JP5786449B2 - Heat pump steam generator - Google Patents

Heat pump steam generator Download PDF

Info

Publication number
JP5786449B2
JP5786449B2 JP2011112046A JP2011112046A JP5786449B2 JP 5786449 B2 JP5786449 B2 JP 5786449B2 JP 2011112046 A JP2011112046 A JP 2011112046A JP 2011112046 A JP2011112046 A JP 2011112046A JP 5786449 B2 JP5786449 B2 JP 5786449B2
Authority
JP
Japan
Prior art keywords
gas
steam
pressure
liquid separator
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011112046A
Other languages
Japanese (ja)
Other versions
JP2012047439A (en
Inventor
小松 正
正 小松
中川 功夫
功夫 中川
池田 洋一
洋一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011112046A priority Critical patent/JP5786449B2/en
Publication of JP2012047439A publication Critical patent/JP2012047439A/en
Application granted granted Critical
Publication of JP5786449B2 publication Critical patent/JP5786449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、工場排水などから排熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置に関する。   The present invention relates to a heat pump type steam generator that recovers exhaust heat from factory wastewater and generates steam.

蒸気発生装置の一つとして、ヒートポンプを利用したヒートポンプ式蒸気発生装置がある。ヒートポンプ式蒸気発生装置は、工場排水など排熱を回収して蒸気を生成するものであって、燃焼系蒸気発生装置に比べて、ランニングコストが低く、COの排出量を低減できるなどのメリットがある。 As one of the steam generators, there is a heat pump steam generator using a heat pump. The heat pump steam generator recovers waste heat such as factory wastewater to generate steam, and has the advantages of lower running costs and reduced CO 2 emissions compared to combustion steam generators. There is.

特許文献1には、圧縮機の吐出側に一端が接続された冷媒管の他端が、蒸気生成用熱交換器、温水生成用熱交換器、膨張弁、熱回収器を介して前記圧縮機の吸入側に接続された冷媒回路を備え、熱回収器において外部熱源からの熱を回収し、蒸気生成用熱交換器で蒸気を生成し、温水生成用熱交換器で温水を生成するように構成されたヒートポンプ式蒸気・温水発生装置が開示されている。そして、特許文献1のヒートポンプ式蒸気・温水発生装置では、蒸気生成用熱交換器で生成した蒸気中に含まれる水、あるいは蒸気の凝縮により液化した水を、給水用気液分離器で分離し、給水用気液分離器の気相に設けられた蒸気供給管から蒸気を外部に取出している。また、給水用気液分離器を蒸気生成用熱交換器よりも高い位置に設け、給水用気液分離器内の温水を、重力により蒸気生成用熱交換器に送り、給水用気液分離器内の温水を自然循環している。   In Patent Document 1, the other end of the refrigerant pipe having one end connected to the discharge side of the compressor is connected to the compressor via a steam generating heat exchanger, a hot water generating heat exchanger, an expansion valve, and a heat recovery unit. The refrigerant circuit connected to the suction side of the heat recovery unit recovers heat from the external heat source in the heat recovery unit, generates steam in the heat generation heat exchanger, and generates hot water in the heat generation heat exchanger A configured heat pump steam / hot water generator is disclosed. In the heat pump steam / hot water generator of Patent Document 1, water contained in the steam generated by the steam generating heat exchanger or water liquefied by condensation of the steam is separated by the gas / liquid separator for water supply. The steam is taken out from the steam supply pipe provided in the gas phase of the gas-liquid separator for feed water. Also, the feed water gas-liquid separator is installed at a position higher than the steam generation heat exchanger, and the hot water in the feed water gas-liquid separator is sent to the steam generation heat exchanger by gravity, and the feed water gas-liquid separator The hot water inside is naturally circulated.

特開2007−232357号公報(請求項1、段落番号0023)JP 2007-232357 A (Claim 1, paragraph number 0023)

しかしながら、特許文献1に記載されたヒートポンプ式蒸気・温水発生装置では、蒸気取り出し量が急増すると、気液分離器内の圧力が低下し、気液分離器から蒸気生成用熱交換器(本発明の媒体凝縮器に相当)への温水の供給量が減少する。気液分離器からの温水の供給量が不足すると、熱交換効率が低下する上、供給水に含まれる塩類の析出量が多くなって、配管内にスケールなどの異物が付着し、熱交換性能が低下する問題があった。   However, in the heat pump steam / hot water generator described in Patent Document 1, when the amount of steam taken out increases rapidly, the pressure in the gas-liquid separator decreases, and the steam-generating heat exchanger (the present invention) The amount of hot water supplied to the medium condenser is reduced. If the amount of hot water supplied from the gas-liquid separator is insufficient, the heat exchange efficiency will decrease, and the amount of salt deposited in the supplied water will increase, causing foreign matter such as scales to adhere to the piping, resulting in heat exchange performance. There was a problem that decreased.

一方、図3は、本願発明者らの先の出願(特願2010−112645)に係る発明のヒートポンプ式蒸気発生装置である。図3に示すように、このヒートポンプ式蒸気生成装置は、第1排熱回収器1の出口側から伸びた配管L1が、圧縮機2、媒体凝縮器3、媒体冷却器4、膨張機5の順に経由して、第1排熱回収器1の入り口側に接続したヒートポンプ循環経路20を備える。   On the other hand, FIG. 3 is a heat pump type steam generator of the invention according to the previous application (Japanese Patent Application No. 2010-112645) of the present inventors. As shown in FIG. 3, in this heat pump type steam generator, a pipe L <b> 1 extending from the outlet side of the first exhaust heat recovery unit 1 includes a compressor 2, a medium condenser 3, a medium cooler 4, and an expander 5. A heat pump circulation path 20 connected to the entrance side of the first exhaust heat recovery device 1 is provided in order.

給水源から伸びた、供給水が流通する配管L3は、給水ポンプP1、第2排熱回収器6、媒体冷却器4、媒体凝縮器3の順に経由して、気液分離器7の気相部に接続している。   The pipe L3 extending from the water supply source and through which the supply water flows passes through the water supply pump P1, the second exhaust heat recovery device 6, the medium cooler 4, and the medium condenser 3 in this order, and the gas phase of the gas-liquid separator 7 Connected to the department.

気液分離器7の気相部には、蒸気取出し用の配管L4が設けられており、液相部には、系外への排水を行う開閉弁V2を介装した配管L5と、媒体冷却器4と媒体凝縮器3との間の配管L3aに接続する配管L6が設けられている。配管L3aの配管L6との接続部よりも下流側には、送液ポンプP2が配置されている。   A vapor extraction pipe L4 is provided in the gas phase portion of the gas-liquid separator 7, and the liquid phase portion is provided with a pipe L5 provided with an on-off valve V2 for draining out of the system, and a medium cooling. A pipe L6 connected to the pipe L3a between the vessel 4 and the medium condenser 3 is provided. A liquid feed pump P2 is disposed on the downstream side of the connection portion between the pipe L3a and the pipe L6.

上記の構成において、気液分離器7から外部へ蒸気の供給は、需要に応じて蒸気取出し用の配管L4から外部に供給される。   In the above configuration, the supply of steam from the gas-liquid separator 7 to the outside is supplied to the outside from the steam extraction pipe L4 according to demand.

気液分離器7からの蒸気取出し流量を増やすには、媒体凝縮器3における熱回収量を変化させて気液分離器7での蒸気生成量を増加させて蒸気需要に追従させる必要があるが、この操作には遅れがある。その為、蒸気取出し用の配管L4からの蒸気取出し流量を急増すると、気液分離器7内の圧力が配管L6を流れる循環水の飽和蒸気圧力より低くなる。   In order to increase the steam extraction flow rate from the gas-liquid separator 7, it is necessary to change the heat recovery amount in the medium condenser 3 to increase the steam generation amount in the gas-liquid separator 7 to follow the steam demand. There is a delay in this operation. Therefore, when the steam extraction flow rate from the steam extraction pipe L4 is rapidly increased, the pressure in the gas-liquid separator 7 becomes lower than the saturated steam pressure of the circulating water flowing through the pipe L6.

図4は、40L容積の気液分離器において、経過時間の2秒に蒸気取出し流量を72kg/hから108kg/hにステップで増加した場合の気液分離器気相部の圧力(図中の実線)と液相部の温度から導出した飽和圧力(図中の破線)を示したものである。図5は気相部圧力の微分値である。図4、5が示すように、気液分離器気相部の圧力は、蒸気取出し流量を増加した直後に急峻な低下を生じ、その後圧力低下速度が遅くなり一定値に収束する傾向が見られ、気相部圧力と液相部の飽和蒸気圧力との差が収束する経過を示している。   FIG. 4 shows the pressure in the gas-liquid separator gas phase section in the case of a 40 L volume gas-liquid separator when the vapor discharge flow rate is increased in steps from 72 kg / h to 108 kg / h in 2 seconds of the elapsed time. Solid line) and saturation pressure derived from the temperature of the liquid phase part (broken line in the figure) are shown. FIG. 5 is a differential value of the gas phase pressure. As shown in FIGS. 4 and 5, the pressure in the gas-liquid separator gas phase section sharply decreases immediately after increasing the steam extraction flow rate, and then the pressure decreasing rate becomes slow and tends to converge to a constant value. FIG. 5 shows the course of convergence of the difference between the gas phase pressure and the saturated vapor pressure in the liquid phase.

すなわち、蒸気取出し流量を増加させると、媒体凝縮器3を経由して気液分離器7に供給される蒸気流量は直ぐには増加しないので、気液分離器7の圧力が低下するが、気液分離器7内の温水が蒸発することによって蒸気取出し流量が保持される。液相部から気相部への温水の蒸発には、蒸気圧差が必要なので、気相部の圧力より液相部の飽和蒸気圧力のほうが高い値となっている。この圧力差が送液ポンプP2のキャビテーションの要因となる。即ち、送液ポンプP2の入口温度は急には下がらないが、気液分離器7から伝播する圧力が低くなるので、必要吸い込み圧力が確保できなくなりキャビテーションが発生する。   That is, when the steam extraction flow rate is increased, the steam flow rate supplied to the gas-liquid separator 7 via the medium condenser 3 does not increase immediately, so the pressure of the gas-liquid separator 7 decreases. As the hot water in the separator 7 evaporates, the steam extraction flow rate is maintained. Since the vapor pressure difference is necessary for the evaporation of hot water from the liquid phase part to the gas phase part, the saturated vapor pressure in the liquid phase part is higher than the pressure in the gas phase part. This pressure difference causes cavitation of the liquid feed pump P2. That is, although the inlet temperature of the liquid feeding pump P2 does not drop suddenly, the pressure propagating from the gas-liquid separator 7 becomes low, so that the necessary suction pressure cannot be secured and cavitation occurs.

このように、蒸気取出し流量を増加させると、送液ポンプP2の必要吸い込み圧力が不足し、キャビテーションが生じて送液ができなくなり、更には、気液分離器7の液面が変動して、気液分離器7の水位に基いて制御される給水ポンプP1の給水量設定もできなくなり、制御不能の状態に陥る問題があった。   As described above, when the steam extraction flow rate is increased, the necessary suction pressure of the liquid feeding pump P2 becomes insufficient, cavitation occurs and liquid feeding becomes impossible, and furthermore, the liquid level of the gas-liquid separator 7 fluctuates. There is a problem that the water supply amount of the water supply pump P1 controlled based on the water level of the gas-liquid separator 7 cannot be set, resulting in an uncontrollable state.

よって、本発明の目的は、外部からの蒸気需要が急増しても、蒸気の安定供給可能なヒートポンプ式蒸気生成装置を提供することにある。   Therefore, an object of the present invention is to provide a heat pump type steam generator capable of stably supplying steam even when the demand for steam from the outside increases rapidly.

上記目的を達成するため、本発明のヒートポンプ式蒸気生成装置は、
外部熱源から熱を回収して媒体を加温する排熱回収器、前記排熱回収器を通過した媒体を圧縮する圧縮機、前記圧縮機で圧縮された媒体の熱を供給水に伝熱して温水及び蒸気の気液二相流を生成する媒体凝縮器、及び前記媒体凝縮器を通過した媒体を減圧して温度を下げる膨張機を有するヒートポンプ循環経路と、
前記媒体凝縮器に前記供給水を導入する給水経路と、
前記媒体凝縮器で生成した、温水及び蒸気の気液二相流を、蒸気と温水とに分離する気液分離装置と、
前記気液分離器の気相部に設けられた蒸気取出し経路と、
前記気液分離器の液相部と前記給水経路とを接続する水循環経路とを備えたヒートポンプ式蒸気生成装置であって、
前記気液分離器内の圧力を検出する圧力計と、
前記蒸気取出し経路に配置された蒸気制御弁とを備え、
前記蒸気制御弁は、前記圧力計の計測値の降下速度が、予め設定された上限値以下となるように、開度が制御されることを特徴とする。
In order to achieve the above object, the heat pump type steam generator of the present invention comprises:
An exhaust heat recovery unit that recovers heat from an external heat source and heats the medium, a compressor that compresses the medium that has passed through the exhaust heat recovery unit, and transfers the heat of the medium compressed by the compressor to supply water A heat pump circulation path having a medium condenser that generates a gas-liquid two-phase flow of hot water and steam, and an expander that depressurizes and lowers the temperature of the medium that has passed through the medium condenser;
A water supply path for introducing the supply water into the medium condenser;
A gas-liquid separation device that separates the gas-liquid two-phase flow of hot water and steam generated by the medium condenser into steam and hot water;
A vapor extraction path provided in a gas phase portion of the gas-liquid separator;
A heat pump type steam generator comprising a water circulation path connecting the liquid phase part of the gas-liquid separator and the water supply path,
A pressure gauge for detecting the pressure in the gas-liquid separator;
A steam control valve disposed in the steam extraction path,
The steam control valve is characterized in that the opening degree is controlled so that the descending speed of the measured value of the pressure gauge is not more than a preset upper limit value.

本発明のヒートポンプ式蒸気生成装置は、前記給水経路が、前記水循環経路との接続部と前記媒体凝縮器との間にポンプを備え、
前記上限値が、蒸気取出し流量増加時に、下記(1)の関係が維持される値に設定されることが好ましい。
(気液分離器の液相部の飽和蒸気圧力−気液分離器の気相部圧力)
<(ポンプの設計有効吸込圧力−ポンプの必要吸込圧力) ・・・(1)
In the heat pump steam generation device of the present invention, the water supply path includes a pump between a connection portion with the water circulation path and the medium condenser,
The upper limit value is preferably set to a value that maintains the following relationship (1) when the steam extraction flow rate is increased.
(Saturated vapor pressure in the liquid phase of the gas-liquid separator-Gas phase pressure in the gas-liquid separator)
<(Pump design effective suction pressure-Required suction pressure of pump) (1)

本発明のヒートポンプ式蒸気生成装置の蒸気制御弁は、前記圧力計の計測値の降下速度が予め設定された範囲内の場合は予め設定した開度で開弁するように動作し、前記圧力計の計測値の降下速度が予め設定された上限値よりも大きい場合は閉じる方向に動作し、前記圧力計の計測値の降下速度が予め設定された下限値よりも小さい場合は開く方向に動作するように制御されることが好ましい。   The steam control valve of the heat pump steam generating device of the present invention operates so as to open at a preset opening when the rate of decrease in the measured value of the pressure gauge is within a preset range. When the descent rate of the measured value is larger than the preset upper limit value, it moves in the closing direction, and when the descent rate of the measured value of the pressure gauge is smaller than the preset lower limit value, it works in the opening direction. It is preferable to be controlled as described above.

本発明のヒートポンプ式蒸気生成装置は、気液分離器の圧力計の計測値の降下速度が、予め設定された上限値以下となるように、蒸気制御弁の開度が制御されるので、外部からの蒸気需要が急増しても、蒸気発生装置の蒸気発生量の増加に応じて蒸気が取出されるので、送液ポンプのキャビテーション発生を防止でき、安定した運転を行うことができる。   Since the opening degree of the steam control valve is controlled so that the rate of decrease in the measured value of the pressure gauge of the gas-liquid separator is equal to or less than the preset upper limit value, Even if the demand for steam from the steam increases rapidly, steam is taken out as the steam generation amount of the steam generator increases, so that cavitation of the liquid feed pump can be prevented and stable operation can be performed.

本発明のヒートポンプ式蒸気生成装置の概略構成図である。It is a schematic block diagram of the heat pump type | formula steam generator of this invention. 本発明のヒートポンプ式蒸気生成装置の供給水から蒸気取り出し系の制御ブロック図である。It is a control block diagram of a steam extraction system from the feed water of the heat pump steam generator of the present invention. 特願2010−112645に係る発明のヒートポンプ式蒸気生成装置の概略構成図である。It is a schematic block diagram of the heat pump type steam generation apparatus of the invention concerning Japanese Patent Application No. 2010-112645. 図3の装置において、蒸気供給量増加時の気液分離器内の気相部圧力変化と液相部温度から求めた飽和蒸気圧力変化を示す図である。In the apparatus of FIG. 3, it is a figure which shows the saturated vapor pressure change calculated | required from the gaseous-phase part pressure change and liquid-phase part temperature in a gas-liquid separator at the time of a vapor | steam supply amount increase. 図3の装置において、蒸気供給量増加時の気液分離器内の気相部の圧力変化速度の経時変化を示す図である。In the apparatus of FIG. 3, it is a figure which shows the time-dependent change of the pressure change speed of the gaseous-phase part in a gas-liquid separator at the time of a vapor | steam supply amount increase. 本発明の制御を行った場合における気液分離器内の気相部の圧力変化速度の経時変化を示す図である。It is a figure which shows a time-dependent change of the pressure change speed of the gaseous-phase part in a gas-liquid separator at the time of performing control of this invention.

図1は、本発明を適用したヒートポンプ式蒸気生成装置の概略図である。   FIG. 1 is a schematic diagram of a heat pump steam generator to which the present invention is applied.

図1に示すように、このヒートポンプ式蒸気生成装置1は、第1排熱回収器1の出口側から伸びた配管L1が、圧縮機2、媒体凝縮器3、媒体冷却器4、膨張機5の順に経由して、第1排熱回収器1の入り口側に接続したヒートポンプ循環経路20を備える。   As shown in FIG. 1, the heat pump steam generator 1 includes a compressor 2, a medium condenser 3, a medium cooler 4, and an expander 5 having a pipe L <b> 1 extending from the outlet side of the first exhaust heat recovery unit 1. The heat pump circulation path 20 connected to the entrance side of the first exhaust heat recovery device 1 is provided through the above sequence.

ヒートポンプ循環経路20では、媒体(以下、ヒートポンプ媒体という)が循環流通しており、ヒートポンプ媒体を介して外部熱源から送られてくる熱媒体(この実施形態では、熱媒体として排温水を使用している)の熱を回収するとともに、給水源から送られてくる供給水にヒートポンプ媒体の熱を伝熱して蒸気を生成するように構成されている。   In the heat pump circulation path 20, a medium (hereinafter referred to as a heat pump medium) circulates and circulates, and a heat medium (in this embodiment, waste water is used as a heat medium sent from an external heat source via the heat pump medium. The heat of the heat pump medium is transferred to the supply water sent from the water supply source to generate steam.

ヒートポンプ媒体としては、臨界温度が高く、地球温暖化係数が低く、オゾン破壊係数の低いものが好ましく用いられる。このような媒体としては、R245fa、ハイドロフルオロエーテル系媒体、自然媒体であるペンタン等が好ましく用いることができる。   As the heat pump medium, a medium having a high critical temperature, a low global warming potential, and a low ozone depletion potential is preferably used. As such a medium, R245fa, a hydrofluoroether medium, pentane which is a natural medium, or the like can be preferably used.

外部熱源から伸びた、排温水が流通する配管L2は、第1排熱回収器1、第2排熱回収器6の順に経由して系外に接続している。   A pipe L2 extending from the external heat source and through which the exhaust hot water flows is connected to the outside of the system through the first exhaust heat recovery device 1 and the second exhaust heat recovery device 6 in this order.

給水源から伸びた、供給水が流通する配管L3は、給水ポンプP1、第2排熱回収器6、媒体冷却器4、送液ポンプP2、媒体凝縮器3の順に経由して、気液分離器7の気相部に接続している。   The pipe L3 extending from the water supply source and through which the supply water flows passes through the water supply pump P1, the second exhaust heat recovery unit 6, the medium cooler 4, the liquid feed pump P2, and the medium condenser 3 in this order to separate the gas and liquid. The gas phase part of the vessel 7 is connected.

気液分離器7は、気相部の圧力を検出する圧力計31と貯留された温水の水位を検出する水位計33が設けられている。また、気相部に、蒸気流量計32及び蒸気制御弁V1を介装した蒸気取出し用の配管L4が設けられている。また、液相部に、系外の排水系へと伸びる開閉弁V2を介装した配管L5と、媒体冷却器4と媒体凝縮器3との間の配管L3aに接続する配管L6が設けられている。   The gas-liquid separator 7 is provided with a pressure gauge 31 for detecting the pressure in the gas phase portion and a water level gauge 33 for detecting the level of stored hot water. Further, a steam extraction pipe L4 provided with a steam flow meter 32 and a steam control valve V1 is provided in the gas phase portion. Further, a pipe L5 provided with an on-off valve V2 extending to a drainage system outside the system and a pipe L6 connected to a pipe L3a between the medium cooler 4 and the medium condenser 3 are provided in the liquid phase part. Yes.

配管L3aの配管L6との接続部よりも下流側には、送液ポンプP2が配置されている。   A liquid feed pump P2 is disposed on the downstream side of the connection portion between the pipe L3a and the pipe L6.

次に、本発明のヒートポンプ式蒸気生成装置の定常運転時における動作について、熱の流れに沿って、図2の制御ブロック図も参照して説明する。なお、定常運転時とは、蒸気取出し用の配管L4からの蒸気の取出し流量がほぼ一定で安定している状態、すなわち、気液分離器7内の圧力降下速度が設定範囲内である状態のことである。   Next, the operation at the time of steady operation of the heat pump steam generator of the present invention will be described along the flow of heat with reference to the control block diagram of FIG. In the normal operation, the steam removal flow rate from the steam removal pipe L4 is substantially constant and stable, that is, the pressure drop speed in the gas-liquid separator 7 is within the set range. That is.

(排温水)
工場排水系等の外部熱源から送られる排温水は、配管L2を流通し、第1排熱回収器1、第2排熱回収器6の順に通過して系外へと送られる。
(Waste water)
Waste heat water sent from an external heat source such as a factory waste water system flows through the pipe L2, passes through the first waste heat recovery device 1 and the second waste heat recovery device 6 in this order, and is sent out of the system.

第1排熱回収器1では、排温水の熱を、配管L1を流通するヒートポンプ媒体に伝熱してヒートポンプ媒体を加温する。   In the 1st waste heat recovery device 1, the heat of waste water is transmitted to the heat pump medium which distribute | circulates the piping L1, and a heat pump medium is heated.

第2排熱回収器6では、ヒートポンプ媒体を加温後の排温水の余熱を、配管L3を流通する供給水に伝熱して供給水を一次予備加熱する。   In the second exhaust heat recovery device 6, the remaining heat of the exhaust water after heating the heat pump medium is transferred to the supply water flowing through the pipe L <b> 3 to primarily heat the supply water.

(ヒートポンプ媒体)
第1排熱回収器1にて、排温水との熱交換により加温されたヒートポンプ媒体は、圧縮機2にて所定の圧力まで圧縮して高温高圧媒体とする。この高温高圧媒体は、媒体凝縮器3、媒体冷却器4の順に通過して、配管L3を流通する供給水との熱交換に利用される。
(Heat pump medium)
The heat pump medium heated in the first exhaust heat recovery device 1 by heat exchange with the exhaust hot water is compressed to a predetermined pressure by the compressor 2 to obtain a high-temperature and high-pressure medium. This high-temperature and high-pressure medium passes through the medium condenser 3 and the medium cooler 4 in this order, and is used for heat exchange with the supply water flowing through the pipe L3.

圧縮機2は、図2の制御ブロック図に示すように、圧縮機コントローラ41で気液分離器7の圧力計31の測定値と、気液分離器7の圧力設定値(本実施形態では、200kPa・abs(温度で120℃に相当)である)とを比較補償して出力される回転数指令値に基づいて制御される。圧縮機2は、圧力計31の測定値が気液分離器7の圧力設定値よりも小さいときには回転数を上げられ、圧力計31の測定値が気液分離器7の圧力設定値よりも大きいときには回転数を下げられる制御が行われる。   As shown in the control block diagram of FIG. 2, the compressor 2 uses a compressor controller 41 to measure the pressure gauge 31 of the gas-liquid separator 7 and the pressure setting value of the gas-liquid separator 7 (in this embodiment, 200 kPa · abs (corresponding to a temperature of 120 ° C.) is controlled based on the rotational speed command value that is output after being compensated for. The compressor 2 is increased in rotation speed when the measured value of the pressure gauge 31 is smaller than the pressure set value of the gas-liquid separator 7, and the measured value of the pressure gauge 31 is larger than the pressure set value of the gas-liquid separator 7. Sometimes control is performed to reduce the rotational speed.

媒体凝縮器3では、高温高圧になったヒートポンプ媒体の熱を、配管L3を流通する被加熱水(後述する二次予備加熱された供給水と、配管L6から送られてくる気液分離器7内の温水との混合水)に伝熱して温水及び蒸気の気液二相流を生成する。   In the medium condenser 3, heat of the heat pump medium that has become high temperature and high pressure is supplied to heated water (secondary preheated supply water described later and a gas-liquid separator 7 sent from the pipe L6) through the pipe L3. Heat and water (mixed water with the warm water inside) to generate a gas-liquid two-phase flow of warm water and steam.

媒体冷却器4では、媒体凝縮器3を通過後のヒートポンプ媒体の余熱を、前述した排温水との熱交換により一次予備加熱された、配管L3を通る供給水に伝熱して二次予備加熱する。   In the medium cooler 4, the residual heat of the heat pump medium after passing through the medium condenser 3 is transferred to the supply water passing through the pipe L <b> 3, which has been preliminarily preheated by heat exchange with the above-described waste water, and is preliminarily preheated. .

媒体冷却器4を通過したヒートポンプ媒体は、膨張機5にて所定圧力まで膨張して温度を下げられ、第1排熱回収器1に再び導入されて配管L2を流通する排温水の熱回収に用いられる。   The heat pump medium that has passed through the medium cooler 4 is expanded to a predetermined pressure by the expander 5 to be lowered in temperature, and is re-introduced into the first exhaust heat recovery unit 1 to recover heat from the exhaust warm water flowing through the pipe L2. Used.

(供給水)
給水源から給水ポンプP1で供給される供給水は、供給水の質量流量Q1が、配管L4から取出される蒸気の質量流量Q2及び配管L5からの排水流量Q3との合計量(Q2+Q3)となるように制御される。具体的には、図2の制御ブロック図に示すように、まず、気液分離器7の圧力計31の計測値と開閉弁V2のバルブ容量係数に基づいて、配管L5からの排水流量(ブローダウン流量)計算値がブローダウン流量計算器43によって出力される。また、配管L4に設けられた蒸気流量計32により蒸気流量計測値が出力される。また、気液分離器7の水位計33の計測値と、気液分離器7の水位設定値が水位補償器44に入力され、流量補正値が出力される。そして、上記ブローダウン流量計算値、蒸気流量計測値および流量補正値の和が、流量指令値として流量調節器45,46に入力される。流量調節器45では、給水ポンプP1の特性(回転数と流量との関係)に基づいて、流量指令値に対応する回転数指令値を給水ポンプP1に出力して、給水ポンプP1が制御される。なお、流量調節器46では、後述する送液ポンプP2の制御を行う。
(Supply water)
In the supply water supplied from the water supply source by the water supply pump P1, the mass flow rate Q1 of the supply water is the total amount (Q2 + Q3) of the mass flow rate Q2 of the steam taken out from the pipe L4 and the drainage flow rate Q3 from the pipe L5. To be controlled. Specifically, as shown in the control block diagram of FIG. 2, first, based on the measured value of the pressure gauge 31 of the gas-liquid separator 7 and the valve capacity coefficient of the on-off valve V2, the flow rate of drainage (blow-off) from the pipe L5. (Down flow rate) The calculated value is output by the blow down flow rate calculator 43. Further, the steam flow rate measurement value is output by the steam flow meter 32 provided in the pipe L4. Further, the measurement value of the water level gauge 33 of the gas-liquid separator 7 and the water level setting value of the gas-liquid separator 7 are input to the water level compensator 44, and the flow rate correction value is output. The sum of the blowdown flow rate calculation value, the steam flow rate measurement value, and the flow rate correction value is input to the flow rate controllers 45 and 46 as a flow rate command value. The flow rate regulator 45 outputs a rotation speed command value corresponding to the flow rate command value to the water supply pump P1 based on the characteristics of the water supply pump P1 (relationship between the rotation speed and the flow rate), thereby controlling the water supply pump P1. . The flow controller 46 controls a liquid feed pump P2, which will be described later.

次に、供給水は、前述したように第2排熱回収器6、媒体冷却器4でそれぞれ予備加熱される。予備加熱された供給水は、配管L6から送られてくる、気液分離器7内の温水(以下、循環水という)と合流して、循環水と供給水との混合水が形成され、媒体凝縮器3に送液される。媒体凝縮器3に導入された混合水は、前述したように高温高圧になったヒートポンプ媒体の熱を回収し、温水及び蒸気の気液二相流を生成して、送液ポンプP2により気液分離器7に送られる。なお、送液ポンプP2は、流量調節器46にて、供給水の流量指令値に対し定数Kを乗じた値を送液ポンプ流量とし、送液ポンプP2の特性(回転数と流量との関係)に基づいて、送液ポンプ流量指令値に対応する回転数指令値を送液ポンプP2に出力して、送液ポンプP2が制御される。   Next, the feed water is preheated by the second exhaust heat recovery unit 6 and the medium cooler 4 as described above. The preheated supply water is combined with warm water (hereinafter referred to as circulating water) in the gas-liquid separator 7 sent from the pipe L6 to form a mixed water of the circulating water and the supply water. The solution is sent to the condenser 3. The mixed water introduced into the medium condenser 3 recovers the heat of the heat pump medium that has become high temperature and high pressure as described above, generates a gas-liquid two-phase flow of hot water and steam, and the gas-liquid is fed by the liquid feed pump P2. It is sent to the separator 7. In the liquid feed pump P2, the flow rate regulator 46 multiplies the flow rate command value of the supplied water by a constant K as the liquid feed pump flow rate, and the characteristics of the liquid feed pump P2 (relationship between the rotational speed and the flow rate). ), The rotational speed command value corresponding to the liquid feed pump flow rate command value is output to the liquid feed pump P2, and the liquid feed pump P2 is controlled.

気液分離器7では、温水及び蒸気の気液二相流を蒸気と温水とに分離する。そして、気液分離器7の気相部に貯留された蒸気は、外部の需要に応じて配管L4から取出される。また、気液分離器7の液相部に貯留された温水は、配管L6を通して配管L3a内を流通する供給水と混合して循環利用される。なお、定常運転時では、蒸気制御弁V1は予め設定した開度(この実施形態では全開状態)となっている。   In the gas-liquid separator 7, the gas-liquid two-phase flow of hot water and steam is separated into steam and hot water. And the vapor | steam stored in the gaseous-phase part of the gas-liquid separator 7 is taken out from the piping L4 according to an external demand. Further, the hot water stored in the liquid phase part of the gas-liquid separator 7 is mixed with the supply water flowing through the pipe L3a through the pipe L6 and circulated and used. Note that during steady operation, the steam control valve V1 has a preset opening (fully open in this embodiment).

気液分離器7の液相部に接続された配管L5に設けられた開閉弁V2は、循環水系統の塩分の濃縮防止を目的としてブローダウンするために、定期的又は一時的に開閉制御を行うほか、次のように、気液分離器7内の圧力および水位に基づく制御が行われる。   The on-off valve V2 provided in the pipe L5 connected to the liquid phase part of the gas-liquid separator 7 is periodically or temporarily controlled to blow down for the purpose of preventing the concentration of salt in the circulating water system. In addition to the above, control based on the pressure and water level in the gas-liquid separator 7 is performed as follows.

すなわち、図2に示すように、開閉設定器47は、気液分離器7の圧力計31の計測値が、予め設定した上限値(本実施形態では、270kPa・abs(130℃相当)である)以上の場合に開の信号を開閉選択器49に出力し、予め設定した下限値(本実施形態では、230kPa・abs(125℃相当)である)以下の場合に閉の信号を開閉選択器49に出力すると共に、開閉設定器48は、気液分離器7の水位計33の計測値が、予め設定した上限値(本実施形態では、気液分離器容積の65%となる水位である)以上の場合に開の信号を開閉選択器49に出力し、予め設定した下限値(本実施形態では、気液分離器容積の60%となる水位である)以下の場合に閉の信号を開閉選択器49に出力する。そして、開閉選択器49では、開閉設定器47及び開閉設定器48から入力された両信号の少なくとも一方が開の場合は、開信号を開閉指令値として開閉弁V2に与え、両信号のいずれもが閉の場合は閉信号を開閉指令値として開閉弁V2に与える。   That is, as shown in FIG. 2, in the open / close setting device 47, the measured value of the pressure gauge 31 of the gas-liquid separator 7 is a preset upper limit value (in this embodiment, 270 kPa · abs (corresponding to 130 ° C.)). ) In the above case, an open signal is output to the open / close selector 49, and in the case of a preset lower limit value (230 kPa · abs (corresponding to 125 ° C.) in this embodiment), the close signal is output to the open / close selector 49, and the open / close setting device 48 is a water level at which the measured value of the water level meter 33 of the gas-liquid separator 7 is a preset upper limit value (in this embodiment, 65% of the volume of the gas-liquid separator). ) In the above case, an open signal is output to the open / close selector 49, and in the case of a lower limit value set in advance (in this embodiment, the water level is 60% of the gas-liquid separator volume), a close signal is output. Output to the open / close selector 49. In the open / close selector 49, when at least one of both signals input from the open / close setter 47 and the open / close setter 48 is open, the open signal is given to the open / close valve V2 as an open / close command value. When is closed, a close signal is given to the open / close valve V2 as an open / close command value.

次に、蒸気の需要が変動して、蒸気取出し流量を増加する場合における動作について説明する。   Next, the operation when the demand for steam fluctuates and the steam extraction flow rate is increased will be described.

(蒸気取出し流量増加時の制御)
気液分離器7の圧力計31の計測値が、微分器50に入力され、気液分離器7の圧力降下速度が演算される。演算された圧力降下速度は、蒸気制御弁コントローラ51に入力され、圧力降下速度上限設定値と比較される。演算された圧力降下速度が圧力降下速度上限設定値より大きい場合は、蒸気制御弁V1は閉じる方向に動作し、圧力降下速度が圧力降下速度下限設定値より小さい場合は、蒸気制御弁V1は開く方向に動作するよう制御を行う。蒸気制御弁V1の開度制御は、圧力降下速度が設定範囲内で安定するまで行う。
(Control when the steam extraction flow rate increases)
The measured value of the pressure gauge 31 of the gas-liquid separator 7 is input to the differentiator 50, and the pressure drop speed of the gas-liquid separator 7 is calculated. The calculated pressure drop rate is input to the steam control valve controller 51 and compared with the pressure drop rate upper limit set value. When the calculated pressure drop speed is larger than the pressure drop speed upper limit set value, the steam control valve V1 operates in the closing direction, and when the pressure drop speed is smaller than the pressure drop speed lower limit set value, the steam control valve V1 opens. Control to move in the direction. The opening degree control of the steam control valve V1 is performed until the pressure drop rate is stabilized within the set range.

ここで、気液分離器7の圧力は、外部に供給する蒸気流量と、気液分離器7に送られてくる蒸気流量と、気液分離器7内で発生する蒸気流量とで成り立っており、下式(2)の関係を有している。   Here, the pressure of the gas-liquid separator 7 is composed of the steam flow supplied to the outside, the steam flow sent to the gas-liquid separator 7, and the steam flow generated in the gas-liquid separator 7. The relationship of the following formula (2) is established.

気液分離器7の圧力
=∫M(気液分離器7に送られてくる蒸気流量+気液分離器7内の温水蒸発による蒸気流量−外部に供給する蒸気流量)・dt・・・(2)
(式(2)中のMは、気液分離器7の気相部の蒸気体積と蒸気物性から求められる係数である。蒸気物性は、新実用国際状態式(IAPWS-IF97)による物性相間式として示される数値である。)
Pressure of gas-liquid separator 7 = ∫M (vapor flow sent to gas-liquid separator 7 + vapor flow due to evaporation of hot water in gas-liquid separator 7-vapor flow supplied to outside) · dt ... ( 2)
(M in equation (2) is a coefficient determined from the vapor volume and vapor properties of the gas phase part of gas-liquid separator 7. Vapor properties are physical property phase equations based on the new practical international equation of state (IAPWS-IF97). (The numerical value shown as.)

従って、気液分離器7の圧力の微分値である圧力降下速度は、式(2)に示す各蒸気流量のバランスが崩れた状態を示す数値である。   Therefore, the pressure drop speed, which is a differential value of the pressure of the gas-liquid separator 7, is a numerical value indicating a state in which the balance of the respective steam flow rates shown in Expression (2) is lost.

装置では、気液分離器7からの蒸気取出し流量(外部に供給する蒸気流量)を増加させると、気液分離器7に供給する蒸気流量(気液分離器7に送られてくる蒸気流量)を増加させるため、圧縮機2の出力を増加させて媒体凝縮器3にて供給水に伝熱する熱量を増加させる必要があるが、媒体凝縮器3を経由して気液分離器7に供給される蒸気流量は直ぐには増加しないので、気液分離器7内の温水が蒸発(気液分離器7内の温水蒸発による蒸気流量)することによって蒸気取出し流量が保持される方向に動作する。   In the apparatus, when the flow rate of taking out the vapor from the gas-liquid separator 7 (the flow rate of steam supplied to the outside) is increased, the flow rate of the vapor supplied to the gas-liquid separator 7 (the flow rate of vapor sent to the gas-liquid separator 7) In order to increase the amount of heat, it is necessary to increase the output of the compressor 2 to increase the amount of heat transferred to the supply water in the medium condenser 3, but supply the gas-liquid separator 7 via the medium condenser 3. Since the steam flow rate does not increase immediately, the steam extraction flow rate is maintained as the hot water in the gas-liquid separator 7 evaporates (the steam flow rate by the hot water evaporation in the gas-liquid separator 7).

即ち、図5に示す気液分離器7の圧力の微分値である圧力降下速度は、蒸気取出し流量を急増した場合の温水蒸発量の追従遅れを表す指標であり、蒸気取出し流量の急増度合いとも言える。従って、圧力降下速度を検知して蒸気制御弁V1を閉じる方向に動作させることにより蒸気取出しの急増を防止できる。(なお、図5において経過時間6秒以降の圧力低下は、温水蒸発の蒸発潜熱による気液分離器7の水温が低下している影響である。)   That is, the pressure drop speed, which is a differential value of the pressure of the gas-liquid separator 7 shown in FIG. 5, is an index representing the follow-up delay of the hot water evaporation amount when the steam discharge flow rate is rapidly increased. I can say that. Accordingly, it is possible to prevent a rapid increase in steam extraction by detecting the pressure drop speed and operating the steam control valve V1 in the closing direction. (Note that the pressure drop after the elapsed time of 6 seconds in FIG. 5 is the effect that the water temperature of the gas-liquid separator 7 is lowered by the latent heat of vaporization of hot water evaporation.)

また、液相部から気相部への温水の蒸発には、蒸気圧差が必要なので、気相部の圧力より液相部の飽和蒸気圧力のほうが高くなっており、この圧力差が大きくなるに伴い、気液分離器7から送液ポンプP2に伝播する圧力が低くなるので、必要吸い込み圧力が確保できなくなりキャビテーションが発生し易くなる。   Moreover, since vapor pressure difference is necessary for evaporation of warm water from the liquid phase part to the gas phase part, the saturated vapor pressure in the liquid phase part is higher than the pressure in the gas phase part, and this pressure difference becomes large. Along with this, the pressure propagating from the gas-liquid separator 7 to the liquid feed pump P2 becomes low, so that the necessary suction pressure cannot be secured and cavitation is likely to occur.

圧力降下速度上限設定値は、蒸気取出し流量を増加してから数秒経過後(好ましくは、4秒後)の液相部温度から導出される気液分離器の液相部の飽和蒸気圧と、気相部圧力との差が、下式(1)の関係となるように設定することが好ましい。   The pressure drop rate upper limit set value is the saturated vapor pressure in the liquid phase part of the gas-liquid separator derived from the liquid phase part temperature after several seconds (preferably after 4 seconds) from the increase of the steam discharge flow rate, It is preferable that the difference from the gas phase pressure is set so as to satisfy the relationship of the following formula (1).

(気液分離器の液相部の飽和蒸気圧力−気液分離器の気相部圧力)
<(ポンプの設計有効吸込圧力−ポンプの必要吸込圧力) ・・・(1)
ここで、ポンプの設計有効吸込圧力とは、設計した運転状態における吸込み圧力と液体の蒸気圧の差のことであり、ポンプの必要吸込圧力とは、ポンプの特性によって決まるキャビテーションを発生しないで運転できる吸込み圧力と液体の蒸気圧の差のことである。ポンプの設計有効吸込圧力は、ポンプの必要吸込圧力に余裕を見て設定する。
(Saturated vapor pressure in the liquid phase of the gas-liquid separator-Gas phase pressure in the gas-liquid separator)
<(Pump design effective suction pressure-Required suction pressure of pump) (1)
Here, the pump design effective suction pressure is the difference between the suction pressure in the designed operating state and the vapor pressure of the liquid, and the required suction pressure of the pump operates without generating cavitation determined by the pump characteristics. It is the difference between the suction pressure that can be generated and the vapor pressure of the liquid. The design effective suction pressure of the pump is set with a margin for the required suction pressure of the pump.

例えば、送液ポンプP2の必要吸込み圧力が14.7kPa(必要吸込ヘッド1.5m)であり、通常運転時(設計)の有効吸込圧力が25kPa以上となるように送液ポンプP2を制御している場合、気液分離器の液相部の飽和蒸気圧力と気液分離器の気相部圧力との差が10.3kPa未満となるように圧力降下速度上限設定値を設定すればよい。   For example, the liquid suction pump P2 is controlled so that the necessary suction pressure of the liquid feeding pump P2 is 14.7 kPa (necessary suction head 1.5 m) and the effective suction pressure during normal operation (design) is 25 kPa or more. If so, the pressure drop rate upper limit set value may be set so that the difference between the saturated vapor pressure in the liquid phase part of the gas-liquid separator and the gas phase part pressure in the gas-liquid separator is less than 10.3 kPa.

したがって、この場合においては、安全率を考慮して、圧力降下速度を整定する図5に示す、負荷変化4秒後(経過時間6秒後)の値(1.5kPa/s)を圧力降下速度上限値として設定して蒸気制御弁V1の開閉を制御すれば、気相部の圧力と液相部飽和圧力の大きな乖離は防止できキャビテーションを防止できる。   Therefore, in this case, the value (1.5 kPa / s) after 4 seconds of load change (after 6 seconds of elapsed time) shown in FIG. By setting the upper limit value to control the opening and closing of the steam control valve V1, it is possible to prevent a large difference between the pressure in the gas phase and the saturation pressure in the liquid phase, and to prevent cavitation.

なお、蒸気取出し流量を増加直後(図4では約2秒以内)の時点では、気相部圧力と液相部飽和蒸気圧との差は小さいので、蒸気制御弁V1の動作遅れで十分に追従できなくてもキャビテーションが発生することはない。   Note that the difference between the vapor phase pressure and the liquid phase saturated vapor pressure is small immediately after the increase of the steam extraction flow rate (within about 2 seconds in FIG. 4), and therefore sufficiently follows the operation delay of the vapor control valve V1. Even if it is not possible, cavitation will not occur.

(実施例)
図1に示すヒートポンプ式蒸気発生装置を用い、蒸気制御弁V1を全開(開度100%)にして配管L4から蒸気を取出し流量72kg/hで取出した。なお、気液分離器7として、40L容積のものを用いた。
(Example)
Using the heat pump steam generator shown in FIG. 1, the steam control valve V1 was fully opened (opening degree 100%), steam was taken out from the pipe L4 and taken out at a flow rate of 72 kg / h. A gas-liquid separator 7 having a volume of 40 L was used.

経過時間2秒後に蒸気取出し流量を108kg/hに変化させた。気液分離器7の圧力降下速度上限値を1.5kPa/sに設定し、気液分離器7の圧力降下速度が1.5kPa/sを回ったら、蒸気制御弁V1の開度を小さくする制御を行ったところ、図6に示すように、経過時間22秒後に気液分離器7内の圧力降下速度がほぼゼロになり、気液分離器7内の圧力が安定した。その間、送液ポンプP2等にキャビテーションは生じなかった。
After 2 seconds from the elapsed time, the steam removal flow rate was changed to 108 kg / h. Set the pressure drop speed upper limit of the gas-liquid separator 7 to 1.5 kPa / s, the pressure drop rate of the gas-liquid separator 7 After around top 1.5 kPa / s, decreases the opening of the steam control valve V1 As shown in FIG. 6, the pressure drop rate in the gas-liquid separator 7 became almost zero after 22 seconds as shown in FIG. 6, and the pressure in the gas-liquid separator 7 was stabilized. During that time, no cavitation occurred in the liquid feed pump P2.

1:第1排熱回収器
2:圧縮機
3:媒体凝縮器
4:媒体冷却器
5:膨張機
6:第2排熱回収器
7:気液分離器
20:ヒートポンプ循環経路
L1〜L6:配管
P1:給給水ポンプ
P2:送液ポンプ
V1:蒸気制御弁
V2:開閉弁
31:圧力計
32:蒸気流量計
33:水位計
1: First exhaust heat recovery device 2: Compressor 3: Medium condenser 4: Medium cooler 5: Expander 6: Second exhaust heat recovery device 7: Gas-liquid separator 20: Heat pump circulation paths L1 to L6: piping P1: Feed water pump P2: Liquid feed pump V1: Steam control valve V2: On-off valve 31: Pressure gauge 32: Steam flow meter 33: Water level meter

Claims (2)

外部熱源から熱を回収して媒体を加温する排熱回収器、前記排熱回収器を通過した媒体を圧縮する圧縮機、前記圧縮機で圧縮された媒体の熱を供給水に伝熱して温水及び蒸気の気液二相流を生成する媒体凝縮器、及び前記媒体凝縮器を通過した媒体を減圧して温度を下げる膨張機を有するヒートポンプ循環経路と、
前記媒体凝縮器に前記供給水を導入する給水経路と、
前記媒体凝縮器で生成した、温水及び蒸気の気液二相流を、蒸気と温水とに分離する気液分離装置と、
前記気液分離器の気相部に設けられた蒸気取出し経路と、
前記気液分離器の液相部と前記給水経路とを接続する水循環経路とを備えたヒートポンプ式蒸気生成装置であって、
前記気液分離器内の圧力を検出する圧力計と、
前記蒸気取出し経路に配置された蒸気制御弁とを備え、
前記蒸気制御弁は、前記圧力計の計測値の降下速度が、予め設定された上限値よりも大きい場合は閉じる方向に動作するように制御されることを特徴とするヒートポンプ式蒸気生成装置。
An exhaust heat recovery unit that recovers heat from an external heat source and heats the medium, a compressor that compresses the medium that has passed through the exhaust heat recovery unit, and transfers the heat of the medium compressed by the compressor to supply water A heat pump circulation path having a medium condenser that generates a gas-liquid two-phase flow of hot water and steam, and an expander that depressurizes and lowers the temperature of the medium that has passed through the medium condenser;
A water supply path for introducing the supply water into the medium condenser;
A gas-liquid separation device that separates the gas-liquid two-phase flow of hot water and steam generated by the medium condenser into steam and hot water;
A vapor extraction path provided in a gas phase portion of the gas-liquid separator;
A heat pump type steam generator comprising a water circulation path connecting the liquid phase part of the gas-liquid separator and the water supply path,
A pressure gauge for detecting the pressure in the gas-liquid separator;
A steam control valve disposed in the steam extraction path,
The steam control valve is controlled such that the steam control valve operates in a closing direction when a descending speed of a measured value of the pressure gauge is larger than a preset upper limit value.
前記給水経路は、前記水循環経路との接続部と前記媒体凝縮器との間にポンプを備え、
前記上限値は、蒸気取出し流量増加時に、下記(1)の関係が維持される値に設定される、請求項1に記載のヒートポンプ式蒸気生成装置。
(気液分離器の液相部の飽和蒸気圧力−気液分離器の気相部圧力)
<(ポンプの設計有効吸込圧力−ポンプの必要吸込圧力) ・・・(1)
The water supply path includes a pump between a connection portion with the water circulation path and the medium condenser,
The heat pump steam generation device according to claim 1, wherein the upper limit value is set to a value that maintains the relationship of the following (1) when the steam extraction flow rate is increased.
(Saturated vapor pressure in the liquid phase of the gas-liquid separator-Gas phase pressure in the gas-liquid separator)
<(Pump design effective suction pressure-Required suction pressure of pump) (1)
JP2011112046A 2010-07-27 2011-05-19 Heat pump steam generator Active JP5786449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011112046A JP5786449B2 (en) 2010-07-27 2011-05-19 Heat pump steam generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010168393 2010-07-27
JP2010168393 2010-07-27
JP2011112046A JP5786449B2 (en) 2010-07-27 2011-05-19 Heat pump steam generator

Publications (2)

Publication Number Publication Date
JP2012047439A JP2012047439A (en) 2012-03-08
JP5786449B2 true JP5786449B2 (en) 2015-09-30

Family

ID=45902521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112046A Active JP5786449B2 (en) 2010-07-27 2011-05-19 Heat pump steam generator

Country Status (1)

Country Link
JP (1) JP5786449B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136968B2 (en) * 2011-03-31 2013-02-06 三浦工業株式会社 Steam generation system
JP5358049B2 (en) * 2012-05-03 2013-12-04 有限会社清水冷機 Heat exchange system
JP5949383B2 (en) * 2012-09-24 2016-07-06 三浦工業株式会社 Steam generation system
JP6065212B2 (en) * 2013-03-04 2017-01-25 三浦工業株式会社 Water heating system
JP6065213B2 (en) * 2013-03-04 2017-01-25 三浦工業株式会社 Water heating system
JP5967315B2 (en) * 2013-10-31 2016-08-10 富士電機株式会社 Steam generating apparatus and steam generating heat pump
JP6338143B2 (en) * 2014-03-19 2018-06-06 三浦工業株式会社 Cooling system
JP6394699B2 (en) * 2014-07-02 2018-09-26 富士電機株式会社 Heat pump steam generation system
JP6344210B2 (en) * 2014-11-18 2018-06-20 富士電機株式会社 Operation method of heat pump steam generator and heat pump steam generator
JP6394525B2 (en) * 2015-07-13 2018-09-26 富士電機株式会社 Heat pump steam generator
JP5950009B1 (en) * 2015-08-18 2016-07-13 富士電機株式会社 Steam generator
JP6696226B2 (en) * 2016-03-04 2020-05-20 富士電機株式会社 Heat pump type steam generator
JP2017161105A (en) * 2016-03-07 2017-09-14 富士電機株式会社 Heat pump type steam generator
JP6447769B2 (en) * 2018-05-21 2019-01-09 富士電機株式会社 Operation method of heat pump steam generator and heat pump steam generator
JP7095521B2 (en) * 2018-09-20 2022-07-05 三浦工業株式会社 Steam supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122912A (en) * 1997-07-02 1999-01-26 Fuji Electric Co Ltd Device and method for controlling water level in steam separator
JP4972421B2 (en) * 2006-02-01 2012-07-11 関西電力株式会社 Heat pump steam / hot water generator

Also Published As

Publication number Publication date
JP2012047439A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5786449B2 (en) Heat pump steam generator
JP5593902B2 (en) Heat pump steam generator
KR101789873B1 (en) Energy recovery device and compression device, and energy recovery method
TW201027006A (en) Method for operating a heat recovery steam generator
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
KR20130115281A (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
JP6188629B2 (en) Binary power generator operation method
JP6029533B2 (en) Binary power generator operating method and binary power generator
JP2012247146A (en) Heat pump steam generator
JP6173235B2 (en) Binary power generator operation method
JP2008267341A (en) Exhaust heat recovering device
JP2012184735A (en) Composite cycle plant
JP2007085294A (en) Steam turbine plant and its operating method
JP4287981B2 (en) Combined cycle plant
KR101249203B1 (en) Steam generator
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP5593906B2 (en) Heat pump steam generator
JP2011242018A (en) Heat pump steam generator
JP2017161105A (en) Heat pump type steam generator
JP2009097794A (en) Cryogenic liquid heating method and its device
JP2008096064A (en) Heat pump system for hot water supply
KR101701786B1 (en) Plant control apparatus and combined cycle power plant
JP6344210B2 (en) Operation method of heat pump steam generator and heat pump steam generator
CN104048404A (en) Water heater
JP4091791B2 (en) Steam supply method to intermittent steam consumption equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250