JP5784222B2 - Neutron shielding epoxy resin composition and method for producing the same - Google Patents

Neutron shielding epoxy resin composition and method for producing the same Download PDF

Info

Publication number
JP5784222B2
JP5784222B2 JP2014510258A JP2014510258A JP5784222B2 JP 5784222 B2 JP5784222 B2 JP 5784222B2 JP 2014510258 A JP2014510258 A JP 2014510258A JP 2014510258 A JP2014510258 A JP 2014510258A JP 5784222 B2 JP5784222 B2 JP 5784222B2
Authority
JP
Japan
Prior art keywords
powder
curing agent
epoxy resin
resin composition
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014510258A
Other languages
Japanese (ja)
Other versions
JP2014514587A (en
Inventor
ジェ−ウ キム
ジェ−ウ キム
ジ−ヒョン ジュン
ジ−ヒョン ジュン
ヨン−ジュ ペ
ヨン−ジュ ペ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Atomic Energy Research Institute KAERI
Original Assignee
Korea Atomic Energy Research Institute KAERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Atomic Energy Research Institute KAERI filed Critical Korea Atomic Energy Research Institute KAERI
Publication of JP2014514587A publication Critical patent/JP2014514587A/en
Application granted granted Critical
Publication of JP5784222B2 publication Critical patent/JP5784222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/242Applying crosslinking or accelerating agent onto compounding ingredients such as fillers, reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2234Oxides; Hydroxides of metals of lead
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals

Description

本発明は、ナノサイズの中性子吸収物質及び高密度金属物質、難燃物質を含む中性子遮蔽能に優れた使用済み核燃料輸送容器における中性子遮蔽用ナノ複合エポキシ樹脂組成物及びその樹脂組成物を製造する方法に関する。   The present invention produces a nanocomposite epoxy resin composition for neutron shielding in a spent nuclear fuel transport container excellent in neutron shielding ability including a nano-sized neutron absorbing material, a high-density metal material, and a flame retardant material, and the resin composition Regarding the method.

最近は、原子力産業の発展に伴い、原子力発電所の安全な運営が社会的に重要なイシューとして浮き彫りになっている。中でも、使用済み核燃料の安全かつ効率的な管理は、原子力産業の安全性を向上させるための多様な要因のうち、非常に重要な課題である。原子力発電所の核燃料(濃縮ウラン)は、使用周期が終わると新たな核燃料に交換されるため使用済み核燃料が周期的に排出されており、このような使用済み核燃料も放射線を放出し続けるため放射線を適切に遮蔽することは非常に重要な課題となる。   Recently, with the development of the nuclear industry, the safe operation of nuclear power plants has emerged as a socially important issue. Above all, the safe and efficient management of spent nuclear fuel is a very important issue among various factors for improving the safety of the nuclear industry. Nuclear fuel (enriched uranium) at nuclear power plants is replaced with new nuclear fuel after the end of its use cycle, so spent nuclear fuel is periodically discharged, and this spent nuclear fuel continues to emit radiation. Proper shielding is a very important issue.

使用済み核燃料は、世界的に乾式または湿式の二つの方式で貯蔵されている。韓国国内では、発電所敷地内の貯蔵庫に湿式及び乾式の方式で一時貯蔵されている実情にある。使用済み核燃料を敷地内で一定期間保管したり、または中間貯蔵施設や永久処分施設、再処理施設などに保管するためには、輸送容器(キャスク)を用いて外部に移動させる必要がある。このとき、このような使用済み核燃料の輸送容器には中性子遮蔽材を充填しなければならない。一般に、中性子遮蔽材としては、水素含量の多いエポキシや高密度ポリエチレン、ポリスチレン、水、エチレングリコールなどを用いる。   Spent nuclear fuel is stored worldwide in two ways, dry or wet. In Korea, it is actually stored temporarily in the storage on the power plant site by wet and dry methods. In order to store spent nuclear fuel on the premises for a certain period, or to store it in an intermediate storage facility, a permanent disposal facility, a reprocessing facility, etc., it is necessary to move it outside using a transport container (cask). At this time, the spent nuclear fuel transport container must be filled with a neutron shielding material. In general, as the neutron shielding material, epoxy having a high hydrogen content, high density polyethylene, polystyrene, water, ethylene glycol, or the like is used.

放射線遮蔽材は、人体に加える放射線量を最小限に抑え、放射線によって構造材料または機器材料が損傷されないようにしなければならない。特に、使用済み核燃料から発生する中性子は、エネルギーが高く、強い透過力を有することから、上記のような高エネルギー中性子を安全かつ確実に遮蔽することができる中性子遮蔽材の開発が行われている。   Radiation shields must minimize the amount of radiation applied to the human body and prevent damage to structural or equipment materials by radiation. In particular, neutrons generated from spent nuclear fuel are high in energy and have strong penetrating power, so the development of neutron shielding materials that can safely and reliably shield high-energy neutrons as described above has been underway. .

上記中性子は、エネルギーによって高速中性子と熱中性子に区分される。高速中性子は、水素のような軽い元素と衝突して減速し、エネルギーを失って熱中性子化される。このような熱中性子は、熱中性子の吸収断面積が大きいボロン、リチウム及びガドリニウムのような物質によって最終的に吸収される。   The neutrons are classified into fast neutrons and thermal neutrons according to energy. Fast neutrons collide with light elements such as hydrogen, decelerate, lose energy, and become thermal neutrons. Such thermal neutrons are finally absorbed by substances such as boron, lithium, and gadolinium, which have a large absorption cross section of thermal neutrons.

このため、高速中性子遮蔽材として水素密度が高い高分子化合物である、エチレングリコール、ポリエチレンなどのポリオレフィン系熱可塑性樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂、エポキシ樹脂などの樹脂に熱中性子を吸収することができる遮蔽物質を混合した素材が用いられている。   For this reason, thermal neutrons are applied to high molecular compounds with high hydrogen density as fast neutron shielding materials, polyolefin thermoplastics such as ethylene glycol and polyethylene, thermosetting resins such as unsaturated polyester resins, and resins such as epoxy resins. Materials mixed with shielding materials that can be absorbed are used.

一方、上記中性子によって2次ガンマ線も生成されるが、このような2次ガンマ線は、高密度金属粉末を混合することで遮蔽することができる。上記高密度金属粉末は、遮蔽材密度が一般的に1.6g/cm以上になるように添加される。 On the other hand, secondary gamma rays are also generated by the neutrons. Such secondary gamma rays can be shielded by mixing high-density metal powder. The high-density metal powder is added so that the shielding material density is generally 1.6 g / cm 3 or more.

また、火事が発生した場合に中性子遮蔽能を維持することができる中性子遮蔽材も開発されている。これに関しては、難燃剤として水酸化アルミニウム粉末や水酸化マグネシウム粉末などが混合された中性子遮蔽材が提案されている。   In addition, neutron shielding materials that can maintain neutron shielding ability in the event of a fire have been developed. In this regard, a neutron shielding material in which aluminum hydroxide powder or magnesium hydroxide powder is mixed as a flame retardant has been proposed.

上記の通り、添加される中性子吸収粒子としては、マトリックスである高分子樹脂内における分散性及び中性子に対する遮蔽性を考慮して平均粒径10〜200μmサイズを有する中性子遮蔽粉末が用いられてきた。しかし、このような中性子遮蔽物質、高密度金属粉末及び難燃剤粒子のサイズは、殆どがマイクロメートル単位以上と非常に大きいため、放射線が漏れるという短所があり、このような粒子が異物となって複合材の物性を低下させる要因として作用する。   As described above, neutron shielding powder having an average particle size of 10 to 200 μm has been used as the neutron absorbing particles to be added in consideration of dispersibility in the polymer resin as a matrix and shielding properties against neutrons. However, the size of such neutron shielding materials, high-density metal powders and flame retardant particles is very large, most of the micrometer unit or more, so there is a disadvantage that radiation leaks, and such particles become foreign matters. It acts as a factor that reduces the physical properties of the composite material.

上記のような短所を克服するためには、放射線と中性子遮蔽物質及び高密度金属粒子との衝突確率を高める必要があり、粒子を微細化して用いることで、放射線遮蔽効率を高める方法が考えられる。   In order to overcome the above disadvantages, it is necessary to increase the probability of collision of radiation with neutron shielding materials and high-density metal particles, and a method of increasing radiation shielding efficiency by using fine particles is conceivable. .

一方、ナノサイズの放射線遮蔽物質を用いる場合、放射線遮蔽能及び複合材物性の向上などの多くの長所があるが、上記ナノサイズの遮蔽物質は表面エネルギーが高くて高分子の粘度を増加させるためマトリックス樹脂に混練することが困難であり、ナノ粒子が不安定な状態に存在するため粒子間に凝集しようとする性質を有し、ナノ粒子を高分子樹脂に分散させることが非常に難しい。   On the other hand, when nano-sized radiation shielding materials are used, there are many advantages such as improved radiation shielding performance and physical properties of the composite material. However, the nano-sized shielding materials have high surface energy and increase the viscosity of the polymer. It is difficult to knead into the matrix resin, and since the nanoparticles exist in an unstable state, they have a property of aggregating between the particles, and it is very difficult to disperse the nanoparticles in the polymer resin.

一般に、高分子樹脂にナノサイズの粉末を分散させる場合は、粉末間の凝集を防止し、樹脂内における界面接着性を向上させることが重要となる。このため、一般的に界面活性剤を用いることで粒子表面を化学的に処理する方法が用いられている。   In general, when nano-sized powder is dispersed in a polymer resin, it is important to prevent aggregation between the powders and improve interfacial adhesion within the resin. For this reason, a method of chemically treating the particle surface by using a surfactant is generally used.

但し、界面活性剤を用いる化学的表面処理過程は複雑で、界面活性剤自体が異物として作用する可能性がある。また、高価な工程であることから高分子(エポキシ)複合材の製造における経済的ダメージが大きい。   However, the chemical surface treatment process using a surfactant is complicated, and the surfactant itself may act as a foreign substance. Moreover, since it is an expensive process, the economic damage in manufacture of a polymer (epoxy) composite material is large.

しかし、本発明者らは、遮蔽材内において放射線遮蔽物質の粒子サイズが放射線遮蔽の性能に大きな影響を及ぼし、具体的には、遮蔽材内にナノサイズの放射線遮蔽物質が含まれる場合、入射される放射線との衝突確立が増加するようになって放射線遮蔽効果を向上させることができる点を見出した。これに基づいて、ナノサイズの放射線遮蔽物質粒子を均一に高分子基材などに分散させた放射線遮蔽材に関して特許出願し(韓国公開特許第2010−0047510号)、上記特許文献にもナノ粒子の均一な分散のためにボールミル工程でナノ粒子を製造する過程において高分子樹脂との親和度が高い界面活性剤でナノ粒子を物理的表面処理して高分子樹脂に溶融混合する技術を記載した。   However, the present inventors have a large influence on the radiation shielding performance due to the particle size of the radiation shielding material in the shielding material. Specifically, when nano-size radiation shielding material is contained in the shielding material, It has been found that the probability of collision with the emitted radiation increases and the radiation shielding effect can be improved. Based on this, a patent application was filed regarding a radiation shielding material in which nano-sized radiation shielding material particles were uniformly dispersed in a polymer substrate (Korea published patent No. 2010-0047510). A technique has been described in which nanoparticles are physically surface-treated with a surfactant having a high affinity with a polymer resin in the process of producing nanoparticles in a ball mill process for uniform dispersion, and then melt-mixed into the polymer resin.

本発明の目的は、中性子遮蔽能に優れたエポキシ樹脂組成物に関するもので、ナノサイズの中性子吸収材及びガンマ線遮蔽用高密度金属粉末を簡単な方法で物理的に表面コーティングすることで、エポキシ樹脂内に均一に分散させ、ナノ粉末と高分子との界面接着性を向上させて複合材の放射線遮蔽能を向上させるとともに、機械的物性を大幅に向上させることができるエポキシ樹脂組成物の製造方法を提供することにある。   An object of the present invention relates to an epoxy resin composition excellent in neutron shielding ability, and is an epoxy resin by physically coating a nano-sized neutron absorber and a high-density metal powder for gamma ray shielding by a simple method. A method for producing an epoxy resin composition that can be uniformly dispersed in the interior, improving the interfacial adhesion between the nanopowder and the polymer, improving the radiation shielding ability of the composite material, and greatly improving the mechanical properties Is to provide.

また、本発明の目的は、このような方法によって得られたエポキシ樹脂組成物を提供することにある。   Another object of the present invention is to provide an epoxy resin composition obtained by such a method.

本発明は、中性子遮蔽用エポキシ樹脂組成物を製造する方法に関するもので、中性子吸収用ホウ素化合物粉末、選択的に含まれるガンマ線遮蔽用高密度粉末及び難燃剤粉末を含むそれぞれの粉末または上記粉末の混合物にアミン系硬化剤を混合することで硬化剤と粉末との混合物を得る混合段階と、上記各混合物に超音波を加えて上記粉末表面をアミン系硬化剤でコーティングしながら硬化剤内に分散させる超音波処理段階と、上記超音波処理された粉末が分散されたアミン系硬化剤をエポキシ樹脂に混合し、分散させる分散段階と、を含む中性子遮蔽用エポキシ樹脂組成物の製造方法を提供する。   The present invention relates to a method for producing an epoxy resin composition for neutron shielding, and each of the powders including a boron compound powder for neutron absorption, a high density powder for gamma ray shielding and a flame retardant powder which are selectively contained, or the above powder Mixing the mixture with an amine curing agent to obtain a mixture of the curing agent and powder, and applying ultrasonic waves to each mixture to disperse the powder surface in the curing agent while coating the surface with the amine curing agent. And a dispersion step of mixing and dispersing the amine-based curing agent in which the powder subjected to the ultrasonic treatment is dispersed in an epoxy resin, and a method for producing an epoxy resin composition for neutron shielding .

上記ホウ素化合物は、BC,BN,B及びB(OH)からなるグループより選択される少なくとも一つであることが好ましい。上記高密度金属粉末は、Fe、Ni、Cu、W、Pb及びこれらの酸化物からなるグループより選択される少なくとも一つ、上記難燃剤は、水酸化アルミニウム、水酸化マグネシウムからなるグループより選択される少なくとも一つであることができる。 The boron compound is preferably at least one selected from the group consisting of B 4 C, BN, B 2 O 3 and B (OH) 3 . The high density metal powder is at least one selected from the group consisting of Fe, Ni, Cu, W, Pb and oxides thereof, and the flame retardant is selected from the group consisting of aluminum hydroxide and magnesium hydroxide. Can be at least one.

また、上記ホウ素化合物及び高密度金属粉末は、粒子サイズが200nm以上1000nm以下であるものを用いることが好ましい。   The boron compound and the high-density metal powder are preferably those having a particle size of 200 nm to 1000 nm.

また、上記難燃剤は、粒子サイズが200nm以上10μm以下であるものを用いることができる。   Moreover, the said flame retardant can use what has a particle size of 200 nm or more and 10 micrometers or less.

また、上記超音波処理は、アミン硬化剤と、ホウ素化合物、高密度金属及び選択的に難燃剤粉末とがそれぞれ混合された混合物に超音波ホーンを直接入れて超音波を加えることで行われる。   The ultrasonic treatment is performed by directly applying an ultrasonic horn to a mixture in which an amine curing agent, a boron compound, a high-density metal, and optionally a flame retardant powder are mixed, and applying ultrasonic waves.

また、本発明は、上記製造されたエポキシ樹脂組成物を一定形状に成形した後、乾燥硬化する段階を含む中性子遮蔽材の製造方法を提供する。   Moreover, this invention provides the manufacturing method of the neutron shielding material including the step which dry-hardens, after shape | molding the manufactured said epoxy resin composition in a fixed shape.

本発明は、エポキシ樹脂100重量部に対してアミン硬化剤40〜60重量部と、粒子サイズが200nm以上1000nm以下であり、上記アミン硬化剤で表面処理された中性子吸収用ホウ素化合物粉末を樹脂組成物全体重量に対して1〜10重量%含み、選択的に粒子サイズが200nm以上1000nm以下であり、上記アミン硬化剤で表面処理された2次ガンマ線遮蔽用高密度金属粉末を樹脂組成物全体重量に対して1〜30重量%と、選択的に粒子サイズが200nm以上10μm以下であり、水酸化アルミニウム粉末、水酸化マグネシウム粉末またはこれらの混合物を樹脂組成物全体重量に対して10〜30重量%含む放射線遮蔽用エポキシ樹脂組成物を提供する。   In the present invention, 40-60 parts by weight of an amine curing agent with respect to 100 parts by weight of an epoxy resin, a boron compound powder for neutron absorption having a particle size of 200 nm to 1000 nm and surface-treated with the amine curing agent is used as a resin composition. The total weight of the resin composition is a secondary gamma ray shielding high-density metal powder containing 1 to 10% by weight with respect to the total weight of the product, and having a particle size of 200 nm to 1000 nm selectively and surface-treated with the amine curing agent. 1 to 30% by weight based on the total particle size is 200 nm or more and 10 μm or less, and aluminum hydroxide powder, magnesium hydroxide powder or a mixture thereof is 10 to 30% by weight based on the total weight of the resin composition. An epoxy resin composition for radiation shielding is provided.

上記ホウ酸化合物粉末は、BC、BN、B及びB(OH)からなるグループより選択される少なくとも一つ、上記高密度金属粉末は、Fe、Ni、Cu、W、Pb及びこれらの酸化物からなるグループより選択される少なくとも一つを用いることが好ましい。 The boric acid compound powder is at least one selected from the group consisting of B 4 C, BN, B 2 O 3 and B (OH) 3 , and the high-density metal powder is Fe, Ni, Cu, W, Pb. And at least one selected from the group consisting of these oxides.

また、上記水酸化アルミニウム粉末または水酸化マグネシウム粉末は、アミン硬化剤で表面処理されたものを用いることができる。   Moreover, the said aluminum hydroxide powder or magnesium hydroxide powder can use what was surface-treated with the amine hardening | curing agent.

本発明によると、直接超音波分散法を用いることで、ナノサイズの粉末を非常に簡単かつ効果的にエポキシマトリックス内に均一に分散させることができ、エポキシマトリックスと中性子遮蔽材粉末との強力な結合を図ることができるため、いかなる化学的処理及び不純物も使用せずに、ナノサイズの粉末による中性子及びガンマ線のような放射線を遮蔽する優れた性能を得ることができ、遮蔽材の機械的特性を向上させることができる。   According to the present invention, the direct ultrasonic dispersion method can be used to uniformly and effectively disperse the nano-sized powder in the epoxy matrix, and the powerful combination of the epoxy matrix and the neutron shielding material powder. The ability to bond allows for superior performance of shielding radiation such as neutrons and gamma rays from nano-sized powders without the use of any chemical treatment and impurities, and the mechanical properties of the shielding material Can be improved.

本発明によって得られる放射線遮蔽材は、中性子吸収及びガンマ線遮蔽のために添加される物質をナノ化することができるため基本的により薄くて軽い遮蔽材を得ることができ、樹脂マトリックスと粒子との界面接着性を向上できるため遮蔽材の優れた物性を得ることができる。これにより、使用済み核燃料に対する輸送容器のエポキシに基づいた中性子遮蔽材の製造に効果的に活用されることができ、その他の中性子吸収粉末の高分子分散にも直接活用されることができる。   Since the radiation shielding material obtained by the present invention can nano-size the substance added for neutron absorption and gamma ray shielding, it is possible to obtain a basically thinner and lighter shielding material. Since the interfacial adhesion can be improved, excellent physical properties of the shielding material can be obtained. Thereby, it can be effectively used for the production of a neutron shielding material based on the epoxy of a transport container for spent nuclear fuel, and can also be directly used for polymer dispersion of other neutron absorbing powders.

本発明の直接超音波分散法によって硬化剤にBCナノ粒子を分散させる工程を概略的に示した工程概念図である。The step of dispersing the B 4 C nanoparticles curing agent by direct ultrasonic dispersion method of the present invention is a process conceptual diagram schematically showing. 超音波容器内においてエポキシによって表面処理される前(a)とされた後(b)のBC粒子の表面モフォロジーを示す写真である。Is a photograph showing the surface morphology of the B 4 C particles after being the front (a) which is surface-treated with epoxy in the ultrasonic container (b). 多様な条件で製造された5重量%のBC/エポキシ複合材の破断表面のSEMイメージで、(a)は何の表面処理も施していないraw−BC、(b)は直接超音波処理を施していないエポキシ−コーティングされたBC(上記図2の(b)に該当)、(c)は直接超音波表面処理−分散されたraw−BC及び(d)は直接超音波表面処理−分散されたエポキシ−コーティングされたBCに対するSEMイメージである。In SEM images of the prepared 5 wt% of B 4 C / epoxy composite fracture surfaces in a variety of conditions, (a) shows the raw-B 4 C not subjected any surface treatment, (b) Direct greater Epoxy-coated B 4 C without sonication (corresponding to (b) of FIG. 2 above), (c) is direct ultrasonic surface treatment—dispersed raw-B 4 C and (d) is direct ultrasonic surface treatment - is an SEM image of the coated B 4 C - dispersed epoxy. 多様な条件下においてBCが分散されたアミン硬化剤のFTIRスペクトルで、(a)は直接超音波表面処理−分散されたBC/硬化剤混合物、(b)は直接超音波処理されていない無処理BC/硬化剤混合物、(c)は純粋な硬化剤、(d)は直接超音波処理されていないエポキシ−コーティングされたBC/硬化剤混合物、(e)は直接超音波処理されたエポキシ−コーティングされたBC/硬化剤混合物に関するFTIRスペクトルである。FTIR spectra of amine curing agent with B 4 C dispersed under various conditions, (a) direct sonic surface treatment-dispersed B 4 C / curing agent mixture, (b) directly sonicated Untreated B 4 C / curing agent mixture, (c) is pure curing agent, (d) is an epoxy-coated B 4 C / curing agent mixture that is not directly sonicated, (e) is directly FIG. 5 is an FTIR spectrum for a sonicated epoxy-coated B 4 C / curing agent mixture. 純粋なエポキシマトリックス及び多様な条件で製造されたBC/エポキシ複合体の最終引張強度を示すグラフである。It is a graph showing the ultimate tensile strength of the produced pure epoxy matrix and various conditions B 4 C / epoxy composites. 純粋なエポキシマトリックス及び多様な条件で製造されたBC/エポキシ複合体のヤングモジュラスを示すグラフである。Is a graph showing the Young's modulus of the produced pure epoxy matrix and various conditions B 4 C / epoxy composites. 2.5重量%のBCを含むBC/エポキシ複合材に対するBC粉末の粒度による熱中性子遮蔽能を、MCNP(Monte Carlo n−Particles)プログラムを用いて評価した結果を示すグラフである。Thermal neutron shielding ability of the particle size of the B 4 C powder to B 4 C / epoxy composite containing 2.5 wt% of B 4 C, the graph showing the results of evaluation using MCNP (Monte Carlo n-Particles) Program It is. 複合材に含まれるPbO粉末が直接超音波処理されたか否かによるPbO/エポキシ複合材の引張強度値を示すグラフである。It is a graph which shows the tensile strength value of PbO / epoxy composite material by whether the PbO powder contained in a composite material was directly ultrasonicated. 粒子サイズに対する相対的な中性子フラックスを示す図面である。It is drawing which shows the relative neutron flux with respect to particle size. 1MeVのガンマ線に対して用いられた粒子サイズによる相対的なガンマフラックスを示した図面である。FIG. 5 is a diagram showing the relative gamma flux according to the particle size used for 1 MeV gamma rays. 0.1MeVのガンマ線に対して用いられた粒子サイズによる相対的なガンマフラックスを示した図面である。FIG. 6 is a diagram showing the relative gamma flux with particle size used for 0.1 MeV gamma rays.

本発明は、中性子吸収用ホウ素化合物及びガンマ線遮蔽用高密度金属の粉末、特にナノサイズの粉末の表面をコーティング処理することで、ナノサイズの粉末が凝集する現象を防止して粉末を高分子マトリックスに均一に分散させ、上記ナノサイズの粉末と高分子との界面接着性を向上させるためのものである。このため、分散しようとするナノサイズの粉末が混合された硬化剤に超音波ホーンを入れて直接的に上記ナノ粉末及び硬化剤を活性化することで、ナノ粉末の表面をコーティング処理する方法及びこれによって得られる中性子遮蔽能を有するエポキシ樹脂組成物を提供する。   In the present invention, the surface of a boron compound for neutron absorption and a high-density metal powder for gamma ray shielding, particularly a nano-sized powder, is coated to prevent the phenomenon of the aggregation of the nano-sized powder, thereby making the powder a polymer matrix. In order to improve the interfacial adhesion between the nano-sized powder and the polymer. For this reason, a method of coating the surface of the nanopowder by directly activating the nanopowder and the curing agent by putting an ultrasonic horn into the curing agent mixed with the nanosized powder to be dispersed, and An epoxy resin composition having a neutron shielding ability obtained thereby is provided.

本発明の中性子遮蔽用樹脂組成物は、主剤としてエポキシ樹脂のマトリックスに上記エポキシ樹脂に対する硬化剤中性子吸収粉末及び2次ガンマ線遮蔽用高密度金属粉末を含ませる。また、難燃剤を混合することで難燃性を与えることができる。   In the neutron shielding resin composition of the present invention, a hardener neutron-absorbing powder and a secondary gamma ray shielding high-density metal powder for the epoxy resin are contained in an epoxy resin matrix as a main agent. Moreover, a flame retardance can be provided by mixing a flame retardant.

上記主剤として用いられるエポキシ樹脂とは、架橋することができるエポキシ基を含有する樹脂を意味する。本発明で用いることができるエポキシ樹脂としては、本技術分野において一般的に用いられるものであれば特に限定されず、いかなるものも用いることができる。具体的には、グリシジルエーテル型/二官能フェノール型エポキシ樹脂、グリシジルエーテル型/多官能フェノール型エポキシ樹脂、グリシジルエーテル型/アルコール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂肪族エポキシ樹脂、脂環族エポキシ樹脂、変性エポキシ樹脂などを挙げることができ、これらエポキシ樹脂の環構造に水素を入れた水素添加エポキシ樹脂を混合して用いることができる。このようなエポキシ樹脂は、1種類のエポキシ樹脂を用いてもよく、2種類以上のエポキシ樹脂を混合して用いてもよい。   The epoxy resin used as the main agent means a resin containing an epoxy group that can be crosslinked. The epoxy resin that can be used in the present invention is not particularly limited as long as it is generally used in this technical field, and any epoxy resin can be used. Specifically, glycidyl ether type / bifunctional phenol type epoxy resin, glycidyl ether type / polyfunctional phenol type epoxy resin, glycidyl ether type / alcohol type epoxy resin, glycidyl ester type epoxy resin, aliphatic epoxy resin, alicyclic group An epoxy resin, a modified epoxy resin, etc. can be mentioned, The hydrogenated epoxy resin which put hydrogen in the ring structure of these epoxy resins can be mixed and used. As such an epoxy resin, one type of epoxy resin may be used, or two or more types of epoxy resins may be mixed and used.

本発明の中性子遮蔽用樹脂組成物は、エポキシ樹脂と反応して架橋構造を形成するもので、アミン系硬化剤、酸及び酸無水物系硬化剤、フェノール系硬化剤などを挙げることができ、好ましくはアミン系硬化剤を用いることができる。また、アミン系硬化剤のうち脂環式アミン系硬化剤や芳香族アミン系硬化剤などの環構造を有する硬化剤は、耐熱性が高いため本発明の組成物に好ましく用いられる。硬化剤は、1種類の硬化剤を用いることができ、2種以上の硬化剤を混合して用いることもできる。   The neutron shielding resin composition of the present invention reacts with an epoxy resin to form a crosslinked structure, and examples thereof include amine-based curing agents, acid and acid anhydride-based curing agents, and phenol-based curing agents. Preferably, an amine curing agent can be used. Of the amine curing agents, a curing agent having a ring structure such as an alicyclic amine curing agent or an aromatic amine curing agent is preferably used in the composition of the present invention because of its high heat resistance. As the curing agent, one kind of curing agent can be used, and two or more kinds of curing agents can be mixed and used.

上記硬化剤は、用いられる硬化剤の種類や他の成分の種類、含有量などによって異なることができるが、アミン系硬化剤を例に挙げて説明すると、上記エポキシ樹脂100重量部に対して40〜60重量部含むことができる。エポキシ樹脂に対するアミン硬化剤の含量が40重量部未満であると硬化剤としての効果が弱く、60重量部を超過すると過度に早く硬化して充填などに必要な作業時間を確保することができなくなる。   The curing agent may vary depending on the type of curing agent used, the type of other components, the content, and the like. However, when an amine curing agent is used as an example, the curing agent is 40 parts by weight with respect to 100 parts by weight of the epoxy resin. Up to 60 parts by weight. If the content of the amine curing agent with respect to the epoxy resin is less than 40 parts by weight, the effect as a curing agent is weak, and if it exceeds 60 parts by weight, it will be cured too quickly and it will not be possible to secure the working time required for filling and the like. .

一方、本発明の中性子遮蔽用樹脂組成物は、中性子吸収用ホウ素化合物粉末及びガンマ線遮蔽用高密度金属粉末を含む。このようなホウ素化合物は、微量配合されて中性子吸収材としての機能を有するもので、本技術分野において中性子吸収に広く用いられている。このように、本技術分野において中性子吸収能があるものであれば特に限定されず用いることができる。   On the other hand, the neutron shielding resin composition of the present invention contains a boron compound powder for neutron absorption and a high-density metal powder for gamma ray shielding. Such a boron compound is blended in a small amount and has a function as a neutron absorber, and is widely used for neutron absorption in this technical field. As described above, any material having neutron absorption ability in this technical field can be used without any particular limitation.

中性子吸収能を有するホウ素化合物としては、これに限定されないが、例えば、低速中性子及び熱中性子に対して大きい吸収断面積を有する窒化ホウ素、無水ホウ酸、ホウ化鉄、正ホウ酸、炭化ホウ素、メタホウ酸などのホウ素化合物を挙げることができる。このようなホウ素化合物は、1種類のホウ素化合物を用いることができ、2種類以上のホウ素化合物を混合して用いることもできる。このうち、炭化ホウ素(BC)は、温度によって変化されず、水分を吸収しないなど、化学的に安定性が高く、高分子を主体にした中性子遮蔽材料に及ぼす影響が大きくないため特に好ましい。 Examples of boron compounds having neutron absorption ability include, but are not limited to, for example, boron nitride, boric anhydride, iron boride, normal boric acid, boron carbide having a large absorption cross section for slow neutrons and thermal neutrons, Examples thereof include boron compounds such as metaboric acid. As such a boron compound, one type of boron compound can be used, and a mixture of two or more types of boron compounds can also be used. Of these, boron carbide (B 4 C) is particularly preferable because it is chemically stable, such as not changing with temperature and does not absorb moisture, and has no significant effect on neutron shielding materials mainly composed of polymers. .

上記ホウ素化合物は粉末で用いられ、その粒径及び添加量は適切に調節して添加されることができる。ホウ素化合物の添加量は、用いられるホウ素化合物の種類や他の成分の種類、含有量によって変動されるが、例えば、樹脂組成物全体重量に対して1〜10重量%の範囲で含まれることが好ましい。上記ホウ素化合物の含量が1重量%未満の場合は、添加されたホウ素化合物による中性子遮蔽能の効果が低く、10重量%を超過する場合は、遮蔽材の水素濃度及び遮蔽材の物性が低下するという問題があるため好ましくない。   The boron compound is used as a powder, and the particle size and addition amount thereof can be appropriately adjusted and added. The addition amount of the boron compound varies depending on the type of boron compound used, the type of other components, and the content, but for example, it may be included in the range of 1 to 10% by weight with respect to the total weight of the resin composition. preferable. When the boron compound content is less than 1% by weight, the effect of the neutron shielding ability by the added boron compound is low, and when it exceeds 10% by weight, the hydrogen concentration of the shielding material and the physical properties of the shielding material are lowered. This is not preferable because of the problem.

また、本発明の中性子遮蔽用樹脂組成物は、遮蔽材の密度を増加させてガンマ線を遮蔽するための高密度金属粉末を含む。上記ガンマ線遮蔽のための高密度金属としては、これに限定されないが、例えば、Fe、Ni、Cu、W、Pb及びこれらの酸化物を挙げることができる。このような高密度金属粉末は、1種類の粉末を用いることができ、2種類以上の粉末を混合して用いることもできる。このうち、酸化鉛(PbO)が化学的安定性が高く、安価で、高分子を主体にした中性子遮蔽材に及ぼす影響が大きくないため、特に好ましい。   Moreover, the resin composition for neutron shielding of the present invention contains a high-density metal powder for shielding gamma rays by increasing the density of the shielding material. Examples of the high-density metal for shielding gamma rays include, but are not limited to, Fe, Ni, Cu, W, Pb, and oxides thereof. As such a high-density metal powder, one kind of powder can be used, and two or more kinds of powders can be mixed and used. Among these, lead oxide (PbO) is particularly preferable because it has high chemical stability, is inexpensive, and does not significantly affect the neutron shielding material mainly composed of polymer.

上記高密度金属物質は粉末で用いられ、その粒径及び添加量は適切に調節して添加されることができる。高密度金属粉末の添加量は、用いられる粉末の種類や他の成分の種類、含有量などによって変動されることができるが、樹脂組成物全体重量に対して1〜30重量%の範囲で含まれることが好ましい。高密度金属粉末が1重量%未満の場合は、遮蔽材の密度増加効果が低く、30重量%を超過する場合は、遮蔽材の水素濃度低下及び物性低下の問題がある。   The high-density metal material is used as a powder, and the particle size and the amount added can be adjusted appropriately. The amount of the high-density metal powder added may vary depending on the type of powder used, the type of other components, the content, etc., but is included in the range of 1 to 30% by weight based on the total weight of the resin composition. It is preferable that When the density of the high-density metal powder is less than 1% by weight, the effect of increasing the density of the shielding material is low, and when it exceeds 30% by weight, there is a problem of a decrease in hydrogen concentration and physical properties of the shielding material.

従来は、上記中性子吸収用ホウ素化合物またはガンマ線遮蔽用高密度金属粉末粒子については、樹脂内の分散性及び放射線遮蔽性を考慮して平均粒径10〜200μm程度のマイクロサイズの粉末が用いられてきた。即ち、放射線遮蔽性を考えると、粒子が小さいほど好ましいが、エポキシ樹脂内における分散性限界を考慮するとさらに小さいナノサイズの粒子の使用には限界があった。   Conventionally, with respect to the boron compound for neutron absorption or the high-density metal powder particles for gamma ray shielding, a micro-sized powder having an average particle size of about 10 to 200 μm has been used in consideration of dispersibility in the resin and radiation shielding properties. It was. That is, considering the radiation shielding properties, the smaller the particles, the better. However, considering the dispersibility limit in the epoxy resin, there is a limit to the use of smaller nano-sized particles.

しかし、本発明では中性子吸収及びガンマ線遮蔽のためにナノメートルサイズの平均粒径を有するナノサイズの粉末を用いても、後述する本発明の方法によってエポキシ樹脂内に均一な分散性を確保することができるため、中性子吸収用ホウ素化合物及びガンマ線遮蔽用高密度金属をナノメートルサイズを有する粉末に適用することができる。また、このようにナノメートルサイズの粉末が均一に分散される場合は、本発明の組成物によって得られる遮蔽材の放射線遮蔽能及び機械的特性を強化させることができる。   However, in the present invention, even when nano-sized powder having an average particle size of nanometer size is used for neutron absorption and gamma ray shielding, uniform dispersibility is ensured in the epoxy resin by the method of the present invention described later. Therefore, a boron compound for neutron absorption and a high density metal for gamma ray shielding can be applied to a powder having a nanometer size. In addition, when the nanometer-sized powder is uniformly dispersed in this way, the radiation shielding ability and mechanical properties of the shielding material obtained by the composition of the present invention can be enhanced.

ナノサイズの中性子吸収用ホウ素化合物及びガンマ線遮蔽のための高密度金属粉末を均一に分散させるべく、本発明では超音波ホーンを用いる。より具体的には、図1に概略的に示されているように、マトリックス樹脂であるエポキシ樹脂に対する硬化剤にナノサイズの粉末を混合し、得られた混合物に上記超音波ホーンを用いて超音波を直接に加えることで、簡単に粉末を均一に分散させることができる。上記超音波処理は、ナノサイズのホウ素化合物及び高密度金属粉末をともに処理したり、それぞれ別に処理したりすることができる。このようにナノサイズ粉末と硬化剤との混合物に超音波ホーンを入れて直に超音波を加えることで、ナノ粒子の表面が硬化剤によってコーティングされる。これにより、硬化剤内にナノ粒子が均一に分散されることができる。   In order to uniformly disperse the nano-sized boron compound for neutron absorption and the high-density metal powder for gamma ray shielding, an ultrasonic horn is used in the present invention. More specifically, as schematically shown in FIG. 1, a nano-sized powder is mixed with a curing agent for an epoxy resin that is a matrix resin, and the obtained mixture is supersonic using the ultrasonic horn. By directly applying sound waves, the powder can be easily and uniformly dispersed. In the ultrasonic treatment, the nano-sized boron compound and the high-density metal powder can be treated together or separately. Thus, the surface of a nanoparticle is coated with a hardening | curing agent by putting an ultrasonic horn in the mixture of nanosize powder and a hardening | curing agent, and adding an ultrasonic wave directly. Thereby, nanoparticles can be uniformly dispersed in the curing agent.

これは、直接超音波による励起がエポキシマトリックス内におけるナノ粒子の分散及びエポキシマトリックスとナノ粒子との結合を強化するメカニズムではないが、強力な超音波エネルギーがナノ粒子表面に微細バブルの破壊を生成して密度変動をもたらし、上記ナノ粒子表面における密度変動中に硬化剤とナノ粒子との間のエポキシマトリックスでの粒子の濡れ性を向上させるための強いファンデルワールス力によって得られるものと考えられる。   This is not the mechanism by which direct ultrasonic excitation enhances nanoparticle dispersion and bonding between the epoxy matrix and the nanoparticles, but strong ultrasonic energy generates microbubble breaks on the nanoparticle surface. It is thought that this is caused by strong van der Waals force to improve the wettability of the particles in the epoxy matrix between the curing agent and the nanoparticles during density fluctuations at the nanoparticle surface. .

上記のようなエポキシ樹脂、硬化剤及び硬化剤によって表面コーティングされた中性子吸収用ホウ素化合物及びガンマ線遮蔽用高密度金属粉末を含むエポキシ樹脂組成物を用いてエポキシ複合材を製造することで、中性子遮蔽能に優れた中性子遮蔽材を得ることができる。   Neutron shielding by producing an epoxy composite using an epoxy resin composition comprising an epoxy resin as described above, a boron compound for neutron absorption surface-coated with a curing agent and a curing agent, and a high-density metal powder for gamma ray shielding. A neutron shielding material excellent in performance can be obtained.

また、このような本発明の中性子遮蔽用樹脂組成物は、選択的に水酸化アルミニウムや水酸化マグネシウムなどの難燃剤も含むことができる。このような難燃剤は、例えば、火事が発生した場合のように中性子遮蔽材が高温にさらされたときに中性子遮蔽能を維持することができるように中性子遮蔽材を残存させることを目的に添加されるもので、上記難燃剤を単独で用いたり、または2種類以上混合して用いることができる。   Moreover, such a neutron shielding resin composition of the present invention can optionally contain a flame retardant such as aluminum hydroxide or magnesium hydroxide. Such a flame retardant is added for the purpose of leaving the neutron shielding material so that the neutron shielding ability can be maintained when the neutron shielding material is exposed to a high temperature, for example, when a fire occurs. Therefore, the above flame retardant can be used alone or in combination of two or more.

一般に、上記水酸化マグネシウム及び水酸化アルミニウムの難燃剤は、粉末状であり、これら難燃剤粉末の粒径に関しては特に限定されないが、10μm以下の平均粒径を有するものを用いることができる。上記中性子吸収及び2次ガンマ線遮蔽のための粉末と同様に、粒子サイズが小さいほどさらに良好な難燃特性及び遮蔽材の機械的物性の向上効果を得ることができることから、10μm以下の平均粒径を有するものを用いることができるが、ナノサイズの平均粒径を有する難燃剤を用いることがより好ましい。   In general, the flame retardants of magnesium hydroxide and aluminum hydroxide are in powder form, and the particle size of these flame retardant powders is not particularly limited, but those having an average particle size of 10 μm or less can be used. Like the powder for neutron absorption and secondary gamma ray shielding, the smaller the particle size, the better the flame retardancy and the improvement effect of the mechanical properties of the shielding material. However, it is more preferable to use a flame retardant having a nano-sized average particle diameter.

このような難燃剤も上記ホウ素化合物粉末及び高密度金属粉末と同様に直接超音波処理を加えることで、難燃剤粉末表面を硬化剤でコーティングして硬化剤内における均一な分散効果を図ることができる。   As with the boron compound powder and the high-density metal powder, such a flame retardant can be directly subjected to ultrasonic treatment to coat the surface of the flame retardant powder with a curing agent to achieve a uniform dispersion effect in the curing agent. it can.

上記難燃剤の添加量は、用いられる難燃剤や他の成分の種類、含有量などによって変動されることができるもので、特に限定されないが、樹脂組成物全体重量に対して10〜30重量%の範囲で添加されることが好ましい。難燃剤が10重量%未満の場合は難燃剤使用によって得られる難燃効果が弱く、30重量%を超過すると高分子を主体にした水素濃度が相対的に減少するようになって中性子吸収能が低下するおそれがある。   The amount of the flame retardant added may vary depending on the type of flame retardant used and other components, content, etc., and is not particularly limited, but is 10 to 30% by weight based on the total weight of the resin composition. It is preferable to add in the range. When the flame retardant is less than 10% by weight, the flame retardant effect obtained by using the flame retardant is weak, and when it exceeds 30% by weight, the hydrogen concentration mainly composed of polymer is relatively decreased and the neutron absorption ability is reduced. May decrease.

本発明に従い、直接超音波処理によって中性子吸収粉末及び高密度金属粉末を硬化剤でコーティングし、硬化剤内に均一に分散させた後、その混合物をマトリックスとして用いられるエポキシ樹脂と混合して得られた樹脂組成物を用いて中性子遮蔽材を製造すると、中性子遮蔽材の機械的物性の向上効果を奏することができる。   According to the present invention, the neutron absorbing powder and the high-density metal powder are coated with a curing agent by direct sonication, and uniformly dispersed in the curing agent, and then the mixture is mixed with an epoxy resin used as a matrix. When a neutron shielding material is produced using the above resin composition, the mechanical properties of the neutron shielding material can be improved.

以下では、実施例を通じて本発明をより具体的に説明する。しかし、本発明は、以下の実施例によって限定されない。   Hereinafter, the present invention will be described more specifically through examples. However, the present invention is not limited by the following examples.

実施例1   Example 1

水添エポキシ樹脂(ST3000、Kukdo Chemical.Co.,LTD.)60重量部及びビスフェノールAタイプのエポキシ樹脂(YD127、Kukdo Chemical.Co.,LTD.)40重量部のエポキシ樹脂、アミン硬化剤(KH−816、Kukdo Chemical.Co.,LTD.)55重量部及び平均粒度500nm(Kojundo Chem.,Japan)のBC粉末を上記エポキシ樹脂、アミン硬化剤及びBC粉末を含む全体重量に対して5重量%の含量で添加してエポキシ樹脂組成物を製造した。 60 parts by weight of a hydrogenated epoxy resin (ST3000, Kukdo Chemical. Co., LTD.) And 40 parts by weight of an epoxy resin of a bisphenol A type (YD127, Kukdo Chemical. Co., LTD.), An amine curing agent (KH) -816, Kukdo Chemical. Co., LTD.) 55 parts by weight and B 4 C powder having an average particle size of 500 nm (Kojundo Chem., Japan) with respect to the total weight including the epoxy resin, amine curing agent and B 4 C powder. The epoxy resin composition was prepared by adding 5% by weight.

まず、上記BC粉末として以下のような2種類を用いた。 First, the following two types of B 4 C powder were used.

i)何の表面処理も施されていないBC粉末の粒子
ii)BC粉末とエポキシ樹脂を10:1の重量比で混合した後、これをアセトンが入っているビーカーにアセトン重量に対して0.35重量部になるように添加して混練した。上記ビーカーを超音波バスに30分間入れた後、上記ビーカーを乾燥オーブンに入れてアセトンを蒸発させた。これにより、BC粉末をエポキシ樹脂でコーティングしてエポキシコーティングされたBC粉末が得られた。
i) Particles of B 4 C powder not subjected to any surface treatment ii) After mixing B 4 C powder and epoxy resin in a weight ratio of 10: 1, this was added to a beaker containing acetone to the weight of acetone. The mixture was added and kneaded so as to be 0.35 part by weight. The beaker was placed in an ultrasonic bath for 30 minutes, and then the beaker was placed in a drying oven to evaporate acetone. As a result, the B 4 C powder was coated with an epoxy resin to obtain an epoxy-coated B 4 C powder.

上記得られたそれぞれのBC粉末をFE−SEMで撮影し、そのイメージを図2に示した。図2において、(a)はi)の表面処理されていないBC粉末のFE−SEMイメージ、(b)はエポキシ樹脂でコーティングされたBC粉末のFE−SEMイメージである。 Each of the obtained B 4 C powders was photographed with FE-SEM, and the image is shown in FIG. In FIG. 2, (a) is an FE-SEM image of B 4 C powder that is not surface-treated in i), and (b) is an FE-SEM image of B 4 C powder coated with an epoxy resin.

図2から分かるように、上記エポキシコーティングされたBC粉末は、(a)の表面処理されていないBC粒子とは異なる表面モフォロジーを有することから、BC粒子表面にエポキシコーティング層を有すると判断した。 As can be seen from FIG. 2, the epoxy-coated B 4 C powder has a surface morphology different from that of the non-surface-treated B 4 C particles in (a), and thus the epoxy coating layer is formed on the surface of the B 4 C particles. It was judged to have.

上記のようなBC粉末を用いてBC/エポキシ複合材を以下のような方法でそれぞれ製造した。 B 4 C / epoxy composites were produced by the following methods using the B 4 C powder as described above.

水添エポキシ樹脂(ST3000)及びビスフェノールAタイプのエポキシ樹脂(YD127、Kukdo Chemical.Co.,LTD.)を予備混合して高い水素濃度を有するエポキシ樹脂を製造した。   A hydrogenated epoxy resin (ST3000) and a bisphenol A type epoxy resin (YD127, Kukdo Chemical. Co., LTD.) Were premixed to produce an epoxy resin having a high hydrogen concentration.

その後、上記i)及びii)のBC粉末を硬化剤(KH−816)と混合して硬化剤−BCの混合物を用意し、この混合物を上記用意されたエポキシ樹脂と混合して組成物1及び2を製造した。 Thereafter, the B 4 C powders of i) and ii) above are mixed with a curing agent (KH-816) to prepare a mixture of curing agent-B 4 C, and this mixture is mixed with the prepared epoxy resin. Compositions 1 and 2 were prepared.

一方、上記i)及びii)のBC粉末を図1のように上記アミン硬化剤に混合し、5分間機械的撹拌した後、超音波ホーン(JUW−2014、JANO Sonic Ltd.,Korea)を上記混合物に入れ、20分間超音波処理して励起することで、アミン硬化剤で表面処理されたBC−硬化剤の混合物が得られた。このとき、超音波は、周波数が20kHz、電力が約50Wであった。続いて、上記アミン硬化剤で表面処理されたBC−硬化剤の混合物を上記用意されたエポキシ樹脂に混合することで組成物3及び4を製造した。 On the other hand, the B 4 C powders of i) and ii) were mixed with the amine curing agent as shown in FIG. 1 and mechanically stirred for 5 minutes, and then an ultrasonic horn (JUW-2014, JANO Sonic Ltd., Korea) Was put into the above mixture and sonicated for 20 minutes to be excited to obtain a mixture of B 4 C-curing agent surface-treated with an amine curing agent. At this time, the ultrasonic wave had a frequency of 20 kHz and a power of about 50 W. Subsequently, compositions 3 and 4 were produced by mixing a mixture of B 4 C-curing agent surface-treated with the amine curing agent with the prepared epoxy resin.

上記のように得られた組成物1から4をそれぞれ15分間エポキシミキサーで回転ブレードによって撹拌した。上記ブレードの回転速度を65〜70rpmに維持し、混合中に混合チャンバーを真空ポンプにつないで空隙を最小限にした。このような機械的混合の後に、上記エポキシ混合物をシリコンモールドに注ぎ、50℃の乾燥オーブンで20時間硬化して4種類のBC/エポキシ複合材をそれぞれ製造した。 Compositions 1 to 4 obtained as described above were each stirred with a rotating blade in an epoxy mixer for 15 minutes. The blade rotation speed was maintained at 65-70 rpm and the mixing chamber was connected to a vacuum pump during mixing to minimize voids. After such mechanical mixing, the epoxy mixture was poured into a silicon mold and cured in a drying oven at 50 ° C. for 20 hours to produce four types of B 4 C / epoxy composites.

得られたBC/エポキシ複合材に存在するBC粒子の表面状態を評価すべく、上記で得られた4種類のBC/エポキシ複合材の表面をSEMで撮影し、そのイメージを図3に示した。図3において、(a)は何の処理もされていないraw−BCが用いられた組成物1によって得られた複合材の破断面のイメージ、(b)はエポキシコーティングされたBC(epoxy−coated BC)が用いられた組成物2によって得られた複合材の破断面のイメージ、(c)は何の処理もされていないraw−BCを直接超音波処理して得られたBCが用いられた組成物3によって得られた複合材の破断面のイメージ、(d)はエポキシコーティングされたBC(epoxy−coated BC)を入れて超音波処理して得られたBCが用いられた組成物4によって得られた複合材の破断面のイメージである。 To evaluate the surface state of the resulting B 4 C / epoxy is present in the composite material B 4 C particles, photographed surface of the 4 types of B 4 C / epoxy composite material obtained by the above SEM, the image Is shown in FIG. In FIG. 3, (a) is an image of a fracture surface of the composite material obtained by the composition 1 using raw-B 4 C that has not been treated, and (b) is an epoxy-coated B 4 C. Image of fracture surface of composite material obtained by composition 2 using (epoxy-coated B 4 C), (c) direct sonication of raw-B 4 C which has not been treated the resulting B 4 C is fracture surface of the resulting composite material with a composition 3 used image, (d) sonication put epoxy coated B 4 C (epoxy-coated B 4 C) an image of a fracture surface of the resulting B 4 C was obtained with the composition 4 used composites with.

図3の(a)を参照すると、上記BC粒子は相対的に適宜に分散されているように見えるが、イメージ上に円で示された粒子表面とマトリックスとの間にギャップがあることが確認できる。上記ギャップは、マトリックスと粒子との結合が弱いことを示す。 Referring to FIG. 3 (a), the B 4 C particles appear to be relatively appropriately dispersed, but there is a gap between the particle surface indicated by a circle on the image and the matrix. Can be confirmed. The gap indicates a weak bond between the matrix and the particles.

また、図3の(b)から分かるように、表面にBC粒子の凝集が観察されており、図3の(b)に挿入された拡大図によると、粒子境界部にギャップがあることが分かる。このような結果により、エポキシ樹脂でコーティングされたBCを用いても、BC凝集体とエポキシマトリックスとの結合力が弱いと予想できる。 Further, as can be seen from FIG. 3 (b), aggregation of B 4 C particles is observed on the surface, and according to the enlarged view inserted in FIG. 3 (b), there is a gap at the particle boundary. I understand. Such a result, even with a B 4 C coated with epoxy resin, B 4 C aggregates and binding force between the epoxy matrix can be expected to weak.

このような図3の(a)及び(b)のイメージから、BC粒子に対するエポキシコーティングは、エポキシマトリックスにおける分散及びエポキシマトリックスとの結合を向上させない点が予想できる。むしろ、raw−BCの方が、エポキシマトリックスと粒子との結合力は多少弱いが、より良好な分散性を示すと言える。 From the images of FIGS. 3A and 3B, it can be predicted that the epoxy coating on the B 4 C particles does not improve the dispersion in the epoxy matrix and the bonding with the epoxy matrix. Rather, it can be said that raw-B 4 C shows better dispersibility although the bonding force between the epoxy matrix and the particles is somewhat weaker.

これに対し、組成物3及び4を用いて得られた複合体のイメージを示す図3の(c)及び(d)では、BC粒子が複合材の破断面にほんの一部観察された。ポリマーマトリックスとフィラー粒子との結合が強いと、破断面は粒子と高分子との界面ではなく、マトリックス自体に沿って展開されるようになる。よって、図3の(c)及び(d)のSEMイメージに示される少量のBC粒子は、エポキシマトリックスとBC粒子との良好な結合を示す確固たる証であると言える。これにより、超音波ホーンを用いて直接超音波処理して励起すると、(a)及び(b)の場合に比べて上記エポキシマトリックスとBC粒子との結合がより強くなることが分かる。 On the other hand, in FIGS. 3C and 3D showing images of the composites obtained using the compositions 3 and 4, only a part of the B 4 C particles were observed on the fracture surface of the composite material. . When the bond between the polymer matrix and the filler particles is strong, the fracture surface is developed along the matrix itself, not at the interface between the particles and the polymer. Therefore, it can be said that the small amount of B 4 C particles shown in the SEM images of FIGS. 3C and 3D is a firm proof showing a good bond between the epoxy matrix and the B 4 C particles. Thus, it can be seen that when excited by direct ultrasonic treatment using an ultrasonic horn, the bond between the epoxy matrix and the B 4 C particles is stronger than in the cases of (a) and (b).

また、直接超音波処理による励起は、図3の(c)及び(d)において粒子間の凝集が示されていないことから、BC粒子の分散の向上に効果的であると判断される。 In addition, the excitation by direct sonication is judged to be effective in improving the dispersion of B 4 C particles because aggregation between particles is not shown in FIGS. 3C and 3D. .

直接超音波処理による励起がエポキシマトリックス内におけるBC粒子の分散及びエポキシマトリックスとBC粒子との結合を強化させるメカニズムは、明確に理解されるものではなく、いかなる理論によっても限定されないが、強力な超音波エネルギーが硬化剤によって生成された微細バブルの破壊を誘導してBC表面において密度の変動をもたらし、上記のような密度変動中に、アミン硬化剤分子のリング置換体とBCとの間に強いファンデルワールス力が作用してエポキシマトリックスにおける粒子の濡れ性を向上させると予想される。 The mechanism by which direct sonication excitation enhances the dispersion of B 4 C particles in the epoxy matrix and the bond between the epoxy matrix and the B 4 C particles is not clearly understood and is not limited by any theory. , Strong ultrasonic energy induces the destruction of microbubbles generated by the hardener, resulting in density fluctuations at the B 4 C surface, during the density fluctuations as described above, the ring substituents of amine hardener molecules It is expected that a strong van der Waals force acts with B 4 C to improve the wettability of the particles in the epoxy matrix.

また、BC粒子の表面状態を評価すべく、BC−硬化剤混合物のFTIRスペクトルを分析して図4に示した。図4において、(a)はiii)によって得られた超音波処理により分散されたraw−BC/硬化剤に関するもの、(b)はi)の超音波分散されていないrawBC/硬化剤に関するもの、(c)は純粋な硬化剤に関するもの、(d)はii)の超音波分散されていないエポキシコーティングされたBC/硬化剤に関するもの、さらに(e)はiv)の超音波分散されたエポキシコーティングされたBC/硬化剤に関するFTIRスペクトルである。 Further, in order to evaluate the surface state of the B 4 C particles, the FTIR spectrum of the B 4 C-curing agent mixture was analyzed and shown in FIG. In FIG. 4, (a) is related rawB 4 C / curing agent dispersed by sonication obtained by iii), (b) is i) a rawB 4 C / curing has not been ultrasonic dispersion (C) relates to a pure curing agent, (d) relates to an ultrasonically dispersed epoxy coated B 4 C / curing agent of ii), and (e) more than iv) FIG. 4 is an FTIR spectrum for sonic dispersed epoxy coated B 4 C / curing agent. FIG.

このようなFTIRスペクトルは、KRS−5のウィンドー内部に位置したBC分散された硬化剤の薄い液状フィルムを用いて得られた。図4において、硬化剤のリング内部に炭素と炭素の伸縮振動モードを含む芳香族C=C振動が1607cm−1に示されており、1585cm−1に位置した二つ目のピークはリング置換体によるものである。セラミック粉末が分散された高分子複合体の吸収ピークを調査することは粒子結合の評価に非常に有用である。これは、高分子分子の振動吸収ピークが、ファンデルワールス相互作用からの影響を大きく受けることに起因する。 Such FTIR spectra were obtained using a thin liquid film of B 4 C dispersed curing agent located inside the KRS-5 window. 4, aromatic C = C vibrations, including a stretching vibration mode of the carbon and the carbon in the ring inside of the curing agent is shown in 1607 cm -1, second peaks located in 1585 cm -1 ring substituents Is due to. Examining the absorption peak of a polymer composite in which a ceramic powder is dispersed is very useful for evaluating particle bonding. This is due to the fact that the vibration absorption peak of the polymer molecule is greatly affected by the van der Waals interaction.

図4の(b)及び(d)は、純粋な硬化剤に該当する(c)と同様に、各位置において二つの同一の伸縮ピークを示す。このようなスペクトルにおいて、硬化剤の吸収ピークは、(b)及び(d)ともにBCの影響を受けない。これは、BC表面において硬化剤分子との結合が硬化剤の吸収ピークを変化させるほど十分に強くない点を意味する。これに対し、図4の(a)及び(e)に示された吸収ピークは、硬化剤分子の上記C=C伸縮振動がBC粒子との強い結合の影響を受けるため低く平坦である。このような平坦で低い吸収ピークは、ファンデルワールス相互作用によってBCと強く結合されたリング置換体からの影響を受ける、連続して赤色偏移された伸縮運動エネルギースペクトルに起因すると言える。 4 (b) and 4 (d) show two identical stretch peaks at each position, similar to (c) which corresponds to a pure curing agent. In such a spectrum, the absorption peak of the curing agent is not affected by B 4 C in both (b) and (d). This means that the bond with the hardener molecule on the B 4 C surface is not strong enough to change the absorption peak of the hardener. On the other hand, the absorption peaks shown in FIGS. 4A and 4E are low and flat because the C = C stretching vibration of the curing agent molecule is affected by strong bonding with B 4 C particles. . It can be said that such a flat and low absorption peak is caused by a continuous red-shifted stretch kinetic energy spectrum that is affected by a ring substitute strongly bonded to B 4 C by van der Waals interaction.

また、BC/エポキシ複合材の最終引張強度及びヤングモジュラスを、多目的機械テスト器具(Instron 3000、USA)が用いられたASTM D638標準の引張サンプルを用いて分析し、その結果を図5に示した。上記引張速度は50mm/min、試片数はそれぞれ5個以上である。図5のグラフにおけるエラーバー(error bar)は各サンプルに対して5回の測定を行い標準偏差を示したものである。 The final tensile strength and Young's modulus of the B 4 C / epoxy composite were analyzed using ASTM D638 standard tensile samples using a multipurpose mechanical test instrument (Instron 3000, USA) and the results are shown in FIG. Indicated. The tensile speed is 50 mm / min, and the number of specimens is 5 or more, respectively. The error bar in the graph of FIG. 5 shows the standard deviation after five measurements for each sample.

図5は多様な条件下において製造された純粋なエポキシマトリックス及びBC−エポキシ複合材の最終引張強度を示す。一般に、エポキシマトリックスの引張強度は、セラミックフィラーの添加によって減少することが明らかである。これに対し、エポキシマトリックス内におけるフィラー粒子の分散及びエポキシマトリックスとの結合をうまく制御すると、エポキシ複合材の機械的特性を強化させることができる。 FIG. 5 shows the final tensile strength of a pure epoxy matrix and B 4 C-epoxy composite made under various conditions. In general, it is clear that the tensile strength of the epoxy matrix decreases with the addition of ceramic filler. On the other hand, if the dispersion of the filler particles in the epoxy matrix and the bonding with the epoxy matrix are well controlled, the mechanical properties of the epoxy composite can be enhanced.

図5によると、純粋なエポキシ樹脂が用いられたエポキシマトリックスにおける引張強度は54.1MPaであるが、(1)の組成物に用いられた表面処理されていないraw−BC粒子がエポキシマトリックスに分散される場合、BC/エポキシ複合材の引張強度が43.6MPaと多少減少し、(2)の組成物に用いられたエポキシ−コーティングされたBC/エポキシ複合材の引張強度は31.6MPaとさらに減少した。 According to FIG. 5, the tensile strength of the epoxy matrix using a pure epoxy resin is 54.1 MPa, but the raw surface-treated raw-B 4 C particles used in the composition of (1) are epoxy matrix. The tensile strength of the B 4 C / epoxy composite is slightly reduced to 43.6 MPa, and the tensile strength of the epoxy-coated B 4 C / epoxy composite used in the composition of (2) Further decreased to 31.6 MPa.

このような引張強度の減少は、図3の(a)及び(b)に示されたエポキシマトリックスとBCとの弱い界面結合による結果であると考えられる。これは、不純物が占める面積または体積が損失されたエポキシマトリックスの面積または体積と同一であり、強度の低下をもたらすためである。不純物のサイズに関連し、エポキシ−コーティングされたBCの凝集体のサイズがコーティングされないBCに比べて大きいため、引張強度をさらに弱化させると考えることが合理的である。 Such a decrease in tensile strength is considered to be a result of weak interfacial bonding between the epoxy matrix and B 4 C shown in FIGS. 3 (a) and 3 (b). This is because the area or volume occupied by impurities is the same as the area or volume of the lost epoxy matrix, resulting in a decrease in strength. In relation to the size of the impurities, it is reasonable to think that the tensile strength is further weakened because the size of the epoxy-coated B 4 C aggregates is larger than the uncoated B 4 C.

これに対し、超音波ホーンを用いた直接超音波処理により硬化材内に分散されたraw−BC及びエポキシ−コーティングされたBCが用いられた組成物3及び4によって得られたBC/エポキシ複合材の引張強度は、それぞれ52.6MPa及び56.9MPaと向上した。これらは、直接超音波分散を施さずに製造されたものに比べて遥かに高い水準の引張特性を示す。これらは、純粋なエポキシマトリックスと比較しても、エラー範囲において競争力があるか数値が高い。上記内容により、直接超音波処理によって分散されて得られた組成物を用いることで、複合材の引張強度を強化させることができることが分かる。このような引張強度の強化は、図3の(c)及び(d)に示されているように、BCとマトリックスとの向上した界面結合による結果であると判断できる。 In contrast, raw-B 4 C and epoxy are dispersed in the cured material by direct sonication using an ultrasonic horn - obtained by the compositions 3 and 4 coated B 4 C was used B The tensile strength of the 4 C / epoxy composite was improved to 52.6 MPa and 56.9 MPa, respectively. They exhibit a much higher level of tensile properties than those produced without direct ultrasonic dispersion. These are competitive or high in the error range compared to pure epoxy matrices. From the above contents, it can be seen that the tensile strength of the composite can be enhanced by using the composition obtained by being directly dispersed by ultrasonic treatment. As shown in FIGS. 3C and 3D, it can be determined that such enhancement of tensile strength is a result of improved interface bonding between B 4 C and the matrix.

直接超音波処理されたraw−BC/エポキシ複合材及びエポキシ−コーティングされたBC/エポキシ複合材の引張強度は類似した値を示す。これは、エポキシコーティングされたか否かに関わらず、BC粒子の直接超音波による励起は超音波励起中にコーティングされた物質のタイプとは関係なくファンデルワールス相互作用を増加させることを意味する。 Direct sonicated raw-B 4 C / epoxy composite and epoxy - tensile strength of the coated B 4 C / epoxy composite shows the similar values. This means that direct ultrasonic excitation of B 4 C particles, regardless of whether epoxy coated, increases Van der Waals interactions regardless of the type of material coated during ultrasonic excitation. To do.

これは、図4のBC/エポキシ複合体のFTIRスペクトルによっても確認された。硬化剤分子のピーク強度の変化によると、BC自体(図4(a))またはBC表面のエポキシの影響を受けることが明確である。BC表面のエポキシによる影響と関連し、BC表面に結合されたエポキシ分子は、BC自体と類似して硬化剤分子の伸縮振動に影響を及ぼすものと思われる。このような強力なファンデルワールス相互作用は、超音波励起中のBC粒子の界面におけるエポキシまたは硬化剤分子の相互拡散によるものであることができる。しかし、直接超音波励起されなかった場合、硬化剤分子の振動モードは、BCはもちろんのこと、BC上のエポキシ分子によっても変化しなかった。 This was also confirmed by the FTIR spectrum of the B 4 C / epoxy composite in FIG. According to the change in the peak intensity of the curing agent molecules, it is clear that B 4 C itself (FIG. 4 (a)) or the B 4 C surface epoxy is affected. Associated with influence of epoxy B 4 C surface, an epoxy molecules bound to B 4 C surface is likely to affect the stretching vibration of the curing agent molecule similar to B 4 C itself. Such strong van der Waals interactions can be due to interdiffusion of epoxy or hardener molecules at the interface of B 4 C particles during ultrasonic excitation. However, if not directly ultrasonic excitation, the vibration mode of the curing agent molecule, B 4 C, of course, did not vary with the epoxy molecules on B 4 C.

図6には、純粋なエポキシマトリックスに比べてBC/エポキシ複合材のヤングモジュラスが増加することが示されている。このように、セラミックフィラーの添加により高分子複合材のモジュラスが増加する傾向は、純粋なエポキシマトリックスに比べて高い強度を示す一般的な結果である。しかし、本発明における直接超音波分散によるモジュラスの増加は、BCとエポキシマトリックスとの強力な界面接着に基づいた高い靭性により維持または増加した変形率の特性から説明することができる。 FIG. 6 shows that the Young modulus of the B 4 C / epoxy composite is increased compared to a pure epoxy matrix. Thus, the tendency for the modulus of the polymer composite to increase due to the addition of the ceramic filler is a general result showing higher strength than the pure epoxy matrix. However, the increase in modulus due to direct ultrasonic dispersion in the present invention can be explained by the characteristics of deformation rate maintained or increased by high toughness based on strong interfacial adhesion between B 4 C and epoxy matrix.

実施例2−水酸化アルミニウム含有エポキシ複合材の製造及び物性評価   Example 2-Production and physical property evaluation of aluminum hydroxide-containing epoxy composite

平均粒子サイズ5μmの水酸化アルミニウム(Al(OH))粉末が用いられた点を除いては、実施例1の組成物1及び3と同一の方法でエポキシ樹脂組成物5及び6をそれぞれ製造し、上記それぞれの組成物を用いて実施例1と同一の方法によって水酸化アルミニウム/エポキシ複合材を製造した。これによって得られた複合材をそれぞれ複合材5及び6とする。 Epoxy resin compositions 5 and 6 were produced in the same manner as compositions 1 and 3 of Example 1, respectively, except that aluminum hydroxide (Al (OH) 3 ) powder having an average particle size of 5 μm was used. Then, an aluminum hydroxide / epoxy composite material was produced by the same method as in Example 1 using the respective compositions. The composite materials thus obtained are referred to as composite materials 5 and 6, respectively.

上記で得られた複合材5及び6の機械的物性として最大引張強度及び破壊前の延伸率を測定した。超音波処理段階を行っていない組成物5によって得られた複合材5の引張強度及び破壊前の延伸率はそれぞれ28.0MPa及び7.3%であったが、超音波処理段階を行った組成物6によって得られた複合材6の引張強度及び破壊前の延伸率はそれぞれ40.9MPa及び9.6%であった。   As the mechanical properties of the composite materials 5 and 6 obtained above, the maximum tensile strength and the stretch ratio before breaking were measured. The composite 5 obtained by the composition 5 not subjected to the ultrasonic treatment stage had a tensile strength and a stretch ratio before breaking of 28.0 MPa and 7.3%, respectively, but the composition subjected to the ultrasonic treatment stage The tensile strength of the composite material 6 obtained by the product 6 and the stretch ratio before breaking were 40.9 MPa and 9.6%, respectively.

上記結果から分かるように、直接超音波処理によって硬化剤内に分散される場合は、純粋なエポキシ樹脂に比べて引張強度及び延伸率値が多少低下するが、このような直接超音波処理を行っていない複合材6と比べると引張強度が約45%高く、延伸率も約7.3%向上する。   As can be seen from the above results, when dispersed in the curing agent by direct sonication, the tensile strength and stretch ratio values are somewhat lower than those of pure epoxy resin, but such direct sonication is performed. The tensile strength is about 45% higher than that of the composite material 6 that is not, and the stretch ratio is improved by about 7.3%.

これにより、本発明による直接超音波処理は、マトリックス内にナノサイズの粉末はもちろんのこと、マイクロサイズの比較的大きい粉末も均一に分散させることができ、機械的物性も向上させることができる効果的な方法である。   As a result, the direct sonication according to the present invention can uniformly disperse not only nano-sized powder but also micro-sized powder in the matrix, and can improve mechanical properties. Method.

実施例3−BC粒度によるエポキシ複合材の熱中性子遮蔽能の評価 Example 3-Evaluation of thermal neutron shielding ability of epoxy composite by B 4 C particle size

2.5重量%のBC粒子を含むBC−エポキシ複合材において、用いられたBCの粒度によって熱中性子遮蔽能をMCNP(Monte Carlo n−Particles)プログラムを用いて評価し、その結果を図7に示した。一方、エポキシ複合材の厚さは3cmと仮定した。 In a B 4 C-epoxy composite containing 2.5% by weight of B 4 C particles, the thermal neutron shielding ability is evaluated using the MCNP (Monte Carlo-Particles) program according to the particle size of B 4 C used. The results are shown in FIG. On the other hand, the thickness of the epoxy composite was assumed to be 3 cm.

図7から分かるように、BC粒度が100μmから1μmまで粒度が減少するにつれ、中性子遮蔽能が向上することが分かる。しかし、1μm未満の粒度を有する場合は、一定の遮蔽能効果を示すことが分かる。これにより、粒度が1μm未満のナノサイズを有するホウ素化合物粉末を用いることで中性子遮蔽により優れた効果を奏することが分かる。 As can be seen from Figure 7, as the B 4 C particle size decreases the particle size from 100μm to 1 [mu] m, it can be seen that the neutron shielding ability is improved. However, it can be seen that when the particle size is less than 1 μm, a certain shielding effect is exhibited. Thereby, it turns out that there exists an outstanding effect by neutron shielding by using the boron compound powder which has a nano size whose particle size is less than 1 micrometer.

実施例4−PbO/エポキシ複合材の製造   Example 4 Production of PbO / Epoxy Composite

PbO粉末の分散において、超音波処理されるか否かによる引張強度への影響を把握すべく、PbO粉末が樹脂組成物全体重量に対して10重量%含まれるPbO/エポキシ樹脂組成物を製造し、上記樹脂組成物を用いてPbO/エポキシ複合材を製造した。このとき、PbO粉末は、それぞれ平均粒子サイズ10μm及び200nmの粉末を用いた。   A PbO / epoxy resin composition containing 10% by weight of the PbO powder with respect to the total weight of the resin composition was manufactured in order to grasp the influence on the tensile strength depending on whether or not the ultrasonic treatment was performed in the dispersion of the PbO powder. A PbO / epoxy composite material was manufactured using the above resin composition. At this time, the PbO powder was a powder having an average particle size of 10 μm and 200 nm, respectively.

上記平均粒子サイズ10μmのPbO粉末を用いて実施例1の組成物1を製造するのと同様の方法で樹脂組成物を製造して組成物7を製造し、上記平均粒子サイズ200nmのPbO粉末を用いて実施例1の組成物1を製造するのと同様の方法で樹脂組成物を製造して組成物8を製造した。また、上記平均粒子サイズ200nmのPbO粉末を用いて実施例1の組成物の3を製造するのと同様の方法で樹脂組成物を製造して組成物9を製造した。   Using the PbO powder having an average particle size of 10 μm, a resin composition was manufactured in the same manner as in manufacturing the composition 1 of Example 1 to manufacture the composition 7, and the PbO powder having an average particle size of 200 nm was prepared. The resin composition was manufactured by the method similar to manufacturing the composition 1 of Example 1, and the composition 8 was manufactured. Moreover, the resin composition was manufactured by the method similar to manufacturing the composition 3 of Example 1 using the said PbO powder with an average particle size of 200 nm, and the composition 9 was manufactured.

上記で得られた組成物7、8及び9を用いてPbO/エポキシ複合材を製造し、これによって得られた複合材をそれぞれ複合材7、8及び9とした。   A PbO / epoxy composite material was produced using the compositions 7, 8 and 9 obtained above, and the composite materials thus obtained were designated as composite materials 7, 8 and 9, respectively.

上記複合材7から9のPbO/エポキシ複合材の引張強度を測定し、その結果を図8に示した。   The tensile strengths of the PbO / epoxy composites of the composite materials 7 to 9 were measured, and the results are shown in FIG.

図8から分かるように、純粋なエポキシ樹脂で形成された遮蔽材(a)の引張強度は54.1MPaを示している。これに対し、マイクロサイズのPbO粉末を含み、直接超音波処理を施さなかった複合材(b)の引張強度は43.1MPa、ナノサイズのPbO粉末を含み、直接超音波処理を施さなかった複合材(c)の遮蔽材の引張強度は44.0MPaと測定された。(b)及び(c)の遮蔽材は、引張強度において大差がないことが分かる。   As can be seen from FIG. 8, the tensile strength of the shielding material (a) made of pure epoxy resin is 54.1 MPa. In contrast, the composite material (b) containing micro-sized PbO powder and not directly subjected to ultrasonic treatment had a tensile strength of 43.1 MPa, a composite containing nano-sized PbO powder and not subjected to direct ultrasonic treatment. The tensile strength of the shielding material of the material (c) was measured to be 44.0 MPa. It can be seen that the shielding materials (b) and (c) have no significant difference in tensile strength.

一方、ナノサイズのPbO粉末を含み、直接超音波処理を施してPbO粉末を表面処理した複合材(d)の遮蔽材は46.8MPaの引張強度値を示すことから、(b)及び(c)に比べて高い引張強度値を示すことが分かる。   On the other hand, since the shielding material of the composite material (d) containing nano-sized PbO powder and directly surface-treated with PbO powder by sonication shows a tensile strength value of 46.8 MPa, (b) and (c As can be seen from FIG.

上記内容から分かるように、PbO粉末を含むと純粋なエポキシより引張強度が低下するが、(d)のように直接超音波処理を用いるとエポキシ樹脂内にPbO粉末をより均一に分散させ、樹脂界面接着性を向上させることができるため、複合材の物性を改善させることができる。   As can be seen from the above, when PbO powder is included, the tensile strength is lower than that of pure epoxy. However, if direct ultrasonic treatment is used as shown in (d), the PbO powder is more uniformly dispersed in the epoxy resin. Since the interfacial adhesion can be improved, the physical properties of the composite material can be improved.

実施例5−複合材の熱中性子遮蔽能の評価   Example 5-Evaluation of thermal neutron shielding ability of composite material

C/PbO/Al(OH)を組成物全体重量に対してそれぞれ5重量%、10重量%及び25重量%含有するエポキシ複合材の粉末粒度による熱中性子遮蔽能をMCNPプログラムを用いて評価し、その結果を図9に示した。 Using MCNP program, thermal neutron shielding ability by powder particle size of epoxy composite containing B 4 C / PbO / Al (OH) 3 by 5 wt%, 10 wt% and 25 wt%, respectively, with respect to the total weight of the composition The evaluation was made and the results are shown in FIG.

C及びPbOの粒度をそれぞれ同一に100μm、1μm及び0.1μm、また、Al(OH)粉末の粒度は全ての場合において一律2μmに仮定した。また、エポキシ複合材の厚さは3cmと仮定した。 The particle sizes of B 4 C and PbO were assumed to be 100 μm, 1 μm, and 0.1 μm, respectively, and the Al (OH) 3 powder particle size was assumed to be uniformly 2 μm in all cases. The thickness of the epoxy composite was assumed to be 3 cm.

Al(OH)粉末の粒度を全ての場合において2μmと仮定したのは、Al(OH)の熱中性子及びガンマ線に対する遮蔽性能が他の粉末に比べて相対的に劣るためである。 The reason why the particle size of the Al (OH) 3 powder is assumed to be 2 μm in all cases is that the shielding performance against thermal neutrons and gamma rays of Al (OH) 3 is relatively inferior to other powders.

図9から分かるように、熱中性子に対する各粉末の粒度に関し、粒度が小さいほど熱中性子のフラックスが減少することが分かる。これにより、1μm未満の粒度を有する粉末を使用することで優れた中性子遮蔽効果を有することができることが分かる。   As can be seen from FIG. 9, regarding the particle size of each powder with respect to thermal neutrons, it can be seen that the smaller the particle size, the more the thermal neutron flux decreases. Thereby, it turns out that it can have the outstanding neutron shielding effect by using the powder which has a particle size of less than 1 micrometer.

実施例6−複合材のガンマ線遮蔽能の評価   Example 6-Evaluation of gamma ray shielding ability of composite material

C/PbO/Al(OH)を組成物全体重量に対してそれぞれ5重量%、10重量%及び25重量%含有するエポキシ複合材の粉末粒度によるガンマ線遮蔽能をMCNPプログラムを用いて評価し、その結果を図10及び図11に示した。 Evaluation of gamma ray shielding ability by powder particle size of epoxy composites containing 5%, 10% and 25% by weight of B 4 C / PbO / Al (OH) 3 with respect to the total weight of the composition, respectively, using MCNP program The results are shown in FIG. 10 and FIG.

このとき、用いられた粒子の粒度、濃度及びエポキシ複合材の厚さは上記実施例5と同一に設定し、ガンマ線エネルギーが1MeV及び0.1MeVの二つの場合に対して評価した。   At this time, the particle size and concentration of the particles used and the thickness of the epoxy composite were set to be the same as those in Example 5, and the evaluation was made for two cases where the gamma ray energy was 1 MeV and 0.1 MeV.

図10及び図11から分かるように、ガンマ線のエネルギーが0.1MeVの場合が1MeVの場合に比べてガンマ線のフラックス減少効果が増加する。これにより、1μm未満の粒度を有する粉末を用いる場合に優れたガンマ線遮蔽効果を有し、特に、低エネルギーガンマ線の場合、本エポキシ複合材がさらに優れた遮蔽能を有することが分かる。   As can be seen from FIGS. 10 and 11, the gamma ray flux reduction effect increases when the gamma ray energy is 0.1 MeV compared to 1 MeV. Thus, it can be seen that the gamma ray shielding effect is excellent when a powder having a particle size of less than 1 μm is used, and the epoxy composite material has a further excellent shielding ability particularly in the case of low energy gamma rays.

Claims (8)

中性子吸収用ホウ素化合物粉末、ガンマ線遮蔽用高密度金属粉末及び難燃剤粉末を含む混合物にアミン系硬化剤を混合して硬化剤と粉末との混合物を得る混合段階と、
前記混合物に超音波ホーンを直接に入れて超音波を加えて前記粉末表面をアミン系硬化剤でコーティングしてコーティング層を形成しながら硬化剤内に分散させる超音波処理段階と、
前記超音波処理された粉末が分散されたアミン系硬化剤をエポキシ樹脂と混合し、分散させる分散段階と
を含む、中性子遮蔽用エポキシ樹脂組成物の製造方法。
A mixing step of obtaining a mixture of the neutron absorbing boron compound powder, mixed amine curing agent of high density metal powder and a flame retardant powder gamma ray shielding including mixed-product curing agent powder,
An ultrasonic treatment step in which an ultrasonic horn is directly put into the mixture and ultrasonic waves are applied to coat the powder surface with an amine-based curing agent to form a coating layer and to be dispersed in the curing agent;
A dispersion step of mixing and dispersing an amine-based curing agent in which the ultrasonically treated powder is dispersed with an epoxy resin, and a method for producing a neutron shielding epoxy resin composition.
前記ホウ素化合物は、BC、BN、B及びB(OH)からなるグループより選択される少なくとも一つであり、前記高密度金属粉末は、Fe、Ni、Cu、W、Pb及びこれらの酸化物からなるグループより選択される少なくとも一つであり、前記難燃剤は、水酸化アルミニウム、水酸化マグネシウムからなるグループより選択される少なくとも一つである、請求項1に記載の中性子遮蔽用エポキシ樹脂組成物の製造方法。 The boron compound is at least one selected from the group consisting of B 4 C, BN, B 2 O 3 and B (OH) 3 , and the high-density metal powder includes Fe, Ni, Cu, W, and Pb. And at least one selected from the group consisting of these oxides, and the flame retardant is at least one selected from the group consisting of aluminum hydroxide and magnesium hydroxide. The manufacturing method of the epoxy resin composition for shielding. 前記ホウ素化合物及び高密度金属粉末は、粒子サイズが200nm以上1000nm未満である、請求項1に記載の中性子遮蔽用エポキシ樹脂組成物の製造方法。   The said boron compound and high-density metal powder are manufacturing methods of the epoxy resin composition for neutron shielding of Claim 1 whose particle size is 200 nm or more and less than 1000 nm. 前記難燃剤は、粒子サイズが200nm以上10μm以下である、請求項1に記載の中性子遮蔽用エポキシ樹脂組成物の製造方法。   The said flame retardant is a manufacturing method of the epoxy resin composition for neutron shielding of Claim 1 whose particle size is 200 nm or more and 10 micrometers or less. 請求項1から請求項のいずれか一項に記載の方法によって製造されたエポキシ樹脂組成物を一定形状に成形した後、乾燥硬化する段階を含む、中性子遮蔽材の製造方法。 The manufacturing method of a neutron shielding material including the step which dry-hardens, after shape | molding the epoxy resin composition manufactured by the method as described in any one of Claim 1 to 4 in a fixed shape. エポキシ樹脂100重量部に対し、
アミン硬化剤40〜60重量部と、
粒子サイズが200nm以上1000nm未満、前記アミン硬化剤でコーティングされた中性子吸収用ホウ素化合物粉末を樹脂組成物全体重量に対して1〜10重量%と、
子サイズが200nm以上1000nm未満、前記アミン硬化剤でコーティングされた2次ガンマ線遮蔽用高密度金属粉末を樹脂組成物全体重量に対して1〜30重量%と、
子サイズが200nm〜10μm、水酸化アルミニウム粉末、水酸化マグネシウム粉末またはこれらの混合物である難燃剤粉末を樹脂組成物全体重量に対して10〜30重量%と
を含む、放射線遮蔽用エポキシ樹脂組成物。
For 100 parts by weight of epoxy resin,
40-60 parts by weight of amine curing agent,
1-10 wt% of the boron compound powder for neutron absorption coated with the amine curing agent having a particle size of 200 nm or more and less than 1000 nm, based on the total weight of the resin composition,
Grain child size less than 1000nm than 200 nm, and 1 to 30 wt% secondary gamma ray density metal powder for shielding coated on the entire resin composition by weight in the amine curing agent,
Grain child size 200Nm~10myuemu, aluminum hydroxide powder, magnesium powder or flame retardant powder mixtures thereof hydroxide containing 10 to 30 wt% based on the total resin composition weight epoxy resin composition for radiation shielding object.
前記ホウ酸化合物粉末はBC、BN、B及びB(OH)からなるグループより選択される少なくとも一つであり、前記高密度金属粉末はFe、Ni、Cu、W、Pb及びこれらの酸化物からなるグループより選択される少なくとも一つである、請求項に記載の放射線遮蔽用エポキシ樹脂組成物。 The boric acid compound powder is at least one selected from the group consisting of B 4 C, BN, B 2 O 3 and B (OH) 3 , and the high-density metal powder is Fe, Ni, Cu, W, Pb. The radiation shielding epoxy resin composition according to claim 6 , which is at least one selected from the group consisting of these oxides. 前記水酸化アルミニウム粉末または水酸化マグネシウム粉末は、アミン硬化剤でコーティングされる、請求項に記載の放射線遮蔽用エポキシ樹脂組成物。
The radiation shielding epoxy resin composition according to claim 6 , wherein the aluminum hydroxide powder or magnesium hydroxide powder is coated with an amine curing agent.
JP2014510258A 2011-05-13 2012-05-11 Neutron shielding epoxy resin composition and method for producing the same Expired - Fee Related JP5784222B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0045085 2011-05-13
KR1020110045085A KR101297099B1 (en) 2011-05-13 2011-05-13 Epoxy resin compositions for neutron shielding materials and mehtod for preparing the same
PCT/KR2012/003721 WO2012157903A2 (en) 2011-05-13 2012-05-11 Epoxy resin composition for neutron shielding, and method for preparing same

Publications (2)

Publication Number Publication Date
JP2014514587A JP2014514587A (en) 2014-06-19
JP5784222B2 true JP5784222B2 (en) 2015-09-24

Family

ID=47177455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014510258A Expired - Fee Related JP5784222B2 (en) 2011-05-13 2012-05-11 Neutron shielding epoxy resin composition and method for producing the same

Country Status (5)

Country Link
US (1) US9745442B2 (en)
JP (1) JP5784222B2 (en)
KR (1) KR101297099B1 (en)
CN (1) CN103619949B (en)
WO (1) WO2012157903A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937160B (en) * 2014-04-04 2016-06-08 西安交通大学 The preparation method of a kind of nuclear radiation shield material
CN104103330A (en) * 2014-04-04 2014-10-15 西安交通大学 Nuclear radiation shielding material
CN104130546A (en) * 2014-04-04 2014-11-05 西安交通大学 Preparation method for nuclear radiation shielding material
GB2528272B (en) * 2014-07-15 2017-06-21 Tokamak Energy Ltd Shielding materials for fusion reactors
CN104710727B (en) * 2015-03-27 2017-11-17 中国科学院长春应用化学研究所 Epoxy resin-matrix neutron and gamma ray shielding composite and preparation method and application
CN105038124A (en) * 2015-06-24 2015-11-11 中国海洋石油总公司 Neutron shielding material for spent fuel shipping flask
WO2017030577A1 (en) * 2015-08-19 2017-02-23 Danny Warren Composition for radiation shielding
WO2017213265A1 (en) 2016-06-09 2017-12-14 三菱ケミカル株式会社 Transparent neutron shielding material
CN107556703A (en) * 2017-10-10 2018-01-09 合肥显宏安瑞电子科技有限公司 A kind of alpha ray shield and high-voltage isulation resin combination and preparation method and application
CN107644696A (en) * 2017-10-27 2018-01-30 镇江奥特氟科技有限公司 A kind of composite particulate material and radiant panel of the radiation of high-efficiency shielding neutron gamma
CN108250557B (en) * 2018-01-19 2020-08-21 东莞理工学院 Flexible low-hydrogen neutron shielding material and preparation method thereof
CN110467865B (en) * 2018-05-09 2021-12-28 同方威视技术股份有限公司 Boron coating method
KR102026257B1 (en) * 2018-05-10 2019-09-27 한국화학연구원 Epoxy resin composition and cured product thereof and method for preparing surface modified boron carbide
CN108659469B (en) * 2018-05-18 2020-11-13 北京市射线应用研究中心 Organosilicon resin modified epoxy resin-based neutron shielding material, preparation and application thereof
KR102122993B1 (en) * 2018-06-01 2020-06-16 (주)동원엔텍 Neutron shielding material and manufacturing method thereof
KR20200061100A (en) 2018-11-23 2020-06-02 한양대학교 산학협력단 Radiation Shielding Material Comprising Hafnium Hydride
CN112442254B (en) * 2019-08-30 2023-12-05 中国石油化工股份有限公司 Composition for preparing earthquake physical model, earthquake physical model and preparation and construction methods
US11217354B1 (en) * 2020-10-06 2022-01-04 King Abdulaziz University Polyester nanocomposites for protection from hazardous radiation used for medical applications
CN112908505A (en) * 2021-02-22 2021-06-04 中国核动力研究设计院 High-temperature-resistant organic shielding material
CN113416022B (en) * 2021-06-30 2022-04-26 西安中核核仪器股份有限公司 Gamma detector energy response compensation material and use method thereof
CN113372752A (en) * 2021-08-03 2021-09-10 中国核动力研究设计院 High-flame-retardant high-adhesion-strength high-temperature-resistant shielding putty and preparation method thereof
CN113462167B (en) * 2021-08-09 2022-08-30 中国工程物理研究院化工材料研究所 Bendable folded high neutron shielding performance organic silicon rubber and preparation method thereof
CN113878773B (en) * 2021-10-22 2022-08-09 中国原子能科学研究院 Resin-based neutron shielding material and preparation method thereof
CN113969039B (en) * 2021-11-04 2023-05-16 济南大学 Utilize Fe 2 O 3 Method for modifying ultrasound probe backing layer

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194394A (en) 1984-03-15 1985-10-02 三井化学株式会社 Shielding material for neutron
JPH0442869A (en) 1990-06-05 1992-02-13 Fujitsu Ltd Production of whisker-reinforced composite material
US6287992B1 (en) * 1998-04-20 2001-09-11 The Dow Chemical Company Polymer composite and a method for its preparation
US6582487B2 (en) * 2001-03-20 2003-06-24 3M Innovative Properties Company Discrete particles that include a polymeric material and articles formed therefrom
JP3951685B2 (en) 2001-11-30 2007-08-01 株式会社日立製作所 Neutron shielding material and spent fuel container
JP2003255081A (en) * 2002-03-04 2003-09-10 National Maritime Research Institute Radiation shield material composition
ES2716941T3 (en) * 2003-11-14 2019-06-18 Wild River Consulting Group Llc Metal and polymer composite that has improved properties
CN1926639A (en) * 2004-02-04 2007-03-07 三菱重工业株式会社 Composition used for neutron shielding material, shielding material and container
WO2006025535A1 (en) * 2004-09-03 2006-03-09 Jsr Corporation Coating composition, undercoating composition, multilayer body having coating film made of such composition, photocatalyst coating film, and molded body
KR100872833B1 (en) 2005-11-11 2008-12-09 한국생산기술연구원 Organo clay containing anticorrosive coating composition and preparation method therof
JP4621581B2 (en) * 2005-11-14 2011-01-26 株式会社東芝 Cask resin and filling method thereof
KR100843807B1 (en) * 2006-08-01 2008-07-03 미츠비시 쥬고교 가부시키가이샤 Composition for neutron shield material, shield material and container
CN100446134C (en) 2006-11-09 2008-12-24 上海交通大学 Method for preparing iron-oxide particle suspension
US20090226673A1 (en) * 2007-05-16 2009-09-10 Friedersdorf Fritz J High friction coating formulations and systems and coated articles thereof exhibiting radar signature reduction and methods of providing the same
KR100909106B1 (en) 2008-02-19 2009-07-23 박재준 Epoxy-organically modified layered silicate nanocomposite for insulation and product thereby
JP4883808B2 (en) * 2008-08-01 2012-02-22 独立行政法人海上技術安全研究所 Radiation shielding material and method for producing the same, preservation solution set for production of radiation shielding material
KR20100047510A (en) * 2008-10-29 2010-05-10 한국원자력연구원 Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
JP4779029B2 (en) * 2009-03-26 2011-09-21 義正 穴山 Flexible neutron shielding material, stock for producing flexible neutron shielding material, neutron shielding tape, neutron shielding packing, and neutron shielding filler
KR101072139B1 (en) 2009-04-07 2011-10-12 박재준 Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
JP2011007510A (en) * 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield

Also Published As

Publication number Publication date
WO2012157903A2 (en) 2012-11-22
JP2014514587A (en) 2014-06-19
KR20120126933A (en) 2012-11-21
CN103619949B (en) 2016-08-17
US9745442B2 (en) 2017-08-29
WO2012157903A3 (en) 2013-01-24
CN103619949A (en) 2014-03-05
US20140312536A1 (en) 2014-10-23
KR101297099B1 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
JP5784222B2 (en) Neutron shielding epoxy resin composition and method for producing the same
Harish et al. Lead oxides filled isophthalic resin polymer composites for gamma radiation shielding applications
Kiani et al. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application
KR101589692B1 (en) Radiation shielding meterial including tungsten or boron nano-particles and preparation method thereof
KR20100047510A (en) Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
Baykara et al. Polyimide nanocomposites in ternary structure:“A novel simultaneous neutron and gamma‐ray shielding material”
Mohanty et al. Effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass/carbon fiber reinforced epoxy based composites
Galehdari et al. Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites
KR20120119158A (en) Multi layer radiation shielding body and preparation method for the same
Mortazavi et al. Design and fabrication of high density borated polyethylene nanocomposites as a neutron shield
AVCIOĞLU LDPE matrix composites reinforced with dysprosium-boron containing compounds for radiation shielding applications
Taheri Applications of nanoparticles in adhesives: Current status
Hemath et al. Effect of metal oxide fillers on thermal properties of the natural fiber‐based hybrid composites
Liu et al. Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays
Konnola et al. Fabrication and characterization of toughened nanocomposites based on TiO2 nanowire‐epoxy system
JP4779029B2 (en) Flexible neutron shielding material, stock for producing flexible neutron shielding material, neutron shielding tape, neutron shielding packing, and neutron shielding filler
Zhang et al. Mechanical behavior and fracture toughness of epoxy composites reinforced with combination of fibrous and spherical nanofillers
Demircioglu et al. Effect of lead metaborate as novel nanofiller on the ballistic impact behavior of Twaron®/epoxy composites
Medjahed et al. Fabrication Process, Tensile, and Gamma Rays Shielding Properties of Newly Developed Fiber Metal Laminates Based on an Al–Li Alloy and Carbon Fibers‐Tungsten Carbide Nanoparticles Reinforced Phthalonitrile Resin Composite
Jiang et al. Resistance to vacuum ultraviolet irradiation of nano-TiO2 modified carbon/epoxy composites
Reda et al. Radiation shielding effectiveness, structural, and mechanical properties of HDPE/B4C composites reinforced with Fe2O3-Al2O3-Al-Fe fillers
KR101272883B1 (en) Neutron shielding members including nano-particles as a neutron shielding materials and preparation method thereof
KR101460691B1 (en) Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
Chin et al. Fabrication, thermal analysis, and heavy ion irradiation resistance of epoxy matrix nanocomposites loaded with silane-functionalized ceria nanoparticles
KR102559070B1 (en) Sealant Composition with Radiation Shielding Function, and Method for Manufacturing the Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 5784222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees