最も降伏耐力の小さいダンパーが降伏した後にはそのダンパーの塑性変形が進行するため、それ以外の降伏耐力の大きい他のダンパーが降伏し、エネルギ吸収能力を発揮する余地がない。   For example, when a plurality of dampers with different yield strengths are built into the damper with built-in damper as in the past, the plastic deformation of the damper proceeds after the damper with the smallest yield strength yields. Other dampers with high yield strength yield, leaving no room for energy absorption.

これに対し、本発明では例えば降伏型の複数のダンパー4を架構(構造物)内に組み込んだ(内蔵させた)場合、降伏耐力の小さいダンパー4が降伏した後にはそのダンパー4のそれ以上の塑性変形が進行することがないため、それより降伏耐力の大きいダンパー4の塑性変形は進行し得る状態にある。従って降伏耐力の小さいダンパー4の降伏が他のダンパー4の塑性化を阻止することがないため、複数の全ダンパー4を段階的に塑性化させ、エネルギ吸収能力を発揮させることが可能である。   On the other hand, in the present invention, for example, when a plurality of yield-type dampers 4 are incorporated (built in) in a frame (structure), after the damper 4 having a low yield strength is yielded, the damper 4 is more than that of the damper 4. Since the plastic deformation does not proceed, the plastic deformation of the damper 4 having a greater yield strength can proceed. Accordingly, since the yield of the damper 4 having a small yield strength does not prevent the plasticization of the other dampers 4, it is possible to plasticize all of the plurality of dampers 4 in a stepwise manner and exhibit the energy absorption capability.

複数の構造部材と、隣接する構造部材間に跨設され、両構造部材間の相対変形時に変形を生ずるダンパーを備え、ダンパーが隣接する構造部材間の相対変形量を制限し、その制限された相対変形量を超える変形時に構造部材に変形を生じさせる機能を有するため、ダンパーが構造部材に先行してエネルギ吸収能力を発揮した後に、構造部材がエネルギ吸収能力発揮後のダンパーに代わってエネルギ吸収能力を発揮することができる。   A plurality of structural members and a damper that straddles between adjacent structural members and generates a deformation at the time of relative deformation between the two structural members. The damper restricts the relative deformation amount between the adjacent structural members, and is limited. Since it has a function to cause deformation of the structural member when the deformation exceeds the relative deformation amount, the structural member absorbs energy instead of the damper after exhibiting the energy absorbing capability after the damper exhibits the energy absorbing capability prior to the structural member. Can demonstrate ability.

この結果、ダンパー付きの二つの構造部材は構造部材が負担する外力の程度に応じて2段階にエネルギ吸収能力を発揮することになり、エネルギ吸収の機能をダンパーと構造部材が分担することができ、ダンパーと構造部材のそれぞれに対して累積塑性変形の影響を軽減できるようになる。   As a result, the two structural members with dampers exhibit energy absorption capability in two stages according to the degree of external force borne by the structural members, and the damper and the structural members can share the energy absorption function. The influence of cumulative plastic deformation can be reduced for each of the damper and the structural member.

変形制限材がダンパーとは別に付加される変形制限機能付きダンパーと変形制限材を隣接する構造部材間に設置した状態を示した立面図であり、図5−(a)の一部拡大図である。FIG. 6 is an elevational view showing a state in which a deformation limiting function damper to which a deformation limiting material is added separately from the damper and a deformation limiting material are installed between adjacent structural members, and is a partially enlarged view of FIG. It is. (a)は図1に示す隣接する構造部材が対向したまま、その対向する方向に直交する方向のいずれかの向きに相対変形したときのダンパーの変形状態と変形制限材との関係を示した立面図、(b)は構造部材が(a)と逆向きに相対変形したときのダンパーと変形制限材との関係を示した立面図である。(A) shows the relationship between the deformation state of the damper and the deformation restricting material when the adjacent structural members shown in FIG. 1 face each other and are relatively deformed in any direction orthogonal to the facing direction. Elevated view, (b) is an elevated view showing the relationship between the damper and the deformation limiting material when the structural member is relatively deformed in the opposite direction to (a). (a)は変形制限材がダンパーに形成されるせん断変形型の弾塑性ダンパーの例を示した立面図、(b)は(a)の弾塑性ダンパーがせん断変形したときの様子を示した立面図、(c)は(a)のx−x線断面図である。(A) is an elevation view showing an example of a shear deformation type elasto-plastic damper in which the deformation limiting material is formed on the damper, and (b) shows a state when the elasto-plastic damper of (a) undergoes shear deformation. Elevated view, (c) is a sectional view taken along line xx of (a). (a)は変形制限材がダンパーに形成されるせん断変形型の弾塑性ダンパーの他の例を示した立面図、(b)は(a)の弾塑性ダンパーがせん断変形したときの様子を示した立面図である。(A) is an elevation view showing another example of a shear deformation type elastoplastic damper in which the deformation limiting material is formed on the damper, and (b) shows a state when the elastoplastic damper of (a) undergoes shear deformation. FIG. 図1、図2に示す変形制限機能付きダンパーの隣接する構造部材間への架設例を示した立面図であり、(a)は構造部材が互いに分離した梁部材であり、梁部材間にダンパーが架設された場合、(b)は構造部材が互いに分離した間柱であり、間柱間にダンパーが架設された場合、(c)は構造部材が互いに分離したブレースと梁部材であり、ブレースと梁部材間にダンパーが架設された場合である。FIG. 3 is an elevation view showing an example of laying between adjacent structural members of a damper with a deformation limiting function shown in FIG. 1 and FIG. 2, (a) is a beam member in which the structural members are separated from each other, and between the beam members When the damper is installed, (b) is a stud that separates the structural members from each other, and when the damper is installed between the studs, (c) is a brace and a beam member that are separated from each other. This is a case where a damper is installed between the beam members. 図3、図4に示す変形制限機能付きダンパーの隣接する構造部材間への架設例を示した立面図であり、(a)は構造部材が互いに分離した梁部材であり、梁部材間にダンパーが架設された場合、(b)は構造部材が互いに分離した間柱であり、間柱間にダンパーが架設された場合、(c)は構造部材が互いに分離したブレースと梁部材であり、ブレースと梁部材間にダンパーが架設された場合、(d)は(b)に示すダンパー4を継手部材10に、また継手部10材を接合部材10Aに置き換えた構造部材としての間柱が2分割され、その分割箇所にダンパー4が架設された場合である。FIG. 5 is an elevational view showing an example of laying between adjacent structural members of a damper with a deformation limiting function shown in FIG. 3 and FIG. 4, (a) is a beam member in which the structural members are separated from each other, and between the beam members When the damper is installed, (b) is a stud that separates the structural members from each other, and when the damper is installed between the studs, (c) is a brace and a beam member that are separated from each other. When a damper is installed between the beam members, (d) is divided into two pillars as structural members in which the damper 4 shown in (b) is replaced with the joint member 10 and the joint member 10 material is replaced with the joint member 10A. This is a case where the damper 4 is erected at the divided portion. (a)はダンパーの変形を制限する変形制限材が、ダンパーが接合される構造部材に形成された長孔の内周面である場合の構造部材とダンパーの組み合わせ状態を示した立面図、(b)は(a)におけるダンパーを除外した構造部材を示した立面図である。(A) is an elevation view showing a combination state of the structural member and the damper when the deformation limiting material for limiting the deformation of the damper is an inner peripheral surface of a long hole formed in the structural member to which the damper is joined; (B) is an elevation view showing a structural member excluding the damper in (a).

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は構造物の内部、あるいは外部において互いに分離した状態で対向し、構造物が水平力を受けたときに互いに相対変形を生ずる複数の構造部材1〜3と、この複数の構造部材1〜3の内、隣接する構造部材1、2(2、3)間に跨設され、両構造部材1、2(2、3)間の相対変形時にその相対変形方向に変形を生ずるダンパー4を備える、図5、図6に示すような変形制限機能付きダンパー内蔵耐震装置5の一部であるダンパー4の設置例を示した立面を示す。   FIG. 1 illustrates a plurality of structural members 1 to 3 that face each other inside or outside the structure in a separated state and cause relative deformation when the structure receives a horizontal force. 3, a damper 4 is provided straddling between adjacent structural members 1, 2 (2, 3) and causing deformation in the relative deformation direction at the time of relative deformation between both structural members 1, 2 (2, 3). The elevation which showed the example of installation of the damper 4 which is a part of the damper built-in earthquake-resistant apparatus 5 with a deformation | transformation restriction | limiting function as shown in FIG. 5, FIG. 6 is shown.

ダンパー4は隣接する構造部材1、2(2、3)が相対変形を生ずるときの自らの一定量を超える変形量を制限する変形制限機能を持ち、その制限を受けるまでの自らの変形時に、変形量に応じたエネルギ吸収能力を発揮する。変形に対する制限を受けた後には前記変形を生じたまま、変形の進行が抑えられた剛性の高い部材として機能し、隣接する構造部材1、2(2、3)の内の少なくともいずれかの構造部材1、2に弾性変形から塑性変形を生じさせる。構造物(一フレーム)内のダンパー内蔵耐震装置5は図6−(a)、(b)に示すように3本(枚)以上の構造部材1〜3から構成される場合もあるが、以下では1個のダンパー4が跨る1組の構造部材1、2に、一フレーム内に配置される2組の隣接する構造部材1、2(2、3)を代表させる。   The damper 4 has a deformation limiting function for limiting the amount of deformation exceeding a certain amount when the adjacent structural members 1, 2 (2, 3) undergo relative deformation, and at the time of deformation of itself until receiving the restriction, Demonstrate energy absorption capability according to the amount of deformation. After receiving a restriction on deformation, the structure functions as a highly rigid member in which the progress of the deformation is suppressed while the deformation is generated, and at least one of the adjacent structural members 1, 2 (2, 3) The members 1 and 2 are caused to undergo plastic deformation from elastic deformation. The damper built-in seismic device 5 in the structure (one frame) may be composed of three (three) or more structural members 1 to 3 as shown in FIGS. 6 (a) and 6 (b). Then, one set of structural members 1 and 2 over which one damper 4 straddles represents two sets of adjacent structural members 1 and 2 (2, 3) arranged in one frame.

図1はダンパー4が、互いに分離した構造部材1、2間に跨って設置され、面内方向のせん断力を受けてせん断変形する板状の弾塑性ダンパーであり、ダンパー4に生ずる変形量を制限する変形制限材6がダンパー4とは別に、構造部材1、2間に跨って設置された場合の例を示している。弾塑性型のダンパー4にはせん断変形型の他、曲げ変形型、軸変形型のダンパーも使用される。せん断変形型と軸変形型のダンパー4は一方向の相対変形(相対移動)時に機能し、曲げ変形型のダンパー4は任意の方向の相対変形(相対移動)時に機能する。   FIG. 1 shows a plate-like elastic-plastic damper in which a damper 4 is installed between structural members 1 and 2 separated from each other and receives a shearing force in an in-plane direction, and the amount of deformation generated in the damper 4 is shown. An example in which the deformation limiting material 6 to be limited is installed between the structural members 1 and 2 separately from the damper 4 is shown. In addition to the shear deformation type, a bending deformation type and an axial deformation type damper are also used as the elastic-plastic type damper 4. The shear deformation type and axial deformation type dampers 4 function at the time of relative deformation (relative movement) in one direction, and the bending deformation type dampers 4 function at the time of relative deformation (relative movement) in an arbitrary direction.

図1に示すダンパー4の構造部材1、2間への設置例を図5−(a)〜(c)に示すが、図1のダンパー4は図6−(a)〜(d)に示す例にも使用される。図5では図1に示すダンパー4を図2に示す形状に簡略化している。分離する構造部材1、2は直接、力の伝達がされない状態に互いに分離していればよく、部位は問われない。具体的には図5、図6に示すような分離した梁部材同士、柱部材同士、間柱同士の他、耐震壁等の壁やブレースと柱・梁のフレーム同士等がある。構造部材1、2には基礎と杭も含まれる。   An example of installation of the damper 4 shown in FIG. 1 between the structural members 1 and 2 is shown in FIGS. 5- (a) to (c). The damper 4 in FIG. 1 is shown in FIGS. 6 (a) to (d). Also used in examples. In FIG. 5, the damper 4 shown in FIG. 1 is simplified to the shape shown in FIG. The structural members 1 and 2 to be separated are not limited as long as they are separated from each other in a state where force is not directly transmitted. Specifically, there are separate beam members, column members, and inter-columns as shown in FIGS. 5 and 6, walls such as earthquake-resistant walls, and frames of braces and columns / beams. The structural members 1 and 2 also include foundations and piles.

変形制限材6はダンパー4の変形型(変形形式)に応じ、ダンパー4の変形の進行を阻止する形状、あるいは剛性を持ち、ダンパー4の内部に組み込まれるか、ダンパー4と構造部材1(2)との間に跨って設置される。せん断変形型以外の弾塑性型のダンパー4に使用される変形制限材6が変形の進行を阻止する形状をする場合、例えばダンパー4が鋼棒状の曲げ変形型であれば、軸に直交する任意の方向の曲げ変形量を制限するために、変形制限材6はダンパー4の接触面側が凸の曲面を持つ漏斗状等に形成される。ダンパー4が例えば筒状の軸変形型であれば、ダンパー4に外接し、一端にダンパー4の一端が係止し得る端板(フランジ)やリブが固定された筒状等に形成される。   The deformation limiting member 6 has a shape or rigidity that prevents the deformation of the damper 4 from proceeding according to the deformation type (deformation form) of the damper 4 and is incorporated in the damper 4 or the damper 4 and the structural member 1 (2 ) Between them. When the deformation limiting material 6 used for the elastic-plastic type damper 4 other than the shear deformation type has a shape that prevents the progress of the deformation, for example, if the damper 4 is a steel rod-like bending deformation type, an arbitrary orthogonal to the axis In order to limit the amount of bending deformation in this direction, the deformation limiting member 6 is formed in a funnel shape having a convex curved surface on the contact surface side of the damper 4. If the damper 4 is, for example, a cylindrical shaft deformation type, it is formed in a cylindrical shape or the like that is circumscribed by the damper 4 and that has an end plate (flange) or a rib fixed to one end of the damper 4 at one end.

せん断変形型の、弾塑性型のダンパー4は図1〜図4に示すように分離した構造部材1、2のそれぞれの側に位置し、各構造部材1、2に接合される接合部41、41と、接合部41、41の中間部に位置し、構造部材1、2間の相対変形に追従する相対変形時に両側の接合部41、41からせん断力を受けて変形する塑性変形部42の3部分から構成される。ダンパー4は構造部材1、2から両側の接合部41、41間に面内方向に作用する、接合部41、41が対向する方向に直交する方向のせん断力と曲げモーメントを受けることによる、塑性変形部42に生ずるせん断応力によって塑性変形部42が弾性変形から塑性化する。   The shear deformation type elastic-plastic type damper 4 is located on each side of the separated structural members 1 and 2 as shown in FIGS. 41 and a plastic deformation portion 42 which is located in the middle portion between the joint portions 41 and 41 and deforms by receiving a shearing force from the joint portions 41 and 41 on both sides at the time of relative deformation following the relative deformation between the structural members 1 and 2. It consists of three parts. The damper 4 is plastic by receiving a shearing force and a bending moment acting in an in-plane direction between the joint portions 41 and 41 on both sides from the structural members 1 and 2 and in a direction perpendicular to the direction in which the joint portions 41 and 41 face each other. The plastic deformation portion 42 is plasticized from elastic deformation by the shear stress generated in the deformation portion 42.

図1は塑性変形部42が接合部41、4から受けるせん断力によって接合部41、41の対向する方向の軸線の両側に生ずる曲げモーメント分布に対応した形状に塑性変形部42を形成した場合の例を示しているが、塑性変形部42は接合部41に対して相対的に変形を生じ易い、せん断剛性の小さい形状、あるいは形態(断面寸法)をしていればよい。   FIG. 1 shows a case where the plastic deformation portion 42 is formed in a shape corresponding to the bending moment distribution generated on both sides of the axis in the opposite direction of the joint portions 41 and 41 by the shearing force that the plastic deformation portion 42 receives from the joint portions 41 and 4. Although the example is shown, the plastic deformation part 42 should just be the shape or cross-sectional dimension with small shear rigidity which is easy to produce a deformation | transformation relatively with respect to the junction part 41. FIG.

図1に示すダンパー4はせん断力作用方向に直交する方向の両側に位置する接合部41、41において構造部材1、2にボルト7、あるいは溶接等により着脱(分離)自在に、あるいは一体的に接合される。図1の場合、せん断力はダンパー4が跨る構造部材1、2が対向する方向(材軸)に直交する方向に相対変形したときに、接合部41、41間に作用し、塑性変形部42がせん断力と曲げモーメントを負担する。塑性変形部42は交互に作用するせん断力と曲げモーメントを繰り返して受けることで、塑性化し、エネルギ吸収能力を発揮する。   The damper 4 shown in FIG. 1 is detachable (separated) from the structural members 1 and 2 by bolts 7 or welding at the joints 41 and 41 located on both sides in the direction orthogonal to the shearing force acting direction, or integrally. Be joined. In the case of FIG. 1, the shear force acts between the joint portions 41, 41 when the relative deformation occurs in the direction orthogonal to the direction (material axis) in which the structural members 1, 2 across which the damper 4 strides, and the plastic deformation portion 42. Bears shear forces and bending moments. The plastic deformation part 42 is plasticized by repeatedly receiving shearing forces and bending moments acting alternately, and exhibits energy absorbing ability.

図1は変形制限材6がダンパー4とは別体で構造部材1、2に設置される場合の例を示している。変形制限材6はダンパー4が跨る構造部材1、2間に跨った状態で両構造部材1、2間に配置され、いずれか一方の構造部材1に、他方の構造部材2側へ張り出した状態で接合される。変形制限材6が張り出す他方の構造部材2側では、変形制限材6とダンパー4の接合部41との間には、構造部材1、2間の相対変形方向にダンパー4が塑性化した後の変形量を制限されるまでの、ダンパー4の一定のせん断変形量を許容するためのクリアランスが確保される。構造部材1、2間の相対変形(相対移動)は正負の向きに交互に繰り返されるから、変形制限材6は構造部材1、2間の相対変形(相対移動)方向の、ダンパー4の両側に配置される。   FIG. 1 shows an example in which the deformation limiting member 6 is installed on the structural members 1 and 2 separately from the damper 4. The deformation limiting member 6 is disposed between the structural members 1 and 2 in a state of straddling between the structural members 1 and 2 over which the damper 4 is straddled, and is in a state of projecting to one of the structural members 1 toward the other structural member 2 Are joined together. On the other structural member 2 side where the deformation limiting material 6 projects, between the deformation limiting material 6 and the joint portion 41 of the damper 4, after the damper 4 is plasticized in the relative deformation direction between the structural members 1 and 2. A clearance for allowing a constant shear deformation amount of the damper 4 until the deformation amount is limited is secured. Since the relative deformation (relative movement) between the structural members 1 and 2 is alternately repeated in the positive and negative directions, the deformation limiting member 6 is placed on both sides of the damper 4 in the relative deformation (relative movement) direction between the structural members 1 and 2. Be placed.

変形制限材6は一方の構造部材1に接合され、他方の構造部材2に接合されないことで、他方の構造部材2が一方の構造部材1に対し、いずれかの向きに相対変形(相対移動)したときに、他方の構造部材2に対して相対移動し、上記クリアランスを超える相対移動時に、他方の構造部材2と共に一方の構造部材1に対して相対変形するダンパー4の接合部41に接触する。変形制限材6はダンパー4の接合部41に接触した時点で、あるいは接触後、一定の変形が進行した時点で、ダンパー4のせん断変形を阻止し、せん断変形を制限する。   The deformation limiting member 6 is joined to one structural member 1 and not joined to the other structural member 2, so that the other structural member 2 is relatively deformed (relative movement) in one direction with respect to the one structural member 1. When this occurs, the relative movement with respect to the other structural member 2 is brought into contact with the joint portion 41 of the damper 4 which is deformed relative to the one structural member 1 together with the other structural member 2 when the relative movement exceeds the clearance. . When the deformation limiting member 6 comes into contact with the joint 41 of the damper 4 or after a certain amount of deformation has progressed after the contact, the damper 4 prevents shear deformation of the damper 4 and restricts shear deformation.

変形制限材6は上記クリアランスを超えるダンパー4のせん断変形時に、ダンパー4の接合部41が接触した時点でダンパー4と共に弾性変形し、ダンパー4の塑性変形部42の変形量の増大を阻止する。変形制限材6の材料は問われないが、主に鋼材等、剛性・耐力の大きい材料で形成(製作)される。   The deformation limiting member 6 is elastically deformed together with the damper 4 at the time when the joint portion 41 of the damper 4 comes into contact when the damper 4 is shear-deformed exceeding the clearance, and prevents an increase in the deformation amount of the plastic deformation portion 42 of the damper 4. The material of the deformation limiting material 6 is not limited, but is mainly formed (manufactured) with a material having high rigidity and strength such as steel.

図1に示す例の場合、ダンパー4がまず弾性変形し、その後の塑性変形する段階で変形制限材6とのクリアランスを超える変形が生じた際に、ダンパー4のそれ以上の変形を変形制限材6が制限する。このダンパー4の変形が制限された段階以降は、その変形での応力の他に変形制限材6が弾性変形する範囲の応力が付加されることにより、ダンパー4が跨る構造部材1と構造部材2に応力を伝達し、構造部材1と構造部材2の全体が耐震性能を発揮する。   In the case of the example shown in FIG. 1, when the damper 4 is first elastically deformed, and the deformation exceeding the clearance with the deformation limiting material 6 occurs at the stage of subsequent plastic deformation, further deformation of the damper 4 is performed. 6 is the limit. After the stage in which the deformation of the damper 4 is restricted, the structural member 1 and the structural member 2 over which the damper 4 straddles are applied by adding a stress within a range in which the deformation limiting member 6 is elastically deformed in addition to the stress in the deformation. Stress is transmitted to the structural member 1 and the entire structural member 1 and the structural member 2 exhibit seismic performance.

図1では変形制限材6を一方の構造部材1に複数本のボルト7を用いて剛に接合し、他方の構造部材2に跨る(重なる)部分(区間)の長さを接合区間の長さより相対的に短くすることで、他方の構造部材2に跨る部分(区間)の剛性を高めて変形を生じにくくし、他方の構造部材2に跨る部分を実質的に剛性の高い部材として形成している。   In FIG. 1, the deformation limiting member 6 is rigidly joined to one structural member 1 using a plurality of bolts 7, and the length of the portion (section) straddling (overlapping) the other structural member 2 is determined from the length of the joining section. By relatively shortening, the rigidity of the portion (section) straddling the other structural member 2 is increased to make it difficult to deform, and the portion straddling the other structural member 2 is formed as a substantially rigid member. Yes.

図1の場合、構造部材1、2間に図2−(a)、(b)に示すように両構造部材1、2が対向する方向(水平方向)に直交する方向(鉛直方向)へ相対変形(相対移動)したときに、ダンパー4の接合部41が変形制限材6に接触することにより、変形制限材6が弾性変形可能な範囲でダンパー4の変形を許容し、それを超える変形を制限する。ダンパー4は変形が制限された後には変形制限材6の剛性に依存した剛性の高い部材として挙動するため、構造部材1、2に力を加える。図2−(a)は他方の構造部材2が一方の構造部材1に対して相対的に上方へ移動したときの様子を、(b)は下方へ移動したときの様子を示している。   In the case of FIG. 1, relative to the direction (vertical direction) orthogonal to the direction (horizontal direction) between the structural members 1 and 2 between the structural members 1 and 2, as shown in FIGS. 2- (a) and (b). When the joint (41) of the damper 4 comes into contact with the deformation restricting member 6 when deformed (relative movement), the damper 4 is allowed to deform within a range in which the deformation restricting member 6 can be elastically deformed, and deformation exceeding that is allowed. Restrict. Since the damper 4 behaves as a highly rigid member depending on the rigidity of the deformation limiting member 6 after the deformation is limited, a force is applied to the structural members 1 and 2. 2A shows a state when the other structural member 2 is moved upward relative to the one structural member 1, and FIG. 2B shows a state when it is moved downward.

構造部材1、2に作用する力は構造部材1、2が対向する方向(図1における水平方向)に直交する方向(図1における鉛直方向)への相対移動時に加えられるから、構造部材1、2の材軸(図1における水平方向)に直交する方向のせん断力になり、この力は構造部材1、2には主に材軸に直交する方向の曲げモーメントとして作用する。   Since the force acting on the structural members 1 and 2 is applied at the time of relative movement in a direction (vertical direction in FIG. 1) orthogonal to the direction in which the structural members 1 and 2 are opposed (horizontal direction in FIG. 1), The shear force is in a direction perpendicular to the second material axis (horizontal direction in FIG. 1), and this force acts on the structural members 1 and 2 mainly as a bending moment in the direction perpendicular to the material axis.

図1は例えば図5−(a)に示す、分離した梁部材が構造部材1、2である場合の例を示す。この場合、構造部材1、2は片持ち梁であるから、材軸に直交する方向の曲げモーメントを受けることで、ダンパー4の変形が制限された後には、構造部材1、2の曲げモーメントが最大になる柱部材側の端部が最終的に曲げ降伏に至り、塑性化することになる。図5−(b)の例においては、ダンパー4の変形が制限された後には、構造部材1、2の曲げモーメントが最大になる部材の端部が曲げ降伏し、塑性化する。図5−(c)の例においても同様に、構造部材1の軸降伏、あるいは構造部材2の端部、または中央部が曲げ降伏し、塑性化する。以上の説明は構造部材1、2の材料及び断面が材軸方向に同じである場合でのことを述べている。   FIG. 1 shows an example in which the separated beam members shown in FIG. In this case, since the structural members 1 and 2 are cantilever beams, the bending moment of the structural members 1 and 2 is limited after deformation of the damper 4 is limited by receiving a bending moment in a direction perpendicular to the material axis. The end on the column member side that becomes the maximum finally reaches bending yielding and plasticizes. In the example of FIG. 5- (b), after the deformation of the damper 4 is restricted, the end portion of the member where the bending moment of the structural members 1 and 2 is maximized is yielded and plasticized. Similarly, in the example of FIG. 5C, the axial yield of the structural member 1 or the end portion or the central portion of the structural member 2 is bent and yielded to be plasticized. The above description describes the case where the materials and cross sections of the structural members 1 and 2 are the same in the material axis direction.

曲げ降伏は材軸方向に材料及び断面が同一であれば、曲げ応力(曲げモーメント/断面係数)が最大になる箇所、すなわち図1の例における柱部材側の端部に生ずる。このように構造部材1、2の全体(全長)の内、相対的に他より先行して降伏を生じ易い箇所(区間)、あるいは降伏を生じさせる予定の箇所(区間)には降伏を想定し、降伏耐力が低下した形態(形状)に形成される。具体的には孔や溝を形成する等により断面積等、断面性能を低下させることにより、あるいは降伏強度の小さい材料を組み合わせる等により降伏区間の降伏耐力が低下させられる。   If the material and the cross section are the same in the material axis direction, the bending yield occurs at the position where the bending stress (bending moment / section modulus) is maximized, that is, at the end on the column member side in the example of FIG. As described above, it is assumed that a portion (section) where the yield is likely to occur relatively ahead of other members (section) among the entire structural members 1 and 2 (full length), or a place (section) where yield is expected to occur is assumed to yield. It is formed in a form (shape) with a reduced yield strength. Specifically, the yield strength of the yield section can be reduced by reducing the cross-sectional performance such as the cross-sectional area by forming holes or grooves, or by combining materials with low yield strength.

図3−(a)は図1に示す例のダンパー4と同じく面内方向のせん断力を受けてせん断変形し、塑性化するせん断変形型で、弾塑性型のダンパー4の製作例を、(b)は(a)に示すせん断変形前のダンパー4のせん断変形後の様子を示している。(c)は(a)のx−x線の断面を示す。図3−(a)に示すダンパー4の構造部材1、2間への設置例を図6−(a)〜(d)に示しているが、図3−(a)のダンパー4は図5−(a)〜(c)に示す例にも使用される。前記の通り、図5−(a)〜(c)では図1、図2に示すダンパー4を示している。   3- (a) is a shear deformation type that undergoes shear deformation in response to a shear force in the in-plane direction, as in the case of the damper 4 of the example shown in FIG. 1, and an example of manufacturing an elastic-plastic type damper 4 ( b) shows a state after the shear deformation of the damper 4 before the shear deformation shown in FIG. (C) shows the cross section of the xx line of (a). An example of installation of the damper 4 shown in FIG. 3A between the structural members 1 and 2 is shown in FIGS. 6A to 6D. The damper 4 shown in FIG. -It is used also for the example shown to (a)-(c). As described above, FIGS. 5A to 5C show the damper 4 shown in FIGS.

図3−(a)はダンパー4に作用するせん断力の作用方向(X方向)に垂直な方向(Y方向)を上下に向けた状態で示しているが、構造部材1、2へのダンパー4の設置状態で水平方向にせん断力が作用するとは必ずしも限らず、図5−(a)、図6−(a)、(c)に示すように設置状態で鉛直方向に作用することもある。   3A shows a state (Y direction) perpendicular to the acting direction (X direction) of the shearing force acting on the damper 4 in a state where the damper 4 is applied to the structural members 1 and 2. In the installed state, the shearing force does not always act in the horizontal direction, and may act in the vertical direction in the installed state as shown in FIGS. 5 (a), 6 (a), and 6 (c).

例えば図5−(a)に示すように構造部材1、2が水平方向に隣接する柱間に架設され、互いに分離した梁(梁部材)である場合には、柱と梁からなるフレームの層間変形時に、構造部材(梁部材)1、2間には鉛直方向に相対変形が生じ、せん断力の作用方向は鉛直方向になるから、ダンパー4は図3−(a)の向きの状態から90度、回転させた状態で構造部材1、2間に設置される。   For example, as shown in FIG. 5A, in the case where the structural members 1 and 2 are beams (beam members) that are installed between columns adjacent in the horizontal direction and are separated from each other, an interlayer between frames composed of columns and beams At the time of deformation, relative deformation occurs between the structural members (beam members) 1 and 2 in the vertical direction, and the acting direction of the shearing force becomes the vertical direction, so that the damper 4 is moved from the state shown in FIG. It is installed between the structural members 1 and 2 in a rotated state.

図5−(b)に示すように構造部材1、2が鉛直方向に隣接する梁間に架設され、互いに分離した間柱である場合には、フレームの層間変形時に構造部材(間柱)1、2間に水平方向に相対変形が生じ、せん断力の作用方向は水平方向になるから、ダンパー4は図3−(a)の向きのまま、構造部材1、2間に設置される。   As shown in FIG. 5- (b), when the structural members 1 and 2 are installed between the beams adjacent in the vertical direction and are separated from each other, the structural members (intermediate columns) 1 and 2 are separated during the interlayer deformation of the frame. Therefore, the damper 4 is placed between the structural members 1 and 2 while maintaining the orientation shown in FIG. 3A.

図5−(c)は一方の構造部材1がブレースで、他方の構造部材2がフレームを構成する梁である場合のダンパー4の設置状態を示しているが、この場合、構造部材1、2間には水平方向に相対変形が生じるから、ダンパー4は図5−(b)の場合と同様、図3−(a)の状態のまま、構造部材1、2間に設置される。ブレースが柱にダンパー4を介して接合される場合には、相対変形は鉛直方向になるから、ダンパー4は図5−(a)と同じ向きで使用される。   FIG. 5C shows an installation state of the damper 4 in the case where one structural member 1 is a brace and the other structural member 2 is a beam constituting a frame. Since the relative deformation occurs in the horizontal direction in the meantime, the damper 4 is installed between the structural members 1 and 2 in the state of FIG. 3A as in the case of FIG. When the brace is joined to the column via the damper 4, the relative deformation is in the vertical direction, so the damper 4 is used in the same direction as in FIG.

図3−(a)に示すダンパー4は本体の中心部、もしくはその付近に位置し、矢印で示すX方向のせん断力を負担してせん断降伏し得る塑性変形部42と、せん断力の作用方向に垂直な方向(Y方向)の、塑性変形部42の両側に位置し、各構造部材1、2に接合される接合部41、41の3部分からなる。図3−(a)、(b)中、ハッチングを入れた領域が塑性変形部42を示している。図面では製作のし易さと構造部材1、2への接合のし易さから、ダンパー4本体の外形を方形状に形成しているが、本体の外形形状は任意であり、多角形状、楕円形状、円形状等にも形成される。   The damper 4 shown in FIG. 3 (a) is located at or near the center of the main body, and a plastically deformable portion 42 that can bear a shearing force in the X direction indicated by an arrow to yield a shearing force, and the direction in which the shearing force acts. It is located on both sides of the plastic deformation part 42 in the direction perpendicular to the direction (Y direction), and consists of three parts, ie, joint parts 41 and 41 joined to the respective structural members 1 and 2. In FIGS. 3A and 3B, hatched regions indicate the plastic deformation portions 42. In the drawing, the outer shape of the main body of the damper 4 is formed in a square shape from the viewpoint of ease of manufacture and ease of joining to the structural members 1 and 2, but the outer shape of the main body is arbitrary, polygonal, elliptical It is also formed in a circular shape or the like.

図3に示す例では、両接合部41、41間の相対変形を生じさせ易くするために、塑性変形部42のせん断力作用方向(X方向)外側から、せん断力作用方向(X方向)に平行に本体の端部にまで連続する横スリット4aを形成している。横スリット4aはせん断力作用方向に垂直な方向(Y方向)には、塑性変形部42にせん断変形を生じさせる上で、塑性変形部2の中心部位置、あるいはその付近から形成され、原則としては塑性変形部42の(Y方向の)高さの範囲内に形成される。横スリット4aは塑性変形部42のY方向の境界位置に形成される場合もあり、その場合、後述の縦スリット4bは塑性変形部42寄りの端部からY方向の一方の接合部41側へかけて形成される。   In the example shown in FIG. 3, in order to easily cause the relative deformation between the joint portions 41, 41, the outer side of the plastic deformation portion 42 in the shearing force acting direction (X direction) is changed to the shearing force acting direction (X direction). A horizontal slit 4a is formed in parallel to the end of the main body. The transverse slit 4a is formed in the direction perpendicular to the shearing force acting direction (Y direction) from the central position of the plastic deformation part 2 or its vicinity in order to cause the plastic deformation part 42 to undergo shear deformation. Is formed within the range of the height (in the Y direction) of the plastic deformation portion 42. The horizontal slit 4a may be formed at the boundary position in the Y direction of the plastic deformation portion 42. In this case, a vertical slit 4b described later is directed from the end near the plastic deformation portion 42 to the one joint portion 41 side in the Y direction. It is formed over.

両側の接合部41、41間にせん断力作用方向に横スリット4aが形成されていることで、ダンパー4がせん断力を負担するとき、接合部41、41間にせん断力作用方向に相対変形が生じ易くなり、接合部41、41間に相対変形が生じにくいことによる初期剛性の高さが緩和(調整)されているため、塑性変形部42に変形(せん断変形)が集中し易くなっている。   By forming the horizontal slit 4a in the shearing force acting direction between the joint portions 41, 41 on both sides, when the damper 4 bears the shearing force, relative deformation in the shearing force acting direction occurs between the joining portions 41, 41. It is easy to occur, and since the height of the initial rigidity due to the relative deformation hardly occurring between the joint portions 41 and 41 is relaxed (adjusted), the deformation (shear deformation) is easily concentrated on the plastic deformation portion 42. .

横スリット4a形成と同様の理由と、横スリット4a形成の効果を高める目的から、横スリット4aの塑性変形部42寄りの端部から連続し、少なくともいずれかの接合部41側へかけて縦スリット4bが形成される。図3は縦スリット4bを横スリット4aの塑性変形部42寄りの端部から両接合部41、41へかけて、X方向の中心線に関して線対称に形成した場合の例を示しているが、この場合、縦スリット4bは横スリット4aの塑性変形部42側の端部から、せん断力作用方向に垂直な方向(Y方向)には、接合部41の中間部まで、Y方向両側の接合部41、41に対して均等な長さで形成される。   For the same reason as the formation of the horizontal slit 4a and the purpose of enhancing the effect of forming the horizontal slit 4a, the vertical slit is continuous from the end of the horizontal slit 4a near the plastic deformation portion 42 and toward at least one of the joint portions 41. 4b is formed. FIG. 3 shows an example in which the vertical slit 4b is formed symmetrically with respect to the center line in the X direction from the end of the horizontal slit 4a near the plastic deformation portion 42 to both joints 41 and 41. In this case, the longitudinal slit 4b extends from the end of the lateral slit 4a on the plastic deformation portion 42 side to the intermediate portion of the joint portion 41 in the direction perpendicular to the shearing force acting direction (Y direction). 41 and 41 are formed with an equal length.

縦スリット4bの長さ方向両端位置は塑性変形部42に生ずるせん断変形を区画する基準の位置になり、縦スリット4bの長さ方向両端位置を通る、X方向に平行な線に沿った領域で塑性変形部42にせん断変形が生じようとするため、縦スリット4bの両端は塑性変形部42のY方向の境界位置に揃えられ、縦スリット4bは塑性変形部42(Y方向の)高さの範囲に亘る長さを持つ。   Both longitudinal positions of the longitudinal slit 4b are reference positions for partitioning shear deformation generated in the plastic deformation portion 42, and are regions along a line parallel to the X direction passing through both longitudinal positions of the longitudinal slit 4b. Since shear deformation tends to occur in the plastic deformation portion 42, both ends of the vertical slit 4b are aligned with the boundary position in the Y direction of the plastic deformation portion 42, and the vertical slit 4b has a height of the plastic deformation portion 42 (in the Y direction). It has a length that spans a range.

横スリット4aの塑性変形部42寄りの端部から縦スリット4bが形成されることで、接合部41は塑性変形部42から、図3−(a)に矢印で示すせん断力作用方向(X方向)に垂直な方向(Y方向)に連続する中心部41aと、この中心部41aからせん断力作用方向(X方向)両側に連続する側部41b、41bの3領域に更に区分(細分化)される。   By forming the longitudinal slit 4b from the end of the transverse slit 4a near the plastic deformation portion 42, the joint portion 41 is moved from the plastic deformation portion 42 to the shearing force acting direction (X direction) indicated by an arrow in FIG. ) Is further divided (subdivided) into three regions: a central portion 41a continuous in a direction perpendicular to the Y direction (Y direction) and side portions 41b and 41b continuous from the central portion 41a on both sides of the shearing force acting direction (X direction). The

塑性変形部42を挟んで、せん断力作用方向に垂直な方向(Y方向)の両側に位置する接合部41、41はそれぞれの側部41b、41bにおいてその両者間に形成される横スリット4aによって明確に分離する。接合部41は構造部材1、2には主にボルト接合、もしくは溶接により接合されるが、ボルト接合される場合には、図示するように接合部41にボルト7が挿通する挿通孔41cが形成される。   The joint portions 41 and 41 located on both sides of the direction perpendicular to the shearing force acting direction (Y direction) across the plastic deformation portion 42 are formed by lateral slits 4a formed between the side portions 41b and 41b. Clearly separate. The joint portion 41 is joined to the structural members 1 and 2 mainly by bolt joining or welding, but in the case of bolt joining, an insertion hole 41c through which the bolt 7 is inserted is formed as shown in the figure. Is done.

横スリット4aの塑性変形部42寄りの端部からは縦スリット4bが少なくともいずれか一方の接合部41へかけ、連続して形成されていることで、接合部41の中心部41aと側部41b、41bの各領域は縦スリット4bを挟んで明確に区分される。この縦スリット4bの形成によって接合部41の中心部41aと側部41b間は図3−(a)のせん断変形状態を示す(b)に示すように互いに接近し、あるいは遠ざかる相対変形が生じ易くなっているため、塑性変形部42のせん断変形は一層、発生し易くなり、塑性変形部42の変形能力が高まる。   The longitudinal slit 4b extends from at least the end portion of the horizontal slit 4a near the plastic deformation portion 42 to at least one of the joint portions 41, so that the central portion 41a and the side portion 41b of the joint portion 41 are continuously formed. , 41b are clearly divided across the vertical slit 4b. Due to the formation of the vertical slit 4b, the central portion 41a and the side portion 41b of the joint portion 41 are likely to be relatively deformed to approach or move away from each other as shown in FIG. 3- (a) showing the shear deformation state. Therefore, the shear deformation of the plastic deformation portion 42 is more easily generated, and the deformation capability of the plastic deformation portion 42 is increased.

すなわち、横スリット4aと、その塑性変形部42寄りの端部から連続する縦スリット4bの形成によってダンパー4のせん断変形時の初期剛性が緩和、あるいは低減され、同時に塑性化後の変形能力が向上し、純粋にせん断変形により塑性変形部42を降伏させ、履歴エネルギ吸収能力を発揮させることが可能になっている。   That is, the initial rigidity at the time of shear deformation of the damper 4 is reduced or reduced by the formation of the horizontal slit 4a and the vertical slit 4b continuous from the end near the plastic deformation portion 42, and at the same time, the deformation capacity after plasticization is improved. However, the plastic deformation portion 42 is yielded by purely shear deformation, and the hysteresis energy absorbing ability can be exhibited.

Y方向両側の接合部41、41を区切る横スリット4aと、各接合部41を中心部41aと側部41b、41bに区切る縦スリット4bの形成によってダンパー4は両接合部41、41においてX方向のせん断力を受けたときにハッチングで示す塑性変形部42がせん断変形する。ダンパー4のせん断変形時、例えば方形状(長方形状)の塑性変形部42は図3−(b)に示すように平行四辺形状にせん断変形し、長方形の状態で縦向きの辺は変形後に斜辺になる。   Due to the formation of the horizontal slits 4a separating the joints 41, 41 on both sides in the Y direction and the vertical slits 4b separating each joint 41 into a central part 41a and side parts 41b, 41b, the damper 4 is in the X direction at both joints 41, 41. When receiving the shearing force, the plastic deformation portion 42 indicated by hatching undergoes shear deformation. At the time of shear deformation of the damper 4, for example, the rectangular (rectangular) plastic deformation portion 42 is shear-deformed into a parallelogram shape as shown in FIG. become.

接合部41は構造部材1(2)には主にボルト接合、もしくは溶接により接合されるが、図面ではボルト7により接合する場合を想定し、接合部41にボルト7が挿通する挿通孔41cを形成しているため、挿通孔41cが形成されている領域が接合部41に該当する。接合部41はX方向に中心部41aと両側の側部41bに区分されているため、挿通孔41cは中心部41aと側部41bに形成される。ダンパー4本体の中心部である塑性変形部42に関しては、Y方向両側に接合部41の中心部41a、41aが位置し、この各中心部41aに関し、X方向両側に側部41b、41bが位置する。   The joint portion 41 is joined to the structural member 1 (2) mainly by bolt joining or welding. In the drawing, assuming that the joint portion 41 is joined by the bolt 7, an insertion hole 41c through which the bolt 7 is inserted is formed in the joint portion 41. Since it is formed, the region where the insertion hole 41 c is formed corresponds to the joint portion 41. Since the joint part 41 is divided into the center part 41a and the side parts 41b on both sides in the X direction, the insertion hole 41c is formed in the center part 41a and the side part 41b. With respect to the plastic deformation portion 42 which is the center portion of the damper 4 main body, the center portions 41a and 41a of the joint portion 41 are located on both sides in the Y direction, and the side portions 41b and 41b are located on both sides in the X direction with respect to each center portion 41a. To do.

各接合部41の側部41bはせん断力作用方向に垂直な方向(Y方向)には横スリット4aを挟んで互いに隣接し、せん断力作用方向(X方向)には縦スリット4bを挟んで塑性変形部42と隣接するため、塑性変形部42はせん断力作用方向に垂直な方向(Y方向)には接合部41の中心部41a、41aに挟まれ、せん断力作用方向(X方向)には接合部41の側部41b、41bに挟まれた形になっている。   The side portions 41b of the joint portions 41 are adjacent to each other with the transverse slit 4a interposed in the direction perpendicular to the shearing force acting direction (Y direction), and are plastic with the longitudinal slit 4b sandwiched in the shearing force acting direction (X direction). Since the plastic deformation portion 42 is adjacent to the deformation portion 42, the plastic deformation portion 42 is sandwiched between the central portions 41a and 41a of the joint portion 41 in the direction perpendicular to the shearing force acting direction (Y direction) and in the shearing force acting direction (X direction). The shape is sandwiched between the side portions 41 b and 41 b of the joint portion 41.

図3−(a)に示す状態からダンパー4にX方向のせん断力が作用したとき、縦スリット4bの存在によりY方向には、図3−(b)に示すように塑性変形部42と側部41bとの間に相対変形が生じ得る状態にあり、横スリット4aの存在により横スリット4aを挟んで隣接する側部41b、41b間にX方向に相対変形が生じ得る状態にある。   When a shearing force in the X direction acts on the damper 4 from the state shown in FIG. 3- (a), the presence of the longitudinal slit 4b causes the plastic deformation portion 42 and the side in the Y direction as shown in FIG. 3- (b). It is in a state where relative deformation can occur with the portion 41b, and due to the presence of the lateral slit 4a, relative deformation in the X direction can occur between the adjacent side portions 41b and 41b across the lateral slit 4a.

塑性変形部42と側部41bとの間に生じる相対変形は縦スリット4bの、X方向に対向する内周面間距離の範囲で、対向する内周面同士が接触するまで可能であり、その相対変形が可能な範囲で、横スリット4aを挟んでY方向に隣接する側部41b、41b間にもX方向に相対変形が生じる。   Relative deformation occurring between the plastic deformation portion 42 and the side portion 41b is possible within the range of the distance between the inner peripheral surfaces of the vertical slit 4b facing each other in the X direction until the inner peripheral surfaces facing each other come into contact with each other. Relative deformation occurs in the X direction between the side portions 41b and 41b adjacent in the Y direction across the horizontal slit 4a within a range in which relative deformation is possible.

Y方向に隣接する側部41b、41b間に生ずるX方向の相対変形に伴い、図3−(b)に示すようにX方向に対向する側部41bと塑性変形部42との間の距離(縦スリット4bの幅)が縮小しようとするため、Y方向に隣接する側部41b、41b間のX方向の相対変形は理論上、このX方向に対向する側部41bと塑性変形部42との間(縦スリット4b)の対向する内周面同士が互いに接触するまで可能である。よって縦スリット4bのX方向に対向する内周面同士が接触した時点で、塑性変形部42と側部41bとの間に生じる相対変形が止まり、それ以上の変形が制限されるため、隣接する側部41b、41b間のX方向の相対変形も制限される。   Along with the relative deformation in the X direction occurring between the side portions 41b and 41b adjacent in the Y direction, as shown in FIG. 3B, the distance between the side portion 41b facing the X direction and the plastic deformation portion 42 (see FIG. The relative deformation in the X direction between the side portions 41b and 41b adjacent in the Y direction is theoretically reduced between the side portion 41b facing the X direction and the plastic deformation portion 42. This is possible until the inner peripheral surfaces facing each other (vertical slit 4b) come into contact with each other. Therefore, when the inner peripheral surfaces opposed to each other in the X direction of the vertical slit 4b come into contact with each other, the relative deformation generated between the plastic deformation portion 42 and the side portion 41b is stopped, and further deformation is limited, so that they are adjacent to each other. The relative deformation in the X direction between the side portions 41b and 41b is also limited.

結局、X方向に対向する塑性変形部42と側部41bとの間に生じるX方向の相対変形、並びに隣接する側部41b、41b間に生じるX方向の相対変形は縦スリット4bのX方向に対向する内周面同士が接触するまで増大し得るが、縦スリット4bの内周面同士が接触した時点で、相対変形が停止することになる。塑性変形部42と側部41bとの間に生じる相対変形と、隣接する側部41b、41b間に生じる相対変形はダンパー4全体のせん断変形でもある。   Eventually, the relative deformation in the X direction that occurs between the plastic deformation portion 42 and the side portion 41b facing each other in the X direction, and the relative deformation in the X direction that occurs between the adjacent side portions 41b and 41b occur in the X direction of the longitudinal slit 4b. Although it can be increased until the opposing inner peripheral surfaces come into contact with each other, the relative deformation stops when the inner peripheral surfaces of the vertical slits 4b come into contact with each other. The relative deformation that occurs between the plastic deformation portion 42 and the side portion 41 b and the relative deformation that occurs between the adjacent side portions 41 b and 41 b are also shear deformation of the entire damper 4.

前記のように図3−(a)に示す平常状態から、ダンパー4がX方向の矢印で示す向きにせん断力を受け、せん断変形を起こしたときの様子を(b)に示しているが、(b)に示すようにダンパー4のせん断変形に伴い、塑性変形部42に関して下側(上側)の接合部41が上側(下側)の接合部41に対して矢印で示す向き(矢印の先端側)に相対変形する。   FIG. 3B shows the state when the damper 4 receives a shearing force in the direction indicated by the arrow in the X direction from the normal state shown in FIG. As shown in (b), with the shear deformation of the damper 4, the lower (upper) joining portion 41 with respect to the plastic deformation portion 42 is directed in the direction indicated by the arrow with respect to the upper (lower) joining portion 41 (the tip of the arrow). Side).

このとき、接合部41の、せん断力が作用する向き(矢印の先端側)に位置する側部41bと塑性変形部42との間の縦スリット4bの対向する内周面間距離は拡大するが、接合部41の、せん断力が作用する向きと逆側(矢印の根本側)に位置する側部41bと塑性変形部42との間の縦スリット4bの対向する内周面間距離は縮小する。   At this time, the distance between the opposing inner peripheral surfaces of the vertical slit 4b between the side portion 41b located in the direction in which the shearing force acts (the tip end side of the arrow) of the joint portion 41 and the plastic deformation portion 42 is increased. The distance between the opposing inner peripheral surfaces of the vertical slit 4b between the side portion 41b located on the side opposite to the direction in which the shearing force acts on the joining portion 41 (the base side of the arrow) and the plastic deformation portion 42 is reduced. .

ここで、接合部41の、せん断力が作用する向き(矢印の先端側)に位置する側部41bは図3−(b)では塑性変形部42に関して上側の左側に位置する側部41bと、下側の右側に位置する側部41bを指し、接合部41の、せん断力が作用する向きと逆側(矢印の根本側)に位置する側部41bは塑性変形部42に関して上側の右側に位置する側部41bと、下側の左側に位置する側部41bを指す。   Here, the side portion 41b of the joint portion 41 located in the direction in which the shearing force acts (the tip end side of the arrow) is the side portion 41b located on the upper left side with respect to the plastic deformation portion 42 in FIG. This refers to the side portion 41b located on the lower right side, and the side portion 41b located on the side opposite to the direction in which the shearing force acts on the joint portion 41 (the base side of the arrow) is located on the upper right side with respect to the plastic deformation portion 42. The side part 41b which performs, and the side part 41b located in the lower left side are pointed out.

図3−(b)に示す変形状態をより詳しく言えば、塑性変形部42が図3−(b)に示すようにせん断変形するとき、塑性変形部42を区画する線になる縦スリット4bの塑性変形部42側の内周面は(a)に示す変形前の、Y方向に平行(X方向に垂直)な状態から傾斜する。   More specifically, the deformation state shown in FIG. 3- (b) is such that when the plastic deformation portion 42 undergoes shear deformation as shown in FIG. 3- (b), the longitudinal slit 4b that forms a line defining the plastic deformation portion 42 is formed. The inner peripheral surface on the plastic deformation portion 42 side is inclined from the state parallel to the Y direction (perpendicular to the X direction) before the deformation shown in FIG.

一方、その塑性変形部42側の内周面に対向する側部41b側の内周面は塑性変形部42のせん断変形後も変形前の状態(角度)を維持しながら、横スリット4aを挟んでY方向に隣接する側部41b、41b間にX方向に相対変形が生ずる。この側部41b、41b間のX方向の相対変形はほぼ、互いに平行なまま、逆向きに移動(平行移動)するように生ずる。この側部41b、41b間のX方向の相対変形時に相対的に塑性変形部42側へ接近する側の側部41b(上側の右側に位置する側部41bと、下側の左側に位置する側部41b)の内周面が横スリット4a側で塑性変形部42側の内周面に接近する。   On the other hand, the inner peripheral surface on the side portion 41b facing the inner peripheral surface on the plastic deformation portion 42 side sandwiches the lateral slit 4a while maintaining the state (angle) before the deformation after the shear deformation of the plastic deformation portion 42. Thus, relative deformation occurs in the X direction between the side portions 41b and 41b adjacent in the Y direction. The relative deformation in the X direction between the side portions 41b and 41b is caused to move in the opposite direction (parallel movement) while being substantially parallel to each other. The side portion 41b (the side portion 41b located on the upper right side and the side located on the lower left side) that is relatively closer to the plastic deformation portion 42 side during the relative deformation in the X direction between the side portions 41b and 41b. The inner peripheral surface of the portion 41b) approaches the inner peripheral surface on the plastic deformation portion 42 side on the lateral slit 4a side.

従って縦スリット4bの全長の内、Y方向に隣接する側部41b、41b間の相対変形時に相対的に塑性変形部42側へ接近する側の側部41bの内周面が横スリット4a寄りで塑性変形部42側の内周面に接触し易い。このため、例えば図3−(a)に示すように縦スリット4bの対向する内周面が互いに平行で、Y方向に平行である場合には、塑性変形部42側へ接近する側の側部41bの内周面の内、図3−(b)に示すように横スリット4a寄りの部分(区間)が他の部分に先行して塑性変形部42側の内周面に接触しようとする。   Accordingly, the inner peripheral surface of the side portion 41b that is relatively close to the plastic deformation portion 42 side at the time of relative deformation between the side portions 41b and 41b adjacent to each other in the Y direction is closer to the lateral slit 4a. It is easy to contact the inner peripheral surface on the plastic deformation portion 42 side. For this reason, for example, as shown in FIG. 3A, when the inner peripheral surfaces facing each other of the vertical slits 4b are parallel to each other and parallel to the Y direction, the side portion on the side approaching the plastic deformation portion 42 side. Of the inner peripheral surface of 41b, as shown in FIG. 3B, the portion (section) near the lateral slit 4a tries to contact the inner peripheral surface on the plastic deformation portion 42 side prior to the other portion.

ダンパー4のせん断変形時に、縦スリット4bの対向する内周面間距離が縮小する側に位置する側部41bと塑性変形部42との間では、縦スリット4bの対向する内周面の内、側部41bの内周面は塑性変形部42のせん断変形時にも傾斜しないにも拘らず、塑性変形部42の内周面は前記のように傾斜するため、塑性変形部42の内周面と側部41bの内周面との間の距離が縮まろうとする。   During the shear deformation of the damper 4, between the side portion 41 b located on the side where the distance between the opposing inner peripheral surfaces of the vertical slit 4 b is reduced and the plastic deformation portion 42, the inner peripheral surface opposing the vertical slit 4 b, Although the inner peripheral surface of the side portion 41b does not incline during the shear deformation of the plastic deformation portion 42, the inner peripheral surface of the plastic deformation portion 42 inclines as described above. The distance between the inner peripheral surface of the side portion 41b tends to be reduced.

このようにダンパー4のせん断変形時には実質的に塑性変形部42がせん断変形し、その外形線の内、Y方向に平行な辺が傾斜することから、縦スリット4bの端部(横スリット4aの反対側の端部)に変形が集中し、端部の内周面に応力が集中することになる。   Thus, when the damper 4 is shear-deformed, the plastically deformed portion 42 is substantially shear-deformed, and the side parallel to the Y direction in the outline is inclined, so that the end of the vertical slit 4b (the side slit 4a Deformation concentrates on the opposite end), and stress concentrates on the inner peripheral surface of the end.

図3−(b)に示すように縦スリット4bの接合部41寄りの端部の内、塑性変形部42側の内周面は塑性変形部42がせん断変形し、接合部41の中心部41aと側部41bとの間に相対変形が生じるときに、例えば方形状の塑性変形部42は平行四辺形状に変形しようとすることで、周方向に伸長し、収縮しようとするため、矩形状であれば、亀裂が生ずる可能性がある。   As shown in FIG. 3B, the plastic deformation portion 42 is shear-deformed on the inner peripheral surface on the plastic deformation portion 42 side of the end portion of the vertical slit 4b near the joint portion 41, and the central portion 41a of the joint portion 41 is obtained. When a relative deformation occurs between the side portion 41b and the side portion 41b, for example, the rectangular plastic deformation portion 42 tends to be deformed into a parallelogram shape, so that it extends in the circumferential direction and contracts. If present, cracks may occur.

このことから、縦スリット4bの接合部41寄りの端部の内、中心部41a寄り(側部41bの反対側)の内周面は図示するように曲面を有する湾曲した形状に形成されることが適切である。縦スリット4bの接合部41寄りの端部の内、接合部41の側部41b寄りの内周面は方形状の塑性変形部2が平行四辺形状に変形しようとするときにも、図3−(b)に示すように伸長し、収縮することがないか、少ないため、必ずしも湾曲した形状に形成される必要はない。   For this reason, the inner peripheral surface near the central portion 41a (opposite side of the side portion 41b) in the end portion close to the joint portion 41 of the vertical slit 4b is formed in a curved shape having a curved surface as shown in the figure. Is appropriate. Of the end portions of the vertical slit 4b near the joint portion 41, the inner peripheral surface of the joint portion 41 near the side portion 41b is also deformed when the rectangular plastic deformation portion 2 tries to deform into a parallelogram. As shown in (b), it does not need to be formed into a curved shape because it expands and does not shrink or is small.

特に塑性変形部42のせん断変形により縦スリット4bの端部の内、塑性変形部42側の内周面に変形が集中するため、その部分への応力集中による亀裂、破断を回避する目的で、図面では縦スリット4bの端部の塑性変形部42側の内周面を湾曲させ、立面上は曲線状に形成している。縦スリット4bの端部を湾曲させる場合の湾曲形状は問われず、立面上は円弧状、楕円弧状、円形状等に形成される。   In particular, the deformation is concentrated on the inner peripheral surface on the plastic deformation portion 42 side in the end portion of the vertical slit 4b due to the shear deformation of the plastic deformation portion 42. Therefore, for the purpose of avoiding cracks and breaks due to stress concentration on the portion, In the drawing, the inner peripheral surface of the end portion of the vertical slit 4b on the plastic deformation portion 42 side is curved, and the vertical surface is formed in a curved shape. The curved shape when the end portion of the vertical slit 4b is curved is not limited, and the vertical surface is formed in an arc shape, an elliptical arc shape, a circular shape, or the like.

横スリット4aと縦スリット4bの形成によって塑性変形部42の変形能力が向上し、エネルギ吸収能力が向上しながらも、その能力を発揮させる上で、塑性変形部42の領域自体(区画)の立面形状が方形状であるか否か、制約されることがないため、塑性変形部42は単純な場合、方形状の立面形状に形成されていればよい。この結果、塑性変形部42の設計とその周囲に配置される接合部41(中心部41aと側部41b)の設計(形状選択)上の自由度が増し、任意の形状(形態)に形成可能になる。また塑性変形部42をせん断変形により降伏させながらも、塑性変形部42の塑性変形能力を高める上で、塑性変形部42に対する孔あけ加工の必要がない。   The formation of the horizontal slit 4a and the vertical slit 4b improves the deformation capability of the plastic deformation portion 42, and improves the energy absorption capability. Since whether or not the surface shape is a square shape is not restricted, the plastic deformation portion 42 only needs to be formed in a rectangular vertical surface shape in a simple case. As a result, the degree of freedom in the design (shape selection) of the plastic deformation portion 42 and the design (shape selection) of the joint portion 41 (center portion 41a and side portion 41b) arranged around the plastic deformation portion 42 can be increased and can be formed in an arbitrary shape (form). become. Further, there is no need for drilling the plastic deformation portion 42 in order to increase the plastic deformation capability of the plastic deformation portion 42 while yielding the plastic deformation portion 42 by shear deformation.

図3−(a)はまた、塑性変形部42の面内のせん断変形を生じさせ易くする目的で、塑性変形部42の縦スリット4b寄りの位置に、ダンパー4本体の表面に、塑性変形部42の曲げ剛性を高める縦補剛材4cを突設した場合の製作例も示している。「塑性変形部42の縦スリット4b寄りの位置」は「縦スリット4bの塑性変形部42側へ寄った位置」とも言い換えられる。塑性変形部42の表面への縦補剛材4cの突設により塑性変形部42を含むダンパー4本体の面内の曲げモーメントに対する曲げ剛性が高まるため、塑性変形部42を面内での曲げ降伏をせん断降伏に先行させない状態が得られる。   FIG. 3A also shows that the plastic deformation portion 42 is positioned on the surface of the damper 4 main body at a position near the vertical slit 4b of the plastic deformation portion 42 for the purpose of easily causing in-plane shear deformation of the plastic deformation portion 42. A manufacturing example in the case where the vertical stiffener 4c for enhancing the bending rigidity of 42 is provided is also shown. The “position of the plastic deformation portion 42 close to the vertical slit 4b” is also referred to as “the position of the vertical slit 4b close to the plastic deformation portion 42”. Since the longitudinal stiffener 4c protrudes from the surface of the plastic deformation portion 42, the bending rigidity against the bending moment in the plane of the damper 4 main body including the plastic deformation portion 42 is increased, so that the plastic deformation portion 42 is bent and yielded in the plane. Is not preceded by shear yielding.

塑性変形部42に発生させようとする面内のせん断変形を確実(明確)に生じさせる上では、塑性変形部42を極力、面内で曲げ降伏させないことが必要になる。曲げ降伏応力度は曲げモーメントの作用方向の曲げ剛性(断面二次モーメント)に支配されるため、例えば塑性変形部42に、塑性変形部42の曲げ剛性を高めるリブ(縦補剛材4c)を突設(形成)すれば、塑性変形部42の曲げ剛性を上昇させ、せん断降伏に先行して曲げ降伏が発生しない性能を塑性変形部42に与えることができる。縦補剛材4cは塑性変形部42の縦スリット4b寄りの位置(縦スリット4bの塑性変形部42側)に、ダンパー4本体の面外方向に突設される。   In order to surely (clearly) generate in-plane shear deformation to be generated in the plastic deformation portion 42, it is necessary to prevent the plastic deformation portion 42 from bending and yielding as much as possible. Since the bending yield stress level is governed by the bending rigidity (second moment of section) in the direction of the bending moment, for example, a rib (vertical stiffener 4c) that increases the bending rigidity of the plastic deformation portion 42 is provided on the plastic deformation portion 42. If projecting (formed), the bending rigidity of the plastic deformation portion 42 can be increased, and the plastic deformation portion 42 can be given a performance that does not cause bending yield prior to shear yielding. The vertical stiffener 4c is projected in a direction outside the surface of the damper 4 body at a position near the vertical slit 4b of the plastic deformation portion 42 (on the plastic deformation portion 42 side of the vertical slit 4b).

縦補剛材4cは塑性変形部42に作用するせん断力に対して塑性変形部42を曲げ降伏させないように曲げ変形に対して補剛する働きをするから、図3−(a)に示すように縦補剛材4cの中心(軸)が縦スリット4bに平行な状態で、ダンパー4本体の表面に突設されることが適切であるが、必ずしも縦スリット4bに平行である必要はない。   The longitudinal stiffener 4c acts to stiffen the bending deformation so as not to bend and yield the plastic deformation portion 42 against the shearing force acting on the plastic deformation portion 42, as shown in FIG. In addition, it is appropriate that the center (axis) of the vertical stiffener 4c is protruded from the surface of the damper 4 body in a state parallel to the vertical slit 4b, but it is not necessarily required to be parallel to the vertical slit 4b.

塑性変形部42の縦スリット4b寄りの部分は縦スリット4bの存在により、接合部41の中心部41aより変形量が大きくなり易く、中心部41aより先行して降伏することが想定されるため、図3−(a)、(b)に示すように縦補剛材4cは塑性変形部42の縦スリット4b寄りの部分に配置されることが合理的である。また塑性変形部42内に、あるいは塑性変形部42から接合部41へ移行する境界に、せん断力作用方向に断面積の急変箇所を形成しないために、縦補剛材4cは塑性変形部42から接合部41(中心部41a)側へかけて(跨って)突設されることが望ましい。   The portion near the vertical slit 4b of the plastic deformation portion 42 is likely to be deformed more easily than the central portion 41a of the joint portion 41 due to the presence of the vertical slit 4b, and it is assumed that the yielding precedes the central portion 41a. As shown in FIGS. 3A and 3B, it is reasonable that the vertical stiffener 4c is disposed in a portion of the plastic deformation portion 42 near the vertical slit 4b. Further, in order not to form a sudden change portion of the cross-sectional area in the direction of the shearing force in the plastic deformation portion 42 or at the boundary from the plastic deformation portion 42 to the joint portion 41, the longitudinal stiffener 4c is separated from the plastic deformation portion 42. It is desirable to project from (to straddle) the joint 41 (center 41a) side.

図3−(a)では縦補剛材4cが板状であることから、縦スリット4bに平行に縦補剛材4cを突設しているが、塑性変形部42のX方向を向く中心線に関して均等に効果を発揮させる上では、縦補剛材4cが板状であるか否かに関係なく、縦補剛材4cの中心線が縦スリット4bに平行であればよい。   In FIG. 3- (a), since the vertical stiffener 4c is plate-shaped, the vertical stiffener 4c protrudes in parallel to the vertical slit 4b, but the center line of the plastic deformation portion 42 that faces in the X direction. In order to achieve the same effect, the center line of the vertical stiffener 4c may be parallel to the vertical slit 4b regardless of whether the vertical stiffener 4c is plate-shaped.

ダンパー4に作用するせん断力によりダンパー4本体、特に塑性変形部42に生ずる曲げモーメントはY方向を向く軸に関してX方向両側に三角形状に分布するため、ダンパー4本体面内のX方向の曲げ剛性(断面二次モーメント)を上昇させながら、せん断降伏を阻害しない形状になるように、縦補剛材4cが配置されることが合理的である。図面ではダンパー4本体の片面に関して板状の縦補剛材4cをY方向に向けてダンパー4本体に溶接等により接合しているが、縦補剛材4cの形態と向きは任意である。   The bending moment generated in the damper 4 main body, particularly the plastic deformation portion 42 due to the shearing force acting on the damper 4 is distributed in a triangular shape on both sides in the X direction with respect to the axis facing the Y direction. It is reasonable to arrange the longitudinal stiffener 4c so as to have a shape that does not hinder shear yielding while increasing the (second moment of section). In the drawing, the plate-like vertical stiffener 4c is joined to the damper 4 main body by welding or the like with respect to one side of the damper 4 main body in the Y direction, but the form and orientation of the vertical stiffener 4c are arbitrary.

縦補剛材4cがない状態の塑性変形部42のせん断変形とせん断降伏はせん断剛性の低下する縦スリット4b、4b側で生じ易いから、縦補剛材4cの付加によって塑性変形部42のせん断剛性を補う上では、縦補剛材4cは塑性変形部42の縦スリット4b、4b寄りに配置されることが望ましい。縦補剛材4cはまた、ダンパー4本体の表面に突設されることで、塑性変形部42に限らず、ダンパー4本体全体の曲げ剛性とせん断剛性を高める働きもするため、図面では縦補剛材4cを塑性変形部42から接合部41(中心部41a)側へかけて突設することで、接合部41への挿通孔41cの形成による剛性低下分を補っている。   Since the shear deformation and the shear yield of the plastic deformation portion 42 without the vertical stiffener 4c are likely to occur on the side of the vertical slits 4b and 4b where the shear rigidity is lowered, the shear of the plastic deformation portion 42 is added by the addition of the vertical stiffener 4c. In order to supplement the rigidity, it is desirable that the vertical stiffener 4c be disposed near the vertical slits 4b and 4b of the plastic deformation portion 42. The vertical stiffener 4c is also provided on the surface of the damper 4 main body so as to increase not only the plastic deformation portion 42 but also the bending rigidity and shear rigidity of the entire damper 4 main body. By projecting the rigid member 4 c from the plastic deformation portion 42 toward the joint portion 41 (center portion 41 a), the rigidity reduction due to the formation of the insertion hole 41 c in the joint portion 41 is compensated.

図3−(a)は更に、ダンパー4へのせん断力の作用に伴って塑性変形部42にせん断力の作用方向に対し、45度等、交差した方向に生ずる斜張力に抵抗可能な座屈補剛材4dを塑性変形部42に突設した場合の例を示している。(a)ではせん断力作用方向(X方向)に平行に板状の座屈補剛材4dを突設した場合を示しているが、せん断力作用方向に垂直な方向(Y方向)に平行に突設することもある。座屈補剛材4dの材軸が斜張力の作用方向に交差する方向を向いていれば、座屈補剛材4dは斜張力に抵抗可能であるため、座屈補剛材4dの形態と材軸の向きは任意である。   Further, FIG. 3A shows a buckling capable of resisting an oblique tension generated in an intersecting direction such as 45 degrees with respect to the direction of the shearing force applied to the plastic deformation portion 42 in accordance with the action of the shearing force on the damper 4. An example in which the stiffening material 4d is provided on the plastic deformation portion 42 is shown. (A) shows a case where a plate-shaped buckling stiffener 4d is projected in parallel to the shearing force acting direction (X direction), but parallel to the direction (Y direction) perpendicular to the shearing force acting direction. Sometimes projecting. Since the buckling stiffener 4d can resist the slant tension if the material axis of the buckling stiffener 4d is oriented in the direction intersecting the direction of the action of the slant tension, the configuration of the buckling stiffener 4d The direction of the material axis is arbitrary.

図3に示すダンパー4が図5−(a)に示すように互いに分離した梁部材等、水平部材間に設置(跨設)される場合も、図5−(b)に示すように互いに分離した間柱等、鉛直部材間に設置(跨設)される場合も、ダンパー4は横スリット4a(切り込み)を有する形状から、塑性変形部42を挟んだ両側の接合部41、41間が互いに平行な状態を維持したまま、せん断力作用方向に相対変形しようとする傾向が強まり、その結果として塑性変形部42がせん断変形しようとする。   Even when the dampers 4 shown in FIG. 3 are installed (stranded) between horizontal members such as beam members separated from each other as shown in FIG. 5- (a), they are separated from each other as shown in FIG. 5- (b). Even when the damper 4 is installed (stranded) between vertical members, such as the studs, the damper 4 has a shape having a lateral slit 4a (notch), and the joints 41 on both sides sandwiching the plastic deformation portion 42 are parallel to each other. While maintaining this state, the tendency to make a relative deformation in the direction in which the shearing force acts increases, and as a result, the plastic deformation portion 42 tries to undergo a shear deformation.

塑性変形部42への縦補剛材4cの突設により曲げ降伏よりせん断降伏が生じ易くなるが、同時にせん断力の作用に伴って塑性変形部42に生ずる斜張力の作用によりせん断座屈が生ずる可能性があり、せん断座屈の発生によりせん断降伏によるエネルギ吸収効果が低下する可能性がある。このせん断座屈に対しては塑性変形部42に、斜張力に抵抗可能な座屈補剛材4dを突設(形成)することで、その発生を抑制、あるいは防止することが可能になる。   Protruding the longitudinal stiffener 4c to the plastic deformation part 42 makes it easier for shear yield to occur than bending yielding. At the same time, shear buckling occurs due to the action of the oblique tension generated in the plastic deformation part 42 with the action of the shearing force. There is a possibility that the energy absorption effect due to the shear yield may be reduced due to the occurrence of shear buckling. The occurrence of this shear buckling can be suppressed or prevented by projecting (forming) a buckling stiffener 4d capable of resisting oblique tension to the plastic deformation portion 42.

斜張力は塑性変形部42の領域内にせん断力作用方向(X方向)に対して45度等、交差する方向に生ずるため、座屈補剛材4dは塑性変形部42の領域内に、斜張力の作用方向に交差する方向に配置されればよいことになる。図3−(a)は縦補剛材4c、4c間に、縦補剛材4cに垂直に(X方向に)配置した場合を示しているが、縦補剛材4c、4c間に、縦補剛材4cに平行に(Y方向に)配置されることもある。   Since the oblique tension is generated in a direction intersecting the shearing force acting direction (X direction), such as 45 degrees, in the region of the plastic deformation portion 42, the buckling stiffener 4 d is inclined in the region of the plastic deformation portion 42. It suffices if it is arranged in a direction that intersects the direction of tension application. FIG. 3- (a) shows a case where the vertical stiffeners 4c and 4c are disposed perpendicularly (in the X direction) between the vertical stiffeners 4c and 4c. It may be arranged parallel to the stiffener 4c (in the Y direction).

ダンパー4の接合部41、41間に作用するせん断力によって生ずる塑性変形部42のせん断変形が進行すると、図3−(b)に示すように横スリット4を挟んでY方向に対向する(隣接する)接合部41、41の側部41b、41bが互いに平行移動しようとしながら、塑性変形部42のY方向に平行な外形線が傾斜しようとするため、前記のようにX方向に対向する側部41bと塑性変形部42との間の距離(縦スリット4bの幅)がY方向に変化し、縦スリット4bの幅が縮小しようとする。   When the shear deformation of the plastic deformation portion 42 caused by the shearing force acting between the joint portions 41 and 41 of the damper 4 proceeds, as shown in FIG. While the side portions 41b and 41b of the joint portions 41 and 41 are about to move in parallel with each other, the outer shape line parallel to the Y direction of the plastic deformation portion 42 tends to be inclined, so the side facing the X direction as described above. The distance between the portion 41b and the plastic deformation portion 42 (the width of the vertical slit 4b) changes in the Y direction, and the width of the vertical slit 4b tends to be reduced.

側部41bと塑性変形部42は両者間の距離(縦スリット4bの幅)がなくなるまでは、互いに接近可能であるから、塑性変形部42の塑性変形が進行することが可能である。しかしながら、側部41bと塑性変形部42が接触するまで塑性変形部42のせん断変形(塑性化)が進行した状況では、ダンパー4のせん断抵抗力が失われ、ダンパー4と構造部材1(2)との間でのせん断力の伝達が行われず、ダンパー4から構造部材1(2)に外力を加えることができない状態になり得る。塑性化しているダンパー4から構造部材1(2)に外力を加えることができなければ、ダンパー4に続けて構造部材1(2)が降伏することができなくなる。   Since the side portion 41b and the plastic deformation portion 42 can approach each other until the distance between them (the width of the vertical slit 4b) disappears, the plastic deformation of the plastic deformation portion 42 can proceed. However, in a situation where the shear deformation (plasticization) of the plastic deformation portion 42 proceeds until the side portion 41b and the plastic deformation portion 42 come into contact with each other, the shear resistance force of the damper 4 is lost, and the damper 4 and the structural member 1 (2). As a result, no shear force is transmitted between the damper 4 and the structural member 1 (2) from the damper 4. If an external force cannot be applied to the structural member 1 (2) from the plasticized damper 4, the structural member 1 (2) cannot yield after the damper 4.

そこで、塑性変形部42がせん断変形し、ある程度のエネルギ吸収能力を発揮した後に、ダンパー4にせん断抵抗力を持続させ、ダンパー4から構造部材1(2)に外力が伝達される状態を確保するための変形制限材6がダンパー4に付加される。図3ではX方向に対向する側部41bと塑性変形部42が接触するまで塑性変形部42がせん断変形する以前に、塑性変形部42のせん断変形が進行しないよう、せん断変形に対する制限機能を発揮する変形制限材6を付加している。変形制限材6の存在によって側部41bと塑性変形部42が互いに接触しないよう、両接合部41、41(両側部41b、41b)間のせん断変形量が制限され、側部41bと塑性変形部42との間の距離(縦スリット4bの幅)が保たれている。   Therefore, after the plastic deformation portion 42 is shear-deformed and exhibits a certain amount of energy absorption capability, the damper 4 is maintained with a shear resistance, and a state in which an external force is transmitted from the damper 4 to the structural member 1 (2) is ensured. A deformation limiting member 6 is added to the damper 4. In FIG. 3, the shear deformation limiting function is exhibited so that the plastic deformation portion 42 does not proceed before the plastic deformation portion 42 is sheared until the side portion 41 b facing the X direction contacts the plastic deformation portion 42. The deformation limiting material 6 is added. The amount of shear deformation between the joint portions 41 and 41 (both side portions 41b and 41b) is limited so that the side portion 41b and the plastic deformation portion 42 do not come into contact with each other due to the presence of the deformation limiting member 6, and the side portion 41b and the plastic deformation portion. The distance to 42 (the width of the vertical slit 4b) is maintained.

図3に示す例では縦スリット4bの塑性変形部42側に、縦スリット4bに沿って突設される縦リブ6aと、横スリット4aの接合部41側に突設され、横スリット4aを挟んだ両接合部41、41間のせん断変形時に塑性変形部42側の端部が縦リブ6aに直接、もしくは間接的に接触可能な横リブ6bの組み合わせから変形制限材6を構成している。すなわち、図3の例における変形制限材6は横リブ6bとその先端が接触する縦リブ6aから構成される。   In the example shown in FIG. 3, the vertical rib 6a is provided on the plastic deformation portion 42 side of the vertical slit 4b, and is provided on the joining portion 41 side of the horizontal slit 4a so as to sandwich the horizontal slit 4a. The deformation limiting member 6 is composed of a combination of lateral ribs 6b in which the end portion on the plastic deformation portion 42 side can directly or indirectly come into contact with the longitudinal rib 6a during shear deformation between the joint portions 41, 41. That is, the deformation limiting member 6 in the example of FIG. 3 is composed of a horizontal rib 6b and a vertical rib 6a whose tip contacts.

図3−(a)は縦スリット4bの塑性変形部42側に、縦スリット4bに沿って縦リブ6aを突設すると共に、横スリット4aの接合部41側に、横スリット4aを挟んだ両接合部41、41間のせん断変形時に塑性変形部42側の端部が前記縦リブ6aに直接、もしくは間接的に接触可能な横リブ6bを突設した合の例を示している。この例では両接合部41、41間のせん断変形時に横リブ6bを縦リブ6aに直接、もしくは間接的に接触させることで、そのせん断変形の進行を阻止する働きを横リブ6bと縦リブ6aに持たせている。   FIG. 3A shows a structure in which vertical ribs 6a project along the vertical slits 4b on the plastic deformation part 42 side of the vertical slits 4b, and the horizontal slits 4a are sandwiched on the joining part 41 side of the horizontal slits 4a. The example of the joint which the edge part by the side of the plastic deformation part 42 at the time of the shear deformation between the junction parts 41 and 41 protruded the horizontal rib 6b which can contact the said vertical rib 6a directly or indirectly is shown. In this example, the transverse rib 6b and the longitudinal rib 6a have a function of preventing the progress of the shear deformation by bringing the transverse rib 6b into direct or indirect contact with the longitudinal rib 6a during shear deformation between the joint portions 41, 41. To have.

図3ではY方向両側の接合部41、41の中心部41a、41aと塑性変形部42に亘ってダンパー4本体に突設されている縦補剛材4cの少なくとも片面に添わせるように縦リブ6aを突設した場合の例を示しているが、縦リブ6aは縦補剛材4cとは独立して突設されることもあるため、図3中の縦補剛材4cは不在の場合もある。縦補剛材4cの少なくとも片面に縦リブ6aが添設された図3の例では、縦リブ6aは縦補剛材4cの曲げ変形を拘束し、その変形を抑制する役目も果たす。図3−(b)は(a)に示すダンパー4の塑性変形部42がせん断変形したときの様子を示している。(c)は図3−(a)のx−x線の断面を示し、縦補剛材4cと縦リブ6aの関係を示している。   In FIG. 3, the longitudinal ribs are provided so as to follow at least one surface of the longitudinal stiffener 4c projecting from the damper 4 body across the central portions 41a, 41a of the joint portions 41, 41 on both sides in the Y direction and the plastic deformation portion. Although the example in the case of projecting 6a is shown, since the longitudinal rib 6a may project independently of the longitudinal stiffener 4c, the longitudinal stiffener 4c in FIG. 3 is absent. There is also. In the example of FIG. 3 in which the vertical rib 6a is attached to at least one surface of the vertical stiffener 4c, the vertical rib 6a restrains the bending deformation of the vertical stiffener 4c and also serves to suppress the deformation. FIG. 3B shows a state when the plastic deformation portion 42 of the damper 4 shown in FIG. (C) has shown the cross section of the xx line | wire of Fig.3- (a), and has shown the relationship between the vertical stiffener 4c and the vertical rib 6a.

縦リブ6aは両接合部41、41間のせん断変形による縦スリット4bの内周面間距離(縦スリット4bの幅)の変化時に横リブ6bが直接、もしくは間接的に接触し得る位置に配置され、ダンパー4本体等に溶接等により固定される。縦リブ6aが縦補剛材4cに添設された図3の例では、縦リブ6aは縦補剛材4cの厚さ方向の少なくとも縦スリット4b側に添えられるように配置される。この場合、縦リブ6aは縦補剛材4cには溶接、ボルト、接着等により接合されていればよく、必ずしもダンパー4本体に溶接等される必要はない。但し、縦リブ6aは縦補剛材4cに対する補剛と共に、ダンパー4本体に対する補剛効果も持つため、ダンパー4本体にも溶接等により接合されていることが適切である。   The vertical rib 6a is disposed at a position where the horizontal rib 6b can directly or indirectly contact when the distance between the inner peripheral surfaces of the vertical slit 4b (the width of the vertical slit 4b) changes due to shear deformation between the joint portions 41 and 41. And fixed to the damper 4 main body or the like by welding or the like. In the example of FIG. 3 in which the longitudinal rib 6a is attached to the longitudinal stiffener 4c, the longitudinal rib 6a is disposed so as to be attached at least to the longitudinal slit 4b side in the thickness direction of the longitudinal stiffener 4c. In this case, the vertical ribs 6a may be joined to the vertical stiffener 4c by welding, bolts, adhesion, or the like, and need not be welded to the damper 4 main body. However, since the vertical rib 6a has a stiffening effect on the damper 4 main body as well as stiffening on the vertical stiffener 4c, it is appropriate that the vertical rib 6a is also joined to the damper 4 main body by welding or the like.

縦リブ6aは横リブ6bが直接、もしくは間接的に接触することで、両接合部41、41間のせん断変形の進行を阻止する働きをするが、図3の例では、縦リブ6aが縦補剛材4cに添い、重なるように、または重なって縦補剛材4cに接合されることで、縦補剛材4cの板厚を増し、縦補剛材4cの変形を抑制する結果としても、両接合部41、41間のせん断変形を制限する。図面では板状である縦補剛材4cの形態に対応し、板状の縦リブ6aを使用しているが、縦リブ6aの形態も任意である。   The vertical rib 6a serves to prevent the progress of shear deformation between the joint portions 41 and 41 by the direct or indirect contact of the horizontal rib 6b. However, in the example of FIG. As a result of increasing the plate thickness of the vertical stiffener 4c and suppressing the deformation of the vertical stiffener 4c by joining to the vertical stiffener 4c so as to follow or overlap the stiffener 4c. The shear deformation between the joint portions 41 and 41 is limited. In the drawing, a plate-like vertical rib 6a is used corresponding to the plate-like vertical stiffener 4c, but the shape of the vertical rib 6a is also arbitrary.

図3の例では、縦リブ6aは縦補剛材4cの少なくとも縦スリット4b側に配置されるから、縦補剛材4cは縦スリット4bより塑性変形部42側へ寄った位置に配置される。それに伴い、縦補剛材4cと縦スリット4b間の空間を利用し、縦補剛材4cの縦スリット4b側に縦リブ6aを配置し、縦スリット4bと縦補剛材4cとの間の隙間に縦リブ6aを納めている。縦リブ6aは縦補剛材4cに関して縦スリット4bの反対側にも配置されることがあり、その場合、横リブ6bは縦リブ6aには縦補剛材4cを介して間接的に接触することになる。いずれの場合も、縦リブ6aは縦補剛材4cに重なる区間の曲げ剛性を高める働きをし、縦補剛材4cの変形を抑制する。   In the example of FIG. 3, since the vertical rib 6a is disposed at least on the vertical slit 4b side of the vertical stiffener 4c, the vertical stiffener 4c is disposed at a position closer to the plastic deformation portion 42 side than the vertical slit 4b. . Accordingly, the space between the vertical stiffener 4c and the vertical slit 4b is used, and the vertical rib 6a is disposed on the vertical slit 4b side of the vertical stiffener 4c, and the space between the vertical slit 4b and the vertical stiffener 4c is set. The vertical rib 6a is placed in the gap. The vertical rib 6a may be disposed on the opposite side of the vertical slit 4b with respect to the vertical stiffener 4c. In this case, the horizontal rib 6b indirectly contacts the vertical rib 6a via the vertical stiffener 4c. It will be. In any case, the vertical rib 6a functions to increase the bending rigidity of the section overlapping the vertical stiffener 4c, and suppresses deformation of the vertical stiffener 4c.

前記のように横リブ6bは横スリット4aの接合部41側に、両接合部41、41間のせん断変形時に縦リブ6a側の端部が縦リブ6aに、もしくは縦補剛材4cに接触可能に突設される。図3−(a)では横リブ6bが板状であることから、横リブ6bを横スリット4aに平行に突設しているが、横リブ6bはその長さ方向(軸方向)に、縦リブ6aに接触したときの反力を受けることから、長さ方向が反力の作用方向、またはそれに近い方向を向いていればよいため、必ずしも横スリット4aに平行である必要はない。   As described above, the lateral rib 6b is in contact with the joint 41 of the lateral slit 4a, and the end of the longitudinal rib 6a is in contact with the longitudinal rib 6a or the longitudinal stiffener 4c when shearing between the joints 41 and 41. Protrusively possible. In FIG. 3- (a), since the horizontal rib 6b is plate-shaped, the horizontal rib 6b is projected in parallel to the horizontal slit 4a. However, the horizontal rib 6b is vertically arranged in the length direction (axial direction). Since the reaction force at the time of contact with the rib 6a is received, the length direction only needs to be directed to the direction in which the reaction force acts or the direction close thereto, and therefore, it is not necessarily parallel to the lateral slit 4a.

横リブ6bは図3−(b)に示すように上側(下側)の接合部41の内、塑性変形部42を挟んで両側に位置する側部41bと、横スリット4aを挟んでY方向に隣接する下側(上側)の接合部41の側部41bとの間の相対変形時に、縦スリット4b側の端部が縦リブ6aに接触することで、横スリット4aを挟んだ両側部41b、41b間の相対変形を制限する。   As shown in FIG. 3B, the lateral rib 6b has a side portion 41b located on both sides of the plastic deformation portion 42 in the upper (lower) joint portion 41 and a Y direction across the lateral slit 4a. At the time of relative deformation with the side portion 41b of the lower (upper) joint portion 41 adjacent to the side portion 41b, both end portions 41b sandwiching the lateral slit 4a are brought into contact with the longitudinal ribs 6a. , 41b.

また横スリット4aを挟んだ両側部41b、41b間のX方向の相対変形(せん断変形)は正負の向きに交互に生ずるから、横リブ6bは横スリット4aを挟んだ一方側(上側、もしくは下側)の接合部41の両側の側部41b、41bに突設されていればよく、必ずしも図3に示すように横スリット4aを挟んだ両側の接合部41、41の各側部41bに突設されている必要はない。   Further, relative deformation (shear deformation) in the X direction between the side portions 41b and 41b sandwiching the lateral slit 4a alternately occurs in the positive and negative directions, so the lateral rib 6b has one side (upper or lower) sandwiching the lateral slit 4a. It is only necessary to project on the side portions 41b and 41b on both sides of the joint portion 41 on the side), and it does not necessarily project on the side portions 41b of the joint portions 41 and 41 on both sides sandwiching the lateral slit 4a as shown in FIG. It is not necessary to be installed.

同様の理由から、塑性変形部42(中心部41a)を挟んで両側に位置する側部41b、41bの内、片側で横スリット4aを挟んでY方向に隣接する側部41b、41bの双方に横リブ6b、6bが突設されていれば、横スリット4aを挟んだ両側部41b、41b間のX方向正負の相対変形時に各横リブ6bが交互に縦リブ6aに接触する状態が得られるため、横リブ6bは少なくともX方向片側で、横スリット4aを挟んでY方向に隣接する側部41b、41bに突設されていればよい。   For the same reason, both of the side portions 41b and 41b located on both sides of the plastic deformation portion 42 (center portion 41a) on both sides 41b and 41b adjacent in the Y direction with the lateral slit 4a sandwiched on one side. If the horizontal ribs 6b and 6b are provided in a projecting manner, a state is obtained in which the horizontal ribs 6b are alternately in contact with the vertical ribs 6a when the X-direction positive and negative relative deformation between both side portions 41b and 41b sandwiching the horizontal slit 4a is provided. Therefore, the lateral rib 6b only needs to protrude from the side portions 41b and 41b adjacent to each other in the Y direction across the lateral slit 4a on at least one side in the X direction.

図3−(a)に示す状態から(b)に示すように横スリット4aを挟んだ側部41b、41b間の相対変形が生じ、塑性変形部42がせん断変形したときには、相対的に上側の接合部41に対して矢印の側へ相対変形した下側の接合部41の側部41b、41bの内、相対変形時に縦リブ6a、もしくは縦補剛材4cに接近する側である左側の側部41bに突設されている横リブ6bの縦リブ6a側の端部が縦リブ6a、もしくは縦補剛材4cに接触する。また上側の接合部41の側部41b、41bの内、相対変形時に縦リブ6a、もしくは縦補剛材4cに接近する側である右側の側部41bに突設されている横リブ6bの縦リブ6a側の端部が縦リブ6a、もしくは縦補剛材4cに接触する。   When the relative deformation between the side portions 41b and 41b sandwiching the horizontal slit 4a occurs from the state shown in FIG. 3A and the plastic deformation portion 42 undergoes shear deformation as shown in FIG. Of the side portions 41b and 41b of the lower joint portion 41 that is relatively deformed in the direction of the arrow relative to the joint portion 41, the left side that is the side that approaches the longitudinal rib 6a or the longitudinal stiffener 4c during relative deformation. The end of the horizontal rib 6b protruding from the portion 41b on the side of the vertical rib 6a contacts the vertical rib 6a or the vertical stiffener 4c. Of the side portions 41b and 41b of the upper joint portion 41, the longitudinal rib 6b is protruded from the longitudinal rib 6a or the right side portion 41b that is close to the longitudinal stiffener 4c during relative deformation. The end on the rib 6a side contacts the vertical rib 6a or the vertical stiffener 4c.

前記のように縦スリット4bのX方向に対向する内周面が互いに平行で、Y方向に平行である場合、縦スリット4b内周面の全長の内、横スリット4aを挟んでY方向に隣接する側部41b、41b間の相対変形時には、図3−(a)、(b)に示すように相対的に塑性変形部2側へ接近する側の側部41bの内周面が横スリット4a寄りで塑性変形部42側の内周面に接触しようとするため、横リブ6bは横スリット4aに近い側に位置する程、縦リブ6a、もしくは縦補剛材4cに接触し易い。この関係で、図3−(a)では横リブ6bを横スリット4aに近い側に配置している。   As described above, when the inner peripheral surfaces facing the X direction of the vertical slit 4b are parallel to each other and parallel to the Y direction, the entire length of the inner peripheral surface of the vertical slit 4b is adjacent to the Y direction across the horizontal slit 4a. At the time of relative deformation between the side portions 41b and 41b, the inner peripheral surface of the side portion 41b on the side relatively approaching the plastic deformation portion 2 side is the lateral slit 4a as shown in FIGS. Since the lateral rib 6b is positioned closer to the lateral slit 4a, the lateral rib 6b is likely to contact the longitudinal rib 6a or the longitudinal stiffener 4c. In this relation, in FIG. 3A, the lateral rib 6b is disposed on the side close to the lateral slit 4a.

縦スリット4b内周面の全長の内、Y方向に隣接する側部41b、41b間の相対変形時に相対的に塑性変形部42側へ接近する側の側部41bの内周面が横スリット4a側で塑性変形部42側の内周面に接触しようとする関係から、横リブ6bの横スリット4aからの距離を調整することで、横リブ6bの縦リブ6a、もしくは縦補剛材4cへの接触の時期を自由に制御することが可能である。   Of the total length of the inner circumferential surface of the vertical slit 4b, the inner circumferential surface of the side portion 41b that is relatively closer to the plastic deformation portion 42 side when the relative deformation between the side portions 41b and 41b adjacent in the Y direction is the lateral slit 4a. By adjusting the distance from the lateral slit 4a of the lateral rib 6b to the longitudinal rib 6a of the lateral rib 6b or the longitudinal stiffener 4c from the relationship of trying to contact the inner peripheral surface on the plastic deformation portion 42 side on the side. It is possible to freely control the timing of contact.

図面ではまた、横スリット4aを挟んでY方向に隣接する側部41b、41b間の相対変形時に、縦スリット4bの対向する内周面同士が接触する以前に横リブ6bが縦リブ6a、もしくは縦補剛材4cに接触するよう、図3に示すように横リブ6bの縦リブ6a側の先端部を側部41bから縦リブ6a側へ突出させている。   Also, in the drawing, when the relative deformation between the side portions 41b and 41b adjacent to each other in the Y direction across the horizontal slit 4a, the horizontal rib 6b becomes the vertical rib 6a before the opposing inner peripheral surfaces of the vertical slit 4b contact each other. As shown in FIG. 3, the front end of the lateral rib 6b on the side of the longitudinal rib 6a is projected from the side portion 41b toward the longitudinal rib 6a so as to contact the longitudinal stiffener 4c.

側部41b、41b間のせん断変形量が制限され、側部41bと塑性変形部42との間の距離(縦スリット4bの幅)が保たれることで、塑性変形部42(ダンパー4)のせん断抵抗力が維持されるため、ダンパー4と構造部材1(2)との間でのせん断力の伝達が行われ、構造部材1(2)のせん断抵抗力と曲げ抵抗力を発揮させることが可能になる。   The amount of shear deformation between the side portions 41b and 41b is limited, and the distance between the side portion 41b and the plastic deformation portion 42 (the width of the vertical slit 4b) is maintained, so that the plastic deformation portion 42 (damper 4) is maintained. Since the shear resistance is maintained, the shear force is transmitted between the damper 4 and the structural member 1 (2), and the shear resistance and bending resistance of the structural member 1 (2) can be exhibited. It becomes possible.

図3に示すように塑性変形部42にその曲げ剛性を高める縦補剛材4cが突設(形成)されている場合には、縦リブ6aは縦補剛材4cのいずれかの面側に縦補剛材4cに添って配置されるが、塑性変形部42に縦補剛材4cが突設(形成)されていない場合には、塑性変形部42には縦リブ6aが単独で突設される。   As shown in FIG. 3, when the vertical stiffener 4 c that increases the bending rigidity of the plastic deformation portion 42 is provided (formed), the vertical rib 6 a is located on either side of the vertical stiffener 4 c. Although the vertical stiffener 4c is arranged along the vertical stiffener 4c, if the vertical stiffener 4c is not projected (formed) on the plastic deformable portion 42, the vertical rib 6a projects independently from the plastic deformable portion 42. Is done.

縦リブ6aが縦補剛材4cに添って突設(形成)される場合、縦リブ6aが縦補剛材4cに添ってそれに接合等されることで、縦補剛材4cの板厚方向の曲げ変形を拘束する働きをする結果として、縦補剛材4cの変形を抑制するため、縦リブ6aは両接合部41、41間のせん断変形を制限する作用も果たす。この場合、縦リブ6aは縦補剛材4cに添って縦補剛材4cに一体化していればよいため、縦リブ6aが縦補剛材4cの幅方向(厚さ方向)のいずれかの側に配置されるかは問われない。縦リブ6aはまた、縦補剛材4cとの一体性を確保していればよいため、塑性変形部42、あるいはダンパー4本体の表面に突設されるか否かも問われない。   When the vertical rib 6a is provided (formed) along the vertical stiffener 4c, the vertical rib 6a is joined to the vertical stiffener 4c along the thickness direction of the vertical stiffener 4c. As a result of restraining the bending deformation of the vertical stiffener 4c, the vertical rib 6a also serves to limit the shear deformation between the joint portions 41, 41 in order to suppress the deformation of the vertical stiffener 4c. In this case, since the vertical rib 6a only needs to be integrated with the vertical stiffener 4c along with the vertical stiffener 4c, the vertical rib 6a is either in the width direction (thickness direction) of the vertical stiffener 4c. It does not matter whether it is arranged on the side. Since the vertical rib 6a only needs to ensure the integrity with the vertical stiffener 4c, it does not matter whether the rib 6a protrudes from the surface of the plastic deformation portion 42 or the damper 4 main body.

縦リブ6aが縦補剛材4cに添って配置される場合、縦リブ6aが縦補剛材4cの幅方向(厚さ方向)のいずれかの側に配置されるかが問われないことで、両接合部41、41間のせん断変形時には横リブ6bは縦リブ6aと縦補剛材4cのいずれかに接触する。縦補剛材4cがない場合には、横リブ6bは縦リブ6aに直接、接触し、縦補剛材4cがある場合には、横リブ6bは縦リブ6aに直接、接触する場合と、縦補剛材4cに直接、接触することで、縦リブ6aに間接的に接触する場合がある。   When the vertical rib 6a is arranged along the vertical stiffener 4c, it does not matter whether the vertical rib 6a is arranged on either side in the width direction (thickness direction) of the vertical stiffener 4c. The horizontal rib 6b contacts either the vertical rib 6a or the vertical stiffener 4c at the time of shear deformation between the joint portions 41, 41. When there is no vertical stiffener 4c, the horizontal rib 6b is in direct contact with the vertical rib 6a, and when there is the vertical stiffener 4c, the horizontal rib 6b is in direct contact with the vertical rib 6a. By directly contacting the vertical stiffener 4c, the vertical rib 6a may be indirectly contacted.

図3に示すように縦スリット4bの塑性変形部42側に、縦スリット4bに沿って縦リブ6aが突設されると共に、横スリット4aの接合部側41に、両接合部41、41間のせん断変形時に塑性変形部42側の端部が縦リブ6aに直接、もしくは間接的に接触可能な横リブ6bが突設されていることで、接触時以降の横リブ6bの縦補剛材4c、もしくは縦リブ6aに対する移動が制限される。この結果、縦リブ6a、もしくは縦補剛材4cに接触した横リブ6bが突設されている側の接合部41の他方の接合部41に対する相対変形が制限されるため、両接合部41、41間のせん断変形量が制限される。   As shown in FIG. 3, longitudinal ribs 6a project along the longitudinal slit 4b on the plastic deformation portion 42 side of the longitudinal slit 4b, and between the joint portions 41, 41 on the joint side 41 of the lateral slit 4a. By projecting a lateral rib 6b that can be directly or indirectly contacted with the longitudinal rib 6a at the end of the plastic deformation portion 42 at the time of shear deformation, the longitudinal stiffener of the lateral rib 6b after contact is provided. The movement with respect to 4c or the vertical rib 6a is restricted. As a result, since the relative deformation with respect to the other joint 41 of the joint 41 on the side where the longitudinal rib 6a or the lateral rib 6b in contact with the vertical stiffener 4c protrudes is limited, both joints 41, The amount of shear deformation between 41 is limited.

横リブ6bは塑性変形部42側の端部において両接合部41、41間のせん断変形時に、縦リブ6a、もしくは縦補剛材4c(以下、縦リブ6a等)に接触することで、両接合部41、41間のせん断変形を抑制して塑性変形部42のせん断変形を抑制し、接触時の縦リブ6a等からの反力は軸方向に負担するから、横リブ6bは横スリット4aに平行に、ダンパー4本体の表面に突設されることが適切であるが、必ずしも横スリット4aに平行である必要はない。   The lateral rib 6b is brought into contact with the longitudinal rib 6a or the longitudinal stiffener 4c (hereinafter referred to as the longitudinal rib 6a) at the time of shear deformation between the joint portions 41 and 41 at the end on the plastic deformation portion 42 side. Since the shear deformation between the joint portions 41 and 41 is suppressed to suppress the shear deformation of the plastic deformation portion 42 and the reaction force from the longitudinal rib 6a and the like at the time of contact is borne in the axial direction, the lateral rib 6b is formed by the lateral slit 4a. It is appropriate to project from the surface of the damper 4 main body in parallel to the horizontal slit 4a, but it is not always necessary to be parallel to the lateral slit 4a.

両接合部41、41間にせん断変形が生じていない状態では、横スリット4aに沿い、例えば横スリット4aに平行に、あるいはそれに近い状態で接合部41に突設されている横リブ6bの縦リブ6a側の端部は図3−(a)に示すように縦リブ6a等から距離を置いた状態に置かれる。図3−(a)では横スリット4aを挟んでY方向両側の接合部41、41に横リブ6b、6bを突設しているが、横リブ6bが横スリット4aに関して上側の接合部41に突設されるか、下側の接合部41に突設されるかは問われない。同様に横リブ6bが塑性変形部42を挟んでX方向両側に、Y方向の中心線に関して線対称に配置されるか、片側でよいかも問われない。   In a state in which no shear deformation occurs between the joint portions 41, 41, the longitudinal ribs 6b projecting from the joint portion 41 along the transverse slit 4a, for example, parallel to or close to the transverse slit 4a. The end portion on the rib 6a side is placed at a distance from the vertical rib 6a and the like as shown in FIG. In FIG. 3- (a), the lateral ribs 6b and 6b protrude from the joint portions 41 and 41 on both sides in the Y direction across the lateral slit 4a. However, the lateral rib 6b is formed on the upper joint portion 41 with respect to the lateral slit 4a. It does not matter whether it is provided in a projecting manner or in the lower joint 41. Similarly, the lateral ribs 6b may be arranged symmetrically with respect to the center line in the Y direction on both sides in the X direction with the plastic deformation portion 42 interposed therebetween, or may be on one side.

塑性変形部42を挟んだX方向両側の接合部41、41間に図3−(b)に示すようなせん断変形が生じたときには、両側の接合部41、41は塑性変形部42の中心に関して点対称の形で変形するから、例えば図3−(a)において横スリット4aの上側の接合部41(側部41b)に形成された横リブ6bが塑性変形部42を挟んだX方向両側に突設されているとすれば、中心に関して右側の横リブ6bが縦リブ6a等に接触するから、横スリット4aの下側の接合部41(側部41b)には必ずしも横リブ6bが形成される必要はない。   When shear deformation as shown in FIG. 3B occurs between the joint portions 41 and 41 on both sides in the X direction across the plastic deformation portion 42, the joint portions 41 and 41 on both sides relate to the center of the plastic deformation portion 42. Since it deforms in a point-symmetric form, for example, in FIG. 3A, the lateral ribs 6b formed on the joint portion 41 (side portion 41b) on the upper side of the lateral slit 4a are disposed on both sides in the X direction across the plastic deformation portion 42. If projecting, the right lateral rib 6b with respect to the center comes into contact with the longitudinal rib 6a and the like, so that the lateral rib 6b is not necessarily formed at the lower joint portion 41 (side portion 41b) of the lateral slit 4a. There is no need to

また横リブ6bは塑性変形部42の片側、例えば図3−(a)において左側にのみ形成され、横スリット4aを挟んでY方向両側の接合部41、41(側部41b、41b)に並列して突設されている場合には、両側の接合部41、41間に図3−(b)に示すようなせん断変形が生じたときに、下側の横リブ6bが縦リブ6a等に接触するから、塑性変形部42を挟んで右側の側部41bには必ずしも横リブ6bが形成される必要はない。接合部41、41間のせん断変形時にはいずれかの横リブ6bが縦リブ6a等に接触する状態に、突設されていればよいことになる。   The lateral rib 6b is formed only on one side of the plastic deformation portion 42, for example, the left side in FIG. 3A, and is parallel to the joint portions 41 and 41 (side portions 41b and 41b) on both sides in the Y direction with the lateral slit 4a interposed therebetween. When the shear deformation as shown in FIG. 3- (b) occurs between the joint portions 41, 41 on both sides, the lower lateral rib 6b becomes the longitudinal rib 6a or the like. Therefore, the lateral rib 6b is not necessarily formed on the right side portion 41b with the plastic deformation portion 42 interposed therebetween. At the time of shear deformation between the joint portions 41, 41, any one of the lateral ribs 6b may be provided so as to be in contact with the longitudinal rib 6a or the like.

両接合部41、41間のせん断変形量を制限することはまた、図4−(a)、(b)に示すように縦スリット4bの対向する内周面間距離を縦スリット4bの長さ方向に変化させ、横スリット4a側から遠い側へかけて次第に小さくすることによっても可能である。「縦スリット4bの対向する内周面間距離」は縦スリット4bの幅である。「対向する内周面」とは、縦スリット4bの全周の内、せん断力作用方向(X方向)に対向する内周面を指し、「内周面間距離」はせん断力作用方向(X方向)に対向する内周面間の距離を言う。   Limiting the amount of shear deformation between both joints 41 and 41 is also the distance between the opposing inner peripheral surfaces of the vertical slit 4b as shown in FIGS. 4- (a) and (b). It is also possible to change in the direction and gradually decrease from the side of the lateral slit 4a to the side farther. The “distance between the inner peripheral surfaces facing each other of the vertical slit 4b” is the width of the vertical slit 4b. The “opposing inner circumferential surface” refers to the inner circumferential surface facing the shearing force acting direction (X direction) in the entire circumference of the vertical slit 4b, and the “distance between inner circumferential surfaces” is the shearing force acting direction (X The distance between the inner peripheral surfaces facing (direction).

両接合部41、41(側部41b、41b)間にせん断変形が生ずるとき、塑性変形部42の上側の接合部41に着目すれば、塑性変形部42と側部41bとの間の縦スリット4bの存在により、接合部41の中心部41aに関して両側に位置する側部41b、41bの内、一方(図4−(b)の左側)の側部41bは塑性変形部42(縦リブ6a等)から遠ざかり、他方(図4−(b)の右側)の側部41bが塑性変形部42(縦リブ6a等)に接近しようとする。   When shear deformation occurs between the joint portions 41 and 41 (side portions 41b and 41b), if attention is paid to the joint portion 41 on the upper side of the plastic deformation portion 42, a vertical slit between the plastic deformation portion 42 and the side portion 41b. Due to the presence of 4b, one of the side portions 41b (the left side in FIG. 4B) of the side portions 41b and 41b located on both sides with respect to the central portion 41a of the joint portion 41 is the plastic deformation portion 42 (vertical rib 6a or the like). ) And the other side portion 41b (on the right side of FIG. 4B) tends to approach the plastic deformation portion 42 (such as the longitudinal rib 6a).

図4−(a)は縦スリット4bの幅である対向する内周面間距離が横スリット4a側から遠い側へかけて次第に小さくなるように、縦スリット4b(内周面)の形状を形成した場合の例を示す。前記したように塑性変形部42が図4−(b)に示すようにせん断変形するとき、塑性変形部42を区画する線になる縦スリット4bの塑性変形部42側の内周面は変形前のY方向に平行な状態から傾斜する。   FIG. 4A shows the shape of the vertical slit 4b (inner peripheral surface) so that the distance between the opposing inner peripheral surfaces, which is the width of the vertical slit 4b, gradually decreases from the lateral slit 4a side to the far side. An example is shown below. As described above, when the plastic deformation portion 42 undergoes shear deformation as shown in FIG. 4B, the inner peripheral surface on the plastic deformation portion 42 side of the vertical slit 4b that forms a line defining the plastic deformation portion 42 is not deformed. It inclines from the state parallel to the Y direction.

一方、縦スリット4bの塑性変形部42側の内周面に対向する側部41b側の内周面は塑性変形部42のせん断変形後も変形前の状態(角度)を維持しながら、すなわちY方向に平行なまま、横スリット4aを挟んだ側部41b、41b間には相対変形が生ずる。この側部41b、41b間の相対変形時に相対的に塑性変形部42側へ接近する側の側部41bの内周面が横スリット4a側で塑性変形部42側の内周面に接近する。具体的には横スリット4aを挟んでY方向に隣接する側部41b、41bの内、一方(上左と下右)の側部41bの縦スリット4bの内周面は塑性変形部42側の内周面から遠ざかり、他方(上右と下左)の側部41bの内周面は塑性変形部42側の内周面に接近する。   On the other hand, the inner peripheral surface on the side portion 41b side facing the inner peripheral surface on the plastic deformation portion 42 side of the vertical slit 4b maintains the state (angle) before the deformation after the shear deformation of the plastic deformation portion 42, that is, Y While being parallel to the direction, relative deformation occurs between the side portions 41b and 41b across the horizontal slit 4a. At the time of relative deformation between the side portions 41b and 41b, the inner peripheral surface of the side portion 41b that is relatively close to the plastic deformation portion 42 side approaches the inner peripheral surface of the plastic deformation portion 42 side on the lateral slit 4a side. Specifically, the inner peripheral surface of the vertical slit 4b of the side portion 41b (upper left and lower right) of the side portions 41b and 41b adjacent in the Y direction across the horizontal slit 4a is on the plastic deformation portion 42 side. The inner peripheral surface of the other side (upper right and lower left) 41b approaches the inner peripheral surface on the plastic deformation portion 42 side.

このため、縦スリット4bの対向する内周面間距離が横スリット4a側から遠い側へかけて次第に小さくなる関係にあれば、塑性変形部42のせん断変形時(側部41b、41b間の相対変形時)に図4−(b)に示すように縦スリット4bの側部41b側の内周面が全長に亘って一様に塑性変形部42側の内周面に接触する状態を得ることができる。図4の例では縦スリット4bの対向する内周面間の全長の内、塑性変形部42のせん断変形時に互いに接触する、少なくとも一部区間の内周面同士の組み合わせが図3の例における「変形制限材6」に該当する。互いに接触する内周面同士は内周面の全長である場合もある。   For this reason, if the distance between the inner peripheral surfaces facing each other of the vertical slit 4b is gradually reduced from the side of the horizontal slit 4a to the side far from the side of the horizontal slit 4a, during the shear deformation of the plastic deformation portion 42 (relative between the side portions 41b and 41b) 4-d), the inner peripheral surface on the side portion 41b side of the vertical slit 4b is uniformly in contact with the inner peripheral surface on the plastic deformation portion 42 over the entire length as shown in FIG. Can do. In the example of FIG. 4, the combination of the inner peripheral surfaces of at least some sections that are in contact with each other during the shear deformation of the plastic deformation portion 42 in the entire length between the inner peripheral surfaces facing each other of the vertical slit 4 b is “ Corresponds to “deformation limiting material 6”. The inner peripheral surfaces that are in contact with each other may be the entire length of the inner peripheral surface.

前記のように横スリット4aを挟んでY方向に隣接する側部41b、41b間の相対変形時には、接合部41の、せん断力が作用する向きと逆側(矢印の根本側)に位置する側部41bと塑性変形部42との間の縦スリット4bの対向する内周面間距離が縮小するから、図4−(b)に示すように塑性変形部42に関して上側の右側に位置する側部41b、及び下側の左側に位置する側部41bの各内周面と、それにX方向に対向する塑性変形部42側の内周面同士が互いに接触した状態になる。   As described above, at the time of relative deformation between the side portions 41b and 41b adjacent to each other in the Y direction across the horizontal slit 4a, the side of the joint portion 41 located on the side opposite to the direction in which the shearing force acts (the base side of the arrow). Since the distance between the opposing inner peripheral surfaces of the vertical slit 4b between the portion 41b and the plastic deformation portion 42 is reduced, the side portion located on the upper right side with respect to the plastic deformation portion 42 as shown in FIG. 41b and the inner peripheral surfaces of the side portion 41b located on the lower left side and the inner peripheral surfaces on the plastic deformation portion 42 side facing the X direction are in contact with each other.

ダンパー4のせん断変形は正負の向きに交互に生ずるから、図4−(b)と逆向きにせん断変形が生じたときには、塑性変形部42に関して上側の左側に位置する側部41b、及び下側の右側に位置する側部41bの各内周面と、それにX方向に対向する塑性変形部42側の内周面同士が互いに接触した状態になる。   Since the shear deformation of the damper 4 occurs alternately in the positive and negative directions, when the shear deformation occurs in the opposite direction to FIG. 4B, the side portion 41b positioned on the upper left side with respect to the plastic deformation portion 42, and the lower side Each of the inner peripheral surfaces of the side portion 41b located on the right side and the inner peripheral surfaces of the plastic deformation portion 42 facing each other in the X direction are in contact with each other.

図4−(b)は塑性変形部42を挟んで下側に位置する接合部41が上側に位置する接合部41に対して右側へせん断変形しているときの様子を示しているが、せん断変形はせん断力作用方向(X方向)の正負の向きに交互に生ずるため、次の場面では下側に位置する接合部41が上側に位置する接合部41に対して左側へせん断変形する。   FIG. 4B shows a state in which the joint portion 41 located on the lower side across the plastic deformation portion 42 is shear-deformed to the right side with respect to the joint portion 41 located on the upper side. Since the deformation occurs alternately in the positive and negative directions of the shearing force acting direction (X direction), in the next scene, the joint 41 located on the lower side is shear-deformed to the left with respect to the joint 41 located on the upper side.

このように両接合部41、41(側部41b、41b)間のせん断変形時に、塑性変形部42に接近しようとする側(図4−(b)の右側)の側部41bと塑性変形部42との間の縦スリット4bの幅である対向する内周面間距離は図4−(b)に示すように縦スリット4bの長さ方向には横スリット4aに近い側で小さくなり、遠い側で大きくなるため、横スリット4aに近い側で内周面同士が互いに接触し易くなる。   Thus, the side part 41b and the plastic deformation part of the side (right side of FIG. 4- (b)) which is going to approach the plastic deformation part 42 at the time of the shear deformation between both the joint parts 41 and 41 (side part 41b, 41b). The distance between the opposing inner peripheral surfaces, which is the width of the vertical slit 4b with respect to 42, becomes smaller on the side closer to the horizontal slit 4a in the longitudinal direction of the vertical slit 4b as shown in FIG. Since it becomes large on the side, the inner peripheral surfaces are easily brought into contact with each other on the side close to the lateral slit 4a.

塑性変形部42(縦リブ6a等)から遠ざかろうとする側(図4−(b)の左側)の側部41bと塑性変形部42との間の縦スリット4bの幅である対向する内周面間距離は図4−(b)に示すように縦スリット4bの長さ方向には横スリット4aに近い側で大きくなり、遠い側で小さくなるが、横スリット4aから縦スリット4bの端部までの区間で内周面間に距離が確保されているため、内周面同士は接触しない。   Opposing inner peripheral surfaces which are the widths of the vertical slits 4b between the side portion 41b on the side (left side in FIG. 4- (b)) and the plastic deformation portion 42 which are about to move away from the plastic deformation portion 42 (vertical rib 6a and the like). As shown in FIG. 4B, the distance increases in the lengthwise direction of the vertical slit 4b on the side closer to the horizontal slit 4a and decreases on the far side, but from the horizontal slit 4a to the end of the vertical slit 4b. Since the distance is secured between the inner peripheral surfaces in the section, the inner peripheral surfaces do not contact each other.

このことから、縦スリット4bの対向する内周面間距離を横スリット4a側から遠い側へかけて次第に小さくすることで、塑性変形部42に接近しようとする側(図4−(b)中、上側の右側)の側部41bと塑性変形部42との間において、縦スリット4bの対向する内周面同士が全長、あるいは少なくとも一定区間に亘って一様に接触する状態を得ることが可能になる。縦スリット4bの対向する内周面同士が少なくとも一定区間に亘って一様に接触することで、その状態から更に縦スリット4bの内周面間距離が縮小することはな、内周面同士が接触した状態以降の塑性変形部42のせん断変形が阻止されるため、両接合部41、41間のせん断変形量(塑性変形部42のせん断変形量)が制限される。この意味で、縦スリット4bの対向する内周面同士の組み合わせが変形制限材6に該当する。
For this reason, by gradually decreasing the distance between the inner peripheral surfaces facing each other of the vertical slit 4b from the side of the horizontal slit 4a to the side farther from the side, the side that approaches the plastic deformation portion 42 (in FIG. 4B) It is possible to obtain a state in which the inner peripheral surfaces facing each other of the vertical slits 4b are in uniform contact with each other over the entire length or at least a certain interval between the side portion 41b on the upper right side) and the plastic deformation portion 42. become. By inner faces of opposing longitudinal slits 4b contacts uniformly over at least a certain period, it is rather than that between the inner peripheral surface distance further longitudinal slits 4b from that state is reduced, the inner peripheral faces Since the shear deformation of the plastic deformation portion 42 after the contact state is prevented, the shear deformation amount between the joint portions 41 and 41 (the shear deformation amount of the plastic deformation portion 42) is limited. In this sense, the combination of the inner peripheral surfaces facing each other of the vertical slit 4 b corresponds to the deformation limiting member 6.

この結果、塑性変形部42がせん断変形し、エネルギ吸収能力を発揮した後にもダンパー4にせん断抵抗力を持続させることが可能になり、ダンパー4と構造部材1(2)との間でのせん断力の伝達が行われ、構造部材1(2)のせん断抵抗力を発揮させることが可能になる。   As a result, even after the plastic deformation portion 42 undergoes shear deformation and exhibits energy absorption capability, it becomes possible to maintain the shear resistance in the damper 4, and shear between the damper 4 and the structural member 1 (2). The force is transmitted, and the shear resistance of the structural member 1 (2) can be exhibited.

以上の図3、図4の例によれば、接合部41、41間のせん断変形量が制限されることで、ある構面内、例えば柱・梁のフレーム内にせん断剛性の相違する複数個のダンパー4が配置される場合に、これら複数個のダンパー4をせん断剛性の小さい順に段階的に機能させることが可能になる。   According to the examples of FIGS. 3 and 4 described above, the shear deformation amount between the joint portions 41 and 41 is limited, so that a plurality of members having different shear stiffnesses in a certain construction surface, for example, a column / beam frame. When the dampers 4 are arranged, the plurality of dampers 4 can be made to function stepwise in order of increasing shear rigidity.

例えば柱・梁のフレーム内に、せん断剛性の相違する複数個のせん断変形型の弾塑性ダンパーを配置したとしても、従来のように各弾塑性ダンパーのせん断変形量に制限がなければ、最初にせん断降伏した、せん断剛性の最も小さい弾塑性ダンパーが変形しきるまで変形しながらせん断力を負担するため、その弾塑性ダンパーよりせん断剛性の高い弾塑性ダンパーを降伏させることにはならない。結局、複数個の弾塑性ダンパーを一フレーム内に配置しても、これらを段階的に降伏させることはできない。   For example, even if a plurality of shear deformation type elasto-plastic dampers with different shear rigidity are arranged in the column / beam frame, if there is no limit to the amount of shear deformation of each elasto-plastic damper, Since the shear force is borne until the elasto-plastic damper having the smallest shear rigidity, which yields shear, is deformed, the elasto-plastic damper having higher shear rigidity than the elasto-plastic damper is not yielded. Eventually, even if a plurality of elastic-plastic dampers are arranged in one frame, they cannot yield in stages.

すなわち、従来の弾塑性ダンパーを一フレーム内に複数個、配置しても、全弾塑性ダンパーが機能する訳ではないため、複数個分のエネルギ吸収効果を期待することはできず、一フレーム単位では1個の弾塑性ダンパーを配置したことと違いがない。従って、例えばフレームの梁(梁部材)に弾塑性ダンパーを設置するとすれば、梁の中央部に1個の弾塑性ダンパーを設置することになる。   That is, even if a plurality of conventional elasto-plastic dampers are arranged in one frame, all the elasto-plastic dampers do not function, so it is not possible to expect the energy absorption effect for a plurality of frames. Then, there is no difference from the arrangement of one elastic-plastic damper. Therefore, for example, if an elastic-plastic damper is installed on the beam (beam member) of the frame, one elastic-plastic damper is installed at the center of the beam.

これに対し、図3、図4の例では変形制限材6の存在によってせん断変形量が制限されていることで、図6−(a)〜(d)に示すようにせん断剛性の相違する(せん断変形量が制限された)複数個の弾塑性型のダンパー4を一フレーム内に配置したとき、最もせん断剛性の小さいダンパー4のせん断変形の変形量が制限された時点で、そのダンパー4はそれ以上の変形が進行しなくなるため、次にせん断剛性の小さいダンパー4がせん断変形を開始し、降伏することになる。このようにせん断剛性の相違する複数個の弾塑性型のダンパー4が一フレーム内に設置されることで、せん断剛性の小さい順に段階的に機能することが可能になる。   On the other hand, in the examples of FIGS. 3 and 4, the shear deformation amount is limited by the presence of the deformation limiting material 6, so that the shear rigidity is different as shown in FIGS. 6 (a) to 6 (d). When a plurality of elastic-plastic dampers 4 (with limited shear deformation amount) are arranged in one frame, when the deformation amount of shear deformation of the damper 4 with the smallest shear rigidity is limited, the damper 4 Since the further deformation does not proceed, the damper 4 having the smaller shear rigidity starts shear deformation and yields. By installing a plurality of elasto-plastic dampers 4 having different shear stiffnesses in one frame in this way, it becomes possible to function stepwise in order of increasing shear stiffness.

従って図3、図4の例では従来はエネルギ吸収効果を期待する上で、意味を持たなかった一フレーム内への複数個の弾塑性型のダンパー4の配置が意味を持つにようになり、複数個の配置により全ダンパー4を有効に機能させ、エネルギ効果を発揮させることが可能になる。   Therefore, in the examples of FIGS. 3 and 4, the arrangement of a plurality of elastic-plastic dampers 4 in one frame, which has no meaning in the prior art, is expected to have an energy absorption effect. A plurality of arrangements enable all the dampers 4 to function effectively and exhibit an energy effect.

図5は図1、図2に示すダンパー4と、ダンパー4が跨る構造部材1、2を含む架構(フレーム)の全体の様子を示しているが、この架構の構造部材1、2間には図3、図4に示すダンパー4も向きを変えることにより跨設される。図5−(b)は図3、図4に示すダンパー4をその向きのまま、互いに分離した、構造部材1(2)としての間柱間に跨設した場合になる。この場合、フレームの層間変形時には、間柱のウェブ間に(フレームの構面内で)せん断変形が生じようとするため、ダンパー4は図5−(a)と同様にフレームの構面内方向に面内方向を向けた状態で、例えば両間柱のウェブに重なってボルト7等により接合される。   FIG. 5 shows the overall state of the frame (frame) including the damper 4 shown in FIGS. 1 and 2 and the structural members 1 and 2 over which the damper 4 straddles. The damper 4 shown in FIGS. 3 and 4 is also straddled by changing the direction. FIG. 5B is a case where the dampers 4 shown in FIG. 3 and FIG. 4 are separated from each other in the orientation, and are straddled between the studs as the structural member 1 (2). In this case, when the frame is deformed between layers, shear deformation tends to occur between the webs of the studs (within the frame surface), so that the damper 4 is oriented in the frame surface direction as in FIG. In a state in which the in-plane direction is directed, for example, it is overlapped with the webs of both studs and joined by bolts 7 or the like.

図5−(c)は図3、図4に示すダンパー4をその向きのまま、互いに分離した、構造部材1としてのブレースと、構造部材2としてのフレームを構成する梁との間に跨設した場合の例になる。この場合、フレームの層間変形時には、図5−(b)と同様、ブレースと梁との間にフレームの構面内でせん断変形が生じようとするため、ダンパー4はフレームの構面内方向に面内方向を向けた状態で、ブレースと梁との間に跨って双方に直接、もしくは間接的に接合される。図面ではブレースと梁からそれぞれガセットプレート8、8を突設し、両ガセットプレート8、8にダンパー4をボルト7により接合している。   FIG. 5- (c) is a straddle between the braces as the structural member 1 and the beams constituting the frame as the structural member 2, which are separated from each other with the dampers 4 shown in FIGS. This is an example. In this case, when the frame is deformed between layers, as in FIG. 5B, shear deformation is likely to occur between the braces and the beam within the frame surface, so that the damper 4 is oriented in the frame surface direction. Directly or indirectly joined between the brace and the beam with the in-plane direction directed. In the drawing, gusset plates 8 and 8 are respectively projected from braces and beams, and a damper 4 is joined to both gusset plates 8 and 8 by bolts 7.

図6−(a)〜(d)は図1〜図4に示す、塑性変形部42のせん断変形を制限する機能(変形制限材6)を有するダンパー4の柱・梁のフレーム内への設置例を示す。せん断変形制限機能付きのダンパー4は一構面(一フレーム)内に複数個、設置されたときに、せん断剛性の小さい順に段階的にせん断降伏していくことが可能であるから、図6では一構面(一フレーム)内にせん断剛性(せん断降伏強度)の異なる複数個のダンパー4を設置している。   6 (a) to 6 (d) show the installation of the damper 4 having the function (deformation limiting material 6) for limiting the shear deformation of the plastic deformation portion 42 shown in FIGS. An example is shown. When a plurality of dampers 4 with a shear deformation limiting function are installed in one plane (one frame), it is possible to yield in stages in descending order of shear rigidity. A plurality of dampers 4 having different shear rigidity (shear yield strength) are installed in one structural surface (one frame).

仮にダンパー4単体としてのせん断剛性(せん断降伏強度)に差がない複数個のダンパー4を同一構面内に設置した場合にも、使用状態では各ダンパー4のせん断剛性(せん断降伏強度)に若干の差が生じ得るため、複数個のダンパー4が段階的にせん断降伏していく同様の傾向は期待される。   Even if a plurality of dampers 4 having no difference in shear rigidity (shear yield strength) as a single damper 4 are installed on the same surface, the shear rigidity (shear yield strength) of each damper 4 is slightly in use. Therefore, a similar tendency can be expected in which the plurality of dampers 4 undergo shear yielding step by step.

図6−(a)はフレームを構成する柱(柱部材)から梁を構成する、構造部材1としてのブラケット9、9を突設し、両ブラケット9、9間に構造部材2としての梁部材を架設し、ブラケット9と梁部材のウェブ間にダンパー4を跨設した場合の例を示している。ブラケット9と梁部材のフランジ間には継手部材10を跨設している。   FIG. 6A shows a beam member as a structural member 2 between the brackets 9 and 9 by projecting brackets 9 and 9 as a structural member 1 constituting a beam from columns (column members) constituting the frame. Is shown, and a damper 4 is straddled between the bracket 9 and the web of the beam member. A joint member 10 is straddled between the bracket 9 and the flange of the beam member.

図6−(b)はフレームを構成する梁(梁部材)から間柱を構成する、構造部材1としてのブラケット9、9を突設し、両ブラケット9、9間に構造部材2としての間柱を架設し、ブラケット9と間柱のウェブ間にダンパー4を跨設した場合の例を示している。ブラケット9と間柱のフランジ間には継手部材10を跨設している。図5−(b)、図6−(b)に示す間柱は図5−(c)に示すブレースと同様、フレーム内では耐震要素として機能するが、間柱の幅(成)が拡大すれば、間柱は耐震壁に相当する。   In FIG. 6B, brackets 9 and 9 as the structural member 1 are formed by projecting the pillars from the beams (beam members) constituting the frame, and the pillars as the structural member 2 are provided between the brackets 9 and 9. An example in which the damper 4 is installed between the bracket 9 and the web between the studs is shown. A joint member 10 is straddled between the bracket 9 and the flange of the stud. 5- (b) and 6- (b), the studs shown in FIG. 5- (c) function as seismic elements in the frame, as shown in FIG. 5- (c). The stud is equivalent to a seismic wall.

図6−(c)は図5−(a)と同様に、フレームを構成する柱(柱部材)から梁を構成する、構造部材1としての梁部材を片持ち梁状態で、互いに分離した状態で突設し、分離した梁部材のウェブ間にダンパー4を跨設した場合の例を示している。   6C is a state where the beam members as the structural member 1 are separated from each other in a cantilevered state, which constitutes a beam from the columns (column members) constituting the frame, as in FIG. The example in the case where the damper 4 is extended between the webs of the separated beam members is shown.

図6−(d)は図6−(b)における構造部材2としての間柱を更にブラケット9、9に2分割し、この2分割されたブラケット9、9間にダンパー4を跨設すると共に、図6−(b)におけるブラケット9と間柱間の継手部材10を塑性変形能力のあるダンパーとして機能し得る、隣接する構造部材1、1(9、9)間に跨設される接合部材10Aに置き換えた場合の例を示している。   6 (d) further divides the stud as the structural member 2 in FIG. 6 (b) into two brackets 9, 9, and the damper 4 straddles between the brackets 9, 9 divided into two, The joint member 10 between the bracket 9 and the inter-column in FIG. 6- (b) can function as a damper having plastic deformation capability, and the joining member 10A straddling between adjacent structural members 1, 1 (9, 9). An example in the case of replacement is shown.

この例では変形制限機能を有するダンパー4が変形制限機能付きダンパー内蔵耐震装置5内で先行して降伏し、ダンパー4の変形が制限された後に構造部材1の内、相対的に他より先行して降伏し易い箇所として接合部材10Aが塑性化し、エネルギ吸収能力を発揮することになる。ここでは塑性変形能力を有するダンパーとして機能する接合部材10Aを間柱(ブラケット9、9)のフランジ間に跨設し、ウェブ間に跨設される継手部材10を(a)〜(c)の継手部材10と同様に構造部材同士の連結のために使用している。間柱を構成するブラケット9、9のフランジ間に跨設された接合部材10Aはダンパー4を塑性変形させるブラケット9、9間の相対変形時には曲げモーメントを受けることになる。なお、上述の接合部材10Aにおいて、ボルト穴による断面欠損部で接合部材10Aの降伏(塑性化)が起こらないように、接合部材10Aの材軸中央部に降伏部を特定するための孔や溝などによる断面積の欠損部を設けるなどの工夫を施しても良い。   In this example, the damper 4 having the deformation limiting function yields in advance within the damper built-in seismic device 5 with the deformation limiting function, and after the deformation of the damper 4 is limited, the structural member 1 relatively precedes the others. As a result, the joining member 10A becomes plastic as a place where it is easy to yield, and exhibits energy absorption capability. Here, the joining member 10A functioning as a damper having plastic deformation ability is straddled between the flanges of the intermediate columns (brackets 9, 9), and the joint member 10 straddling between the webs is a joint of (a) to (c). Similar to the member 10, it is used for connection between structural members. The joining member 10A straddled between the flanges of the brackets 9 and 9 constituting the studs receives a bending moment at the time of relative deformation between the brackets 9 and 9 for plastically deforming the damper 4. In addition, in the above-described joining member 10A, a hole or groove for specifying the yielding portion at the central portion of the material axis of the joining member 10A so that the yielding (plasticization) of the joining member 10A does not occur at the cross-sectional defect portion due to the bolt hole. It is also possible to devise such as providing a missing portion of the cross-sectional area.

図7−(a)はダンパー4の変形を制限する変形制限材6が、(b)に示すようにダンパー4が接合される構造部材1、2に形成され、接合部41の挿通孔41cを挿通するボルト7が挿通する挿通孔1a、2aの内周面である場合の構造部材1、2へのダンパー4の接合例を示す。   7A, the deformation limiting member 6 that limits the deformation of the damper 4 is formed on the structural members 1 and 2 to which the damper 4 is bonded as shown in FIG. 7B, and the insertion hole 41c of the bonding portion 41 is formed. An example of joining the damper 4 to the structural members 1 and 2 when the bolt 7 to be inserted is the inner peripheral surface of the insertion holes 1a and 2a to be inserted is shown.

この例ではダンパー4の接合部41に形成されている挿通孔41cと構造部材1、2に形成されている挿通孔1a、2aが重なった状態で、ダンパー4が両構造部材1、2に跨り、ダンパー4と構造部材1、2の挿通孔41c、1a(2a)を貫通するボルト7は構造部材1、2の挿通孔1a、2aの中心に位置した状態でダンパー4を構造部材1、2に接合する。   In this example, the damper 4 straddles both structural members 1 and 2 in a state where the insertion hole 41 c formed in the joint portion 41 of the damper 4 overlaps the insertion holes 1 a and 2 a formed in the structural members 1 and 2. The bolt 7 passing through the insertion holes 41c and 1a (2a) of the damper 4 and the structural members 1 and 2 is positioned in the center of the insertion holes 1a and 2a of the structural members 1 and 2, and the damper 4 is inserted into the structural members 1 and 2. To join.

構造部材1、2の挿通孔1a、2aの少なくともいずれか一方はダンパー4が構造部材1、2の少なくともいずれかに対して相対変形(相対移動)可能であるように、ダンパー4と構造部材1、2との間の相対変形(相対移動)方向に長い長孔状に形成される。図7では挿通孔1a、2aの内、構造部材1の挿通孔1aを長孔状に形成している。ダンパー4の挿通孔41cは長孔状の挿通孔1a(2a)の長さ方向中央部分に重ねられる。   At least one of the insertion holes 1a and 2a of the structural members 1 and 2 has the damper 4 and the structural member 1 so that the damper 4 can be relatively deformed (relatively moved) with respect to at least one of the structural members 1 and 2. 2 is formed in a long hole shape that is long in the direction of relative deformation (relative movement). In FIG. 7, among the insertion holes 1a and 2a, the insertion hole 1a of the structural member 1 is formed in a long hole shape. The insertion hole 41c of the damper 4 is overlapped with the central portion in the length direction of the elongated insertion hole 1a (2a).

ボルト7によるダンパー4と構造部材1、2との接合状態ではダンパー4と構造部材1、2は両者間の摩擦力によって接合された状態を維持しているため、摩擦力を超える外力が構造部材1、2の挿通孔1a、2aの長さ方向に作用すれば、ダンパー4と構造部材1、2とは相対移動可能な状態にある。従って図7−(a)に示す状態から、構造部材1、2が対向する方向に直交する方向の相対変形(相対移動)が生ずるときには、ダンパー4の各接合部41が、それが接合されている構造部材1(2)に対し、摩擦力により接合状態を維持できる範囲で、ダンパー4は摩擦ダンパーとして働く。   When the damper 4 and the structural members 1 and 2 are joined by the bolt 7, the damper 4 and the structural members 1 and 2 maintain the joined state by the frictional force between them. If acting in the length direction of the first and second insertion holes 1a and 2a, the damper 4 and the structural members 1 and 2 are in a state of being relatively movable. Accordingly, when relative deformation (relative movement) occurs in the direction orthogonal to the direction in which the structural members 1 and 2 face each other from the state shown in FIG. 7- (a), each joint 41 of the damper 4 is joined. The damper 4 functions as a friction damper within a range in which the bonded state can be maintained by the frictional force with respect to the structural member 1 (2).

ダンパー4は摩擦力を超える外力が作用したときに、ボルト7が構造部材1、2の挿通孔1a、2aの内周面に係止することで、構造部材1、2に外力を加え、いずれかの構造部材1、2を降伏させることになる。   When an external force exceeding the frictional force is applied to the damper 4, the bolt 7 is engaged with the inner peripheral surfaces of the insertion holes 1 a and 2 a of the structural members 1 and 2 to apply an external force to the structural members 1 and 2. Such structural members 1 and 2 will yield.

1、2、3……構造部材、1a、2a……挿通孔、
4……ダンパー、41……接合部、41a……中心部、41b……側部、41c……挿通孔、42……塑性変形部、
4a……横スリット、4b……縦スリット、
4c……縦補剛材、4d……座屈補剛材、
5……ダンパー内蔵耐震装置、
6……変形制限材、6a……縦リブ、6b……横リブ、
7……ボルト、
8……ガセットプレート、9……ブラケット、10……継手部材、10A……接合部材。
1, 2, 3 ... structural member, 1a, 2a ... insertion hole,
4 …… Damper, 41 …… Joint portion, 41a …… Center portion, 41b …… Side portion, 41c …… Insertion hole, 42 …… Plastic deformation portion,
4a …… Horizontal slit, 4b …… Vertical slit,
4c: Vertical stiffener, 4d: Buckling stiffener,
5 …… Seismic device with built-in damper,
6 ... Deformation limiting material, 6a ... Vertical rib, 6b ... Horizontal rib,
7 …… Bolt,
8: Gusset plate, 9: Bracket, 10: Joint member, 10A: Joining member.

Claims (2)

構造物の内部、あるいは外部において材軸方向に互いに分離した状態で対向し、前記構造物が水平力を受けたときに互いに材軸に直交する方向に相対変形を生ずる複数の構造部材と、この複数の構造部材の内、材軸方向に隣接する構造部材間に跨って両構造部材に接合され、降伏耐力が前記構造部材の降伏耐力より小さく、前記両構造部材間の材軸に直交する方向の正負の向きの相対変形時に、その相対変形方向に面内方向にせん断変形を生じ、塑性変形する弾塑性型のダンパーと、前記両構造部材間に跨った状態で前記ダンパーの前記せん断変形方向の両側に配置され、いずれか一方の構造部材に、他方の構造部材側へ張り出した状態で接合され、前記両構造部材が前記正負の向きの相対変形を生ずるときの前記ダンパーの一定量を超える塑性変形量を制限する変形制限材とを備え、
前記隣接する構造部材の内の少なくともいずれかの構造部材、もしくは前記隣接する構造部材間に跨設される接合部材は前記構造物の柱・梁からなる架構、もしくは前記架構内の上下間に架設される耐震要素を構成し、前記いずれかの構造部材、もしくは接合部材の全長の内、一部は他より相対的に降伏耐力が低下した塑性化部分になっており、
前記ダンパーは前記変形制限材から制限を受けるまでの塑性変形時に、その変形量に応じたエネルギ吸収能力を発揮し、制限を受けた後に前記塑性変形を生じたまま、変形の進行が抑えられた剛性の高い部材として機能し、前記隣接する構造部材の内の少なくともいずれかの前記構造部材、もしくは前記接合部材の一部である前記塑性化部分を前記構造部材の材軸に直交する方向に塑性変形させ、この塑性化部分にエネルギ吸収能力を発揮させることを特徴とする変形制限機能付きダンパー内蔵耐震装置。
A plurality of structural members that face each other in the state of being separated from each other in the material axis direction inside or outside the structure, and that cause relative deformation in a direction perpendicular to the material axis when the structure receives a horizontal force; A direction in which the yield strength is smaller than the yield strength of the structural member and is orthogonal to the material axis between the two structural members. In the relative deformation in the positive and negative directions, an elastic-plastic damper that causes shear deformation in the in-plane direction in the relative deformation direction, and the shear deformation direction of the damper in a state straddling between the two structural members It is arranged on both sides of the damper, joined to one of the structural members in a state of projecting to the other structural member, and exceeds a certain amount of the damper when the two structural members cause relative deformation in the positive and negative directions. And a deformation limiting member that limits the sexual deformation amount,
At least one of the adjacent structural members, or a joining member straddling between the adjacent structural members, is a frame made of columns or beams of the structure, or between the upper and lower sides of the frame. The seismic element to be constructed, of any of the structural members, or the total length of the joining member, part of which is a plasticized portion having a lower yield strength than others,
When the damper is plastically deformed until it is restricted by the deformation restricting material, the damper exhibits an energy absorption capability according to the amount of deformation, and the progress of deformation is suppressed while the plastic deformation occurs after being restricted. functions as a member having high rigidity, plastic wherein at least one of the structural members of the adjacent structural member, or the plastic moiety which is part of the joining member in a direction orthogonal to the wood axis of the structural member An anti-seismic device with a built-in damper with a deformation limiting function, characterized in that the plasticized part is deformed and exhibits energy absorbing ability.
構造物の内部、あるいは外部において材軸方向に互いに分離した状態で対向し、前記構造物が水平力を受けたときに互いに材軸に直交する方向に相対変形を生ずる複数の構造部材と、この複数の構造部材の内、材軸方向に隣接する構造部材間に跨って両構造部材に接合され、降伏耐力が前記構造部材の降伏耐力より小さく、前記両構造部材間の材軸に直交する方向の正負の向きの相対変形時に、その相対変形方向に面内方向にせん断変形を生じ、塑性変形する弾塑性型のダンパーと、前記ダンパーの前記せん断変形方向の両側に形成され、前記ダンパーの前記せん断変形時に互いに接触する部分の組み合わせからなり、前記隣接する構造部材が前記正負の向きの相対変形を生ずるときの前記ダンパーの一定量を超える塑性変形量を制限する変形制限材とを備え、
前記隣接する構造部材の内の少なくともいずれかの構造部材、もしくは前記隣接する構造部材間に跨設される接合部材は前記構造物の柱・梁からなる架構、もしくは前記架構内の上下間に架設される耐震要素を構成し、前記いずれかの構造部材、もしくは接合部材の全長の内、一部は他より相対的に降伏耐力が低下した塑性化部分になっており、
前記ダンパーは前記変形制限材から制限を受けるまでの塑性変形時に、その変形量に応じたエネルギ吸収能力を発揮し、制限を受けた後に前記塑性変形を生じたまま、変形の進行が抑えられた剛性の高い部材として機能し、前記隣接する構造部材の内の少なくともいずれかの前記構造部材、もしくは前記接合部材の一部である前記塑性化部分を前記構造部材の材軸に直交する方向に塑性変形させ、この塑性化部分にエネルギ吸収能力を発揮させることを特徴とする変形制限機能付きダンパー内蔵耐震装置。
A plurality of structural members that face each other in the state of being separated from each other in the material axis direction inside or outside the structure, and that cause relative deformation in a direction perpendicular to the material axis when the structure receives a horizontal force; A direction in which the yield strength is smaller than the yield strength of the structural member and is orthogonal to the material axis between the two structural members. Is formed on both sides of the damper in the shear deformation direction, and an elastic-plastic type damper that undergoes shear deformation in the in-plane direction in the relative deformation direction at the time of relative deformation in the positive and negative directions of the damper, This is a combination of portions that come into contact with each other at the time of shear deformation, and is a variable that limits the amount of plastic deformation exceeding a certain amount when the adjacent structural member undergoes relative deformation in the positive and negative directions. And a restriction material,
At least one of the adjacent structural members, or a joining member straddling between the adjacent structural members, is a frame made of columns or beams of the structure, or between the upper and lower sides of the frame. The seismic element to be constructed, of any of the structural members, or the total length of the joining member, part of which is a plasticized portion having a lower yield strength than others,
When the damper is plastically deformed until it is restricted by the deformation restricting material, the damper exhibits an energy absorption capability according to the amount of deformation, and the progress of deformation is suppressed while the plastic deformation occurs after being restricted. functions as a member having high rigidity, plastic wherein at least one of the structural members of the adjacent structural member, or the plastic moiety which is part of the joining member in a direction orthogonal to the wood axis of the structural member An anti-seismic device with a built-in damper with a deformation limiting function, characterized in that the plasticized part is deformed and exhibits energy absorbing ability.
JP2011092915A 2011-04-19 2011-04-19 Seismic device with built-in damper with deformation limiting function Active JP5798359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092915A JP5798359B2 (en) 2011-04-19 2011-04-19 Seismic device with built-in damper with deformation limiting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092915A JP5798359B2 (en) 2011-04-19 2011-04-19 Seismic device with built-in damper with deformation limiting function

Publications (2)

Publication Number Publication Date
JP2012225411A JP2012225411A (en) 2012-11-15
JP5798359B2 true JP5798359B2 (en) 2015-10-21

Family

ID=47275805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092915A Active JP5798359B2 (en) 2011-04-19 2011-04-19 Seismic device with built-in damper with deformation limiting function

Country Status (1)

Country Link
JP (1) JP5798359B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297374B2 (en) * 2014-03-25 2018-03-20 住友理工株式会社 Vibration control device
JP6409350B2 (en) * 2014-06-10 2018-10-24 株式会社大林組 Column beam connection structure of structure
JP2016138399A (en) * 2015-01-28 2016-08-04 新日鐵住金株式会社 Damper structure
CN107747898B (en) * 2017-09-27 2023-12-12 东南大学 Cumulative plastic deformation measuring device
US11879264B2 (en) 2020-04-04 2024-01-23 Kinetica Dynamics Inc. Dual-phase vibration damping building coupling member with lock-up
JP7499115B2 (en) 2020-08-21 2024-06-13 国立大学法人埼玉大学 Vibration control device using multiple shear panel dampers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878578B2 (en) * 1993-12-01 1999-04-05 株式会社熊谷組 Damping device
JP3895866B2 (en) * 1998-03-31 2007-03-22 安藤建設株式会社 Multistage history damper
JP4585470B2 (en) * 2005-06-21 2010-11-24 中村物産有限会社 Reinforcing members and reinforcing structures for buildings and structures
JP5144919B2 (en) * 2006-11-21 2013-02-13 大和ハウス工業株式会社 Vibration control panel
JP5405062B2 (en) * 2008-07-08 2014-02-05 大和ハウス工業株式会社 Vibration-damping studs using viscoelastic dampers and buckling-restrained braces

Also Published As

Publication number Publication date
JP2012225411A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP6054913B2 (en) Elastic-plastic hysteretic damper
JP3678709B2 (en) Column-beam connection structure
JP2008002136A (en) Structure plane reinforcing structure
JP2009047193A (en) Damper device and structure
JP2011208434A (en) Beam-column joint structure
JP5491256B2 (en) Bending deformation control structure
KR102034116B1 (en) Damage controlled coupling structure and reinforcement method for steel beam to column connection
JP5132503B2 (en) Seismic structure and building
JP6680005B2 (en) Steel beam and beam-column joint structure
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP5551652B2 (en) Bending-yield elastic-plastic damper
JP4870483B2 (en) Member holding device and member holding method
JP5654060B2 (en) Damper brace and damping structure
JP4045504B2 (en) Damping structure
JP2017082904A (en) Rod-like vibration isolation member
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP5559073B2 (en) Shear deformation type elastic-plastic damper
JP6976653B2 (en) Axial force member
JP7098363B2 (en) Ladder type bearing wall frame
JP5292881B2 (en) Vibration control panel
JP5583381B2 (en) Reinforcement structure of frame
JP2009281074A (en) Connecting vibration control structure of building
JP6769758B2 (en) Vibration damping device
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5798359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250