JP5785967B2 - Rust coating composition and metal member having rust coating - Google Patents

Rust coating composition and metal member having rust coating Download PDF

Info

Publication number
JP5785967B2
JP5785967B2 JP2013030607A JP2013030607A JP5785967B2 JP 5785967 B2 JP5785967 B2 JP 5785967B2 JP 2013030607 A JP2013030607 A JP 2013030607A JP 2013030607 A JP2013030607 A JP 2013030607A JP 5785967 B2 JP5785967 B2 JP 5785967B2
Authority
JP
Japan
Prior art keywords
parts
mass
coating composition
rust
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013030607A
Other languages
Japanese (ja)
Other versions
JP2014012811A (en
Inventor
敏裕 岩瀬
敏裕 岩瀬
加納 達弥
達弥 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2013030607A priority Critical patent/JP5785967B2/en
Publication of JP2014012811A publication Critical patent/JP2014012811A/en
Application granted granted Critical
Publication of JP5785967B2 publication Critical patent/JP5785967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、防錆性能に優れる防錆塗料組成物と、その防錆塗料組成物が塗布された防錆塗膜をもつ金属部材に関するものである。   The present invention relates to a rust preventive coating composition excellent in rust preventive performance and a metal member having a rust preventive coating film coated with the rust preventive paint composition.

亜鉛の鉄に対する犠牲防食作用を利用したジンクリッチ塗料が広く利用されているが、有機溶剤を用いたものが主流であり、環境面で不具合がある。そのため水性ジンクリッチ塗料の開発が行われているが、亜鉛と水との反応による水素ガスの発生という問題や、防錆性能に劣るという問題点がある。   Zinc rich paints that use the sacrificial anticorrosive action of zinc on iron are widely used, but those using organic solvents are mainstream and have environmental problems. Therefore, water-based zinc-rich paints have been developed, but there are problems of generation of hydrogen gas due to the reaction between zinc and water and problems of poor rust prevention performance.

そこで例えば特開2002−053769号公報には、亜鉛末及び水性アルミニウム顔料を含有して成る顔料を水性塗料液、中でもコロイダルシリカ複合体エマルションを結着剤とする水性塗料液に用いた腐食防止被覆組成物が提案されている。この腐食防止被覆組成物によれば、特に亜鉛めっき鋼及び/又は亜鉛合金めっき鋼からなる鋼材に適用した場合に、優れた防食性、防錆性が発現される。   Therefore, for example, Japanese Patent Application Laid-Open No. 2002-053769 discloses a corrosion-preventing coating using a pigment containing a zinc powder and an aqueous aluminum pigment in an aqueous coating liquid, particularly an aqueous coating liquid having a colloidal silica composite emulsion as a binder. Compositions have been proposed. According to this corrosion-preventing coating composition, particularly when applied to a steel material made of galvanized steel and / or zinc alloy-plated steel, excellent corrosion resistance and rust resistance are exhibited.

また特開2010−132854号公報には、コロイダルシリカとSBRエマルジョンとを含む水性コーティング剤が記載され、基材の温度変化に起因する膨張収縮に追従できる伸縮性をもつ塗膜が形成されること、亜鉛めっき鋼及び/又は亜鉛合金めっき鋼からなる鋼材に対して高い防錆性が発現されることが記載されているが、表面処理の無い鋼材に対しては必ずしも充分な防錆性を有しているとはいえない。   Japanese Patent Application Laid-Open No. 2010-132854 describes an aqueous coating agent containing colloidal silica and an SBR emulsion, and a coating film having elasticity that can follow expansion and contraction caused by temperature change of the substrate is formed. However, it is described that high rust resistance is exhibited for steel materials made of galvanized steel and / or zinc alloy plated steel, but it does not necessarily have sufficient rust resistance for steel materials without surface treatment. I can't say that.

従来の水性の防錆塗料組成物は、亜鉛めっき鋼及び/又は亜鉛合金めっき鋼からなる鋼材に塗布されることで高い防錆性を発現する。しかしながら未処理の鋼材に塗布された場合には、必ずしも高い防錆性が発現されるとは限らなかった。   The conventional water-based anticorrosive coating composition exhibits high antirust properties when applied to a steel material made of galvanized steel and / or zinc alloy plated steel. However, when applied to untreated steel, high rust prevention properties are not always exhibited.

また水性塗料は、有機溶剤に比べて沸点が高い水を溶剤としているために、有機溶剤系塗料に比べて乾燥性が低いという欠点がある。この問題を解決する水性塗料として、例えば特開2002−206074号公報に記載されているように、合成樹脂エマルションと、アミノ基含有ポリマーと、揮発性塩基と、シランカップリング剤とからなる水性塗料組成物が知られている。   In addition, since the water-based paint uses water having a boiling point higher than that of the organic solvent as a solvent, there is a defect that the drying property is lower than that of the organic solvent-based paint. As an aqueous paint for solving this problem, for example, as described in JP-A-2002-206074, an aqueous paint comprising a synthetic resin emulsion, an amino group-containing polymer, a volatile base, and a silane coupling agent. Compositions are known.

この種の水性塗料は、アミノ基含有ポリマーが揮発性塩基によってノニオン状態となっているため安定して貯蔵できる。しかし塗装後には揮発性塩基が急激に揮散し、アミノ基含有ポリマーのアミノ基がカチオン性となると共に、合成樹脂エマルションに含まれるカルボキシル基と反応してゲル化し、水が排除されるため乾燥性が向上する。   This type of water-based paint can be stably stored because the amino group-containing polymer is in a nonionic state by a volatile base. However, after coating, the volatile bases rapidly evaporate, the amino group of the amino group-containing polymer becomes cationic, reacts with the carboxyl group contained in the synthetic resin emulsion, gels, and water is eliminated, thus drying. Will improve.

ところが特開2002−206074号公報に記載の水性塗料組成物は、建築物の外壁塗装用に用いられるものであり、自動車の足回り部品などに塗装されることは示唆すらされていない。実際に特開2002−206074号公報に記載の水性塗料組成物の防錆性を調査したところ、自動車の足回り部品などに必要な防錆性能は全く得られなかった。   However, the water-based paint composition described in Japanese Patent Application Laid-Open No. 2002-206074 is used for painting outer walls of buildings, and it is not even suggested that the paint is applied to undercarriage parts of automobiles. When the rust prevention property of the water-based coating composition described in JP-A-2002-206074 was actually investigated, the rust prevention performance necessary for automobile undercarriage parts and the like was not obtained at all.

特開2002−053769号公報JP 2002-053769 A 特開2010−132854号公報JP 2010-132854 JP 特開2002−206074号公報Japanese Patent Laid-Open No. 2002-206074

本発明はこのような事情に鑑みてなされたものであり、未処理の鋼材に塗布された場合にも高い防錆性が発現される水性の防錆塗料組成物を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the water-based antirust coating composition in which a high antirust property is expressed also when apply | coated to an untreated steel material. .

上記課題を解決する本発明の防錆塗料組成物の特徴は、アニオン系官能基を有する水性樹脂と、水性樹脂の不揮発分100質量部に対して3〜20質量部の範囲で添加され一次粒子径が4nm〜25nmの微粒シリカと、加水分解性基およびアミノ基を含み、微粒シリカの固形分100質量部に対して11質量部以上90質量部以下の範囲で添加されたシランカップリング剤と、沸点20℃以下の揮発性塩基である反応促進剤と、を含むことにある。
以下、本明細書において「好適防錆塗料組成物」または「反応促進剤が間接的機構」と説明されている防錆塗料組成物を、本発明の防錆塗料組成物と読み替えるものとする。また、実施例1〜実施例5、実施例7〜実施例9についてはそれぞれ「実施例」を「参考例」と読み替えるものとする。
The feature of the rust-preventive coating composition of the present invention that solves the above problems is that an aqueous resin having an anionic functional group and primary particles added in the range of 3 to 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous resin A fine silica having a diameter of 4 nm to 25 nm, a hydrolyzable group and an amino group, and a silane coupling agent added in a range of 11 parts by weight to 90 parts by weight with respect to 100 parts by weight of the solid content of the fine silica; And a reaction accelerator which is a volatile base having a boiling point of 20 ° C. or lower .
Hereinafter, the rust preventive paint composition described as “preferable rust preventive paint composition” or “the reaction accelerator is an indirect mechanism” in the present specification shall be read as the rust preventive paint composition of the present invention. In addition, regarding Examples 1 to 5 and Examples 7 to 9, “Example” is read as “Reference Example”, respectively.

上記防錆塗料組成物において、水性樹脂にはアニオン系官能基を有するアニオン性樹脂を選択し、シランカップリング剤にはアミノ基を含むものを選択し、この両者を選択した場合に反応促進剤としてアンモニアなどの揮発性塩基を選択することも好ましい。以下、この防錆塗料組成物を好適防錆塗料組成物という。   In the rust preventive coating composition, an anionic resin having an anionic functional group is selected as the aqueous resin, an amino group containing an amino group is selected as the silane coupling agent, and a reaction accelerator is selected when both are selected. It is also preferable to select a volatile base such as ammonia. Hereinafter, this rust preventive paint composition is referred to as a preferred rust preventive paint composition.

また本発明の防錆塗膜をもつ金属部材の特徴は、未処理の鋼材からなる一表面をもつ基材と、基材の少なくとも該一表面に形成された塗膜とからなり、塗膜は水性樹脂から形成されたマトリクスと、マトリクス中に水性樹脂の不揮発分100質量部に対して3〜20質量部の範囲で分散された一次粒子径が4nm〜25nmの微粒シリカとを含み、微粒シリカの少なくとも一部はマトリクスと有機複合シリケートを形成していることにある。   The metal member having a rust-preventing coating film according to the present invention is composed of a base material having one surface made of untreated steel material and a coating film formed on at least one surface of the base material. A fine silica comprising a matrix formed from an aqueous resin and fine silica having a primary particle size of 4 nm to 25 nm dispersed in the range of 3 to 20 parts by mass with respect to 100 parts by mass of the non-volatile content of the aqueous resin in the matrix At least a part of this is that a matrix and an organic composite silicate are formed.

本発明の防錆塗料組成物は、有機相である水性樹脂と、無機相である微粒シリカと、有機相と無機相とを結合するシランカップリング剤と、反応促進剤とを含むことで、未処理の鋼材に塗布された場合にも高い防錆性が発現される。したがって未処理の鋼材に本発明の防錆塗料組成物が塗布された金属部材は、亜鉛めっき処理等が不要となるため、従来の塗装された金属部材に比べて安価とすることができる。   The rust preventive coating composition of the present invention includes an aqueous resin that is an organic phase, fine silica that is an inorganic phase, a silane coupling agent that binds the organic phase and the inorganic phase, and a reaction accelerator. Even when applied to an untreated steel material, high rust resistance is exhibited. Therefore, a metal member obtained by applying the rust-preventive coating composition of the present invention to an untreated steel material does not require a galvanizing treatment or the like, and therefore can be made cheaper than a conventional painted metal member.

また好適防錆塗料組成物によれば、上記の効果に加えて、乾燥性が大きく向上するという効果が発現される。   Moreover, according to a suitable antirust coating composition, in addition to said effect, the effect that drying property improves greatly is expressed.

代表的なアニオン性樹脂の構造式を示す。The structural formula of a typical anionic resin is shown. 代表的なシランカップリング剤の構造式を示す。The structural formula of a typical silane coupling agent is shown. コロイダルシリカの構造式を示す。The structural formula of colloidal silica is shown. アンモニアが共存したときの代表的なアニオン性樹脂の構造式を示す。The structural formula of a typical anionic resin when ammonia coexists is shown. アンモニアが共存したときの代表的なアニオン性樹脂の模式的な構造式を示す。A schematic structural formula of a typical anionic resin when ammonia coexists is shown. シリカ−アミノシラン複合体の構造式を示す。The structural formula of a silica-aminosilane complex is shown. シリカ−アミノシラン複合体の模式的な構造式を示す。1 shows a schematic structural formula of a silica-aminosilane complex. 塗布され一部反応が進行したウェット塗膜の構成要素を模式的に示す説明図である。It is explanatory drawing which shows typically the component of the wet coating film which was apply | coated and the partial reaction advanced. 乾燥時の塗膜を模式的に示す説明図である。It is explanatory drawing which shows the coating film at the time of drying typically.

本発明の防錆塗料組成物は、水性樹脂と、微粒シリカと、シランカップリング剤と、反応促進剤とを含んでいる。水性樹脂としては、アクリル樹脂、アクリルシリコン樹脂、エポキシエステル樹脂、ポリエステル樹脂、アルキド樹脂、SBRやNBRなどのゴム、ウレタン樹脂、ビニル樹脂、ウレア系樹脂、水性エマルジョンなどが挙げられ、これらを単体もしくは組み合わせて用いることができる。場合によっては、エポキシ樹脂などの熱硬化性樹脂、ブロックイソシアネートなどの硬化剤などを用いてもよい。中でも、安価なアクリルエマルジョンを用いることが好ましい。本発明の防錆塗料組成物によれば、安価なアクリル樹脂を用いても、エポキシ樹脂などを用いた場合と同等の防錆性が発現される。   The rust preventive coating composition of the present invention contains an aqueous resin, fine silica, a silane coupling agent, and a reaction accelerator. Examples of the aqueous resin include acrylic resin, acrylic silicon resin, epoxy ester resin, polyester resin, alkyd resin, rubber such as SBR and NBR, urethane resin, vinyl resin, urea resin, aqueous emulsion, and the like. They can be used in combination. In some cases, a thermosetting resin such as an epoxy resin, a curing agent such as a blocked isocyanate, or the like may be used. Among these, it is preferable to use an inexpensive acrylic emulsion. According to the rust preventive coating composition of the present invention, even if an inexpensive acrylic resin is used, the same rust preventive property as that when using an epoxy resin or the like is exhibited.

アクリルエマルジョンとして用いられるアクリル樹脂は、(メタ) アクリル酸〔アクリル酸又はメタアクリル酸を意味する。以下、同様。〕及び(メタ)アクリル酸エステルの単独重合体又は共重合体、又は、これら(メタ)アクリル酸等と共重合可能な単量体との共重合体である。   The acrylic resin used as the acrylic emulsion is (meth) acrylic acid [meaning acrylic acid or methacrylic acid. The same applies hereinafter. ] And (meth) acrylic acid ester homopolymers or copolymers, or copolymers of these (meth) acrylic acid and other monomers copolymerizable.

(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸−3−ヒドロキシブチル、(メタ)アクリル酸−2,2−ビス(ヒドロキシメチル)エチル、(メタ)アクリル酸−3−クロロ−2−ヒドロキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸メトキシブチルが挙げられる。   Examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylate-n-butyl, (meth) ) Isobutyl acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, ethyl hexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid -3-hydroxybutyl, (meth) acrylic acid-2,2-bis (hydroxymethyl) ethyl, (meth) acrylic acid-3-chloro-2-hydroxypropyl, glycidyl (meth) acrylate, (meth) acrylic acid Aminoethyl, aminopropyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, (meth) acrylic And methoxyethyl acid, methoxypropyl (meth) acrylate, and methoxybutyl (meth) acrylate.

これら(メタ)アクリル酸等と共重合可能な単量体としては、エチレン性不飽和基を有する単量体が好ましく、例えば、エチレン、プロピレン、ブチレン、ブタジエン、スチレン、α−メチルスチレン、ビニルフェノール、塩化ビニル、塩化ビニリデン、酢酸ビニル、ピバリン酸ビニル、安息香酸ビニル、ビニルアルコール、アリルアルコール、クロトン酸、イタコン酸、マレイン酸、フマール酸、(メタ)アクリルアミド、N−メチロールアクリルアミド、N−ブトキシメチロール(メタ)アクリルアミド、(メタ)アクリロニトリル等が挙げられる。また、酸の場合は、そのアルカリ金属塩、アルカリ土類金属塩等であってもよい。   As the monomer copolymerizable with (meth) acrylic acid or the like, a monomer having an ethylenically unsaturated group is preferable, for example, ethylene, propylene, butylene, butadiene, styrene, α-methylstyrene, vinylphenol. , Vinyl chloride, vinylidene chloride, vinyl acetate, vinyl pivalate, vinyl benzoate, vinyl alcohol, allyl alcohol, crotonic acid, itaconic acid, maleic acid, fumaric acid, (meth) acrylamide, N-methylolacrylamide, N-butoxymethylol (Meth) acrylamide, (meth) acrylonitrile and the like can be mentioned. Moreover, in the case of an acid, the alkali metal salt, alkaline-earth metal salt, etc. may be sufficient.

また、さらに、上記(メタ)アクリル酸等の重合体及び共重合体を、ウレタン樹脂で変性したウレタン変性(メタ)アクリル酸等の重合体等やエポキシ樹脂、フェノール樹脂、メラミン樹脂等で変性したエポキシ変性、フェノール変性、メラミン変性(メタ)アクリル酸等の重合体等であってもよい。  Further, the polymer and copolymer such as (meth) acrylic acid were modified with a polymer such as urethane-modified (meth) acrylic acid modified with a urethane resin, an epoxy resin, a phenol resin, a melamine resin, or the like. Polymers such as epoxy-modified, phenol-modified, and melamine-modified (meth) acrylic acid may be used.

好適防錆塗料組成物におけるアニオン性樹脂は、アニオン系官能基を有している。アニオン系官能基としては、カルボキシル基、リン酸基、スルホン酸基、硝酸基などが挙げられるが、カルボキシル基が特に好ましい。   The anionic resin in the preferred anticorrosive coating composition has an anionic functional group. Examples of the anionic functional group include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a nitric acid group, and a carboxyl group is particularly preferable.

微粒シリカは一次粒子径が4nm〜25nmの範囲にあるシリカであり、コロイダルシリカ及びヒュームドシリカの少なくとも一方を用いることができる。一次粒子径がこの範囲より小さくなると安定性が低下し、一次粒子径がこの範囲より大きくなると防錆性が低下する場合がある。取り扱いが容易なコロイダルシリカを用いることが好ましい。ヒュームドシリカとしては「アエロジル」(日本アエロジル社製)が代表的であり、コロイダルシリカとしては、「シリカドール」(日本化学工業社製)、「アデライトAT」(ADEKA社製)、「カタロイド」(触媒化成工業社製)、「スノーテックス」(日産化学工業社製)などが例示される。   The fine silica is a silica having a primary particle diameter in the range of 4 nm to 25 nm, and at least one of colloidal silica and fumed silica can be used. When the primary particle size is smaller than this range, the stability is lowered, and when the primary particle size is larger than this range, the rust prevention property may be lowered. It is preferable to use colloidal silica that is easy to handle. “Aerosil” (manufactured by Nippon Aerosil Co., Ltd.) is typical as fumed silica, and “silica doll” (manufactured by Nippon Kagaku Kogyo Co., Ltd.), “Adelite AT” (manufactured by ADEKA), “cataloid” as colloidal silica. (Catalyst Kasei Kogyo Co., Ltd.), “Snowtex” (Nissan Chemical Co., Ltd.) and the like are exemplified.

微粒シリカは、水性樹脂の不揮発分100質量部に対して3〜20質量部の範囲で添加される。微粒シリカの添加量がこの範囲より少ないとカソード反応時のpH上昇抑制作用が小さくなって防錆性が低下し、微粒シリカの添加量がこの範囲より多くなると塗膜の親水性が高くなり過ぎて防錆性の低下を招く。微粒シリカの添加量は、水性樹脂の不揮発分100質量部に対して3〜11質量部の範囲が特に好ましい。   The fine silica is added in a range of 3 to 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous resin. If the amount of fine silica added is less than this range, the effect of inhibiting the increase in pH during the cathode reaction will be reduced and rust prevention will be reduced, and if the amount of fine silica added exceeds this range, the hydrophilicity of the coating will become too high. This leads to a decrease in rust prevention. The amount of fine silica added is particularly preferably in the range of 3 to 11 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous resin.

シランカップリング剤は、水性樹脂の金属部材表面への密着性を向上させたり、微粒シリカと水性樹脂との密着性や濡れ性を高める。このシランカップリング剤としては、通常使用されているものでもよく、例えばビニルメトキシシラン、ビニルトリメトキシシラン、ビニルエトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N,N'−ビス〔3−(トリメトキシシリル)プロピル〕エチレンジアミン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−〔2−(ビニルベンジルアミノ)エチル〕−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。   The silane coupling agent improves the adhesion of the aqueous resin to the surface of the metal member, and improves the adhesion and wettability between the fine silica and the aqueous resin. The silane coupling agent may be a commonly used one, such as vinyl methoxy silane, vinyl trimethoxy silane, vinyl ethoxy silane, vinyl triethoxy silane, vinyl tris (2-methoxy ethoxy) silane, 3-aminopropyl tri silane. Methoxysilane, 3-aminopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Mercaptopropyltrimethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N, N'-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N-2- (aminoethyl) -3-aminopropylmethyl Methoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Examples include silane, N- [2- (vinylbenzylamino) ethyl] -3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and the like.

また好適防錆塗料組成物におけるシランカップリング剤はアミノ基を含有するものであり、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N,N'−ビス〔3−(トリメトキシシリル)プロピル〕エチレンジアミン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、N−〔2−(ビニルベンジルアミノ)エチル〕−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。   Further, the silane coupling agent in the preferred anticorrosive coating composition contains an amino group, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N, N'-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N -2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, N- [2- (vinylbenzylamino) ethyl] -3-aminopropyl Examples include trimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane.

これらシランカップリング剤は1種類を単独で使用してもよいし、または2種類以上を併用してもよい。   These silane coupling agents may be used alone or in combination of two or more.

シランカップリング剤は、微粒シリカの固形分100質量部に対して11質量部以上90質量部以下の範囲で添加される。シランカップリング剤の添加量がこの範囲より少ないと防錆性及び乾燥性が低下する。但し多すぎると塗料の安定性が損なわれる場合があるので、微粒シリカの固形分100質量部に対して67質量部以下とすることがさらに望ましい。   The silane coupling agent is added in the range of 11 parts by weight to 90 parts by weight with respect to 100 parts by weight of the solid content of the fine silica. When the addition amount of the silane coupling agent is less than this range, the rust prevention property and drying property are lowered. However, if the amount is too large, the stability of the paint may be impaired. Therefore, it is more desirable that the amount be 67 parts by mass or less with respect to 100 parts by mass of the solid content of the fine silica.

シランカップリング剤は、ケイ素原子上にアルコキシ基、アセトキシ基、ハロゲン基などの加水分解性基を有している。この加水分解性基が加水分解することでシラノール基とアルコールが生成し、シラノール基が微粒シリカの表面にある水酸基との水素結合を介して微粒シリカ表面に移行し、さらに脱水縮合反応を経て微粒シリカ表面と強固な共有結合を生成する。   The silane coupling agent has a hydrolyzable group such as an alkoxy group, an acetoxy group, or a halogen group on a silicon atom. This hydrolyzable group is hydrolyzed to produce a silanol group and an alcohol, and the silanol group is transferred to the surface of the fine silica via a hydrogen bond with a hydroxyl group on the surface of the fine silica, and further passed through a dehydration condensation reaction. It produces a strong covalent bond with the silica surface.

そこで本発明の防錆塗料組成物は、シランカップリング剤の加水分解性基の加水分解反応を少なくとも促進する反応促進剤を含んでいる。この反応促進剤によって加水分解性基の加水分解が促進され、水性樹脂と、微粒シリカと、基材の鋼材とが相互に接合されることで防錆性が高まるとともに、塗布時のハジキ現象などの不具合を防止することができる。   Therefore, the rust preventive coating composition of the present invention includes a reaction accelerator that at least accelerates the hydrolysis reaction of the hydrolyzable group of the silane coupling agent. Hydrolysis of hydrolyzable groups is accelerated by this reaction accelerator, and rust prevention is enhanced by joining aqueous resin, fine silica, and steel material of base material to each other, and repellency phenomenon at the time of application, etc. Can be prevented.

反応促進剤が加水分解反応を促進する機構として、加水分解反応自体を促進する直接的機構と、反応促進剤が存在している間は加水分解反応が抑制され反応促進剤が消失後に加水分解反応が促進される間接的機構とが存在する。例えば加水分解が起こりにくいシランカップリング剤を用いた場合には、直接的機構により加水分解反応を促進する反応促進剤が用いられる。一方、加水分解が起こりやすいシランカップリング剤を用いた場合には間接的機構の反応促進剤が用いられ、塗料の状態では加水分解反応が抑制されるものの塗布後に蒸散して消失することで加水分解反応を促進する反応促進剤が用いられる。   The mechanism by which the reaction accelerator promotes the hydrolysis reaction is a direct mechanism that promotes the hydrolysis reaction itself, and the hydrolysis reaction is suppressed while the reaction accelerator is present, and the hydrolysis reaction after the reaction accelerator disappears. There are indirect mechanisms by which For example, when a silane coupling agent that hardly undergoes hydrolysis is used, a reaction accelerator that promotes the hydrolysis reaction by a direct mechanism is used. On the other hand, when a silane coupling agent that is prone to hydrolysis is used, a reaction accelerator with an indirect mechanism is used. Although the hydrolysis reaction is suppressed in the state of the paint, it is hydrolyzed by evaporation after application. A reaction accelerator that accelerates the decomposition reaction is used.

この反応促進剤としては、ジメチルエタノールアミン(DMEA)、アンモニア、メチルアミン、エチルアミン、トリエチルアミン等のアルカリ性物質、あるいは塩酸、硫酸、酢酸等の酸性物質を用いることができる。反応促進剤の添加量は、シランカップリング剤の添加量に応じて決定される。一般には、添加されたシランカップリング剤の加水分解性基のモル量と同モル量程度とされる。   As the reaction accelerator, alkaline substances such as dimethylethanolamine (DMEA), ammonia, methylamine, ethylamine, triethylamine, or acidic substances such as hydrochloric acid, sulfuric acid, acetic acid, and the like can be used. The addition amount of the reaction accelerator is determined according to the addition amount of the silane coupling agent. In general, the molar amount is approximately the same as the molar amount of the hydrolyzable group of the added silane coupling agent.

そして反応促進剤の種類によってシランカップリング剤の種類も特定される。例えば反応促進剤にDMEAを用いるときには、シランカップリング剤は加水分解性基にアルコキシ基を含有するものが適している。これは、DMEAがアルコキシ基の加水分解を促進する直接的機構と考えられるからである。   And the kind of silane coupling agent is also specified by the kind of reaction accelerator. For example, when DMEA is used as the reaction accelerator, a silane coupling agent that contains an alkoxy group in the hydrolyzable group is suitable. This is because DMEA is considered to be a direct mechanism for promoting hydrolysis of alkoxy groups.

このような直接的機構により加水分解反応を促進する反応促進剤は、本発明の防錆塗料組成物を塗布した後に加水分解性基を加水分解するように構成することができる。こうすることで、水性樹脂と、微粒シリカと、基材の鋼材とが相互に接合され防錆性が向上する。このようにするには、例えば防錆塗料組成物中では反応促進剤の濃度を低くしておき、塗布後に水の蒸散に伴ってウェット塗膜中における反応促進剤の濃度が高まることで、加水分解性基を加水分解するように構成することができる。あるいは塗装後の乾燥時に熱によって活性を発現する、潜在性の反応促進剤を用いることもできる。ここで、前述したDMEAは以下に説明する揮発性塩基の要素を有し、コロイダルシリカ、水性樹脂とシランカップリング剤とのゲル化を抑制する効果も併せて有している。   The reaction accelerator that promotes the hydrolysis reaction by such a direct mechanism can be configured to hydrolyze the hydrolyzable group after the rust preventive coating composition of the present invention is applied. By carrying out like this, water-based resin, fine-particle silica, and the steel material of a base material are mutually joined, and rust prevention property improves. To do this, for example, the concentration of the reaction accelerator is lowered in the rust-preventive coating composition, and the concentration of the reaction accelerator in the wet paint film increases with the evaporation of water after application, so It can be configured to hydrolyze degradable groups. Alternatively, a latent reaction accelerator that exhibits activity by heat at the time of drying after coating can be used. Here, the DMEA described above has an element of a volatile base described below, and also has an effect of suppressing gelation of colloidal silica, an aqueous resin and a silane coupling agent.

反応促進剤が存在している間は加水分解反応が抑制され、反応促進剤が消失後に加水分解反応を促進する間接的機構の反応促進剤としては、揮発性塩基がある。揮発性塩基とは常温で揮発する塩基をいい、沸点が20℃以下のものが望ましい。このような揮発性塩基としては、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、DMEAなどが例示される。最も沸点が低いアンモニアが特に好ましい。また、反応性を調整するためジメチルエタノールアミンなどの反応促進剤を併用することもできる。複数種の反応促進剤を併用することにより、塗膜の乾燥速度を調整でき塗装外観を向上させることができる。   While the reaction accelerator is present, the hydrolysis reaction is suppressed, and as a reaction accelerator of an indirect mechanism for promoting the hydrolysis reaction after the reaction accelerator disappears, there is a volatile base. The volatile base means a base that volatilizes at room temperature, and preferably has a boiling point of 20 ° C. or lower. Examples of such a volatile base include ammonia, monomethylamine, dimethylamine, trimethylamine, ethylamine, DMEA and the like. Ammonia with the lowest boiling point is particularly preferred. In addition, a reaction accelerator such as dimethylethanolamine can be used in combination to adjust the reactivity. By using a plurality of types of reaction accelerators in combination, the drying speed of the coating film can be adjusted and the appearance of the coating can be improved.

揮発性塩基の添加量は、シランカップリング剤の添加量を100質量部としたときに40質量部以上が好ましく、シランカップリング剤のアミノ基のモル量に対して同モル量以上とするとともに、水性樹脂とシランカップリング剤の反応を抑制するのに足りる量とするのが望ましい。揮発性塩基の添加量が少ないと塗料の安定性が損なわれ、多すぎると塗装時の臭気が問題となる場合がある。   The addition amount of the volatile base is preferably 40 parts by mass or more when the addition amount of the silane coupling agent is 100 parts by mass, and the same or more molar amount relative to the molar amount of the amino group of the silane coupling agent. It is desirable that the amount be sufficient to suppress the reaction between the aqueous resin and the silane coupling agent. If the amount of the volatile base added is small, the stability of the paint is impaired, and if it is too large, the odor at the time of painting may be a problem.

以下、好適防錆塗料組成物の推定される反応機構について、図を参照しながら以下に説明する。ここでは、図1に示すようにアニオン性樹脂のアニオン系官能基はカルボキシル基であり、図2に示すようにアミノ基を有するシランカップリング剤の加水分解性基はアルコキシ基であり、揮発性塩基としてアンモニアを用い、微粒シリカは図3に示すコロイダルシリカの場合を例示する。   Hereinafter, the presumed reaction mechanism of a suitable antirust coating composition is demonstrated below, referring a figure. Here, the anionic functional group of the anionic resin is a carboxyl group as shown in FIG. 1, and the hydrolyzable group of the silane coupling agent having an amino group is an alkoxy group as shown in FIG. Ammonia is used as the base, and the fine silica is exemplified by the colloidal silica shown in FIG.

先ず塗料の状態においては、アミノ基を有するシランカップリング剤とコロイダルシリカ分散液を混合すると、塗料の安定性を損なってゲル化し易くなる。しかし、コロイダルシリカにアンモニアなどの揮発性塩基を添加し、その後にシランカップリング剤を添加した場合にはゲル化が抑制される。   First, in the state of the paint, when the silane coupling agent having an amino group and the colloidal silica dispersion are mixed, the stability of the paint is impaired and the gelation easily occurs. However, when a volatile base such as ammonia is added to colloidal silica and a silane coupling agent is added thereafter, gelation is suppressed.

また、コロイダルシリカとシランカップリング剤とアニオン性樹脂を配合した場合もゲル化がし易いが、揮発性塩基を添加することによりゲル化が抑制される。これは図4に示すように、アニオン性樹脂のカルボキシル基にアンモニアがイオン結合し、水を主とする溶媒中でイオン化されている。この状態のアニオン性樹脂は、図5のように模式化され、カルボキシル基はアンモニウムイオンによってマスクされているため、シランカップリング剤のアミノ基との反応が抑制され、安定した塗料状態が維持されるためと推定している。このように、揮発性塩基は、シランカップリング剤とコロイダルシリカのゲル化の防止およびアニオン性樹脂の反応性抑制の働きをしている。   Further, when colloidal silica, a silane coupling agent and an anionic resin are blended, gelation is easy, but gelation is suppressed by adding a volatile base. As shown in FIG. 4, ammonia is ionically bonded to the carboxyl group of the anionic resin and is ionized in a solvent mainly composed of water. The anionic resin in this state is schematically shown in FIG. 5, and the carboxyl group is masked by ammonium ions, so that the reaction with the amino group of the silane coupling agent is suppressed and a stable paint state is maintained. It is estimated that. Thus, the volatile base functions to prevent gelation of the silane coupling agent and colloidal silica and to suppress the reactivity of the anionic resin.

好適防錆塗料組成物を被塗物に塗布すると、図8に示すように、先ず揮発性塩基が揮発する。すると揮発性塩基による反応抑制効果がなくなり、シランカップリング剤のアルコキシ基の一部又は全部と微粒シリカのシラノール基との縮合反応が生じ、図6に示す中間体が生成すると考えられる。この中間体を、以下、シリカ−アミノシラン複合体という。シリカ−アミノシラン複合体は、図7のように模式化される。   When a suitable rust preventive coating composition is applied to an object to be coated, the volatile base is first volatilized as shown in FIG. Then, the reaction suppressing effect by the volatile base is lost, and a condensation reaction between a part or all of the alkoxy groups of the silane coupling agent and the silanol groups of the fine silica is generated, and it is considered that the intermediate shown in FIG. 6 is generated. This intermediate is hereinafter referred to as a silica-aminosilane complex. The silica-aminosilane complex is schematically shown in FIG.

また、揮発性塩基の揮発によって、アニオン性樹脂のカルボキシル基のマスクが外れる。カルボキシル基のマスクが外れたアニオン性樹脂は、図9に示すようにシランカップリング剤のアミノ基及びシリカ−アミノシラン複合体のアミノ基と反応する。これによりウェット塗膜中で三次元架橋によるゲル化が進行し、乾燥性が向上する。   Moreover, the mask of the carboxyl group of the anionic resin is removed by volatilization of the volatile base. The anionic resin with the carboxyl group mask removed reacts with the amino group of the silane coupling agent and the amino group of the silica-aminosilane complex as shown in FIG. As a result, gelation by three-dimensional crosslinking proceeds in the wet coating film, and drying properties are improved.

ここで、塗料中のアミノ基とカルボキシル基とが反応することで、得られた乾燥塗膜にはカチオン系官能基や塩基が含まれないのでイオン化が防止され高い耐水性が発現される。さらにシラノール基による被塗物への密着性向上、アニオン性樹脂とシリカ−アミノシラン複合体との反応による塗膜の緻密化、シリカ成分が溶解されるカソード反応時のpH上昇抑制作用、などの効果によって高い防錆性が発現される。   Here, since the amino group and the carboxyl group in the paint react with each other, the obtained dry coating film does not contain a cationic functional group or a base, so that ionization is prevented and high water resistance is exhibited. Furthermore, effects such as improved adhesion to the substrate by silanol groups, densification of the coating film due to the reaction between the anionic resin and silica-aminosilane complex, and suppression of pH increase during the cathode reaction in which the silica component is dissolved High rust preventive properties are exhibited.

好適防錆塗料組成物を含む本発明の防錆塗料組成物は、上記した成分の他に、必要に応じて有機顔料、無機顔料、防錆剤、造膜助剤、チキソ材、レベリング剤など公知の塗料成分を、塗膜物性や塗装作業性を阻害しない範囲で任意に添加することができる。   In addition to the above-described components, the rust-preventive paint composition of the present invention including a suitable rust-preventive paint composition includes organic pigments, inorganic pigments, rust preventives, film-forming aids, thixo materials, leveling agents and the like as necessary. Known coating components can be arbitrarily added within a range that does not impair the physical properties of the coating film and the coating workability.

本発明の防錆塗膜をもつ金属部材は、未処理の鋼材からなる一表面をもつ基材と、その基材の少なくとも一表面に本発明の防錆塗料組成物から形成された塗膜とからなる。   The metal member having a rust-proof coating film of the present invention includes a base material having one surface made of an untreated steel material, and a coating film formed from the rust-proof coating composition of the present invention on at least one surface of the base material. Consists of.

未処理の鋼材としては、炭素鋼(普通鋼)、合金鋼(特殊鋼)、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼などが挙げられる。   Examples of untreated steel materials include carbon steel (ordinary steel), alloy steel (special steel), nickel chrome steel, nickel chrome molybdenum steel, chrome steel, chrome molybdenum steel, and manganese steel.

本発明の防錆塗料組成物から形成された塗膜は、水性樹脂から形成されたマトリクスと、マトリクス中に水性樹脂の固形分100質量部に対して3〜20質量部の範囲で分散された一次粒子径が4nm〜25nmの微粒シリカとを含み、微粒シリカの少なくとも一部は水性樹脂マトリクスとシランカップリング剤を介して有機複合シリケートを形成している。またマトリクス自体と基材とも、シランカップリング剤を介して結合していると考えられる。そのため本発明の防錆塗膜をもつ金属部材は、高い防錆性を発現する。   The coating film formed from the anticorrosive coating composition of the present invention was dispersed in a range of 3 to 20 parts by mass with respect to 100 parts by mass of the solid content of the aqueous resin and the matrix formed from the aqueous resin. It includes fine silica having a primary particle diameter of 4 nm to 25 nm, and at least a part of the fine silica forms an organic composite silicate through an aqueous resin matrix and a silane coupling agent. Moreover, it is thought that the matrix itself and the base material are bonded via a silane coupling agent. Therefore, the metal member having the rust preventive coating film of the present invention exhibits high rust preventive properties.

なお本発明の防錆塗料組成物は、亜鉛メッキ鋼板、リン酸亜鉛処理鋼板など各種の処理鋼板に塗布された場合にも、もちろん高い防錆性を発現する。   The anticorrosive coating composition of the present invention also exhibits high antirust properties when applied to various types of treated steel sheets such as galvanized steel sheets and zinc phosphate-treated steel sheets.

以下、実施例及び比較例により本発明の実施態様を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.

表1にも示すように、水性樹脂としてのアクリルエマルジョン(「アクロナールYS800」BASF社製、固形分:47%)を45.0質量部(不揮発分換算で21.2質量部)と、微粒シリカとしてのコロイダルシリカA(「スノーテックスNXS」日産化学工業社製、一次粒子径:4nm〜6nm、固形分:15%)を15質量部(固形分換算で2.25質量部)と、反応促進剤としてのジメチルエタノールアミン(DMEA)を2.0質量部と、を混合し、ディスパーにて撹拌混合した。   As shown in Table 1, 45.0 parts by mass (21.2 parts by mass in terms of nonvolatile content) of acrylic emulsion (“Acronal YS800” manufactured by BASF Corporation, solid content: 47%) as an aqueous resin, and colloidal silica as fine silica 15 parts by mass (“Snowtex NXS” manufactured by Nissan Chemical Industries, Ltd., primary particle size: 4 nm to 6 nm, solid content: 15%) (solid content: 2.25 parts by mass) and dimethylethanolamine as a reaction accelerator (DMEA) and 2.0 parts by mass were mixed and stirred and mixed with a disper.

次いで加水分解性基がエトキシ基であるシランカップリング剤(「KBM-603」信越化学工業社製)0.5質量部を加えてよく撹拌し、そこへカーボンブラック加工顔料(「NAF5091ブラック」大日精化社製、固形分:35%)を1.7質量部と、防錆剤(「FlashX150」Halox社製)を0.3質量部と、成膜助剤(「テキサノールCS12」テキサノール社製)を2.0質量部と、イオン交換水10.0質量部とを加えてディスパーにて撹拌混合し、実施例1の防錆塗料組成物を調製した。   Next, 0.5 parts by mass of a silane coupling agent whose hydrolyzable group is an ethoxy group ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) is added and stirred well, and carbon black processed pigment ("NAF5091 black") 1.7 parts by mass, solid content: 35%), 0.3 parts by mass of a rust inhibitor (“FlashX150” by Halox), and 2.0 parts by mass of a film forming aid (“Texanol CS12” by Texanol) Then, 10.0 parts by mass of ion-exchanged water was added and the mixture was stirred and mixed with a disper to prepare a rust preventive coating composition of Example 1.

コロイダルシリカAに代えてコロイダルシリカB(「スノーテックスN」日産化学工業社製、一次粒子径:10nm〜15nm、固形分:20%)を11.3質量部(固形分換算で2.26質量部)用い、イオン交換水を13.8質量部用いたこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例2の防錆塗料組成物を調製した。   Instead of colloidal silica A, colloidal silica B (“Snowtex N” manufactured by Nissan Chemical Industries, Ltd., primary particle size: 10 nm to 15 nm, solid content: 20%) was used in 11.3 parts by mass (solid content conversion: 2.26 parts by mass), Except having used 13.8 mass parts of ion-exchange water, it mix | blended in the order similar to Example 1, and it stirred and mixed with the disper to prepare the rust preventive coating composition of Example 2.

コロイダルシリカAに代えてコロイダルシリカC(「スノーテックスN-40」日産化学工業社製、一次粒子径:20nm〜25nm、固形分:40%)を5.6質量部(固形分換算で2.24質量部)用い、イオン交換水を19.4質量部用いたこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例3の防錆塗料組成物を調製した。   5.6 parts by mass of colloidal silica C ("Snowtex N-40" manufactured by Nissan Chemical Industries, primary particle size: 20 nm to 25 nm, solid content: 40%) instead of colloidal silica A (2.24 parts by mass in terms of solid content) The rust preventive coating composition of Example 3 was prepared by mixing in the same order as in Example 1 except that 19.4 parts by mass of ion-exchanged water was used and stirring and mixing with a disper.

コロイダルシリカAに代えてコロイダルシリカD(「シリカドール30S」日本化学工業社製、一次粒子径:7nm〜10nm、固形分:30%)を7.5質量(固形分換算で2.25質量部)部用い、イオン交換水を17.5質量部用いたこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例4の防錆塗料組成物を調製した。   Instead of colloidal silica A, 7.5 parts by mass (2.25 parts by mass in terms of solids) of colloidal silica D (“Silica Doll 30S” manufactured by Nippon Chemical Industry Co., Ltd., primary particle size: 7 nm to 10 nm, solid content: 30%) is used. Except having used 17.5 mass parts of ion-exchange water, it mix | blended in the order similar to Example 1, and it stirred and mixed with the disper to prepare the rust preventive coating composition of Example 4.

コロイダルシリカAに代えてコロイダルシリカE(「シリカドール40」日本化学工業社製、一次粒子径:15nm〜20nm、固形分:40%)を5.6質量(固形分換算で2.24質量部)部用い、イオン交換水を19.4質量部用いたこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例5の防錆塗料組成物を調製した。   Instead of colloidal silica A, 5.6 parts by mass (2.24 parts by mass in terms of solids) of colloidal silica E (“Silica Doll 40” manufactured by Nippon Chemical Industry Co., Ltd., primary particle size: 15 nm to 20 nm, solid content: 40%) is used. Except having used 19.4 mass parts of ion-exchange water, it mix | blended in the order similar to Example 1, and it stirred and mixed with the disper, and prepared the antirust coating composition of Example 5.

ジメチルエタノールアミン(DMEA)に代えて25%アンモニア水をアンモニアとして2.0質量部添加したこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例6の防錆塗料組成物を調製した。   Rust preventive paint composition of Example 6 blended in the same order as in Example 1 except that 2.0 parts by mass of 25% aqueous ammonia as ammonia instead of dimethylethanolamine (DMEA) was added and stirred and mixed with a disper. A product was prepared.

シランカップリング剤を0.25質量部添加したこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例7の防錆塗料組成物を調製した。   A rust preventive coating composition of Example 7 was prepared by mixing in the same order as in Example 1 except that 0.25 parts by mass of the silane coupling agent was added, and stirring and mixing with a disper.

シランカップリング剤を1.0質量部添加したこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例8の防錆塗料組成物を調製した。   Except having added 1.0 mass part of silane coupling agents, it mix | blended in the order similar to Example 1, and it stirred and mixed with the disper, and prepared the antirust coating composition of Example 8.

コロイダルシリカAを5.0質量部(固形分換算で0.75質量部)添加したこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して実施例9の防錆塗料組成物を調製した。   A rust preventive coating composition of Example 9 was prepared by mixing in the same order as in Example 1 except that 5.0 parts by mass of colloidal silica A (0.75 part by mass in terms of solid content) was added, and stirring and mixing with a disper. did.

[比較例1]
コロイダルシリカとシランカップリング剤を添加しなかったこと、イオン交換水を15.0質量部用いたこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して比較例1の防錆塗料組成物を調製した。
[Comparative Example 1]
Rust prevention of Comparative Example 1 by mixing in the same order as in Example 1 except that no colloidal silica and a silane coupling agent were added, and 15.0 parts by mass of ion-exchanged water were used, and stirred and mixed with a disper. A coating composition was prepared.

[比較例2]
ジメチルエタノールアミン(DMEA)を添加しなかったこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して比較例2の防錆塗料組成物を調製した。
[Comparative Example 2]
A rust preventive coating composition of Comparative Example 2 was prepared by blending in the same order as in Example 1 except that dimethylethanolamine (DMEA) was not added, and stirring and mixing with a disper.

[比較例3]
ジメチルエタノールアミン(DMEA)とシランカップリング剤を添加しなかったこと以外は実施例1と同様の順で配合し、ディスパーにて撹拌混合して比較例3の防錆塗料組成物を調製した。
[Comparative Example 3]
Except that dimethylethanolamine (DMEA) and a silane coupling agent were not added, they were blended in the same order as in Example 1 and stirred and mixed with a disper to prepare a rust preventive coating composition of Comparative Example 3.

<試験・評価>

Figure 0005785967
<Test and evaluation>
Figure 0005785967

実施例及び比較例の各防錆塗料組成物を用い、シンナー脱脂された未処理冷間圧延鋼板「SPCC-SD」(0.8×70×150mm)の表面に、乾燥膜厚が20μmとなるようにそれぞれエアスプレー塗装し、60℃で20分間乾燥させて塗板試料を作製した。各塗板試料について下記の試験を行った。   Using each rust preventive coating composition of Examples and Comparative Examples, the dry film thickness is 20 μm on the surface of the untreated cold-rolled steel sheet “SPCC-SD” (0.8 × 70 × 150 mm) that has been degreased with thinner. Each was coated with air spray and dried at 60 ° C. for 20 minutes to prepare a coated plate sample. The following tests were conducted on each coated plate sample.

[初期付着性]
JIS K5600-5-6に規定された碁盤目付着試験を行った。全ての塗板試料は初期付着性が良好であった。
[Initial adhesion]
A cross-cut adhesion test specified in JIS K5600-5-6 was conducted. All coated plate samples had good initial adhesion.

[初期外観]
各塗板試料の塗面を目視で観察した。比較例2の塗板試料にはハジキ及びブツが生じていたが、他の塗板試料には異常が認められなかった。
[Initial appearance]
The coated surface of each coated plate sample was visually observed. Although the repellency and unevenness were generated in the coated plate sample of Comparative Example 2, no abnormality was observed in the other coated plate samples.

[鉛筆硬度]
JIS K5600-5-4に規定された鉛筆硬度を測定したところ、全ての塗板試料の硬度はHBであった。
[Pencil hardness]
When the pencil hardness specified in JIS K5600-5-4 was measured, the hardness of all the coated plate samples was HB.

[防錆性]
各塗板試料の塗膜にカッターナイフを用いて基板まで達するクロスカットを形成し、それらを塩水噴霧試験器に入れて、JIS Z2371に規定され35℃に加温された5%食塩水を塗面に噴霧する塩水噴霧試験を24時間行った。その後取り出して、塗面を目視観察した。各実施例の塗板試料には異常が認められなかったのに対し、比較例1,2の塗板試料にはクロスカット部位から錆が発生し、比較例3の塗板試料には錆と共にブリスタが発生していた。
[Rust prevention]
Form a cross cut that reaches the substrate using a cutter knife on the coating film of each coated plate sample, put them in a salt spray tester, and apply 5% salt water heated to 35 ° C as specified in JIS Z2371 A salt spray test was conducted for 24 hours. Thereafter, it was taken out and the coated surface was visually observed. While no abnormality was observed in the coated plate samples of each example, rust was generated from the cross-cut site in the coated plate samples of Comparative Examples 1 and 2, and blisters were generated along with rust in the coated plate sample of Comparative Example 3. Was.

比較例1の防錆塗料組成物は、コロイダルシリカとシランカップリング剤を含んでいないため、その塗膜は防錆性に劣る。比較例2の防錆塗料組成物は、反応促進剤を含んでいないため、その塗膜は防錆性に劣る。また比較例2では、揮発性塩基を含有していないためゲル化の抑制効果がなくゲルが生成し、それが塗膜に含まれてブツが生じた。しかし同じシランカップリング剤を用いた実施例1では、DMEAを含んでいるために揮発性塩基の反応抑制効果によってゲルが生じず、その塗膜は初期外観に優れている。比較例3の防錆塗料組成物は、コロイダルシリカとシランカップリング剤と反応促進剤を含まないため、その塗膜は防錆性に劣る。   Since the rust preventive coating composition of Comparative Example 1 does not contain colloidal silica and a silane coupling agent, the coating film is inferior in rust resistance. Since the antirust coating composition of Comparative Example 2 does not contain a reaction accelerator, the coating film is inferior in antirust properties. Moreover, in Comparative Example 2, since it did not contain a volatile base, there was no gelation suppressing effect, and a gel was produced, which was included in the coating film and caused a scum. However, in Example 1 using the same silane coupling agent, since DMEA is contained, no gel is generated due to the reaction suppressing effect of the volatile base, and the coating film is excellent in initial appearance. Since the rust preventive coating composition of Comparative Example 3 does not contain colloidal silica, a silane coupling agent, and a reaction accelerator, the coating film is inferior in rust prevention.

これらの結果から、アクリルエマルジョンとコロイダルシリカとからなる系にシランカップリング剤と反応促進剤を併用することで、未処理の鋼板に塗装した場合にも異常が無く防錆性に優れた塗膜を形成できることが明らかである。   From these results, by using a combination of a silane coupling agent and a reaction accelerator in a system consisting of acrylic emulsion and colloidal silica, there is no abnormality even when painted on an untreated steel sheet and it has excellent rust prevention properties It is clear that can be formed.

また実施例1〜9から、微粒シリカの添加量を水性樹脂の不揮発分100質量部に対して3〜20質量部の範囲とし、かつシランカップリング剤の添加量を微粒シリカの固形分100質量部に対して11質量部以上の範囲とすることで、未処理の冷間圧延鋼板の表面に防錆性、付着性、外観、硬度に優れた塗膜を形成できることも明らかである。   Moreover, from Examples 1-9, the addition amount of the fine silica is in the range of 3 to 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous resin, and the addition amount of the silane coupling agent is 100 masses of the solid content of the fine silica. It is also clear that a coating film excellent in rust prevention, adhesion, appearance, and hardness can be formed on the surface of an untreated cold-rolled steel sheet by setting the content to 11 parts by mass or more with respect to the part.

次に、好適防錆塗料組成物について説明する。   Next, a suitable antirust coating composition will be described.

表2にも示すように、アニオン系官能基を有するアニオン性樹脂としてのアクリルエマルジョンA(「アクロナールYS800」BASF社製、固形分:47%)を45.0質量部(不揮発分換算で21.2質量部)と、微粒シリカとしてのコロイダルシリカA(「スノーテックスNXS」日産化学工業社製、一次粒子径:4nm〜6nm、固形分:15%)を15質量部(固形分換算で2.25質量部)と、25%アンモニア水を8.0質量部と、を混合し、ディスパーにて撹拌混合した。   As shown in Table 2, 45.0 parts by mass (21.2 parts by mass in terms of non-volatile content) of acrylic emulsion A (“Acronal YS800” manufactured by BASF, solid content: 47%) as an anionic resin having an anionic functional group And 15 parts by mass (2.25 parts by mass in terms of solids) of colloidal silica A (“Snowtex NXS” manufactured by Nissan Chemical Industries, Ltd., primary particle size: 4 nm to 6 nm, solids: 15%) as fine silica, 8.0% by mass of 25% aqueous ammonia was mixed and stirred and mixed with a disper.

次いでアミノ基を含有するシランカップリング剤(「KBM-603」信越化学工業社製)0.5質量部を加えてよく撹拌し、さらにカーボンブラック加工顔料(「NAF5091ブラック」大日精化社製、固形分:35%)を2.0質量部と、成膜助剤(ベンジルアルコール)を2.0質量部と、イオン交換水4.0質量部とを加えてディスパーにて撹拌混合し、実施例10の防錆塗料組成物を調製した。   Next, 0.5 parts by mass of an amino group-containing silane coupling agent (“KBM-603” manufactured by Shin-Etsu Chemical Co., Ltd.) is added and stirred well. Further, a carbon black processed pigment (“NAF5091 Black” manufactured by Dainichi Seika Co., Ltd., solid content) : 35%), 2.0 parts by mass of a film-forming auxiliary (benzyl alcohol), and 4.0 parts by mass of ion-exchanged water, and mixed by stirring with a disper. Was prepared.

コロイダルシリカAに代えてコロイダルシリカC(「スノーテックスN-40」日産化学工業社製、一次粒子径:20nm〜25nm、固形分:40%)を5.6質量部(固形分換算で2.24質量部)用い、イオン交換水を13.4質量部用いたこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して実施例11の防錆塗料組成物を調製した。   5.6 parts by mass of colloidal silica C ("Snowtex N-40" manufactured by Nissan Chemical Industries, primary particle size: 20 nm to 25 nm, solid content: 40%) instead of colloidal silica A (2.24 parts by mass in terms of solid content) The rust preventive coating composition of Example 11 was prepared by mixing in the same order as in Example 10 except that 13.4 parts by mass of ion-exchanged water was used and stirring and mixing with a disper.

アミノ基を含有するシランカップリング剤(「KBM-603」信越化学工業社製)の添加量を半分の0.25質量部としたこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して実施例12の防錆塗料組成物を調製した。   Mix in the same order as in Example 10 except that the addition amount of the amino group-containing silane coupling agent ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) was reduced to 0.25 parts by mass, and stirred with a disper. The rust preventive coating composition of Example 12 was prepared by mixing.

アミノ基を含有するシランカップリング剤(「KBM-603」信越化学工業社製)の添加量を倍量の1.0質量部としたこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して実施例13の防錆塗料組成物を調製した。   Mix in the same order as in Example 10 except that the addition amount of the amino group-containing silane coupling agent ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) is 1.0 part by mass of the double amount. The rust preventive coating composition of Example 13 was prepared by stirring and mixing.

コロイダルシリカA(「スノーテックスNXS」日産化学工業社製、一次粒子径:4nm〜6nm、固形分:15%)の添加量を1/3量の5質量部(固形分換算で0.75質量部)としたこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して実施例14の防錆塗料組成物を調製した。   Colloidal silica A ("Snowtex NXS" manufactured by Nissan Chemical Industries, Ltd., primary particle size: 4nm to 6nm, solid content: 15%) is 1/3 of 5 parts by mass (0.75 parts by mass in terms of solids) Except for the above, they were blended in the same order as in Example 10, and stirred and mixed with a disper to prepare an anticorrosive coating composition of Example 14.

アミノ基を含有するシランカップリング剤(「KBM-603」信越化学工業社製)の添加量を4倍量の2.0質量部としたこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して実施例15の防錆塗料組成物を調製した。   Add the amino group-containing silane coupling agent ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) in an amount similar to that in Example 10 except that the addition amount is 2.0 parts by mass, which is 4 times the amount. Then, the mixture was stirred and mixed to prepare a rust preventive coating composition of Example 15.

[比較例4]
コロイダルシリカA(「スノーテックスNXS」日産化学工業社製、一次粒子径:4nm〜6nm、固形分:15%)を添加しなかったこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例4の防錆塗料組成物を調製した。
[Comparative Example 4]
Colloidal silica A (“Snowtex NXS” manufactured by Nissan Chemical Industries, Ltd., primary particle size: 4 nm to 6 nm, solid content: 15%) was added in the same order as in Example 10 except that it was added to the disper. The mixture was stirred and mixed to prepare the anticorrosive coating composition of Comparative Example 4.

[比較例5]
アミノ基を含有するシランカップリング剤(「KBM-603」信越化学工業社製)を添加しなかったこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例5の防錆塗料組成物を調製した。
[Comparative Example 5]
Comparative Example 5 prepared by mixing in the same order as in Example 10 except that an amino group-containing silane coupling agent (“KBM-603” manufactured by Shin-Etsu Chemical Co., Ltd.) was not added, and stirring and mixing with a disper. A rust preventive coating composition was prepared.

[比較例6]
アクリルエマルジョンA(「アクロナールYS800」BASF社製、固形分:47%)を添加しなかったこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例6の防錆塗料組成物を調製した。
[Comparative Example 6]
Rust prevention of Comparative Example 6 was blended in the same order as in Example 10 except that Acrylic Emulsion A (“Acronal YS800” manufactured by BASF, solid content: 47%) was not added, and stirred and mixed with a disper. A coating composition was prepared.

[比較例7]
コロイダルシリカAに代えてコロイダルシリカF(「スノーテックス20L」日産化学工業社製、一次粒子径:40nm〜50nm、固形分:20%)を11.2質量部添加したこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例7の防錆塗料組成物を調製した。
[Comparative Example 7]
Example 10 except that 11.2 parts by mass of colloidal silica F (“Snowtex 20L” manufactured by Nissan Chemical Industries, primary particle size: 40 nm to 50 nm, solid content: 20%) was added instead of colloidal silica A. The rust preventive coating composition of Comparative Example 7 was prepared by mixing in order and stirring and mixing with a disper.

[比較例8]
コロイダルシリカA(「スノーテックスNXS」日産化学工業社製、一次粒子径:4nm〜6nm、固形分:15%)の添加量を倍量の30質量部(固形分換算で4.5質量部)とし、イオン交換水を添加しなかったこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例8の防錆塗料組成物を調製した。
[Comparative Example 8]
Colloidal silica A (“Snowtex NXS”, manufactured by Nissan Chemical Industries, Ltd., primary particle size: 4 nm to 6 nm, solid content: 15%) was added to 30 parts by mass (4.5 parts by mass in terms of solids), A rust preventive coating composition of Comparative Example 8 was prepared by blending in the same order as in Example 10 except that ion-exchanged water was not added, and stirring and mixing with a disper.

[比較例9]
アミノ基を含有するシランカップリング剤(「KBM-603」信越化学工業社製)の添加量を1/5量の0.1質量部としたこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例9の防錆塗料組成物を調製した。
[Comparative Example 9]
The amount of the silane coupling agent containing an amino group ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to 0.1 part by mass of 1/5. The mixture was stirred and mixed to prepare a rust preventive coating composition of Comparative Example 9.

[比較例10]
アクリルエマルジョンAに代えてアクリルエマルジョンB(「E-2706」ロームアンドハース社製、固形分:50%、アニオン性官能基含有樹脂とカチオン性官能基含有樹脂との混合物)を42.4質量部添加し、イオン交換水を7質量部添加したこと以外は実施例10と同様の順で配合し、ディスパーにて撹拌混合して比較例10の防錆塗料組成物を調製した。
[Comparative Example 10]
42.4 parts by mass of acrylic emulsion B (“E-2706” manufactured by Rohm and Haas, solid content: 50%, mixture of anionic functional group-containing resin and cationic functional group-containing resin) was added instead of acrylic emulsion A. Then, except that 7 parts by mass of ion-exchanged water was added, they were blended in the same order as in Example 10, and stirred and mixed with a disper to prepare a rust preventive coating composition of Comparative Example 10.

<試験>
実施例及び比較例の各防錆塗料組成物を用い、シンナー脱脂された未処理冷間圧延鋼板「SPCC-SD」(0.8×70×150mm)の表面に、乾燥膜厚が20μmとなるようにそれぞれエアスプレー塗装し、60℃で20分間乾燥させて塗板試料を作製した。各塗板試料について下記の試験を行った。
<Test>
Using each rust preventive coating composition of Examples and Comparative Examples, the dry film thickness is 20 μm on the surface of the untreated cold-rolled steel sheet “SPCC-SD” (0.8 × 70 × 150 mm) that has been degreased with thinner. Each was coated with air spray and dried at 60 ° C. for 20 minutes to prepare a coated plate sample. The following tests were conducted on each coated plate sample.

[初期付着性]
JIS K5600-5-6に規定された碁盤目付着試験を行った。全ての塗板試料は初期付着性が良好であった。
[Initial adhesion]
A cross-cut adhesion test specified in JIS K5600-5-6 was conducted. All coated plate samples had good initial adhesion.

[防錆性1]
各塗板試料の塗膜にカッターナイフを用いて基板まで達するクロスカットを形成し、それらを塩水噴霧試験器に入れて、JIS Z2371に規定され35℃に加温された5%食塩水を塗面に噴霧する塩水噴霧試験を24時間行った。その後取り出して、塗面を目視観察し異常の無いものを○、異常があるものを×と評価した。
[Rust prevention 1]
Form a cross cut that reaches the substrate using a cutter knife on the coating film of each coated plate sample, put them in a salt spray tester, and apply 5% salt water heated to 35 ° C as specified in JIS Z2371 A salt spray test was conducted for 24 hours. Then, it was taken out and the coated surface was visually observed.

[防錆性2]
各塗板試料の塗膜にカッターナイフを用いて基板まで達するクロスカットを形成し、それらを塩水噴霧試験器に入れて、JIS Z2371に規定され35℃に加温された5%食塩水を塗面に噴霧する塩水噴霧試験を240時間行った。その後取り出して、クロスカット部周辺の塗面における異常の有無、及びクロスカット部の錆幅を観察した。塗面の異常が無く、錆幅が片側3mm、両側合計6mm以内であるものを○、それ以外を×と評価した。
[Rust prevention 2]
Form a cross cut that reaches the substrate using a cutter knife on the coating film of each coated plate sample, put them in a salt spray tester, and apply 5% salt water heated to 35 ° C as specified in JIS Z2371 A salt spray test was conducted for 240 hours. Thereafter, the film was taken out, and the presence or absence of an abnormality in the coating surface around the crosscut portion and the rust width of the crosscut portion were observed. The case where there was no abnormality of the coating surface and the rust width was 3 mm on one side and the total on both sides was within 6 mm was evaluated as ○, and the others were evaluated as ×.

[乾燥性]
実施例及び比較例の各防錆塗料組成物を用い、シンナー脱脂された未処理冷間圧延鋼板「SPCC-SD」(10×70×150mm)の表面に、短辺の片端の乾燥膜厚が20μm、反対側の片端の乾燥膜厚が500μmとなるように、全体的な膜厚が傾斜するように塗布し、60℃で20分乾燥させて、JIS K5600-1-1に規定された指触乾燥膜厚及び硬化乾燥膜厚を調べた。指触乾燥膜厚については200μm以上を○、200μm未満を×と評価し、硬化乾燥膜厚については100μm以上を○、100μm未満を×と評価した。
[Drying]
Using each rust preventive paint composition of Examples and Comparative Examples, the dry film thickness of one end of the short side is on the surface of the untreated cold-rolled steel sheet “SPCC-SD” (10 × 70 × 150 mm) that has been degreased with thinner. Apply so that the total film thickness is inclined so that the dry film thickness on the other end is 500 μm, dry at 60 ° C. for 20 minutes, and finger specified in JIS K5600-1-1 Touch dry film thickness and cured dry film thickness were examined. For the dry touch film thickness, 200 μm or more was evaluated as “◯”, and less than 200 μm was evaluated as “×”.

[塗料安定性]
実施例及び比較例の各防錆塗料組成物を調製した際に塗装に適した流動性をもち、かつ密封状態で20℃にて1ヶ月間放置した際にゲル化などの異常が無いものを○、異常が認められたものを×と評価した。
[Paint stability]
The rust preventive paint compositions of Examples and Comparative Examples have fluidity suitable for coating, and have no abnormalities such as gelation when left in a sealed state at 20 ° C. for 1 month. ○, those with abnormalities were evaluated as x.

<評価>

Figure 0005785967
<Evaluation>
Figure 0005785967

表2から、実施例10〜15に係る好適防錆塗料組成物は、乾燥性に優れていることが明らかである。また各実施例の防錆塗料組成物から形成された塗膜は、未処理の鋼板を被塗物としても各比較例に比べて防錆性に優れていることが明らかである。   From Table 2, it is clear that the suitable antirust coating composition which concerns on Examples 10-15 is excellent in drying property. Moreover, it is clear that the coating film formed from the antirust coating composition of each Example is excellent in antirust property compared with each comparative example even if it uses an untreated steel plate as a to-be-coated object.

比較例4の防錆塗料組成物はコロイダルシリカを含んでいないため、その塗膜は防錆性及び乾燥性に劣る。比較例5の防錆塗料組成物はシランカップリング剤を含んでいないため、その塗膜は防錆性及び乾燥性に劣る。比較例6の防錆塗料組成物はアクリルエマルジョンを含んでいないため、その塗膜は防錆性及び乾燥性に劣る。比較例7の防錆塗料組成物は、コロイダルシリカの一次粒子径が大きいため、その塗膜は防錆性に劣る。比較例8の防錆塗料組成物は、アクリルエマルジョンの不揮発分100質量部に対するコロイダルシリカ固形分の含有量範囲が20質量部を超えているため、その塗膜は防錆性に劣る。比較例9の防錆塗料組成物は、コロイダルシリカの固形分100質量部に対するシランカップリング剤の含有量範囲が11質量部未満のため、その塗膜は防錆性及び乾燥性に劣る。比較例10の防錆塗料組成物は、カチオン性官能基を含有するアクリルエマルジョンを用いているため、その塗膜は防錆性に劣る。   Since the rust preventive coating composition of Comparative Example 4 does not contain colloidal silica, the coating film is inferior in rust prevention and drying properties. Since the rust preventive coating composition of Comparative Example 5 does not contain a silane coupling agent, the coating film is inferior in rust prevention and drying properties. Since the rust preventive coating composition of Comparative Example 6 does not contain an acrylic emulsion, the coating film is inferior in rust prevention and drying properties. Since the primary particle diameter of the colloidal silica is large, the coating film of the anticorrosive coating composition of Comparative Example 7 is inferior in rust resistance. Since the content range of the colloidal silica solid content with respect to 100 mass parts of the non-volatile content of the acrylic emulsion exceeds 20 mass parts, the coating film of the rust preventive coating composition of Comparative Example 8 is inferior in rust resistance. Since the content range of the silane coupling agent with respect to 100 mass parts of solid content of colloidal silica is less than 11 mass parts, the coating film of the anticorrosive coating composition of Comparative Example 9 is inferior in rust prevention and drying properties. Since the rust preventive coating composition of Comparative Example 10 uses an acrylic emulsion containing a cationic functional group, the coating film is inferior in rust resistance.

なお実施例15の防錆塗料組成物は、塗膜の乾燥性と耐水性及び防錆性に優れているものの、塗料安定性に問題がある。これは、シランカップリング剤の添加量が多すぎたことに起因していると考えられる。しかし防錆塗料組成物の調製後に早めに使用すれば、乾燥性と耐水性及び防錆性に優れる塗膜を形成することができるので、△と評価した。   Although the rust-preventive coating composition of Example 15 is excellent in the drying property, water resistance and rust-preventing property of the coating film, there is a problem in the coating stability. This is considered due to the fact that the amount of the silane coupling agent added is too large. However, if it was used early after the preparation of the rust-preventive coating composition, a coating film excellent in drying properties, water resistance and rust-prevention properties could be formed.

本発明の防錆塗料組成物は、未処理の鋼材に塗布することで防錆性に優れた塗膜を形成するので、鋼材の防錆処理を不要とすることができる。また防錆処理された鋼材に塗布しても、従来と同等の防錆性を付与することができるので、各種車両、船舶、家電製品など種々の分野で利用することができる。   Since the rust preventive coating composition of the present invention forms a coating film excellent in rust prevention property by applying to an untreated steel material, the rust preventive treatment of the steel material can be made unnecessary. Further, even when applied to a rust-proof steel material, the same rust-proofing property as conventional ones can be imparted, so that it can be used in various fields such as various vehicles, ships, and home appliances.

Claims (5)

アニオン系官能基を有する水性樹脂と、
該水性樹脂の不揮発分100質量部に対して3〜20質量部の範囲で添加され一次粒子径が4nm〜25nmの微粒シリカと、
加水分解性基およびアミノ基を含み、該微粒シリカの固形分100質量部に対して11質量部以上90質量部以下の範囲で添加されたシランカップリング剤と、
沸点20℃以下の揮発性塩基である反応促進剤と、を含むことを特徴とする防錆塗料組成物。
An aqueous resin having an anionic functional group ;
Fine silica having a primary particle diameter of 4 nm to 25 nm added in a range of 3 to 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous resin,
A silane coupling agent containing a hydrolyzable group and an amino group, and added in a range of 11 parts by weight or more and 90 parts by weight or less with respect to 100 parts by weight of the solid content of the fine silica;
And a reaction accelerator that is a volatile base having a boiling point of 20 ° C. or lower .
前記反応促進剤は、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミンから選ばれる少なくとも1種である請求項1に記載の防錆塗料組成物。  The rust preventive coating composition according to claim 1, wherein the reaction accelerator is at least one selected from ammonia, monomethylamine, dimethylamine, trimethylamine, and ethylamine. 前記揮発性塩基はアンモニアである請求項に記載の防錆塗料組成物。 The rust preventive coating composition according to claim 2 , wherein the volatile base is ammonia. 前記微粒シリカはコロイダルシリカである請求項1〜のいずれかに記載の防錆塗料組成物。 The rust preventive coating composition according to any one of claims 1 to 3 , wherein the fine silica is colloidal silica. 前記シランカップリング剤は該微粒シリカの固形分100質量部に対して67質量部以下含まれる請求項1〜のいずれかに記載の防錆塗料組成物 The said silane coupling agent is 67 mass parts or less with respect to 100 mass parts of solid content of this fine silica, The antirust coating composition in any one of Claims 1-4
JP2013030607A 2012-06-05 2013-02-20 Rust coating composition and metal member having rust coating Active JP5785967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030607A JP5785967B2 (en) 2012-06-05 2013-02-20 Rust coating composition and metal member having rust coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012128000 2012-06-05
JP2012128000 2012-06-05
JP2013030607A JP5785967B2 (en) 2012-06-05 2013-02-20 Rust coating composition and metal member having rust coating

Publications (2)

Publication Number Publication Date
JP2014012811A JP2014012811A (en) 2014-01-23
JP5785967B2 true JP5785967B2 (en) 2015-09-30

Family

ID=50108690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030607A Active JP5785967B2 (en) 2012-06-05 2013-02-20 Rust coating composition and metal member having rust coating

Country Status (1)

Country Link
JP (1) JP5785967B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6856451B2 (en) * 2016-08-05 2021-04-07 株式会社神戸製鋼所 Surface-treated metal plate and method for manufacturing surface-treated metal plate
WO2018025651A1 (en) * 2016-08-05 2018-02-08 株式会社神戸製鋼所 Surface-treated metal plate and method for producing surface-treated metal plate
JP6626805B2 (en) * 2016-09-13 2019-12-25 株式会社神戸製鋼所 Surface-treated metal plate and method for producing surface-treated metal plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904358B2 (en) * 1998-12-28 2007-04-11 新日本製鐵株式会社 Rust-proof coating steel that does not contain chromium
JP4180270B2 (en) * 2001-11-19 2008-11-12 日本ペイント株式会社 Aqueous coating agent for steel, coating method and coated steel
JP2004307755A (en) * 2003-04-10 2004-11-04 Unitika Ltd Rust prevention coating agent and laminated metal material
JP4027938B2 (en) * 2003-04-28 2007-12-26 東洋アルミニウム株式会社 Aluminum pigment, method for producing the same, and resin composition
JP2005298837A (en) * 2004-04-06 2005-10-27 Kansai Paint Co Ltd Metal surface treatment composition and metal plate using the same
JP5340020B2 (en) * 2008-11-04 2013-11-13 アイシン化工株式会社 Water-based coating agent

Also Published As

Publication number Publication date
JP2014012811A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
KR101471948B1 (en) Zinc-based metal coated steel sheet
US8648135B2 (en) Surface-treatment agent, method for producing coated steel sheet using the surface-treatment agent, and coated steel sheet
JP4922295B2 (en) Coated steel plate
JP5485616B2 (en) Surface treatment agent for aluminum fin materials
CN101960047A (en) Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same
JP2009280889A (en) Aquaous surface-treatment agent, pretreatment method for precoating metallic material, manufacturing method for precoating metallic material, and precoating metallic material
WO2001020058A1 (en) Pre-paint treatment of metal and product thereof
JP6087650B2 (en) Paint, painted article, and method for producing paint
WO2015152187A1 (en) Metal surface treatment agent for zinc-plated steel material, coating method, and coated steel material
JP6685268B2 (en) Sealing agent
JP5785967B2 (en) Rust coating composition and metal member having rust coating
KR20020017955A (en) Chromium-free aqueous composition for treating metal surfaces and metal plates treated therewith
WO2014034828A1 (en) Composition for rust prevention and aqueous dispersion containing same
JP2007284600A (en) Coating composition containing high corrosion-proof zinc powder
JP2016121221A (en) Aqueous rustproof coating composition
JP2020007617A (en) Chromium free metal surface treatment agent, metal surface treatment method and metal base material
JP5686480B2 (en) Water-based paint composition, method for producing the water-based paint composition, and shop primer
JP6057946B2 (en) Rust-proof water-borne paint composition and method for producing
JP6367462B2 (en) Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel
WO2017078105A1 (en) Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material
JPS6157349B2 (en)
JP2007070572A (en) Coating composition and fuel tank
JP2006272768A (en) Surface-treated metal sheet
JP6087649B2 (en) Paints and painted articles
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5785967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250