JP5786775B2 - Parking assistance device - Google Patents

Parking assistance device Download PDF

Info

Publication number
JP5786775B2
JP5786775B2 JP2012061045A JP2012061045A JP5786775B2 JP 5786775 B2 JP5786775 B2 JP 5786775B2 JP 2012061045 A JP2012061045 A JP 2012061045A JP 2012061045 A JP2012061045 A JP 2012061045A JP 5786775 B2 JP5786775 B2 JP 5786775B2
Authority
JP
Japan
Prior art keywords
vehicle
parked
parking
back side
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061045A
Other languages
Japanese (ja)
Other versions
JP2013193527A (en
Inventor
田中 秀典
秀典 田中
大塚 秀樹
秀樹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012061045A priority Critical patent/JP5786775B2/en
Publication of JP2013193527A publication Critical patent/JP2013193527A/en
Application granted granted Critical
Publication of JP5786775B2 publication Critical patent/JP5786775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

本発明は、駐車支援装置に関するものである。   The present invention relates to a parking assistance device.

従来、自車を後退させて駐車空間に駐車させる操作を支援する技術として、例えば特許文献1に開示の駐車支援装置が知られている。   Conventionally, for example, a parking assistance device disclosed in Patent Literature 1 is known as a technique for assisting an operation of retracting the host vehicle and parking the vehicle in a parking space.

この駐車支援装置は、自車の側方の障害物までの距離を測距センサで逐次測定することで、自車の進行する通路の側方に位置する駐車車両の通路側の側面の輪郭を検出し、駐車車両の通路側の端点の位置を決定する。また、この駐車支援装置は、自車の進行方向に並ぶ各駐車車両の通路側の端点のうち、駐車スペース(駐車空間)を挟んで対向する両端点の位置に基づいて、両端点間に所定値以上の距離があることを確認し、目標駐車位置を決定する。そして、決定した目標駐車位置に自車を後退させて駐車するための支援を行う。   This parking assist device measures the distance to the obstacle on the side of the own vehicle with a distance measuring sensor, so that the contour of the side surface of the parked vehicle located on the side of the passage where the own vehicle travels is Detect and determine the position of the end point on the passage side of the parked vehicle. In addition, the parking assist device is configured to have a predetermined distance between both end points based on the positions of the opposite end points across the parking space (parking space) among the end points on the passage side of the parked vehicles arranged in the traveling direction of the own vehicle. Confirm that there is a distance greater than the value, and determine the target parking position. Then, assistance is provided for reversing and parking the vehicle at the determined target parking position.

特開2006−193014号公報JP 2006-193014 A

特許文献1には、自車の進行する通路の側方に位置する駐車車両の通路側の側面の輪郭を検出することしか記載されておらず、通路に対して奥側の側面や端点の位置を検出したり推定したりすることは記載されていない。よって、特許文献1に開示の駐車支援装置では、駐車車両の、通路に対して奥側の側面や端点の位置を考慮せずに目標駐車位置を決定していると考えられる。   Patent Document 1 only describes the detection of the contour of the side surface of the parked vehicle located on the side of the passage where the host vehicle travels, and the position of the back side surface and the end point with respect to the passage. It is not described to detect or estimate. Therefore, in the parking assistance device disclosed in Patent Literature 1, it is considered that the target parking position is determined without considering the position of the back side or end point with respect to the passage of the parked vehicle.

通路に対して奥側の側面や端点の位置が明らかでない状況において、駐車車両の通路側の端点のうちの駐車空間を挟んで対向する両端点の位置に基づいて目標駐車位置を決定する場合、通常は通路側の端点同士を結んだ直線よりも自車が内側に収まるように目標駐車位置を決定することになると考えられる。しかしながら、このように目標駐車位置を決定すると、自車を進入させるのに適切でない領域に自車を進入させて駐車させてしまう虞が生じる。詳しくは、以下の通りである。   When determining the target parking position based on the positions of the opposite end points across the parking space among the end points on the aisle side of the parked vehicle in a situation where the position of the back side and the end point is not clear with respect to the passage, Usually, it is considered that the target parking position is determined so that the own vehicle is located inside the straight line connecting the end points on the aisle side. However, when the target parking position is determined in this way, there is a risk that the vehicle is caused to enter and park in an area that is not appropriate for the vehicle to enter. Details are as follows.

例えば、自車が普通車であるのに対して、駐車空間を挟む駐車車両が軽自動車である場合のように、駐車車両の車幅が自車よりも小さい場合、駐車車両の通路側の端点同士を結んだ直線よりも内側に収まるように自車を駐車させようとすると、自車を通路に対して駐車車両よりも奥側に駐車させることになる。ここで、駐車空間を挟む駐車車両が、例えば縁石やガードレールや側溝のすぐ近くに駐車していた場合には、自車が縁石に乗り上げたり、ガードレールに接触したり、側溝に落下したりする不都合が生じる。   For example, if the width of the parked vehicle is smaller than the own vehicle, as in the case where the parked vehicle sandwiching the parking space is a light vehicle, while the host vehicle is a normal vehicle, the end point on the path side of the parked vehicle If the host vehicle is parked so as to be inside the straight line connecting the two, the host vehicle is parked behind the parked vehicle with respect to the passage. Here, when the parked vehicle that sandwiches the parking space is parked in the immediate vicinity of the curb, guardrail or gutter, for example, the vehicle rides on the curb, touches the guardrail, or falls into the gutter Occurs.

本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、自車を後退させて駐車車両に隣接する駐車空間に駐車させる駐車支援を行う場合に、自車を進入させるのに適切でない領域に自車を進入させて駐車させることを防ぐ駐車支援装置を提供することにある。   The present invention has been made in view of the above-described conventional problems, and the object thereof is to allow the host vehicle to enter when performing parking assistance in which the host vehicle is moved backward and parked in the parking space adjacent to the parked vehicle. An object of the present invention is to provide a parking assist device that prevents the vehicle from entering and parking in an area that is not suitable for the above.

本発明の駐車支援装置は、車両に搭載され、車両の側方に逐次送信する探査波の反射波を逐次受信することで障害物までの距離を逐次検出する測距センサ(2)の検出結果をもとに、車両の通過した経路の側方に存在する駐車車両に隣接する駐車空間を検出する駐車空間検出手段(1、S3)と、駐車空間検出手段で検出した駐車空間に車両を駐車させる際の目標駐車位置を決定する目標駐車位置決定手段(1、S10)と、車両を後退させて目標駐車位置に駐車させる車両走行を支援する支援手段(1、S11)とを備える駐車支援装置(1)であって、測距センサの検出結果をもとに、駐車車両の経路側に向いた面である経路側面の、地上面を基準とした平面座標系における位置を決定する経路側面位置決定手段(1、S5)と、測距センサの検知結果をもとに、駐車車両と駐車空間とが並ぶ方向における駐車車両の長さである経路方向長を推定する経路方向長推定手段(1、S6)と、経路方向長推定手段で推定した経路方向長をもとに、駐車空間の奥行き方向における駐車車両の長さである奥行き方向長を推定する奥行き方向長推定手段(1、S7)と、奥行き方向長推定手段で推定した奥行き方向長と経路側面位置決定手段で決定した経路側面の位置をもとに、駐車車両の経路側面と反対側の面である奥側面の、地上面を基準とした平面座標系における位置を推定する奥側面位置推定手段(1、S8)と、奥側面位置推定手段で推定した奥側面の位置をもとに、駐車空間の奥行き方向における駐車車両の端部である奥側端部の位置を推定する奥側端部位置推定手段(1、S9)とを備え、目標駐車位置決定手段は、奥側端部位置推定手段で決定した奥側端部の位置よりも駐車空間の奥行き方向における奥側に車両が越えないように目標駐車位置を決定することを特徴としている。 The parking assist device of the present invention is mounted on a vehicle, and the detection result of a distance measuring sensor (2) that sequentially detects the distance to an obstacle by sequentially receiving reflected waves of exploration waves that are sequentially transmitted to the side of the vehicle. Based on the above, the parking space detecting means (1, S3) for detecting the parking space adjacent to the parked vehicle existing on the side of the route through which the vehicle has passed, and the vehicle is parked in the parking space detected by the parking space detecting means Parking support device comprising target parking position determining means (1, S10) for determining a target parking position when the vehicle is moved, and support means (1, S11) for assisting vehicle travel for retracting the vehicle and parking at the target parking position (1) A path side surface position that determines a position in a plane coordinate system based on the ground surface of a path side surface that is a surface facing the path side of a parked vehicle based on a detection result of a distance measuring sensor. and determination means (1, S5), ranging Se On the basis of the detection result, the route direction length estimation means (1, S6) for estimating the route direction length which is the length of the parked vehicle in the direction in which the parked vehicle and the parking space are aligned, and the route direction length estimation means Based on the estimated route length, the depth direction length estimating means (1, S7) for estimating the depth direction length that is the length of the parked vehicle in the depth direction of the parking space, and the depth estimated by the depth direction length estimating means Based on the direction length and the position of the route side surface determined by the route side surface position determining means, the position of the back side surface, which is the surface opposite to the route side surface of the parked vehicle, is estimated in the plane coordinate system. Based on the position of the back side surface estimated by the back side surface position estimating means (1, S8) and the back side surface position estimating means, the position of the back side end part which is the end part of the parked vehicle in the depth direction of the parking space is estimated. Back side edge position estimation means (1, 9), and the target parking position determining means sets the target parking position so that the vehicle does not cross the back side in the depth direction of the parking space with respect to the position of the back side end part determined by the back side end position estimating means. It is characterized by deciding.

これによれば、測距センサの検出結果をもとに経路側面位置決定手段で決定した駐車車両の経路側面(駐車車両の経路側に向いた面)の位置をもとに、経路側面と反対側の面である奥側面の位置を推定し、奥側面の位置をもとに、奥側端部の位置を決定できる。なお、奥側端部は、駐車空間の奥行き方向における駐車車両の端部であるので、奥側端部の位置は、駐車空間の奥行き方向における駐車車両の最も奥側の位置に該当する。駐車車両が例えば縁石やガードレールや側溝といった自車を進入させるのに適切でない領域のすぐ近くに駐車していた場合にも、駐車車両はこれらの自車を進入させるのに適切でない領域に進入しないように駐車されている筈なので、奥側端部の位置も自車を進入させるのに適切でない領域よりも手前側にある筈である。   According to this, on the basis of the position of the route side surface of the parked vehicle (surface facing the route side of the parked vehicle) determined by the route side surface position determining means based on the detection result of the distance measuring sensor, it is opposite to the route side surface. It is possible to estimate the position of the back side surface, which is a side surface, and determine the position of the back side end portion based on the position of the back side surface. Since the back end is the end of the parked vehicle in the depth direction of the parking space, the position of the back end corresponds to the farthest position of the parked vehicle in the depth direction of the parking space. If a parked vehicle is parked in the immediate vicinity of an area that is not suitable for entering the vehicle, such as curbs, guardrails, or gutters, the parked vehicle will not enter an area that is not suitable for entering the vehicle. Since the bag is parked in this manner, the position of the rear side end portion is also a kite located on the near side of the region that is not appropriate for the vehicle to enter.

本発明の駐車支援装置は、この奥側端部の位置よりも駐車空間の奥行き方向における奥側に車両が越えないように目標駐車位置を決定するので、上記奥行き方向における駐車車両の奥側に自車を進入させるのに適切でない領域が存在した場合に、車両を後退させて目標駐車位置に駐車させる支援を行ったとしたとしても、自車を進入させるのに適切でない領域に自車を進入させて駐車させることがなくなる。   Since the parking assist device of the present invention determines the target parking position so that the vehicle does not go to the back side in the depth direction of the parking space from the position of the back side end portion, the parking support device on the back side of the parked vehicle in the depth direction. If there is an area that is not appropriate for entering the vehicle, even if assistance is provided to retract the vehicle and park at the target parking position, the vehicle enters the area that is not appropriate for entering the vehicle. You won't be allowed to park.

その結果、自車を後退させて駐車車両に隣接する駐車空間に駐車させる駐車支援を行う場合に、自車を進入させるのに適切でない領域に自車を進入させて駐車させることを防ぐことが可能になる。   As a result, when performing parking assistance for reversing the host vehicle and parking in the parking space adjacent to the parked vehicle, it is possible to prevent the host vehicle from entering and parking in an area that is not appropriate for the host vehicle to enter. It becomes possible.

駐車支援システム100の概略的な構成の一例を示すブロック図である。1 is a block diagram illustrating an example of a schematic configuration of a parking assistance system 100. FIG. 測距センサ2を用いた駐車車両及び駐車空間の検出態様の一例についての説明を行うための模式図である。It is a schematic diagram for demonstrating an example of the detection aspect of the parked vehicle and parking space using the ranging sensor 2. FIG. 駐車支援ECU1での縦列駐車支援関連処理のフローの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the parallel parking assistance relevant process in parking assistance ECU1. 走行経路算出処理の概略を示すフローチャートである。It is a flowchart which shows the outline of a driving | running route calculation process. 従来技術の問題点を説明するための図である。It is a figure for demonstrating the problem of a prior art. 本実施形態の効果を説明するための図である。It is a figure for demonstrating the effect of this embodiment. 駐車支援システム100aの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of the parking assistance system 100a. 側方カメラ8の撮像範囲の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the imaging range of the side camera 8. FIG. 変形例3の効果を説明するための図である。It is a figure for demonstrating the effect of the modification 3. FIG.

以下、本発明の実施形態について図面を用いて説明する。図1に示す駐車支援システム100は、駐車支援ECU1、測距センサ2、後方カメラ3、舵角センサ4、車輪速センサ5、表示装置6、及び音声出力装置7を含んでいる。また、駐車支援ECU1と測距センサ2、後方カメラ3、舵角センサ4、車輪速センサ5、表示装置6、及び音声出力装置7とは、例えばCAN(controller areanetwork)などの通信プロトコルに準拠した車内LANで各々接続されている。なお、駐車支援システム100を搭載している車両を以降では自車と呼ぶ。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. A parking assistance system 100 shown in FIG. 1 includes a parking assistance ECU 1, a distance measuring sensor 2, a rear camera 3, a rudder angle sensor 4, a wheel speed sensor 5, a display device 6, and an audio output device 7. In addition, the parking assist ECU 1, the distance measuring sensor 2, the rear camera 3, the rudder angle sensor 4, the wheel speed sensor 5, the display device 6, and the audio output device 7 comply with a communication protocol such as CAN (controller area network). Each is connected via an in-car LAN. Hereinafter, a vehicle equipped with the parking assist system 100 is referred to as a host vehicle.

測距センサ2は、探査波を送信し、障害物で反射されるその探査波の反射波を受信することで障害物までの距離を検知するために用いられるセンサである。測距センサ2は、探査波を送信し、その探査波の反射波を受信するセンサであればよく、音波を用いるものであっても、光波を用いるものであっても、電波を用いるものであってもよい。例えば測距センサ2としては、超音波センサ、レーザレーダ、ミリ波レーダ等のセンサを用いることができる。   The distance measuring sensor 2 is a sensor used for detecting a distance to an obstacle by transmitting a survey wave and receiving a reflected wave of the search wave reflected by the obstacle. The distance measuring sensor 2 may be any sensor that transmits an exploration wave and receives a reflected wave of the exploration wave, and uses a radio wave regardless of whether it uses a sound wave or a light wave. There may be. For example, as the distance measuring sensor 2, a sensor such as an ultrasonic sensor, a laser radar, or a millimeter wave radar can be used.

また、測距センサ2は、例えば指向性の中心線が自車の車軸方向と平行になるように、例えば自車の前部バンパの左右側面に1つずつ配置される。測距センサ2の指向性の中心線は、自車の車軸方向から例えば20°程度まで傾いて配置されていてもよい。また、測距センサ2の指向性は、想定されている車速範囲での使用において送受波を良好に行うことができる程度の広さがありさえすれば、より狭い方が好ましい。   Further, the distance measuring sensors 2 are arranged one by one on the left and right side surfaces of the front bumper of the own vehicle, for example, so that the directional center line is parallel to the axle direction of the own vehicle. The directivity center line of the distance measuring sensor 2 may be arranged to be inclined, for example, about 20 ° from the axle direction of the own vehicle. Further, the directivity of the distance measuring sensor 2 is preferably narrower as long as it is wide enough to transmit and receive waves satisfactorily when used in an assumed vehicle speed range.

ここで、図2を用いて、測距センサ2を用いた駐車車両及び駐車空間の検出態様の一例についての説明を行う。本実施形態は、縦列駐車及び横列駐車のいずれにも適用可能であるが、一例として縦列駐車の場合を例に挙げて説明を行う。ここでは、便宜上、自車の左側に駐車空間が存在する場合を例に挙げて説明を行う。以降では、図2の例をもとに説明を続けるものとする。   Here, an example of a detection mode of the parked vehicle and the parking space using the distance measuring sensor 2 will be described with reference to FIG. Although this embodiment is applicable to both parallel parking and horizontal parking, the case of parallel parking will be described as an example. Here, for the sake of convenience, description will be given by taking as an example a case where a parking space exists on the left side of the own vehicle. Hereinafter, the description will be continued based on the example of FIG.

図2中のAが自車を示しており、実線で表した矢印が自車の進行方向を示しており、B・Cが縦列駐車をしている駐車車両を示している。自車の前進時の進行方向に対して奥側が駐車車両Bであって、手前側が駐車車両Cである。また、図2中のDが駐車車両に挟まれた駐車空間を示している。さらに、Eが測距センサ2の検知範囲を示しており、F1が駐車車両Bの自車進行方向における長さ(以下、経路方向長)を示しており、F2が駐車車両Cの経路方向長を示している。また、図中の白丸で示す点が測距センサ2による測定点を示している。   In FIG. 2, A indicates the own vehicle, an arrow indicated by a solid line indicates the traveling direction of the own vehicle, and B and C indicate parked vehicles in parallel parking. The far side is the parked vehicle B and the near side is the parked vehicle C with respect to the traveling direction when the host vehicle is moving forward. Moreover, D in FIG. 2 shows a parking space sandwiched between parked vehicles. Further, E indicates the detection range of the distance measuring sensor 2, F1 indicates the length of the parked vehicle B in the traveling direction of the own vehicle (hereinafter, the length in the route direction), and F2 is the length of the parked vehicle C in the route direction. Is shown. Further, the points indicated by white circles in the figure indicate the measurement points by the distance measuring sensor 2.

経路方向長は、駐車車両B・Cと駐車空間Dとが並ぶ方向における駐車車両B・Cの長さや駐車車両B・Cの車長と言い換えることができる。なお、ここでは、便宜上、自車Aの左側面に配置された測距センサ2のみを示し、説明を行う。   The length in the route direction can be restated as the length of the parked vehicles B and C and the length of the parked vehicles B and C in the direction in which the parked vehicles B and C and the parking space D are arranged. Here, for the sake of convenience, only the distance measuring sensor 2 arranged on the left side surface of the host vehicle A is shown and described.

自車Aは、自車Aの左側面に配置された測距センサ2から自車Aの左側方に向けて探査波を逐次送信しながら駐車車両C、駐車空間D、駐車車両Bの側方を通過しつつ、駐車車両C、駐車車両Bからの反射波を逐次受信することになる。そして、自車Aが走行しながら測距センサ2で逐次受信した反射波をもとにして、自車Aの通過した経路の左側方に存在する駐車車両B・Cを検出するとともに、駐車車両B・Cに隣接する駐車空間Dを駐車支援ECU1が検出する。なお、以降では、図2の例をもとに説明を続けるものとする。   The own vehicle A transmits the exploration wave sequentially from the distance measuring sensor 2 arranged on the left side surface of the own vehicle A toward the left side of the own vehicle A, and the side of the parked vehicle C, the parking space D, and the parked vehicle B. The reflected waves from the parked vehicle C and the parked vehicle B are sequentially received while passing through the vehicle. Then, based on the reflected waves sequentially received by the distance measuring sensor 2 while the host vehicle A is traveling, the parked vehicles B and C existing on the left side of the route through which the host vehicle A has passed are detected. The parking assist ECU 1 detects the parking space D adjacent to B / C. Hereinafter, the description will be continued based on the example of FIG.

後方カメラ3は、自車Aの例えば後部バンパよりも上方に設置され、自車後方に所定角範囲で広がる領域を撮像するものである。後方カメラ3は、光軸が車体後部の路面を向くように設置される。例えば後方カメラ3としては、CCDカメラを用いる構成とすればよい。後方カメラ3が撮像した自車後方周辺の画像情報は、駐車支援ECU1に供給される。   The rear camera 3 is installed above the rear bumper of the host vehicle A, for example, and captures an area extending in a predetermined angular range behind the host vehicle. The rear camera 3 is installed such that the optical axis faces the road surface at the rear of the vehicle body. For example, the rear camera 3 may be configured to use a CCD camera. Image information around the rear of the host vehicle captured by the rear camera 3 is supplied to the parking assist ECU 1.

舵角センサ4は、自車Aのステアリングの操舵角を検出するセンサであり、自車Aが直進状態で走行するときの操舵角を中立位置(0度)とし、その中立位置からの回転角度を操舵角として出力する。なお、この操舵角は、中立位置から右回転する場合には正(+)の符号を付して出力され、中立位置から左回転する場合には負(−)の符号を付して出力される。また、車輪速センサ5は、各転動輪の回転速度から自車Aの速度を検出するセンサである。   The rudder angle sensor 4 is a sensor that detects the steering angle of the steering of the host vehicle A. The steering angle when the host vehicle A travels in a straight traveling state is set to the neutral position (0 degree), and the rotation angle from the neutral position. Is output as the steering angle. The steering angle is output with a positive (+) sign when rotating right from the neutral position, and is output with a negative (-) sign when rotating left from the neutral position. The The wheel speed sensor 5 is a sensor that detects the speed of the host vehicle A from the rotational speed of each rolling wheel.

表示装置6は、駐車支援ECU1の指示に従ってテキストや画像を表示する。例えば表示装置6は、フルカラー表示が可能なものであり、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等を用いて構成することができる。また、表示装置6としては、例えば、車載ナビゲーション装置に設けられたディスプレイを利用する構成としてもよいし、車載ナビゲーション装置のディスプレイとは別に、インストゥルメントパネル等に設けたディスプレイを用いる構成としてもよい。   The display device 6 displays text and images in accordance with instructions from the parking assistance ECU 1. For example, the display device 6 is capable of full color display and can be configured using a liquid crystal display, an organic EL display, a plasma display, or the like. The display device 6 may be configured to use a display provided in the in-vehicle navigation device, or may be configured to use a display provided in an instrument panel or the like separately from the display of the in-vehicle navigation device. Good.

音声出力装置7は、スピーカ等から構成され、駐車支援ECU1の指示に従って音声を出力する。なお、音声出力装置7としては、例えば、車載ナビゲーション装置に設けられた音声出力装置を利用する構成としてもよい。   The audio output device 7 is constituted by a speaker or the like, and outputs audio according to an instruction from the parking assistance ECU 1. In addition, as the audio | voice output apparatus 7, it is good also as a structure which utilizes the audio | voice output apparatus provided in the vehicle-mounted navigation apparatus, for example.

駐車支援ECU1は、主にマイクロコンピュータとして構成され、何れも周知のCPU、ROM・RAM・EEPROM等のメモリ、I/O、及びこれらを接続するバスによって構成される。駐車支援ECU1は、測距センサ2、後方カメラ3、舵角センサ4、車輪速センサ5から入力された各種情報に基づき、ROMに記憶された各種の制御プログラムを実行することで自車を後退させて駐車空間へ縦列駐車させるための駐車支援に関する処理(以下、縦列駐車支援関連処理)等の各種の処理を実行する。駐車支援ECU1が請求項の駐車支援装置に相当する。   The parking assist ECU 1 is mainly configured as a microcomputer, and each includes a well-known CPU, a memory such as a ROM / RAM / EEPROM, an I / O, and a bus connecting them. The parking assist ECU 1 moves back the host vehicle by executing various control programs stored in the ROM based on various information input from the distance measuring sensor 2, the rear camera 3, the rudder angle sensor 4, and the wheel speed sensor 5. Then, various processes such as a process related to parking support for performing parallel parking in the parking space (hereinafter referred to as parallel parking support related process) are executed. The parking assistance ECU 1 corresponds to the parking assistance device in the claims.

ここで、図3のフローチャートを用いて、駐車支援ECU1での後退駐車支援関連処理についての説明を行う。図3のフローは、駐車支援ECU1が所定の開始トリガを検出したときに開始される。開始トリガとしては、例えば図示しない駐車支援開始スイッチをオンにする操作入力などが挙げられる。   Here, with reference to the flowchart of FIG. 3, the backward parking support-related process in the parking support ECU 1 will be described. The flow in FIG. 3 is started when the parking assist ECU 1 detects a predetermined start trigger. Examples of the start trigger include an operation input for turning on a parking assistance start switch (not shown).

まず、ステップS1では、駐車車両検出処理を行って、ステップS2に移る。駐車空間検出処理では、駐車車両C、駐車空間D、駐車車両Bの横を前進しながら通過する際に、測距センサ2によって逐次(例えば100msecごと)検知した障害物(測定点)までの距離を時系列に記憶した距離データ系列(測定点の点列)から、駐車車両B・Cの輪郭形状を特定して駐車車両を検出する。距離データ系列から特定される駐車車両B・Cの輪郭形状は、自車Aの通過した経路側に向いた駐車車両B・Cの側面についての輪郭形状である。   First, in step S1, a parked vehicle detection process is performed, and the process proceeds to step S2. In the parking space detection process, the distance to the obstacle (measurement point) sequentially detected by the distance measuring sensor 2 (for example, every 100 msec) when passing through the side of the parked vehicle C, the parked space D, and the parked vehicle B while moving forward. From the distance data series (point sequence of measurement points) stored in time series, the contour shape of the parked vehicles B and C is specified and the parked vehicle is detected. The contour shape of the parked vehicles B and C specified from the distance data series is the contour shape of the side surfaces of the parked vehicles B and C facing the route side through which the host vehicle A has passed.

一例としては、特開2008−21039号公報に開示されているのと同様の公知の方法によって、距離データ系列(測定点の点列)を楕円もしくは放物線により近似した上で駐車車両B・Cの輪郭形状を特定する。   As an example, the distance data series (point sequence of measurement points) is approximated by an ellipse or a parabola by a known method similar to that disclosed in Japanese Patent Application Laid-Open No. 2008-21039, and the parked vehicles B and C Specify the contour shape.

ステップS2では、通路側車両端検出処理を行って、ステップS3に移る。通路側車両端検出処理では、駐車車両検出処理で検出した駐車車両B・Cの輪郭形状から、自車Aの通過した経路側の駐車車両B・Cの車両端である経路側車両端を検出する。一例としては、自車Aの通過した経路方向(自車の前進時の進行方向)を基準方向とした場合における、この基準方向での駐車車両B・Cの輪郭形状の端部を、駐車車両B・Cの経路側車両端として検出する。   In step S2, passage side vehicle end detection processing is performed, and the process proceeds to step S3. In the passage-side vehicle end detection process, the path-side vehicle end that is the vehicle end of the parked vehicle B / C on the path side through which the vehicle A passes is detected from the contour shape of the parked vehicle B / C detected in the parked vehicle detection process. To do. As an example, the end of the contour shape of the parked vehicles B and C in the reference direction when the route direction (the travel direction when the host vehicle is moving forward) through which the vehicle A has passed is used as the reference direction. Detected as B / C path side vehicle end.

ステップS3では、駐車空間検出処理を行って、ステップS4に移る。駐車空間検出処理では、駐車車両検出処理で検出した駐車車両B・Cの輪郭形状から、駐車車両B・Cに挟まれる駐車空間Dを検出する。このステップS3の処理が請求項の駐車空間検出手段に相当する。   In step S3, a parking space detection process is performed, and the process proceeds to step S4. In the parking space detection process, the parking space D sandwiched between the parked vehicles B and C is detected from the contour shape of the parked vehicles B and C detected in the parked vehicle detection process. The processing in step S3 corresponds to the parking space detection means in the claims.

ステップS4では、自車Aが駐車可能な駐車空間Dであるか否かを判定する。自車Aが駐車可能な駐車空間Dであるか否かは、駐車空間Dの大きさと自車Aの寸法とに基づいて判定する。   In step S4, it is determined whether or not the host vehicle A is a parking space D in which parking is possible. Whether or not the host vehicle A is a parking space D that can be parked is determined based on the size of the parking space D and the size of the host vehicle A.

例えば、ここで言うところの駐車空間Dの大きさとは、自車Aの通過した経路方向における駐車空間Dの長さとする。一例として、駐車空間Dの大きさは、通路側車両端検出処理で検出した駐車車両B・Cの経路側車両端のうちの、自車Aの通過した経路方向においてお互いに対向する各経路側車両端の距離を求めることで決定する。また、自車Aの寸法は、駐車支援ECU1の例えばEEPROM等の不揮発性メモリに予め記憶されているものとすればよい。例えば、駐車空間Dの大きさが、自車Aの車長+1m以上であった場合に、自車Aが駐車可能な駐車空間Dであると判定する構成とすればよい。   For example, the size of the parking space D referred to here is the length of the parking space D in the direction of the route through which the vehicle A has passed. As an example, the size of the parking space D is the path side facing each other in the path direction of the own vehicle A among the path side vehicle ends of the parked vehicles B and C detected by the path side vehicle end detection process. It is determined by finding the distance at the end of the vehicle. In addition, the size of the host vehicle A may be stored in advance in a nonvolatile memory such as an EEPROM of the parking assist ECU 1. For example, when the size of the parking space D is equal to or longer than the vehicle length of the own vehicle A + 1m, the configuration may be such that the own vehicle A is determined to be a parking space D in which parking is possible.

そして、自車Aが駐車可能と判定した場合(ステップS4でYES)には、ステップS5に移る。また、自車Aが駐車可能でないと判定した場合(ステップS4でNO)には、ステップS1に戻り、駐車車両Bよりも自車Aの進行方向に対してさらに奥側に存在する駐車車両の検出を行ってフローを繰り返す。   And when it determines with the own vehicle A parking possible (it is YES at step S4), it moves to step S5. If it is determined that the vehicle A cannot be parked (NO in step S4), the process returns to step S1, and a parked vehicle that is further on the back side of the traveling direction of the vehicle A than the parked vehicle B is returned. Repeat the flow with detection.

ここでは、駐車車両B・Cの輪郭形状から駐車車両B・Cの経路側車両端の位置を決定し、駐車空間Dの大きさを決定する構成を示したが、必ずしもこれに限らない。例えば、駐車車両B・Cの一方しか存在しない場合に、その一方の輪郭形状から経路側車両端を決定し、この経路側車両端から駐車空間Dの大きさを決定する構成としてもよい。   Here, although the position of the path side vehicle end of the parked vehicles B and C is determined from the contour shape of the parked vehicles B and C and the size of the parking space D is determined, the configuration is not necessarily limited thereto. For example, when only one of the parked vehicles B and C exists, the route-side vehicle end may be determined from one of the contour shapes, and the size of the parking space D may be determined from the route-side vehicle end.

一例としては以下の通りである。輪郭形状から決定した経路側車両端から、自車Aの進行方向に測定点が一定距離以上存在しなかった場合に、この経路側車両端から自車Aの進行方向に一定距離の点を仮想的な駐車車両の経路側車両端の位置と決定する。そして、輪郭形状から決定した経路側車両端と、仮想的な駐車車両の経路側車両端との距離を駐車空間Dの大きさと決定する。ここで言うところの一定距離とは、自車Aの車長よりも長い任意に設定可能な値であって、例えば自車長+1mの長さであるものとする。   An example is as follows. When a measurement point does not exist in the traveling direction of the own vehicle A from the end of the route side vehicle determined from the contour shape, a point of a certain distance from the end of the path side vehicle in the traveling direction of the own vehicle A is virtually It is determined as the position of the vehicle end on the route side of a typical parked vehicle. Then, the distance between the path-side vehicle end determined from the contour shape and the path-side vehicle end of the virtual parked vehicle is determined as the size of the parking space D. The constant distance here is a value that can be arbitrarily set longer than the vehicle length of the host vehicle A, and is, for example, the length of the host vehicle length + 1 m.

なお、本発明を横列駐車に適用する場合は、駐車空間Dの大きさが、例えば自車Aの車幅+1m以上であった場合に、自車Aが駐車可能な駐車空間Dであると判定する構成とすればよい。   In addition, when applying this invention to horizontal parking, when the magnitude | size of the parking space D is the vehicle width of the own vehicle A + 1 m or more, for example, it determines with the own vehicle A being the parking space D which can park. What is necessary is just to be the structure to do.

また、この経路側車両端の決定方法を利用することにより、2台の駐車車両に挟まれた駐車空間を検出するだけでなく、2台の駐車車両に挟まれていない(つまり、1台の駐車車両に隣接するだけの)駐車空間を検出する構成としてもよい。詳しくは、自車の進行方向に対して奥側の駐車車両を仮想して、その仮想的な駐車車両の経路側車両端の位置を、実際に存在する手前側の駐車車両の経路側車両端の位置から決定することで、1台の駐車車両に隣接するだけの駐車空間を検出する。   In addition, by using this route side vehicle end determination method, not only a parking space sandwiched between two parked vehicles is detected, but is not sandwiched between two parked vehicles (that is, one vehicle It is good also as a structure which detects the parking space (adjacent to a parked vehicle). Specifically, a virtual parked vehicle on the far side with respect to the traveling direction of the host vehicle is virtualized, and the position of the path side vehicle end of the virtual parked vehicle is determined as the path side vehicle end of the near side parked vehicle that actually exists. By determining from the position, a parking space only adjacent to one parked vehicle is detected.

測定点や車両端の位置は、地上面を基準とした平面座標系の座標として表す構成とすればよい。平面座標系の原点は、例えば測距センサ2での検知開始時の自車位置とすればよい。例えば自車位置は、自車A後輪車軸中心の位置とする。なお、移動後の自車位置については、舵角センサ4及び車輪速センサ5から逐次得られる操舵角と車速とをもとに原点からの変化量を算出することで決定する構成とすればよい。   The position of the measurement point or the vehicle end may be configured to be expressed as coordinates in a plane coordinate system with the ground surface as a reference. The origin of the plane coordinate system may be the own vehicle position at the start of detection by the distance measuring sensor 2, for example. For example, the own vehicle position is set to the center of the own vehicle A rear wheel axle. In addition, what is necessary is just to set it as the structure determined by calculating the variation | change_quantity from an origin based on the steering angle and vehicle speed which are obtained sequentially from the steering angle sensor 4 and the wheel speed sensor 5 about the own vehicle position after a movement. .

ステップS5では、経路側面位置決定処理を行って、ステップS6に移る。経路側面位置決定処理では、駐車車両B・Cの経路側の側面(以下、経路側面)の位置を決定する。よって、このステップS5の処理が請求項の経路側面位置決定手段に相当する。一例としては、駐車車両検出処理で検出した駐車車両Bの輪郭形状を構成する各点列のうち、通路側車両端検出処理で検出した通路側車両端を始点・終点とした点列の座標の集合を駐車車両Bの経路側面の位置とすればよい。駐車車両Cについても同様である。他にも、通路側車両端検出処理で検出した通路側車両端を始点・終点とした直線を示す座標の集合を駐車車両B・Cの経路側面の位置としてもよい。   In step S5, a route side surface position determination process is performed, and the process proceeds to step S6. In the route side surface position determination process, the position of the side surface (hereinafter referred to as the route side surface) of the parked vehicle B / C is determined. Therefore, the process of step S5 corresponds to the route side surface position determining means in the claims. As an example, out of each point sequence constituting the contour shape of the parked vehicle B detected by the parked vehicle detection process, the coordinates of the point sequence having the path side vehicle end detected by the path side vehicle end detection process as the start point / end point What is necessary is just to make a set into the position of the path | route side surface of the parked vehicle B. FIG. The same applies to the parked vehicle C. In addition, a set of coordinates indicating a straight line starting from the passage-side vehicle end detected by the passage-side vehicle end detection process may be used as the position of the side surface of the parked vehicle B / C.

ステップS6では、経路方向長算出処理を行って、ステップS7に移る。経路方向長算出処置では、駐車車両B・Cと駐車空間Dとが並ぶ方向における駐車車両B・Cの長さである経路方向長(本実施形態の例では車長)を算出する。よって、このステップS6の処理が請求項の経路方向長推定手段に相当する。   In step S6, a route direction length calculation process is performed, and the process proceeds to step S7. In the route direction length calculation process, the length in the route direction (the vehicle length in the example of the present embodiment), which is the length of the parked vehicles B and C in the direction in which the parked vehicles B and C and the parking space D are aligned, is calculated. Therefore, the processing in step S6 corresponds to the path direction length estimation means in the claims.

一例としては、通路側車両端検出処理で検出した駐車車両Bの各通路側車両端の距離を駐車車両Bの車長として算出する。駐車車両Cについても同様であるものとする。なお、本発明を横列駐車に適用する場合は、通路側車両端検出処理で検出した駐車車両の各通路側車両端の距離を駐車車両の車幅として算出する構成とすればよい。   As an example, the distance of each passage-side vehicle end of the parked vehicle B detected by the passage-side vehicle end detection process is calculated as the vehicle length of the parked vehicle B. The same applies to the parked vehicle C. In addition, what is necessary is just to set it as the structure which calculates the distance of each channel | path side vehicle end of the parked vehicle detected by the channel | path side vehicle end detection process as a vehicle width of a parked vehicle, when applying this invention to row parking.

ステップS7では、奥行き方向長推定処理を行って、ステップS8に移る。奥行き方向長推定処理では、経路方向長算出処理で算出した駐車車両B・Cの車長をもとに、駐車空間Dの奥行き方向における駐車車両B・Cの長さである奥行き方向長(本実施形態の例では車幅)を推定する。よって、このステップS7の処理が請求項の奥行き方向長推定手段に相当する。   In step S7, depth direction length estimation processing is performed, and the process proceeds to step S8. In the depth direction length estimation processing, based on the vehicle lengths of the parked vehicles B and C calculated in the route direction length calculation processing, the depth direction length (the length of the parked vehicles B and C in the depth direction of the parking space D) In the example of the embodiment, the vehicle width) is estimated. Therefore, the process of step S7 corresponds to the depth direction length estimation means in the claims.

一例としては、車長と車幅との対応関係(例えばテーブルなど)を、駐車支援ECU1のEEPROM等の不揮発性メモリに予め格納しておき、この対応関係をもとに、経路方向長算出処理で算出した駐車車両B・Cの車長に応じた車幅を得ることで、駐車車両B・Cの車幅を推定する。車長と車幅との対応関係は、実際の各車種の車長と車幅との関係に基づいて設定する構成とすればよい。   As an example, a correspondence relationship (for example, a table) between the vehicle length and the vehicle width is stored in advance in a nonvolatile memory such as an EEPROM of the parking assist ECU 1, and a route direction length calculation process is performed based on this correspondence relationship. The vehicle width of the parked vehicles B and C is estimated by obtaining the vehicle width corresponding to the vehicle lengths of the parked vehicles B and C calculated in step S2. The correspondence relationship between the vehicle length and the vehicle width may be set based on the actual relationship between the vehicle length and the vehicle width of each vehicle type.

なお、本発明を横列駐車に適用する場合は、車長と車幅との対応関係をもとにして、経路方向長算出処理で算出した駐車車両B・Cの車幅に応じた車長を得ることで、駐車車両B・Cの車長を推定する構成とすればよい。   When the present invention is applied to row parking, the vehicle length corresponding to the vehicle width of the parked vehicles B and C calculated by the route direction length calculation process is calculated based on the correspondence relationship between the vehicle length and the vehicle width. By obtaining, the vehicle length of the parked vehicles B and C may be estimated.

ステップS8では、奥側面位置推定処理を行って、ステップS9に移る。奥側面位置推定処理では、経路側面位置決定処理で決定した経路側面の位置と奥行き方向長推定処理で推定した駐車車両B・Cの車幅とをもとに、駐車車両B・Cの経路側面と反対側の面である奥側の側面(以下、奥側面)の位置を推定する。よって、このステップS8の処理が請求項の奥側面位置推定手段に相当する。   In step S8, a back side surface position estimation process is performed, and the process proceeds to step S9. In the back side surface position estimation process, the path side surface of the parked vehicle B / C is determined based on the position of the path side surface determined in the path side surface position determination process and the vehicle width of the parked vehicle B / C estimated in the depth direction length estimation process. The position of the back side surface (hereinafter referred to as the back side surface), which is the surface on the opposite side, is estimated. Therefore, the process of step S8 corresponds to the back side surface position estimating means in the claims.

一例としては、経路側面を示す線分の中心と平面座標系において垂直に交わる直線の方向の、自車Aの通過した経路から遠ざかる側に、奥行き方向長推定処理で推定した車幅の距離だけ経路側面の位置を平行移動させた位置を、奥側面の位置と推定する。通路側車両端を始点・終点とした点列の座標の集合を経路側面の位置としている場合には、これらの座標の集合から最小二乗法等で近似した線分を、経路側面を示す線分として用いる構成とすればよい。   As an example, only the distance of the vehicle width estimated by the depth direction length estimation process on the side of the straight line perpendicular to the center of the line segment indicating the route side surface in the plane coordinate system and away from the route through which the vehicle A has passed. The position obtained by translating the position of the path side surface is estimated as the position of the back side surface. When a set of coordinates of a point sequence starting from the end of the vehicle on the aisle side is used as the position of the route side surface, a line segment approximated by a least square method or the like from the set of coordinates is used as the line segment indicating the route side surface. The configuration used as

なお、本発明を横列駐車に適用する場合は、経路側面を示す線分の中心と平面座標系において垂直に交わる直線の方向の、自車Aの通過した経路から遠ざかる側に、奥行き方向長推定処理で推定した駐車車両の車長の距離だけ経路側面の位置を平行移動させた位置を、奥側面の位置と推定する構成とすればよい。   When the present invention is applied to horizontal parking, the length in the direction of the straight line that intersects perpendicularly in the plane coordinate system with the center of the line segment indicating the side of the route is estimated to be the length direction away from the route through which the vehicle A has passed. What is necessary is just to set it as the structure which estimates the position which translated the position of the path | route side surface by the distance of the vehicle length of the parked vehicle estimated by the process as the position of a back side surface.

ステップS9では、奥側端部位置推定処理を行って、ステップS10に移る。奥側端部位置推定処理では、奥側面位置推定処理で推定した奥側面の位置をもとに、駐車空間Dの奥行き方向における駐車車両B・Cの端部である奥側端部の位置を推定する。よって、このステップS9の処理が請求項の奥側端部位置推定手段に相当する。一例としては、奥側面の始点と終点のうち、平面座標系において駐車空間Dの奥行き方向における奥側に位置する点の位置を奥側端部の位置とする。   In step S9, a back side end position estimation process is performed, and the process proceeds to step S10. In the back end position estimation process, the position of the back end that is the end of the parked vehicle B / C in the depth direction of the parking space D is determined based on the position of the back side estimated in the back side position estimation process. presume. Therefore, the process of step S9 corresponds to the back side end position estimating means in the claims. As an example, the position of the point located on the far side in the depth direction of the parking space D in the plane coordinate system among the start point and the end point of the back side surface is set as the position of the far side end.

なお、本フローでは、ステップS5〜ステップ9の処理をステップS4の処理以降に行う構成を示したが、必ずしもこれに限らない。例えば、ステップS5〜ステップS9の処理の全部若しくは一部を、ステップS4の処理以前に行う構成としてもよい。   In addition, in this flow, although the structure which performs the process of step S5-step 9 after the process of step S4 was shown, it does not necessarily restrict to this. For example, all or part of the processing in steps S5 to S9 may be performed before the processing in step S4.

ステップS10では、目標駐車位置決定処理を行って、ステップS11に移る。目標駐車位置算出処理では、駐車空間検出処理で検出した駐車空間Dに自車Aを駐車する際の目標とする駐車位置(以下、目標駐車位置)を設定する。目標駐車位置は、言い換えると駐車完了時の自車Aの位置である。   In step S10, a target parking position determination process is performed, and the process proceeds to step S11. In the target parking position calculation process, a target parking position (hereinafter referred to as a target parking position) is set when the host vehicle A is parked in the parking space D detected by the parking space detection process. In other words, the target parking position is the position of the own vehicle A when parking is completed.

目標駐車位置は、奥側端部位置推定処理で推定した駐車車両B・Cの奥側端部の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように決定する。よって、ステップS10が請求項の目標駐車位置決定手段に相当する。一例として、駐車車両Bの奥側端部の位置と駐車車両Cの奥側端部の位置とを結ぶ直線に自車Aの駐車空間D側の側面が沿って駐車するように、目標駐車位置を決定する。   The target parking position is determined so that the own vehicle A does not exceed the back side in the depth direction of the parking space D with respect to the position of the back side end part of the parked vehicles B and C estimated by the back side end part position estimation process. Therefore, step S10 corresponds to the target parking position determination means in the claims. As an example, the target parking position is such that the side of the parking space D side of the own vehicle A is parked along a straight line connecting the position of the back end of the parked vehicle B and the position of the back end of the parked vehicle C. To decide.

ステップS11では、駐車経路決定処理を行って、ステップS12に移る。駐車経路算出処理では、自車Aの現在位置に基づいて後退開始位置を設定し、固定舵角旋回による駐車経路を決定する。ここで、図4のフローチャートを用いて、駐車経路決定処理の概略について説明を行う。   In step S11, a parking route determination process is performed, and the process proceeds to step S12. In the parking route calculation process, a reverse start position is set based on the current position of the vehicle A, and a parking route by fixed steering angle turning is determined. Here, the outline of a parking route determination process is demonstrated using the flowchart of FIG.

まず、ステップS111では、後退開始位置設定処理を行って、ステップS112に移る。後退開始位置設定処理では、後述する駐車経路に沿って駐車空間Dの目標駐車位置に自車Aを駐車する際の後退開始位置を設定する。一例として、後退開始位置は、自車Aの現在位置の進行方向前方であって、駐車空間Dにおける自車Aの前進時の進行方向に対して奥側の縁部(駐車車両Bの駐車空間Dに接する経路側車両端)から一定距離だけ前方の位置に設定する。ここで言うところの一定距離とは任意に設定可能な距離であって、例えば2mである。   First, in step S111, a reverse start position setting process is performed, and the process proceeds to step S112. In the reverse start position setting process, a reverse start position when the host vehicle A is parked at a target parking position in the parking space D along a parking path described later is set. As an example, the reverse start position is the front in the traveling direction of the current position of the host vehicle A, and the rear edge of the traveling direction of the host vehicle A in the parking space D (the parking space of the parked vehicle B). The vehicle is set at a position a certain distance forward from the end of the vehicle on the route side in contact with D). The constant distance here is a distance that can be arbitrarily set, for example, 2 m.

ステップS112では、ドライバが転舵を行う転舵位置から目標駐車位置までの後半経路における旋回半径である第2旋回半径を設定して、ステップS113に移る。本実施形態では、第2旋回半径は、自車Aが障害物(本例では駐車車両B)に接触することなく駐車空間Dに進入可能な最大の旋回半径とするが、自車Aの最小旋回半径としても良い。一例としては、第2旋回半径により旋回する際の自車左前の軌跡が駐車車両Bと接触しない最大の半径が設定される。   In step S112, the second turning radius that is the turning radius in the second half route from the turning position where the driver turns to the target parking position is set, and the process proceeds to step S113. In the present embodiment, the second turning radius is the maximum turning radius at which the vehicle A can enter the parking space D without contacting an obstacle (in this example, the parked vehicle B). It is good also as a turning radius. As an example, the maximum radius at which the trajectory in front of the vehicle at the time of turning with the second turning radius does not contact the parked vehicle B is set.

ステップS113では、後退開始位置から転舵位置までの前半経路における旋回半径である第1旋回半径を設定して、ステップS114に移る。本実施形態では、第1旋回半径は、後退開始位置を通り、且つ、第2旋回半径により旋回する後半経路に接する円の半径とする。また、前半経路と後半経路との接する点が駐車経路の転舵位置となる。   In step S113, the first turning radius that is the turning radius in the first half path from the reverse start position to the steered position is set, and the process proceeds to step S114. In the present embodiment, the first turning radius is a radius of a circle that passes through the reverse start position and touches the latter half path that turns by the second turning radius. Further, a point where the first half path and the second half path are in contact with each other is a steering position of the parking path.

ステップS114では、駐車経路算出処理を行って、ステップS3に移る。駐車経路算出処理では、前述のステップS111〜ステップS113で設定した各パラメータに従って、複数回の後退と前進との繰り返し運転(以下、切り返し)を行わずに、目標駐車位置に縦列駐車させるための走行経路を算出する。そして、算出した走行経路を駐車経路と決定する。   In step S114, a parking route calculation process is performed, and the process proceeds to step S3. In the parking route calculation process, according to each parameter set in the above-described steps S111 to S113, traveling for parallel parking at the target parking position without performing repetitive driving (hereinafter referred to as “returning”) a plurality of times of reverse and forward. Calculate the route. Then, the calculated travel route is determined as a parking route.

具体的には、(a)自車Aの現在位置から後退開始位置まで前進する準備経路と、(b)後退開始位置から第1旋回半径により転舵位置まで旋回する前半経路と、(c)転舵位置から第2旋回半径により目標駐車位置まで旋回する後半経路との組合せを駐車経路とする。   Specifically, (a) a preparation path that advances from the current position of the host vehicle A to the reverse start position, (b) a first half path that turns from the reverse start position to the steered position by the first turning radius, and (c) A combination with the second half route of turning from the steered position to the target parking position by the second turning radius is defined as a parking route.

図3に戻って、ステップS12では、縦列駐車支援処理を行って、ステップS13に移る。縦列駐車支援処理では、走行経路算出処理で算出された走行経路に基づいて駐車空間Dにおける目標駐車位置への自車Aの縦列駐車を支援する。具体的には、算出された走行経路に自車Aが沿って走行するように操舵支援や自動操舵を行う。よって、このステップS12の処理が請求項の支援手段に相当する。   Returning to FIG. 3, in step S12, parallel parking support processing is performed, and the process proceeds to step S13. In the parallel parking support process, the parallel parking of the vehicle A to the target parking position in the parking space D is supported based on the travel route calculated in the travel route calculation process. Specifically, steering assistance and automatic steering are performed so that the vehicle A travels along the calculated travel route. Therefore, the process of step S12 corresponds to the support means in the claims.

ここで、操舵支援としては、例えば後方カメラ3で撮像した自車Aの後方画像に、自車Aが後退する際に通ると予想される後退予想軌跡を重畳させて表示装置6に表示させたりする。後退予想軌跡については、舵角センサ4から得られる操舵角や車輪速センサ5から得られる車速に基づいて、公知の方法によって算出する構成とすればよい。また、ステアリングの操舵タイミングや操舵量の案内音声を音声出力装置7から出力する構成としてもよい。   Here, as the steering assistance, for example, the display device 6 may display a backward prediction trajectory expected to pass when the own vehicle A moves backward on the rear image of the own vehicle A captured by the rear camera 3. To do. The predicted backward trajectory may be calculated by a known method based on the steering angle obtained from the rudder angle sensor 4 or the vehicle speed obtained from the wheel speed sensor 5. Further, the voice output device 7 may output a guidance voice for steering timing and steering amount.

一方、自動操舵としては、自車Aの各種ECUに指示信号を送信することによって、ス
テアリング角、ブレーキ圧、吸気量、変速比等を変化させ、算出した走行経路に沿って自車Aが自動的に走行するように制御する構成とすればよい。
On the other hand, as automatic steering, by transmitting instruction signals to various ECUs of the own vehicle A, the steering angle, the brake pressure, the intake air amount, the gear ratio, etc. are changed, and the own vehicle A is automatically operated along the calculated travel route. The configuration may be such that the vehicle is controlled so as to travel.

ステップS13では、自車Aが駐車完了したか否かを判定する。一例としては、図示しないシフトポジションセンサで自車Aのシフト位置が駐車位置(P)となったことを検出した場合に、自車Aが駐車完了したと判定する構成とすればよい。そして、自車Aが駐車完了したと判定した場合(ステップS13でYES)には、フローを終了する。また、自車Aが駐車完了していないと判定した場合(ステップS13でNO)には、ステップS12に戻ってフローを繰り返す。   In step S13, it is determined whether or not the own vehicle A has been parked. As an example, when the shift position sensor (not shown) detects that the shift position of the host vehicle A has become the parking position (P), it may be determined that the host vehicle A has been parked. And when it determines with the own vehicle A having completed parking (it is YES at step S13), a flow is complete | finished. When it is determined that the vehicle A has not been parked (NO in step S13), the process returns to step S12 and the flow is repeated.

ここで、本実施形態における作用効果について、具体的に図5及び図6を用いて説明を行う。図5は、従来技術の問題点を説明するための図である。なお、図5中のGが駐車車両Bの駐車空間Dに接する経路側車両端を示しており、Hが駐車車両Cの駐車空間Dに接する経路側車両端を示している。図6は、本実施形態の効果を説明するための図である。なお、図6中のIが駐車車両Bの奥側端部を示しており、Jが駐車車両Cの奥側端部を示している。   Here, the effect in this embodiment is demonstrated concretely using FIG.5 and FIG.6. FIG. 5 is a diagram for explaining the problems of the prior art. Note that G in FIG. 5 indicates a path-side vehicle end in contact with the parking space D of the parked vehicle B, and H indicates a path-side vehicle end in contact with the parking space D of the parked vehicle C. FIG. 6 is a diagram for explaining the effect of the present embodiment. In addition, I in FIG. 6 has shown the back side edge part of the parked vehicle B, J has shown the back side edge part of the parked vehicle C. FIG.

駐車空間Dを挟んで対向する駐車車両Bの経路側車両端G及び駐車車両Cの経路側車両端Hを結んだ直線よりも自車Aが内側に収まるように目標駐車位置を決定して、自車Aを駐車させると、自車を進入させるのに適切でない領域に自車を進入させて駐車させてしまう場合がある。詳しくは、以下の通りである。   The target parking position is determined so that the own vehicle A is located inside the straight line connecting the path-side vehicle end G of the parked vehicle B and the path-side vehicle end H of the parked vehicle C across the parking space D, When the host vehicle A is parked, the host vehicle may enter and park in an area that is not appropriate for the host vehicle to enter. Details are as follows.

例えば、自車Aが普通車であるのに対して、駐車車両B・Cが軽自動車である場合のように、駐車車両B・Cの車幅が自車よりも小さい場合、駐車車両B・Cの経路側車両端G・Hを結んだ直線よりも内側に収まるように自車を駐車させようとすると、自車Aを通路に対して駐車車両B・Cよりも奥側に駐車させることになる(図5参照)。ここで、駐車車両B・Cが、例えば縁石やガードレールや側溝のすぐ近くに駐車していた場合には、自車が縁石に乗り上げたり、ガードレールに接触したり、側溝に落下したりする不都合が生じる。   For example, when the width of the parked vehicle B / C is smaller than that of the own vehicle, such as when the parked vehicle B / C is a light vehicle, while the parked vehicle B / C is a regular vehicle, If you try to park your vehicle so that it is inside the straight line connecting the C-path side vehicle ends G and H, park your vehicle A behind the parked vehicles B and C with respect to the passage. (See FIG. 5). Here, when the parked vehicles B and C are parked in the immediate vicinity of, for example, a curb, a guardrail, or a gutter, there is an inconvenience that the vehicle rides on the curb, contacts the guardrail, or falls into the gutter. Arise.

一方、本実施形態の構成によれば、駐車車両Bの奥側端部Iや駐車車両Cの奥側端部Jの位置よりも駐車空間Dの奥行き方向における奥側に自車Aが越えないように目標駐車位置を決定するので、自車Aを駐車車両B・Cよりも駐車空間Dの奥行き方向における奥側に駐車させることがなくなる。例えば、図6のK〜Mに示すように、奥側端部Iの位置と奥側端部Jの位置とを結んだ直線に沿って自車Aを駐車させるように目標駐車位置を決定することで、自車Aを駐車車両B・Cよりも駐車空間Dの奥行き方向における奥側に駐車させることがなくなる。なお、自車Aから遠ざかる側が、奥行き方向における奥側である。   On the other hand, according to the configuration of the present embodiment, the own vehicle A does not exceed the back side in the depth direction of the parking space D rather than the position of the back side end I of the parked vehicle B or the back side end J of the parked vehicle C. Thus, since the target parking position is determined, the own vehicle A is not parked on the far side in the depth direction of the parking space D with respect to the parked vehicles B and C. For example, as shown in K to M of FIG. 6, the target parking position is determined so that the host vehicle A is parked along a straight line connecting the position of the back end I and the position of the back end J. Thus, the own vehicle A is not parked on the far side in the depth direction of the parking space D than the parked vehicles B and C. The side away from the own vehicle A is the back side in the depth direction.

このように、本実施形態の構成によれば、自車Aを通路に対して駐車車両B・Cよりも奥側に駐車させることがなくなるので、駐車車両B・Cが例えば縁石やガードレールや側溝といった自車Aを進入させるのに適切でない領域のすぐ近くに駐車していた場合に、自車Aを後退させて目標駐車位置に駐車させる支援を行ったとしたとしても、自車Aを進入させるのに適切でない領域に自車Aを進入させて駐車させることがなくなる。   Thus, according to the structure of this embodiment, since the own vehicle A is not parked behind the parked vehicles B and C with respect to the passage, the parked vehicles B and C are, for example, curbs, guardrails, and side grooves. If the vehicle A is parked in the immediate vicinity of an area that is not suitable for entering the vehicle A, the vehicle A is made to enter even if the vehicle A is moved backward to assist parking the target parking position. In other words, the vehicle A is prevented from entering and parked in an unsuitable area.

その結果、自車Aを後退させて駐車車両B・Cに隣接する駐車空間Dに駐車させる駐車支援を行う場合に、自車Aを進入させるのに適切でない領域に自車Aを進入させて駐車させることを防ぐことが可能になる。   As a result, when the parking assistance is performed in which the host vehicle A is moved backward and parked in the parking space D adjacent to the parked vehicles B and C, the host vehicle A enters the area that is not appropriate for the host vehicle A to enter. It is possible to prevent parking.

前述の実施形態では、測距センサ2の検知結果から決定した駐車車両B・Cの経路方向長(一例として車長)をもとに、駐車車両B・Cの奥行き方向長(一例として車幅)を推定し、奥側面の位置を推定する構成を示したが、必ずしもこれに限らない。例えば、駐車車両B・Cの画像を含む撮像画像から画像認識技術によって駐車車両B・Cの奥行き方向長を検出し、奥側面の位置を推定する構成(以下、変形例1)としてもよい。   In the above-described embodiment, the length in the depth direction of the parked vehicles B and C (for example, the vehicle width as an example) based on the length in the path direction (for example, the vehicle length) of the parked vehicles B and C determined from the detection result of the distance measuring sensor 2. ) And the position of the back side surface are estimated. However, the present invention is not limited to this. For example, it is good also as a structure (henceforth the modification 1) which detects the depth direction length of parked vehicle B * C from the captured image containing the image of parked vehicle B * C with an image recognition technique, and estimates the position of a back side surface.

ここで、図7及び図8を用いて、変形例1における駐車支援システム100aについての説明を行う。なお、説明の便宜上、前述の実施形態の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。   Here, the parking assistance system 100a in the modification 1 is demonstrated using FIG.7 and FIG.8. For convenience of explanation, members having the same functions as those shown in the drawings used in the description of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図7に示すように、駐車支援システム100aは、前方カメラ8を含む点と駐車支援ECU1での処理の一部が異なる点とを除けば駐車支援システム100と同様である。詳しくは、変形例1の駐車支援ECU1は、前述のステップS6の経路方向長算出処理及びステップS7の奥行き方向長推定処理の代わりに、駐車車両B・Cの画像を含む撮像画像から画像認識技術によって駐車車両B・Cの奥行き方向長を検出する処理(以下、奥行き方向長検出処理)を行う点が異なっている。以下では、変形例1を縦列駐車に適用する場合を例に挙げて説明を行う。   As shown in FIG. 7, the parking assistance system 100a is the same as the parking assistance system 100 except that the front camera 8 is included and a part of the processing in the parking assistance ECU 1 is different. Specifically, the parking assist ECU 1 of the first modified example recognizes an image recognition technique from captured images including the images of the parked vehicles B and C, instead of the route direction length calculation process in step S6 and the depth direction length estimation process in step S7. Is different in that a process for detecting the length in the depth direction of the parked vehicles B and C (hereinafter, depth direction length detection process) is performed. Below, the case where the modification 1 is applied to parallel parking is described as an example.

側方カメラ8は、自車Aの例えば前部バンパの左右側面に1つずつ設置され、自車Aの斜め前方に所定角範囲で広がる領域を撮像するものである。側方カメラ8は、光軸が自車の車軸方向から例えば45°程度傾くように設置される。例えば側方カメラ8としては、CCDカメラを用いる構成とすればよい。側方カメラ8が撮像した自車斜め前方周辺の画像情報は、駐車支援ECU1に供給される。   The side cameras 8 are installed one by one on the left and right side surfaces of the front bumper of the host vehicle A, for example, and image a region that extends in a predetermined angular range obliquely forward of the host vehicle A. The side camera 8 is installed so that the optical axis is inclined, for example, about 45 ° from the direction of the axle of the own vehicle. For example, the side camera 8 may be configured to use a CCD camera. Image information around the front side of the host vehicle captured by the side camera 8 is supplied to the parking assist ECU 1.

図8に示すように、側方カメラ8は、自車Aが駐車車両C、駐車空間D、駐車車両Bの側方を通過する際に、駐車車両B・Cを撮像範囲(図8中のN参照)に含むように設けられている。なお、図8では、便宜上、自車Aの前部バンパの左側面に配置された側方カメラ8のみを示す。また、図8の実線で表した矢印が自車Aの進行方向を示しており、白丸で示す点が測距センサ2による測定点を示している。   As shown in FIG. 8, the side camera 8 captures the parked vehicles B and C in the imaging range (in FIG. 8) when the own vehicle A passes through the sides of the parked vehicle C, the parked space D, and the parked vehicle B. N reference). In FIG. 8, only the side camera 8 disposed on the left side surface of the front bumper of the host vehicle A is shown for convenience. Moreover, the arrow shown with the continuous line of FIG. 8 has shown the advancing direction of the own vehicle A, and the point shown with a white circle has shown the measurement point by the ranging sensor 2. FIG.

変形例1では、側方カメラ8を2台設ける構成を示したが、必ずしもこれに限らない。例えば、自車Aの前方の所定角範囲に加え、上述した所定角範囲を含む領域を撮像範囲とする前方カメラを1台設ける構成としてもよい。この場合には広角カメラを用いる構成とすればよい。   In the first modification, the configuration in which the two side cameras 8 are provided is shown, but the present invention is not necessarily limited thereto. For example, in addition to the predetermined angle range in front of the host vehicle A, a configuration may be provided in which one front camera having an imaging range that includes the above-described predetermined angle range is provided. In this case, a configuration using a wide-angle camera may be used.

変形例1の駐車支援ECU1は、前述の経路方向長算出処理及び奥行き方向長推定処理の代わりに、奥行き方向長検出処理を行う。奥行き方向長検出処理では、側方カメラ8の撮像画像から画像認識技術によって、駐車車両B・Cの前部若しくは後部の画像を検出する。   The parking assist ECU 1 of the first modification performs depth direction length detection processing instead of the above-described route direction length calculation processing and depth direction length estimation processing. In the depth direction length detection process, the front or rear image of the parked vehicle B / C is detected from the captured image of the side camera 8 by image recognition technology.

この検出は、例えば画像認識用の辞書を用いて画像中の物体を検出する周知の画像認識技術によって行う構成とすればよい。この場合、車両を前方から見た画像や後方から見た画像について機械学習した辞書(例えば、矩形の輝度差を特徴とするhaar-like特徴によるcascade of boostedクラス判別器)を用いて検出を行うようにすればよい。   This detection may be performed by a known image recognition technique that detects an object in an image using a dictionary for image recognition, for example. In this case, detection is performed using a dictionary (for example, a cascade of boosted class discriminator with a haar-like feature characterized by a rectangular luminance difference) that has been machine-learned with respect to an image seen from the front or an image seen from the rear. What should I do?

続いて、画像認識技術によって検出した駐車車両B・Cの前部若しくは後部の画像から、撮像画像中での駐車車両B・Cの幅を検出し、検出した幅を実際の駐車車両B・Cの幅(図8中のO参照)に換算する。一例として上記換算は以下のようにして行う。   Subsequently, the width of the parked vehicle B / C in the captured image is detected from the front or rear image of the parked vehicle B / C detected by the image recognition technology, and the detected width is determined as the actual parked vehicle B / C. (Refer to O in FIG. 8). As an example, the above conversion is performed as follows.

まず、側方カメラ8の取り付け位置及び撮像方向が固定されている場合に、撮像画像中の位置を実際の自車Aに対する位置に変換可能であることを利用して、撮像画像中の位置をもとに駐車車両B・Cまでの距離を算出する。駐車車両B・Cまでの距離が算出されると、撮像画像中の駐車車両B・Cの幅と実際の駐車車両B・Cの幅との比率が決まる。上記比率が決まった後は、この比率をもとにして、撮像画像中の駐車車両B・Cの幅から実際の駐車車両B・Cの幅を算出する。よって、駐車支援ECU1が請求項の奥行き方向長決定手段に相当する。   First, using the fact that the position in the captured image can be converted into the actual position relative to the vehicle A when the side camera 8 mounting position and imaging direction are fixed, the position in the captured image is determined. Based on the above, the distance to the parked vehicles B and C is calculated. When the distance to the parked vehicles B and C is calculated, the ratio between the width of the parked vehicles B and C in the captured image and the actual width of the parked vehicles B and C is determined. After the ratio is determined, based on this ratio, the actual width of the parked vehicles B and C is calculated from the width of the parked vehicles B and C in the captured image. Therefore, parking assistance ECU1 is equivalent to the depth direction length determination means of a claim.

なお、変形例1を横列駐車に適用する場合は、車両を側方から見た画像について機械学習した辞書を用いて駐車車両B・Cの側面の画像を検出し、駐車車両B・Cの車長を検出する構成とすればよい。   In addition, when applying the modification 1 to horizontal parking, the image of the side surface of the parked vehicles B and C is detected using a dictionary that is machine-learned with respect to the image of the vehicle viewed from the side, and the vehicles of the parked vehicles B and C are detected. What is necessary is just to set it as the structure which detects length.

変形例1の構成は、駐車車両B・Cの奥行き方向長の求め方が前述の実施形態と異なる点を除けば同様の構成であるので、前述の実施形態と同様の効果を奏する。   The configuration of the first modification is the same as that of the above-described embodiment except that the method for obtaining the length in the depth direction of the parked vehicles B and C is different from that of the above-described embodiment.

変形例1では、駐車車両B・Cの画像を含む撮像画像から画像認識技術によって駐車車両B・Cの奥行き方向長を検出し、奥側面の位置を推定する構成を示したが、必ずしもこれに限らない。例えば、駐車車両B・Cの画像を含む撮像画像から画像認識技術によって、駐車空間Dの奥行き方向における駐車車両B・Cの中心位置(以下、奥行き方向中心位置)を推定し、この奥行き方向中心位置と経路側面位置とをもとに奥側面の位置を推定する構成(以下、変形例2)としてもよい。   In the modified example 1, the depth direction length of the parked vehicles B and C is detected from the captured images including the images of the parked vehicles B and C by the image recognition technique, and the position of the back side surface is estimated. Not exclusively. For example, the center position of the parked vehicles B and C in the depth direction of the parking space D (hereinafter, the center position in the depth direction) is estimated from captured images including the images of the parked vehicles B and C by the image recognition technique. A configuration in which the position of the back side surface is estimated based on the position and the route side surface position (hereinafter, modified example 2) may be employed.

以下、変形例2における駐車支援システム100aについての説明を行う。なお、説明の便宜上、前述の実施形態及び変形例1の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。   Hereinafter, the parking assistance system 100a according to the second modification will be described. For convenience of explanation, members having the same functions as those shown in the drawings used in the description of the above-described embodiment and modification 1 are given the same reference numerals, and descriptions thereof are omitted.

変形例2の駐車支援システム100aは、駐車支援ECU1での処理が一部異なる点を除けば、変形例1の駐車支援システム100aと同様である。詳しくは、変形例2の駐車支援ECU1は、前述の奥行き方向長検出処理の代わりに、駐車車両B・Cの画像を含む撮像画像から画像認識技術によって奥行き方向中心位置を推定する処理(以下、奥行き方向中心位置推定処理)を行う点が異なっている。   The parking assistance system 100a of the second modification is the same as the parking assistance system 100a of the first modification, except that the processing in the parking assistance ECU 1 is partially different. Specifically, the parking assist ECU 1 according to the modified example 2 performs a process of estimating the center position in the depth direction by using an image recognition technique from captured images including the images of the parked vehicles B and C (hereinafter, referred to as “the depth direction length detection process”). The depth direction center position estimation process) is different.

また、前述のステップS8の奥側面位置推定処理の代わりに、奥行き方向中心位置推定処理で推定した奥行き方向中心位置と経路側面位置とをもとに奥側面の位置を推定する処理を行う点が異なっている。以下では、変形例2を縦列駐車に適用する場合を例に挙げて説明を行う。   Further, in place of the back side surface position estimation process in step S8 described above, the process of estimating the back side surface position based on the depth direction center position and the path side surface position estimated in the depth direction center position estimation process is performed. Is different. Below, the case where the modification 2 is applied to parallel parking is described as an example.

変形例2の駐車支援ECU1は、前述の奥側面位置推定処理の代わりに、奥行き方向中心位置推定処理を行う。奥行き方向中心位置推定処理では、側方カメラ8の撮像画像から画像認識技術によって、駐車車両B・Cの前部若しくは後部の中心位置(図8中のP参照)を推定可能な部分を検出する。   The parking assist ECU 1 according to the second modification performs depth direction center position estimation processing instead of the aforementioned back side surface position estimation processing. In the depth direction center position estimation process, a portion where the center position of the front part or rear part of the parked vehicles B and C (see P in FIG. 8) can be estimated from the captured image of the side camera 8 by image recognition technology. .

ここで言うところの中心位置とは、駐車空間Dの奥行き方向における駐車車両B・Cの中心位置であって、本例では車幅方向の中心位置である。また、駐車車両B・Cの前部若しくは後部の中心位置を推定可能な部分とは、例えばナンバープレートや前照灯や後退灯やフロントガラスやリアガラス等である。   The center position here refers to the center position of the parked vehicles B and C in the depth direction of the parking space D, and in this example, the center position in the vehicle width direction. Moreover, the part which can estimate the center position of the front part or rear part of parked vehicle B * C is a number plate, a headlamp, a reversing lamp, a windshield, a rear glass etc., for example.

ナンバープレートを検出した場合には、そのナンバープレートの位置を駐車車両B・Cの車幅方向の中心位置と推定する構成とすればよい。また、前照灯や後退灯といった左右で対のランプを検出した場合は、左右のランプの中間点を駐車車両B・Cの車幅方向の中心位置と推定する構成とすればよい。さらに、フロントガラスやリアガラスを検出した場合は、これらのガラスの車幅方向の中心を駐車車両B・Cの車幅方向の中心位置と推定する構成とすればよい。   When a license plate is detected, the position of the license plate may be estimated as the center position in the vehicle width direction of the parked vehicles B and C. In addition, when a pair of left and right lamps such as a headlamp and a reverse lamp are detected, an intermediate point between the left and right lamps may be estimated as a center position in the vehicle width direction of the parked vehicles B and C. Furthermore, when a windshield and a rear glass are detected, the center of these glasses in the vehicle width direction may be estimated as the center position of the parked vehicles B and C in the vehicle width direction.

撮像画像からのナンバープレートや前照灯や後退灯やフロントガラスやリアガラス等の検出は、ナンバープレートや前照灯や後退灯やフロントガラスやリアガラスの画像について機械学習した画像認識用の辞書を用いて、前述したような周知の画像認識技術によって行う構成とすればよい。   Detection of license plates, headlamps, reverse lights, windshields, rear glass, etc. from captured images is performed using a machine-learned image recognition dictionary for license plates, headlamps, reverse lights, windshields and rear glass images. Thus, the configuration may be performed by a known image recognition technique as described above.

続いて、撮像画像中の駐車車両B・Cの車幅方向の中心位置を、平面座標系における位置に変換する。この変換によって得られた平面座標系における駐車車両B・Cの車幅方向の中心位置を、駐車車両B・Cの奥行き方向中心位置と推定する。よって、駐車支援ECU1が請求項の奥行き方向中心位置推定手段に相当する。   Subsequently, the center position in the vehicle width direction of the parked vehicles B and C in the captured image is converted to a position in the plane coordinate system. The center position in the vehicle width direction of the parked vehicles B and C in the plane coordinate system obtained by this conversion is estimated as the center position in the depth direction of the parked vehicles B and C. Therefore, the parking assist ECU 1 corresponds to the depth direction center position estimating means in the claims.

奥行き方向中心位置推定処理で駐車車両B・Cの奥行き方向中心位置を推定した後は、推定した奥行き方向中心位置と前述の経路側面位置決定処理で決定した経路側面位置とをもとに、奥側面の位置を推定する。一例としては、経路側面を示す線分と平行な、推定した奥行き方向中心位置を通る直線を求める。そして、求めたこの直線を中心に経路側面の位置を反転した位置を奥側面の位置と推定する。なお、通路側車両端を始点・終点とした点列の座標の集合を経路側面の位置としている場合には、これらの座標の集合から最小二乗法等で近似した線分を、経路側面を示す線分として用いる構成とすればよい。   After estimating the depth direction center position of the parked vehicles B and C in the depth direction center position estimation process, based on the estimated depth direction center position and the path side surface position determined in the above-described path side surface position determination process, Estimate the side position. As an example, a straight line that passes through the estimated center position in the depth direction and is parallel to the line segment indicating the path side surface is obtained. Then, the position obtained by reversing the position of the path side surface around the obtained straight line is estimated as the position of the back side surface. In addition, when the set of coordinates of the point sequence starting from the vehicle end on the aisle side is the position of the route side, the line side approximated by the least squares method from the set of these coordinates is shown as the route side. What is necessary is just to set it as the structure used as a line segment.

変形例2の構成は、駐車車両B・Cの奥側面の位置の求め方が前述の実施形態と異なる点を除けば同様の構成であるので、前述の実施形態と同様の効果を奏する。   The configuration of the modified example 2 is the same as that of the above-described embodiment except that the method for obtaining the position of the back side surface of the parked vehicles B and C is different from that of the above-described embodiment.

前述の実施形態では、奥側端部位置推定処理で推定した駐車車両B・Cの奥側端部の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように目標駐車位置を決定する構成を示したが、必ずしもこれに限らない。例えば、駐車空間Dの奥行き方向において駐車車両B・Cの最も奥側に位置する車輪(以下、最奥車輪)の位置を推定して、この最奥車輪の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように目標駐車位置を決定する構成(以下、変形例3)としてもよい。   In the above-described embodiment, the target parking is performed so that the own vehicle A does not exceed the back side in the depth direction of the parking space D from the position of the back side end of the parked vehicles B and C estimated by the back side end position estimation process. Although the configuration for determining the position is shown, the configuration is not necessarily limited thereto. For example, in the depth direction of the parking space D, the position of the wheel (hereinafter referred to as the innermost wheel) located on the innermost side of the parked vehicles B and C is estimated, and the depth direction of the parking space D is determined from the position of the innermost wheel. It is good also as a structure (henceforth the modification 3) which determines a target parking position so that the own vehicle A may not pass in the back | inner side.

ここで、図9を用いて、変形例3における駐車支援システム100についての説明を行う。なお、説明の便宜上、前述の実施形態の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。   Here, the parking assistance system 100 in the modification 3 is demonstrated using FIG. For convenience of explanation, members having the same functions as those shown in the drawings used in the description of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

変形例3の駐車支援システム100は、駐車支援ECU1での処理の一部が異なる点を除けば前述の実施形態の駐車支援システム100と同様である。詳しくは、変形例3の駐車支援ECU1は、前述の奥側端部位置推定処理の代わりに、奥側面位置推定処理で推定した奥側面の位置をもとに、駐車空間Dの奥行き方向における駐車車両B・Cの最奥車輪の位置を推定する処理(以下、最奥車輪位置推定処理)を行う点が異なっている。   The parking assistance system 100 of the modification 3 is the same as the parking assistance system 100 of the above-described embodiment except that a part of processing in the parking assistance ECU 1 is different. Specifically, the parking assist ECU 1 according to the modified example 3 performs parking in the depth direction of the parking space D based on the position of the back side surface estimated by the back side surface position estimation process instead of the above-described back side end position estimation process. The point which performs the process (henceforth innermost wheel position estimation process) which estimates the position of the innermost wheel of vehicle B * C differs.

また、前述のステップS8の目標駐車位置決定処理の代わりに、駐車車両B・Cの最奥車輪の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように目標駐車位置を決定する処理を行う点が異なっている。以下では、変形例3を縦列駐車に適用する場合を例に挙げて説明を行う。   Further, instead of the above-described target parking position determination processing in step S8, the target parking position is set so that the own vehicle A does not exceed the back side in the depth direction of the parking space D with respect to the position of the farthest wheel of the parked vehicles B and C. The difference is that the process of determining is performed. Below, the case where modification 3 is applied to parallel parking is described as an example.

変形例3の駐車支援ECU1は、前述の奥側端部位置推定処理の代わりに、最奥車輪位置推定処理を行う。最奥車輪位置推定処理では、奥側面位置推定処理で推定した奥側面の位置をもとに、駐車車両B・Cの最奥車輪の位置を推定する。よって、駐車支援ECU1が請求項の最奥車輪位置推定手段に相当する。一例としては、奥側面の始点と終点からそれぞれ内側に所定距離の位置を奥側面における車輪位置と推定し、平面座標系において駐車空間Dの奥行き方向における奥側に位置する車輪位置を最奥車輪の位置とする。   The parking assist ECU 1 of Modification 3 performs the farthest wheel position estimation process instead of the above-described back side end position estimation process. In the innermost wheel position estimation process, the position of the innermost wheel of the parked vehicles B and C is estimated based on the position of the inner side surface estimated in the inner side surface position estimation process. Therefore, parking assistance ECU1 is equivalent to the innermost wheel position estimation means of a claim. As an example, the position of a predetermined distance inward from the start point and end point of the back side surface is estimated as the wheel position on the back side surface, and the wheel position located on the back side in the depth direction of the parking space D in the plane coordinate system is the farthest wheel. The position of

ここで言うところの所定距離は、実際の車両の前後端からの車輪の位置を考慮して予め設定された固定値であってもよいし、前述の経路方向長算出処理で算出された経路方向長(一例として車長)に応じて設定される値であってもよい。   The predetermined distance mentioned here may be a fixed value set in advance in consideration of the position of the wheel from the front and rear ends of the actual vehicle, or the route direction calculated by the above-described route direction length calculation process The value may be set according to the length (for example, the vehicle length).

車長に応じて所定距離を設定する場合には、車長と所定距離の値との対応関係(例えばテーブルなど)を、駐車支援ECU1のEEPROM等の不揮発性メモリに予め格納しておき、この対応関係をもとに、経路方向長算出処理で算出した駐車車両B・Cの車長に応じた所定距離の値を設定する構成とすればよい。車長と所定距離の値との対応関係は、実際の各車種の車長と、車両の前後端から車輪までの距離との関係に基づいて設定する構成とすればよい。   When setting the predetermined distance according to the vehicle length, the correspondence relationship (for example, a table) between the vehicle length and the value of the predetermined distance is stored in advance in a nonvolatile memory such as an EEPROM of the parking assistance ECU 1. Based on the correspondence relationship, a predetermined distance value may be set according to the vehicle lengths of the parked vehicles B and C calculated by the route direction length calculation process. The correspondence relationship between the vehicle length and the value of the predetermined distance may be set based on the relationship between the actual vehicle length of each vehicle type and the distance from the front and rear ends of the vehicle to the wheels.

最奥車輪位置推定処理で駐車車両B・Cの最奥車輪の位置を推定した後は、推定した最奥車輪の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように目標駐車位置を決定する。一例として、駐車車両Bの最奥車輪の位置の位置と駐車車両Cの最奥車輪の位置とを結ぶ直線に自車Aの駐車空間D側の側面が沿って駐車するように、目標駐車位置を決定する。   After the position of the farthest wheel of the parked vehicles B and C is estimated by the farthest wheel position estimation process, the own vehicle A does not pass beyond the estimated position of the farthest wheel in the depth direction of the parking space D. The target parking position is determined. As an example, the target parking position is such that the side of the parking space D side of the own vehicle A is parked along a straight line connecting the position of the innermost wheel of the parked vehicle B and the position of the innermost wheel of the parked vehicle C. To decide.

本実施形態の構成によれば、駐車車両Bの最奥車輪(図9中のQ参照)や駐車車両Cの最奥車輪(図9中のR参照)の位置よりも駐車空間Dの奥行き方向における奥側に自車Aが越えないように目標駐車位置を決定するので、自車Aを駐車車両B・Cよりも駐車空間Dの奥行き方向における奥側に駐車させることがなくなる。例えば、図9のS〜Uに示すように、最奥車輪Qの位置と最奥車輪Rの位置とを結んだ直線に沿って自車Aを駐車させるように目標駐車位置を決定することで、自車Aを駐車車両B・Cよりも駐車空間Dの奥行き方向における奥側に駐車させることがなくなる。よって、前述の実施形態と同様の効果を奏する。なお、変形例3の構成は、変形例1や変形例2の構成と組み合わせても良い。   According to the configuration of the present embodiment, the depth direction of the parking space D is greater than the position of the innermost wheel of the parked vehicle B (see Q in FIG. 9) and the innermost wheel of the parked vehicle C (see R in FIG. 9). Since the target parking position is determined so that the own vehicle A does not cross the back side of the vehicle, the self-vehicle A is not parked on the back side in the depth direction of the parking space D rather than the parked vehicles B and C. For example, as shown in S to U of FIG. 9, by determining the target parking position so that the vehicle A is parked along a straight line connecting the position of the innermost wheel Q and the position of the innermost wheel R. The own vehicle A is not parked on the far side in the depth direction of the parking space D than the parked vehicles B and C. Therefore, the same effects as those of the above-described embodiment can be obtained. The configuration of Modification 3 may be combined with the configuration of Modification 1 or Modification 2.

また、前述したようにして決定した目標駐車位置から、駐車空間Dの奥行き方向における手前側に所定距離だけオフセット(移動)させた位置を目標駐車位置として決定する構成(以下、変形例4)としてもよい。例えば、奥側端部位置推定処理で推定した駐車車両B・Cの各奥側端部位置同士を結ぶ直線を、駐車空間Dの奥行き方向における手前側に所定距離だけ移動させた直線に沿って自車Aが駐車するように目標駐車位置を決定する構成としてもよい。他にも、最奥車輪位置推定処理で推定した駐車車両B・Cの各最奥車輪の位置同士を結ぶ直線を、駐車空間Dの奥行き方向における手前側に所定距離だけ移動させた直線に沿って自車Aが駐車するように目標駐車位置を決定する構成としてもよい。   Further, as a configuration (hereinafter, modified example 4) in which a position offset (moved) by a predetermined distance from the target parking position determined as described above to the near side in the depth direction of the parking space D is determined as the target parking position. Also good. For example, along a straight line that connects the back end positions of the parked vehicles B and C estimated by the back end position estimation process to the front side in the depth direction of the parking space D by a predetermined distance. It is good also as a structure which determines a target parking position so that the own vehicle A parks. In addition, a straight line that connects the positions of the innermost wheels of the parked vehicles B and C estimated by the innermost wheel position estimation process is moved along a straight line that is moved by a predetermined distance to the near side in the depth direction of the parking space D. It is good also as a structure which determines a target parking position so that the own vehicle A parks.

変形例4の構成によれば、駐車車両B・Cの奥側端部や最奥車輪の位置の推定に誤差が生じた場合でも、自車Aを進入させるのに適切でない領域に自車Aを進入させて駐車させる可能性を低減するようにマージンを設けることができる。なお、変形例4の構成は、変形例1や変形例2の構成と組み合わせても良い
さらに、縁石やガードレールや側溝といった車道と歩道等の車道外の領域との境界を示す構造物(以下、境界構造物)を測距センサ2や側方カメラ8で検知できた場合には、駐車支援ECU1・1aが、前述の奥側端部の位置を越えないように目標駐車位置を決定するのに優先して、検知した境界構造物の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように目標駐車位置を決定する構成としてもよい。
According to the configuration of the modified example 4, even when an error occurs in the estimation of the position of the far side end and the farthest wheel of the parked vehicles B and C, the own vehicle A is in an area that is not appropriate for the own vehicle A to enter. A margin can be provided to reduce the possibility of entering and parking. The configuration of Modification 4 may be combined with the configuration of Modification 1 or Modification 2. Furthermore, a structure that indicates the boundary between a roadway such as a curb, a guardrail, and a side groove and a region outside the roadway such as a sidewalk (hereinafter, referred to as a structure) If the distance measuring sensor 2 or the side camera 8 can detect the boundary structure), the parking assist ECU 1a determines the target parking position so as not to exceed the position of the above-mentioned rear end. The target parking position may be determined so that the host vehicle A does not cross the depth side of the parking space D with respect to the depth direction of the parking space D with priority over the position of the detected boundary structure.

これによれば、境界構造物が検知でき、自車Aを進入させるのに適切でない領域を認識出来ている場合には、この境界構造物の位置よりも駐車空間Dの奥行き方向に対する奥側に自車Aが越えないように目標駐車位置を決定することで、自車Aを進入させるのに適切でない領域に自車Aを進入させて駐車させることをより確実に防ぐことができる。   According to this, when the boundary structure can be detected and an area that is not appropriate for the vehicle A to enter can be recognized, the rear side of the parking space D in the depth direction with respect to the position of the boundary structure. By determining the target parking position so that the own vehicle A does not exceed, it is possible to more reliably prevent the own vehicle A from entering and parking in an area that is not appropriate for the own vehicle A to enter.

なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.

1 駐車支援ECU(駐車支援装置)、2 測距センサ、S3 駐車空間検出手段、S5 経路側面位置決定手段、S8 奥側面位置推定手段、S9 奥側端部位置推定手段、S10 目標駐車位置決定手段、S11 支援手段 DESCRIPTION OF SYMBOLS 1 Parking assistance ECU (parking assistance apparatus), 2 ranging sensor, S3 parking space detection means, S5 path | route side surface position determination means, S8 back side surface position estimation means, S9 back side edge part position estimation means, S10 target parking position determination means , S11 support means

Claims (5)

車両に搭載され、
前記車両の側方に逐次送信する探査波の反射波を逐次受信することで障害物までの距離を逐次検知する測距センサ(2)の検知結果をもとに、前記車両の通過した経路の側方に存在する駐車車両に隣接する駐車空間を検出する駐車空間検出手段(1、S3)と、
駐車空間検出手段で検出した駐車空間に車両を駐車させる際の目標駐車位置を決定する目標駐車位置決定手段(1、S10)と、
前記車両を後退させて前記目標駐車位置に駐車させる車両走行を支援する支援手段(1、S11)とを備える駐車支援装置(1)であって、
前記測距センサの検知結果をもとに、前記駐車車両の前記経路側に向いた面である経路側面の、地上面を基準とした平面座標系における位置を決定する経路側面位置決定手段(1、S5)と、
前記測距センサの検知結果をもとに、前記駐車車両と前記駐車空間とが並ぶ方向における前記駐車車両の長さである経路方向長を推定する経路方向長推定手段(1、S6)と、
経路方向長推定手段で推定した経路方向長をもとに、前記駐車空間の奥行き方向における前記駐車車両の長さである奥行き方向長を推定する奥行き方向長推定手段(1、S7)と、
前記奥行き方向長推定手段で推定した奥行き方向長と経路側面位置決定手段で決定した経路側面の位置をもとに、前記駐車車両の経路側面と反対側の面である奥側面の、地上面を基準とした平面座標系における位置を推定する奥側面位置推定手段(1、S8)と、
奥側面位置推定手段で推定した奥側面の位置をもとに、前記駐車空間の奥行き方向における前記駐車車両の端部である奥側端部の位置を推定する奥側端部位置推定手段(1、S9)とを備え、
前記目標駐車位置決定手段は、奥側端部位置推定手段で推定した奥側端部の位置よりも前記駐車空間の奥行き方向における奥側に前記車両が越えないように前記目標駐車位置を決定することを特徴とする駐車支援装置。
Mounted on the vehicle,
Based on the detection result of the distance measuring sensor (2) that sequentially detects the distance to the obstacle by sequentially receiving the reflected wave of the exploration wave that is sequentially transmitted to the side of the vehicle, Parking space detecting means (1, S3) for detecting a parking space adjacent to a parked vehicle present on the side;
Target parking position determination means (1, S10) for determining a target parking position when the vehicle is parked in the parking space detected by the parking space detection means;
A parking support device (1) comprising support means (1, S11) for assisting vehicle travel in which the vehicle is retracted and parked at the target parking position,
A route side surface position determining means (1) for determining a position of a route side surface, which is a surface facing the route side of the parked vehicle, in a plane coordinate system based on the ground surface based on a detection result of the distance measuring sensor. , S5),
Route direction length estimation means (1, S6) for estimating a route direction length that is the length of the parked vehicle in the direction in which the parked vehicle and the parked space are aligned based on the detection result of the distance measuring sensor;
Depth direction length estimation means (1, S7) for estimating a depth direction length that is the length of the parked vehicle in the depth direction of the parking space based on the route direction length estimated by the route direction length estimation means;
Based on the depth direction length estimated by the depth direction length estimation unit and the position of the route side surface determined by the route side surface position determination unit, the ground surface of the back side surface that is the surface opposite to the route side surface of the parked vehicle is Back side surface position estimating means (1, S8) for estimating a position in a reference plane coordinate system;
Based on the position of the back side surface estimated by the back side surface position estimating means, the back side end position estimating means (1) for estimating the position of the back side end that is the end of the parked vehicle in the depth direction of the parking space , and S9), equipped with a,
The target parking position determining means determines the target parking position so that the vehicle does not cross the back side in the depth direction of the parking space with respect to the position of the back side end estimated by the back side end position estimating means. A parking assistance device characterized by that.
請求項1において、
前記経路側面位置決定手段は、前記駐車空間を挟む2台の駐車車両の各経路側面の位置を決定し、
前記奥側面位置推定手段は、前記2台の駐車車両の各奥側面の位置を推定し、
前記奥側端部位置推定手段は、前記2台の駐車車両の各奥側端部の位置を推定するものであって、
前記目標駐車位置決定手段は、奥側端部位置推定手段で推定した前記2台の駐車車両の各奥側端部位置同士を結ぶ直線に沿って前記車両が駐車するように目標駐車位置を決定することを特徴とする駐車支援装置。
Oite to claim 1,
The route side surface position determining means determines the position of each route side surface of the two parked vehicles sandwiching the parking space,
The back side surface position estimating means estimates the position of each back side surface of the two parked vehicles,
The back side end position estimation means estimates the position of each back side end of the two parked vehicles,
The target parking position determining means determines the target parking position so that the vehicle is parked along a straight line connecting the back side end positions of the two parked vehicles estimated by the back side end position estimating means. A parking assist device characterized by that.
請求項1において、
前記経路側面位置決定手段は、前記駐車空間を挟む2台の駐車車両の各経路側面の位置を決定し、
前記奥側面位置推定手段は、前記2台の駐車車両の各奥側面の位置を推定し、
前記奥側端部位置推定手段は、前記2台の駐車車両の各奥側端部の位置を推定するものであって、
奥側端部位置推定手段で推定した前記2台の駐車車両の各奥側端部の位置をもとに、前記駐車空間の奥行き方向において各駐車車両の最も奥側に位置する車輪である最奥車輪の位置を推定する最奥車輪位置推定手段(1)を備え、
前記目標駐車位置決定手段は、最奥車輪位置推定手段で推定した前記2台の駐車車両の各最奥車輪位置同士を結ぶ直線に沿って前記車両が駐車するように目標駐車位置を決定することを特徴とする駐車支援装置。
Oite to claim 1,
The route side surface position determining means determines the position of each route side surface of the two parked vehicles sandwiching the parking space,
The back side surface position estimating means estimates the position of each back side surface of the two parked vehicles,
The back side end position estimation means estimates the position of each back side end of the two parked vehicles,
Based on the position of the back end of each of the two parked vehicles estimated by the back end position estimating means, the wheel located on the farthest side of each parked vehicle in the depth direction of the parking space. It is provided with the innermost wheel position estimating means (1) for estimating the position of the inner wheel,
The target parking position determining means determines the target parking position so that the vehicle is parked along a straight line connecting the innermost wheel positions of the two parked vehicles estimated by the innermost wheel position estimating means. A parking assistance device characterized by the above.
請求項1において、
前記経路側面位置決定手段は、前記駐車空間を挟む2台の駐車車両の各経路側面の位置を決定し、
前記奥側面位置推定手段は、前記2台の駐車車両の各奥側面の位置を推定し、
前記奥側端部位置推定手段は、前記2台の駐車車両の各奥側端部の位置を推定するものであって、
前記目標駐車位置決定手段は、奥側端部位置推定手段で推定した前記2台の駐車車両の各奥側端部位置同士を結ぶ直線を、前記駐車空間の奥行き方向における手前側に所定距離だけ移動させた直線に沿って前記車両が駐車するように目標駐車位置を決定することを特徴とする駐車支援装置。
Oite to claim 1,
The route side surface position determining means determines the position of each route side surface of the two parked vehicles sandwiching the parking space,
The back side surface position estimating means estimates the position of each back side surface of the two parked vehicles,
The back side end position estimation means estimates the position of each back side end of the two parked vehicles,
The target parking position determining means sets a straight line connecting the back end positions of the two parked vehicles estimated by the back end position estimating means by a predetermined distance to the near side in the depth direction of the parking space. A parking assistance device, wherein a target parking position is determined so that the vehicle is parked along a moved straight line.
請求項1において、
前記経路側面位置決定手段は、前記駐車空間を挟む2台の駐車車両の各経路側面の位置を決定し、
前記奥側面位置推定手段は、前記2台の駐車車両の各奥側面の位置を推定し、
前記奥側端部位置推定手段は、前記2台の駐車車両の各奥側端部の位置を推定するものであって、
奥側端部位置推定手段で推定した前記2台の駐車車両の各奥側端部の位置をもとに、前記駐車空間の奥行き方向において各駐車車両の最も奥側に位置する車輪である最奥車輪の位置を推定する最奥車輪位置推定手段(1)を備え、
前記目標駐車位置決定手段は、最奥車輪位置推定手段で推定した前記2台の駐車車両の各最奥車輪位置同士を結ぶ直線を、前記駐車空間の奥行き方向における手前側に所定距離だけ移動させた直線に沿って前記車両が駐車するように目標駐車位置を決定することを特徴とする駐車支援装置。
Oite to claim 1,
The route side surface position determining means determines the position of each route side surface of the two parked vehicles sandwiching the parking space,
The back side surface position estimating means estimates the position of each back side surface of the two parked vehicles,
The back side end position estimation means estimates the position of each back side end of the two parked vehicles,
Based on the position of the back end of each of the two parked vehicles estimated by the back end position estimating means, the wheel located on the farthest side of each parked vehicle in the depth direction of the parking space. It is provided with the innermost wheel position estimating means (1) for estimating the position of the inner wheel,
The target parking position determining means moves a straight line connecting the innermost wheel positions of the two parked vehicles estimated by the innermost wheel position estimating means by a predetermined distance to the near side in the depth direction of the parking space. A parking assist device that determines a target parking position so that the vehicle parks along a straight line.
JP2012061045A 2012-03-16 2012-03-16 Parking assistance device Active JP5786775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061045A JP5786775B2 (en) 2012-03-16 2012-03-16 Parking assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061045A JP5786775B2 (en) 2012-03-16 2012-03-16 Parking assistance device

Publications (2)

Publication Number Publication Date
JP2013193527A JP2013193527A (en) 2013-09-30
JP5786775B2 true JP5786775B2 (en) 2015-09-30

Family

ID=49393027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061045A Active JP5786775B2 (en) 2012-03-16 2012-03-16 Parking assistance device

Country Status (1)

Country Link
JP (1) JP5786775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024174B2 (en) 2017-05-09 2021-06-01 Denso Corporation Parking space detection apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459841B1 (en) 2012-11-30 2014-11-07 현대자동차주식회사 System and method for assisting parking
JP6316161B2 (en) 2014-09-29 2018-04-25 クラリオン株式会社 In-vehicle image processing device
JP6544121B2 (en) * 2015-07-31 2019-07-17 アイシン精機株式会社 Parking assistance device
JP6564346B2 (en) * 2016-05-30 2019-08-21 株式会社Soken Parking assistance device and parking assistance method
JP6906320B2 (en) * 2017-02-13 2021-07-21 株式会社Soken Parking support device and parking support control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048295A (en) * 2002-07-10 2004-02-12 Toyota Motor Corp Image processor, parking assist apparatus, and image processing method
JP4179285B2 (en) * 2005-01-12 2008-11-12 トヨタ自動車株式会社 Parking assistance device
JP2007030700A (en) * 2005-07-27 2007-02-08 Aisin Seiki Co Ltd Parking support device
JP2007131169A (en) * 2005-11-10 2007-05-31 Nippon Soken Inc Parking space detection system
JP2010018205A (en) * 2008-07-11 2010-01-28 Honda Motor Co Ltd Device for assisting parking
JP5443886B2 (en) * 2009-07-31 2014-03-19 クラリオン株式会社 Parking space recognition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024174B2 (en) 2017-05-09 2021-06-01 Denso Corporation Parking space detection apparatus

Also Published As

Publication number Publication date
JP2013193527A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6361567B2 (en) Automated driving vehicle system
JP5786775B2 (en) Parking assistance device
US9911330B2 (en) Driving assistance device and driving assistance method
JP6365390B2 (en) Lane change support device
CN105416284B (en) Parking assistance device and parking assistance method
CN110785328B (en) Parking assistance method and parking control device
JP4596063B2 (en) Vehicle steering control device
US20160068187A1 (en) Parking assist device
JP5906999B2 (en) Parking assistance device
US20190071071A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7037117B2 (en) Driving support device
JP7302950B2 (en) Vehicle driving support control device, driving support system, and driving support control method
KR20200134379A (en) Collision Avoidance device, Vehicle having the same and method for controlling the same
JP6801785B2 (en) Parking support method and parking support device
JP5786821B2 (en) Parking assistance device
JP7377143B2 (en) Travel control device, vehicle, travel control method and program
JP2018169269A (en) Route generator, route generation method, and route generation program
JP2014054912A (en) Parking support system
WO2018190037A1 (en) Obstacle detection and notification device, method and program
WO2019142312A1 (en) Vehicle control device, vehicle having same, and control method
JP2020027459A (en) Automatic driving support device
WO2019187716A1 (en) Parking assistance device
JP5861605B2 (en) Parking support system and wheel stopper with positioning body
JP5983276B2 (en) Parking assistance device
JP2022090420A (en) Collision avoidance apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250