JP5769142B2 - Method for high secretion of heterologous proteins in Pichia yeast - Google Patents

Method for high secretion of heterologous proteins in Pichia yeast Download PDF

Info

Publication number
JP5769142B2
JP5769142B2 JP2007229085A JP2007229085A JP5769142B2 JP 5769142 B2 JP5769142 B2 JP 5769142B2 JP 2007229085 A JP2007229085 A JP 2007229085A JP 2007229085 A JP2007229085 A JP 2007229085A JP 5769142 B2 JP5769142 B2 JP 5769142B2
Authority
JP
Japan
Prior art keywords
sequence
taa
signal sequence
signal
secretory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007229085A
Other languages
Japanese (ja)
Other versions
JP2009060804A (en
Inventor
純平 和田
純平 和田
博子 池田
博子 池田
正木 和夫
和夫 正木
力 藤井
力 藤井
家藤 治幸
治幸 家藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2007229085A priority Critical patent/JP5769142B2/en
Publication of JP2009060804A publication Critical patent/JP2009060804A/en
Application granted granted Critical
Publication of JP5769142B2 publication Critical patent/JP5769142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、異種タンパク質を微生物(特に酵母)で培地中に分泌生産させるために必要な分泌シグナル配列、及び、それを用いて異種タンパク質遺伝子を高発現させ、異種タンパク質を高生産させる方法に関するものである。   The present invention relates to a secretory signal sequence necessary for secretory production of a heterologous protein into a culture medium by a microorganism (particularly yeast), and a method for highly producing a heterologous protein by using it to highly express a heterologous protein gene. It is.

一般的に目的タンパク質を異種タンパク質として生産させる場合、細胞内に生産させるものと細胞外に分泌生産させるものとがあるが、精製の容易さなどから目的タンパク質を分泌型として生産させるほうが好ましいとされている。細胞内生産型と細胞外分泌生産型の違いは、分泌シグナル配列の有無によるとされている。この考えは、「シグナル仮説」と呼ばれ、1975年にG.Blobelにより初めて提唱され、その後この仮説が正しかった事が証明されている。   In general, when producing a target protein as a heterologous protein, there are those produced intracellularly and those produced secreted outside the cell, but it is preferable to produce the target protein as a secreted form because of its ease of purification. ing. The difference between the intracellular production type and the extracellular secretion production type is attributed to the presence or absence of a secretory signal sequence. This idea is called the “signal hypothesis”. Proposed by Blobel for the first time, this hypothesis has since been proven.

「シグナル仮説」とは、タンパク質のN末端側に付加された疎水性アミノ酸に富む延長ペプチド配列をシグナル配列と名付け、そのシグナル配列がタンパク質の輸送先を決定しているという考えであった。これは、分泌タンパク質をコードするmRNAを翻訳すると、目的タンパク質よりも分子量が大きなタンパク質が生産され、N末端側に余分なペプチドが付加していることに着目した事から考え出された。現在までに、そのシグナル配列を、RNA−タンパク質複合体である“Signal recognition particle(SRP)”が認識、結合し、一時翻訳伸長反応が停止する。その後、小胞体膜にあるSRP受容体とSRP(シグナルペプチド認識粒子)の相互作用により小胞体の内腔を開き、そこを通りタンパク質が内腔を通過することが明らかとなっており、内腔通過後、シグナルペプチダーゼによりシグナル配列は切断され、タンパク質の翻訳伸長反応が再開されると考えられている。   The “signal hypothesis” was an idea that an extended peptide sequence rich in hydrophobic amino acids added to the N-terminal side of a protein was named a signal sequence, and that signal sequence determined a protein transport destination. This was conceived from focusing on the fact that when the mRNA encoding the secreted protein was translated, a protein having a molecular weight larger than that of the target protein was produced, and an extra peptide was added to the N-terminal side. To date, the signal sequence is recognized and bound by the RNA-protein complex “Signal recognition particle (SRP)”, and the temporary translation elongation reaction stops. Subsequently, it was revealed that the lumen of the endoplasmic reticulum was opened by the interaction of the SRP receptor and SRP (signal peptide recognition particle) in the endoplasmic reticulum membrane, and the protein passed through the lumen through the lumen. It is believed that after passing, the signal sequence is cleaved by signal peptidase, and the protein translation elongation reaction is resumed.

なお、酵母の分泌発現系でよく利用されている“α−factor pre−pro leader”をはじめとするある種の分泌シグナル配列は、Pre配列とPro配列を有している。タンパク質の上流にPro配列、さらにその上流にPre配列が付加している構造である。この場合、Pre配列(プレ配列)がシグナル配列に相当する配列となり、Pro配列(プロ配列)は様々な役割を果たしているとされている。α−factor pre−pro leader(α−因子プレ−プロリーダー)においては、Pro配列は分泌において重要である事が明らかとなっている。   In addition, certain secretory signal sequences including “α-factor pre-pro leader” which is often used in the secretory expression system of yeast have a Pre sequence and a Pro sequence. In this structure, a Pro sequence is added upstream of the protein, and a Pre sequence is added further upstream. In this case, the Pre sequence (pre sequence) is a sequence corresponding to the signal sequence, and the Pro sequence (pro sequence) is said to play various roles. In the α-factor pre-pro leader (α-factor pre-pro leader), it is clear that the Pro sequence is important in secretion.

サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)を宿主とし、α−factor pre−pro leaderを用いてヒトインスリン様成長因子1(Human insulin−like growth factor 1)を発現させた場合、pre−pro配列を持つ株では高い分泌生産量が見られたが、Pro配列を取り除いた株では全く分泌が行われなかった。また、同じく分泌が見られなかったS.cerevisiae由来Invertaseの分泌シグナルであるSUC2、またはS.cerevisiae由来acid phosphataseの分泌シグナルであるPHO5の下流にα−factor pre−pro leaderのPro配列を付加した株では、分泌能力の向上が報告されている。   When Saccharomyces cerevisiae (Saccharomyces cerevisiae) is used as a host and human insulin-like growth factor 1 (Human insulin-like growth factor 1) is expressed using α-factor pre-pro leader, pre-pro sequence strain is used. Although high secretion production was seen, no secretion was performed in the strain from which the Pro sequence was removed. Similarly, S. no secretion was observed. cerevisiae-derived Invertase secretion signal SUC2, or S. cerevisiae In the strain in which the Pro sequence of α-factor pre-pro leader is added downstream of PHO5, which is a secretion signal of cerevisiae-derived acid phosphatase, an improvement in secretion ability has been reported.

更に、ピヒア・パストリス(Pichia pastoris)を宿主とし、α−factor pre−pro leaderを用いてHuman lysozyme(ヒトのリゾチーム)を発現させた場合、Pro配列を取り除く事により劇的に分泌生産量が減少することが報告されている。これらの原因は明らかとなっていないが、α−factor pre−pro leaderのPro配列にはいくつかの糖鎖付加部位があり、ゴルジ体で糖鎖付加を受ける事によりタンパク質の安定性を高めていると考えられている。α−factor pre−pro leader以外にもPro配列を持つタンパク質は多数存在し、折りたたみなどの立体構造の形成に寄与しているものなども存在する。   Furthermore, when human lysozyme (human lysozyme) is expressed using α-factor pre-pro leader using Pichia pastoris as a host, the secretory production amount is dramatically reduced by removing the Pro sequence. It has been reported to do. The cause of these problems has not been clarified, but there are several glycosylation sites in the α-factor pre-pro leader Pro sequence, which enhances protein stability by undergoing glycosylation in the Golgi apparatus. It is believed that In addition to α-factor pre-pro leader, there are many proteins having a Pro sequence, and there are those that contribute to the formation of three-dimensional structures such as folding.

J.L Cereghino、J.M.Cregg、(2000)らによると、P. pastorisを宿主として異種タンパク質を生産させた際の各種シグナル配列使用数は分泌生産型の半数以上では、α−factor pre−pro leaderが用いられている。また、ネイティブシグナル配列以外では、SUC2やP. pastoris由来acid phosphataseの分泌シグナルであるPHO1などが用いられた例がいくつかあるが、現在高分泌生産に用いられている分泌シグナル配列の選択肢は少ない。また、分泌シグナル配列と目的タンパク質には相性があり、同じ分泌シグナル配列を用いた場合でも、目的タンパク質の種類により分泌生産量が増加したり減少したりすることが報告されている。このため、相性が合わずP.pastorisを宿主とした高分泌生産が難しいタンパク質も多数存在する。
バイオテクノロジー事典、1986年10月9日、株式会社 シーエムシー発行、第976〜977頁 Brobel G.,Dobberstein B., TRANSFER OF PROTEINS ACROSS MEMBRANES,J.Cell Biol.1975;67:835−862 Cereghino JL.,Cregg JM., Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev.,2000;23:45−66
J. et al. L Cereghino, J. et al. M.M. According to Cregg, (2000) et al. When heterologous proteins are produced using pastoris as a host, the number of signal sequences used is more than half of the secretory production type, and α-factor pre-pro leader is used. Other than the native signal sequence, SUC2 and P.I. There are several examples in which PHO1, which is a secretion signal of pastoris-derived acid phosphatase, is used, but there are few options for the secretion signal sequence currently used for high secretion production. Moreover, it is reported that the secretory signal sequence and the target protein are compatible, and even when the same secretory signal sequence is used, the secretory production amount increases or decreases depending on the type of the target protein. For this reason, compatibility does not match and P.I. There are many proteins that are difficult to produce with high secretion using pastoris as a host.
Biotechnology Encyclopedia, October 9, 1986, published by CMC Co., pp. 976-977 Brobel G.M. , Doberstein B. , TRANSFER OF PROTEINS ACROSS MEMBRANES, J. Cell Biol. 1975; 67: 835-862 Ceregino JL. , Cregg JM. , Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 2000; 23: 45-66.

上記したように、各種微生物(宿主)でうまく働く分泌シグナル配列は、外来タンパク質(異種タンパク質)の分泌生産に必要なものである。しかしながら、現在のところ、どのような場合においても利用可能な分泌タンパク質のシグナル配列は存在しておらず、それぞれの宿主において利用可能な選択肢は限られている。多くの場合はそれぞれの宿主において分泌生産されているタンパク質を検索し、そのシグナル配列を利用するが、そもそも酵母においての分泌酵素はそれほど多くは無く、最適なシグナル配列を探し出すことは難しい作業である。ましてや、異種の生物が利用するシグナル配列の検索はさらにその有効な配列を見つけ出すことは非常に難しい作業となる。そのことは、すなわち、現在までに少数のシグナル配列しか提案されておらず、さらにそれらシグナル配列では分泌生産できないタンパク質が多く存在することからも、新規シグナル配列の開発の難しさと重要性を示すことにほかならない。   As described above, secretory signal sequences that work well in various microorganisms (hosts) are necessary for secretory production of foreign proteins (heterologous proteins). However, at present, there are no secretory protein signal sequences available in any case, and the options available for each host are limited. In many cases, proteins secreted in each host are searched and their signal sequences are used, but there are not so many secretory enzymes in yeast, and finding the optimal signal sequence is a difficult task. . In addition, searching for signal sequences used by different organisms makes it very difficult to find effective sequences. In other words, only a small number of signal sequences have been proposed so far, and there are many proteins that cannot be secreted and produced by these signal sequences, indicating the difficulty and importance of developing new signal sequences. It is none other than.

シグナル配列の重要性及び新規シグナル配列開発の困難性に鑑み、そこで、この現状を改善すべく、発明者らはこれまでの多くの経験と知識を利用しP.pastorisを宿主とした際に高分泌能が期待される新規分泌シグナル配列の検索を行い、その有用性について確認し、ついに利用可能なシグナル配列を見出すのにはじめて成功したものである。   In view of the importance of signal sequences and the difficulty of developing new signal sequences, the present inventors have used many experiences and knowledge so far to improve the present situation. This is the first successful search for a new secretory signal sequence that is expected to have a high secretory ability when pastoris is used as a host, confirms its usefulness, and finally finds a usable signal sequence.

本発明は、高発現能を有する新規シグナル配列を提案することにより、分泌シグナル配列の選択性の幅を広げ、これまでに報告されているP.pastorisにおいて高発現の難しかった異種タンパク質の高分泌生産を可能とするものである。   The present invention broadens the selectivity of secretory signal sequences by proposing a novel signal sequence having high expression ability. It enables high secretory production of heterologous proteins that were difficult to express in pastoris.

本発明者らは、ピヒア属酵母、例えばピヒア・パストリス(P.pastoris)を宿主として使用した際に目的とする異種タンパク質を高分泌生産させることのできる新規分泌シグナル配列を開発する目的で各方面から鋭意検討、研究した結果、黄麹菌アスペルギルス・オリーゼ(Aspergillus oryzae:A.oryzae)由来α−アミラーゼ(α−amylase(Taka−amylase):TAA)の分泌シグナル(TAA signal)配列が上記目的を達成しうることをはじめて見出した。   In order to develop a novel secretion signal sequence capable of producing a high secretory production of a target heterologous protein when a yeast of the genus Pichia, such as P. pastoris, is used as a host, the present inventors have various aspects. As a result of intensive studies and studies, the secretion signal (TAA signal) sequence of Aspergillus oryzae (α-amylase) derived from Aspergillus oryzae (TAA signal) achieved the above purpose. I found what I could do for the first time.

そして、該新規分泌シグナル配列(TAA signal配列)が宿主P.pastorisにおいて高分泌能を有し、異種タンパク質を高分泌高生産することもはじめて確認し、これらの有用新知見に基づき、本発明を完成するに至った。   The novel secretory signal sequence (TAA signal sequence) is transferred to the host P. coli. It has also been confirmed for the first time that it has a high secretion ability in pastoris and produces a high secretion and high production of a heterologous protein. Based on these useful new findings, the present invention has been completed.

本発明は、TAA signal配列をP.pastorisにおいて新たに分泌シグナル配列として使用する点を重要な特徴のひとつとして有するものであって、次の態様を包含するものである。   The present invention relates to the TAA signal sequence as described in P.P. One of the important features is that it is newly used as a secretory signal sequence in pastoris, and includes the following aspects.

(1)アスペルギルス・オリーゼ(黄麹菌Aspergillus oryzae:A.oryzae)由来α−アミラーゼ(α−amylase(Taka−amylase:TAA)の分泌シグナル配列(TAA signal配列)を使用すること、を特徴とするピヒア属酵母(例えば、ピヒア・パストリス:P.pastoris)において異種タンパク質を高分泌させる方法。
(2)該TAAシグナル配列が、1もしくはそれ以上の数個のアミノ酸が欠失もしくは置換もしくは付加されたアミノ酸配列からなり、且つシグナル配列としての活性を有するものであること、を特徴とする上記(1)に記載の方法。
(1) A Pichia characterized by using a secretory signal sequence (TAA signal sequence) of α-amylase (α-amylase (TAA-amylase: TAA)) derived from Aspergillus oryzae (A. oryzae). A method for highly secreting a heterologous protein in a genus yeast (for example, P. pastoris).
(2) The TAA signal sequence is composed of an amino acid sequence in which one or more amino acids are deleted, substituted or added, and has activity as a signal sequence. The method according to (1).

(3)該TAAシグナル配列に対応するDNA配列(遺伝子塩基配列)の直下に、又は、1もしくはそれ以上のアミノ酸からなるアミノ酸配列に対応するDNA配列(遺伝子塩基配列)を介して、その下流に異種タンパク質に対応するDNA配列(塩基配列)、すなわち異種タンパク質をコードする遺伝子(構造遺伝子)を配してなること、を特徴とする組換え分泌プラスミド及びその構築(製造、作成)方法。
なお、TAAシグナル配列の上流にプロモーター(例えば、AOX1)、また異種タンパク質構造遺伝子のほか、プラスミド上にマーカー(例えば、HIS4遺伝子)、抗生物質耐性遺伝子を配してもよい。
(3) Directly below the DNA sequence (gene base sequence) corresponding to the TAA signal sequence, or downstream thereof via a DNA sequence (gene base sequence) corresponding to an amino acid sequence consisting of one or more amino acids. A recombinant secretion plasmid characterized by comprising a DNA sequence (base sequence) corresponding to a heterologous protein, that is, a gene (structural gene) encoding the heterologous protein, and a construction (manufacturing, production) method thereof.
In addition to a promoter (for example, AOX1) upstream of the TAA signal sequence, a marker (for example, HIS4 gene) and an antibiotic resistance gene may be placed on a plasmid in addition to a heterologous protein structural gene.

(4)上記(3)にしたがって構築した組換え分泌プラスミドを用いて、エレクトロポレーション等の常法にしたがってピヒア・パストリスを形質転換して形質転換体を製造する方法、及び、同方法によって得られた形質転換体。   (4) A method for producing a transformant by transforming Pichia pastoris according to a conventional method such as electroporation using the recombinant secretion plasmid constructed according to (3) above, and obtained by the same method Transformant obtained.

(5)上記(4)に記載の形質転換体を培養し、培養液から異種タンパク質を回収すること、を特徴とする異種タンパク質の製造方法、ないしは、異種タンパク質の高分泌生産方法。   (5) A method for producing a heterologous protein or a method for producing a high secretion of a heterologous protein, comprising culturing the transformant according to (4) above and recovering the heterologous protein from the culture solution.

(6)該異種タンパク質がクリプトコッカス属菌(例えば、Cryptococcus sp. S−2)由来のリパーゼ(CSLP)、ボトリティス属菌(例えば、Botrytis cinerea)由来のクチナーゼ(BCCut)、フザリウム属菌(例えば、Fusarium solani)由来のクチナーゼ(FSCut)、タカアミラーゼの少なくともひとつであること、を特徴とする上記(5)に記載の方法。   (6) The heterologous protein is a lipase (CSLP) derived from Cryptococcus spp. (Eg, Cryptococcus sp. S-2), a cutinase (BCCut) derived from Botrytis cinerea (eg, BCCut), or a Fusarium spp (eg, Fusarium) The method according to (5) above, wherein the method is at least one of solani-derived cutinase (FSCut) and takaamylase.

本発明によれば、新規分泌シグナル配列としてタカアミラーゼの分泌シグナル配列(TAA signal配列)を新たに使用することによって、宿主Pichia pastoris(ピヒア・パストリス)から、異種タンパク質を高分泌生産させることができるという著効が奏される。例えばCSLP、BCCutでは、ネイティブシグナルと比較して、それぞれ約2.3倍、約8.3倍という高い活性を示し、タカアミラーゼでは、α−factor pre−pro leaderの2培以上の活性を示した。また、CSLP、BCCut、FSCutでは、TAA signal配列はα−factor pre−pro leaderと同程度の活性を有することが示された。   According to the present invention, by newly using a secretory signal sequence of takaamylase (TAA signal sequence) as a novel secretory signal sequence, a heterologous protein can be produced in high secretion from a host Pichia pastoris (Pichia pastoris). The remarkable effect is played. For example, CSLP and BCCut show high activities of about 2.3 times and about 8.3 times, respectively, compared with the native signal, and Taka-amylase shows the activity of 2 or more cultures of α-factor pre-pro leader. It was. In CSLP, BCCut, and FSCut, it was shown that the TAA signal sequence has the same activity as α-factor pre-pro leader.

本発明によれば、TAA signal配列はα−factor pre−pro leaderと同程度の非常に高い分泌能を有することが確認され、その為、P.pastorisでの異種タンパク質生産において高分泌シグナルとして応用が可能である。しかも、TAA signal配列はPro配列無しであるにもかかわらず、Pro配列を有するα−factor pre−pro leaderと同程度の活性を有するという著効も奏するものであり、TAA signal配列にPro配列を付加することにより更なる分泌量の向上も期待される。   According to the present invention, it has been confirmed that the TAA signal sequence has a very high secretory ability comparable to that of α-factor pre-pro leader. It can be applied as a high secretion signal in the production of heterologous proteins in pastoris. Moreover, even though the TAA signal sequence does not have a Pro sequence, it has a remarkable effect of having the same level of activity as an α-factor pre-pro leader having a Pro sequence, and the Pro sequence is added to the TAA signal sequence. Addition is expected to further improve the amount of secretion.

本発明を実施するには、新規分泌シグナル配列として、Aspergillus oryzae(A. oryzae)由来α−amylase(Taka−amylase:TAA)の分泌シグナル (TAA signal) 配列を用いることが必要である。TAAは、麹菌の生産する酵素の中で最も有名な酵素の一つであり、分泌生産量も非常に多く発酵産業において有効利用されている。TAA signal 配列を利用することにより、分泌タンパク質の生産性の向上が図られる。   In order to carry out the present invention, it is necessary to use the secretory signal (TAA signal) sequence of α-amylase (Taka-amylase: TAA) derived from Aspergillus oryzae (A. oryzae) as a novel secretory signal sequence. TAA is one of the most famous enzymes produced by Neisseria gonorrhoeae, and its secretory production is very large and is effectively used in the fermentation industry. By using the TAA signal sequence, the productivity of the secreted protein can be improved.

A.oryzaeは1〜3種類のTAA遺伝子を持っていることが知られているが、ゲノムDNAの解読が終了した株では3種類のTAA遺伝子を持っていた。いずれのTAA遺伝子が高発現しているかなどの詳細はわかっていないが、その3種類のTAAに関して、ORF部位で100%の配列一致が見られる。なお、Aspergillus oryzae由来Takaアミラーゼの塩基配列およびアミノ酸配列は、EMBL欧州分子生物学研究所(European Molecular Biology Laboratory)のAccession Number X12725、X12726及びX12727に記載されている。   A. Oryzae is known to have 1 to 3 types of TAA genes, but strains that have finished decoding genomic DNA have 3 types of TAA genes. Although details such as which TAA gene is highly expressed are not known, 100% sequence match is observed at the ORF site for the three types of TAAs. The base sequence and amino acid sequence of Aspergillus oryzae-derived Taka amylase are described in Accession Numbers X12725, X12726, and X12727 of the EMBL European Molecular Biology Laboratory (European Molecular Biology Laboratory).

TAA シグナル配列(Aspergillus oryzae由来Takaアミラーゼシグナル配列(EMBL Accession Number X12725、X12726、X12727に記載))と組み合わせ分泌生産させる目的タンパク質には、どのような分泌タンパク質であってもよく、実施例に示したリパーゼ、クチナーゼに限るものではない。P.pastorisにおいてmRNAの合成を開始することができるプロモータの下流にTAA signal配列(63bp)に対応する塩基配列を配しその下流に分泌させるタンパク質に対応する塩基配列を並べることで、TAA signalを利用した異種タンパク質の発現カセットを完成することができる。また、TAA signal配列に対応する塩基配列と分泌させる異種タンパク質に対応する塩基配列の間には、1つ以上のアミノ酸からなるアミノ酸配列に対応する塩基配列が挿入されてもよい。   The target protein to be secreted and produced in combination with the TAA signal sequence (Taka amylase signal sequence derived from Aspergillus oryzae (described in EMBL Accession Number X12725, X12726, X12727)) may be any secreted protein and is shown in the Examples It is not limited to lipase and cutinase. P. The TAA signal was used by arranging a base sequence corresponding to the TAA signal sequence (63 bp) downstream of the promoter capable of initiating mRNA synthesis in pastoris and arranging the base sequence corresponding to the protein secreted downstream thereof. A heterologous protein expression cassette can be completed. A base sequence corresponding to an amino acid sequence composed of one or more amino acids may be inserted between the base sequence corresponding to the TAA signal sequence and the base sequence corresponding to the heterologous protein to be secreted.

発現カセットに関しては、更に詳細には、例えば、プロモーター(例えば、AOX1)、TAA分泌シグナル配列、異種タンパク質遺伝子を配し、更にマーカー(例えば、HIS4)、抗生物質(例えば、ペニシリン)耐性遺伝子を配して、組換え分泌プラスミドを構築する。   More specifically, for example, a promoter (for example, AOX1), a TAA secretion signal sequence, a heterologous protein gene, and a marker (for example, HIS4) and an antibiotic (for example, penicillin) resistance gene are allocated. A recombinant secretion plasmid is then constructed.

このようにして構築した組換え分泌プラスミドでエレクトロポレーション法その他の常法によりP.pastorisを形質転換する。得られた形質転換体を培養することにより、目的とする異種タンパク質を菌体外へ高分泌生産させることができる。そこで、培養液中から異種タンパク質を回収すれば、大量に目的タンパク質を得ることができる。   A recombinant secretion plasmid constructed in this manner was used for P.P. Transform pastoris. By culturing the obtained transformant, the target heterologous protein can be produced highly secreted outside the cells. Therefore, if the heterologous protein is recovered from the culture solution, the target protein can be obtained in large quantities.

以下、本発明の実施例について述べるが、本発明は、これらの実施例のみに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
(1)酵母クリプトコッカス(Cryptococcus)sp. S−2が生産するリパーゼ(CSLP)は、それ自身のシグナル配列をN末端領域に持っており、他の酵素と比較して次のような特徴的な酵素的性質を有している:
Cutinase−Like Enzyme from the Yeast Cryptococcus sp. Strain S−2 Hydrolyzes Polylactic Acid and Other Biodegrable Plastics.
Masaki K, Kamini NR, Ikeda H, Iefuji H, Appl. Environ. Microbiol., 71, 7548−7550(2005)
Example 1
(1) Yeast Cryptococcus sp. The lipase (CSLP) produced by S-2 has its own signal sequence in the N-terminal region and has the following characteristic enzymatic properties compared to other enzymes:
Cutinase-Like Enzyme from the Yeast Cryptococcus sp. Strain S-2 Hydrolyzes Polyacid Acid and Other Biodegradable Plastics.
Masaki K, Kamini NR, Ikeda H, Iefuji H, Appl. Environ. Microbiol. , 71, 7548-7550 (2005)

まず1つ目は、非常に高い生分解性プラスチック分解能を有している点である。生分解性プラスチックとは、ISOでは「バクテリア、カビおよび藻類など自然の微生物により低分子量化合物に分解するプラスチック」、日本の生分解性プラスチック研究会では「自然界において、微生物が関与して、低分子量化合物に分解するプラスチック」と定義されている。生分解は、微生物分解とも言われ、微生物の菌体外酵素により分解し、低分子量化合物へと分解される。主な生分解性プラスチックには、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリ(ε−カプロラクトン)(PCL)などが挙げられるが、いずれも酵素レベルでの分解例は少なく、PLAを分解できる酵素についての報告例は特に少ない。   The first is that it has a very high biodegradable plastic resolution. Biodegradable plastics are “plastics that decompose into low molecular weight compounds by natural microorganisms such as bacteria, molds, and algae” in ISO, and “degradable plastics in Japan have a low molecular weight due to the involvement of microorganisms in nature. It is defined as “plastic that breaks down into compounds”. Biodegradation is also referred to as microbial decomposition, and is decomposed by microbial extracellular enzymes to be decomposed into low molecular weight compounds. The main biodegradable plastics include polylactic acid (PLA), polybutylene succinate (PBS), poly (ε-caprolactone) (PCL), etc., but there are few examples of degradation at the enzyme level. There are very few reports on enzymes that can degrade the enzyme.

これまでPLA分解に最も広く用いられてきた酵素はProteinase(プロティナーゼ) Kと呼ばれる酵素である。しかしCSLPは、Proteinase Kと比較して、同酵素濃度当たり、約500倍ものPLA分解能を示した。CSLPはこのほかにもPBS、PCLに対して分解活性を有する事も確認されており、本酵素が様々な生分解性プラスチックに対して分解活性を持つ、つまり幅広い基質特異性を持ち、さらにいずれにも高い活性を示すという特徴を持っている。   The enzyme most widely used for PLA degradation so far is an enzyme called Proteinase K. However, CSLP showed about 500-fold PLA resolution per enzyme concentration compared to Proteinase K. CSLP has also been confirmed to have degradation activity against PBS and PCL, and this enzyme has degradation activity against various biodegradable plastics, that is, has a wide substrate specificity. It also has the characteristic of exhibiting high activity.

2つ目は、高いエステル合成能を有する点である。リパーゼは、脂質を基質として、そのエステル結合を加水分解する酵素であるが、同時に逆反応であるエステル合成を行う酵素としても働く事が知られている。このため、リパーゼは人工的なエステル合成反応にも用いられている。エステル合成は植物性油とメタノールを混ぜ、この反応をリパーゼが触媒するという方法が用いられているが、現在広く用いられているリパーゼは有機溶媒耐性が弱いため、メタノールを段階的に加える手法が用いられている。しかしCSLPは非常に高い有機溶媒耐性を有している事が確認されており、ワンステップでメタノールを加える事が可能である。そのため、工業的にも非常に有用であると考えられている。   Second, it has a high ester synthesis ability. Lipase is an enzyme that hydrolyzes its ester bond using lipid as a substrate, but is also known to work as an enzyme that performs ester synthesis, which is a reverse reaction. For this reason, lipases are also used in artificial ester synthesis reactions. Ester synthesis uses a method in which vegetable oil and methanol are mixed, and this reaction is catalyzed by lipase. Currently widely used lipases have low resistance to organic solvents. It is used. However, CSLP has been confirmed to have a very high resistance to organic solvents, and methanol can be added in one step. Therefore, it is considered industrially very useful.

(2)これらの非常に有用な特徴を示すCSLPであるがCryptococcus sp. S−2自身における生産量は、これまで培地の検討等により向上を示してきた。しかし、本酵素を工業的に利用しようとした際には、より高い生産力が必要であると考えられた。   (2) Although it is CSLP which shows these very useful characteristics, it is Cryptococcus sp. The production amount in S-2 itself has been improved by examining the culture medium. However, it was considered that higher productivity was required when the enzyme was used industrially.

そこでメタノール資化酵母P.pastorisを宿主とした高分泌生産を試みた。CSLPは本来分泌タンパク質であるために、そのN末端領域には分泌するためのシグナル配列(オリジナルシグナル配列)を保有している。そこで、このシグナル配列領域をTAA signal配列に変えたもの、またS.cerevisiaeのα−factor pre−pro leader配列に変更したものをそれぞれ作成し分泌生産能力を比較した。シグナル領域の異なるCSLPを分泌生産させるために構築したプラスミドを図1〜3に示す。   Therefore, methanol-utilizing yeast P.I. High secretion production was attempted using pastoris as a host. Since CSLP is originally a secreted protein, it has a signal sequence (original signal sequence) for secretion in its N-terminal region. Therefore, this signal sequence region is changed to a TAA signal sequence, A modified cerevisiae α-factor pre-pro leader sequence was prepared and the secretory production capacity was compared. Plasmids constructed for secretory production of CSLPs with different signal regions are shown in FIGS.

これらのプラスミドは、市販のプラスミドpPIC3およびpPIC9(Invitrogen社より入手可能)をベースとし、プロモーター(AOX1)の下流に分泌配列、CSLP遺伝子、マーカー(HIS4)、アンピシリン耐性遺伝子を組み込んでなるものである。既述のように、CSLPは本来分泌タンパク質であるために自身そのN末端領域に分泌シグナル配列(ネイティブシグナル配列)を有している(組換え分泌プラスミドCSLP/pPIC3:図1)。このシグナル配列領域をS.セレビシエのα−factor pre−pro leader配列に変えたものが、組換えプラスミドCSLP/pPIC9である(図2)。また、TAA signal配列に変えたものが組換えプラスミドCSLP/pPIC3(TAA signal)である(図3)。それぞれのプラスミドは、以下の方法にしたがい、P.パストリスに導入された。   These plasmids are based on the commercially available plasmids pPIC3 and pPIC9 (available from Invitrogen), and incorporate a secretory sequence, CSLP gene, marker (HIS4), and ampicillin resistance gene downstream of the promoter (AOX1). . As described above, since CSLP is originally a secreted protein, it has a secretory signal sequence (native signal sequence) in its N-terminal region (recombinant secreted plasmid CSLP / pPIC3: FIG. 1). This signal sequence region was designated as A cerevisiae α-factor pre-pro leader sequence is a recombinant plasmid CSLP / pPIC9 (FIG. 2). Moreover, what was changed into the TAA signal sequence is a recombinant plasmid CSLP / pPIC3 (TAA signal) (FIG. 3). Each plasmid was prepared according to the following method. Introduced in Pastoris.

(4)P. pastorisへのプラスミドの導入は、Pichia Expression Kit(Invitrogen社より市販)記載の方法に従い以下の方法で行った。   (4) P.I. The plasmid was introduced into pastoris by the following method according to the method described in Pichia Expression Kit (commercially available from Invitrogen).

P.pastoris親株を5 ml YPD培地(1%イーストエキストラクト、2%ポリペプトン、2%D−グルコース)にて30℃、オーバーナイトで前培養を行った。50ml YPD培地に10μlの前培養液を植菌し、30℃でOD600=1.3〜1.5となるまで培養を行った。 P. The pastoris parent strain was precultured in 5 ml YPD medium (1% yeast extract, 2% polypeptone, 2% D-glucose) at 30 ° C. overnight. 10 μl of the preculture solution was inoculated into 50 ml of YPD medium and cultured at 30 ° C. until OD 600 = 1.3 to 1.5.

培養液を4℃、6000rpmで8分間遠心を行い、菌体を回収した。回収した菌体を50mlの滅菌水に懸濁し、再度4℃、6000rpmで8分間遠心を行い、菌体を回収した。この操作を2度行った。その後回収した菌体を4mlのcold 1M Sorbitolに懸濁し、4℃、6000rpmで8分間遠心を行い、菌体を回収した。回収した菌体を200μlのcold 1M Sorbitol(ソルビトール)に懸濁した。以上の操作は氷上で行った。   The culture solution was centrifuged at 4 ° C. and 6000 rpm for 8 minutes to recover the cells. The collected cells were suspended in 50 ml of sterilized water, and centrifuged again at 4 ° C. and 6000 rpm for 8 minutes to collect the cells. This operation was performed twice. Thereafter, the collected cells were suspended in 4 ml of cold 1M Sorbitol, and centrifuged at 4 ° C. and 6000 rpm for 8 minutes to collect the cells. The collected cells were suspended in 200 μl of cold 1M Sorbitol (sorbitol). The above operation was performed on ice.

0.2cmエレクトロポレーションキュベット(BIO−RAD)に菌体懸濁液80μlと制限酵素処理を行いリニア状にしたPlasmid DNA 10μl(約5〜20 μg)を加えて氷上で5分間インキュベートした。Gene Pulser(BIO−RAD社商標)(BIO−RAD)にキュベットをセットし、1.5kV、25μF、200Ωの条件でエレクトロポレーションを行った。その後、すぐにcold 1M Sorbitolを加えピペッティングにより混合し、BD FALCON(Becton Dickinson and Company社登録商標)14mlポリプロピレンラウンドチューブ(Becton Dickinson)に全量を移して、30℃で2時間、静置でインキュベートを行った。セレクションマーカーがHIS4遺伝子の場合はMD Plate(MDプレート:1.34% YNB,4×10−5% Biotin,2% Glucose,2% Agar)に塗布し、30℃でコロニーが形成されるまでインキュベートを行い、得られたコロニーは、MD Plateに植え継いだ。それぞれの菌株は、最小培地BMM培地(組成:100mM potassium phosphate buffer(pH6.0),1.34% YNB,4×10−5% Biotin,0.5% Methanol)に植え継がれ、経時的に分泌生産された培地中のリパーゼ活性を測定した(図4)。CSLPオリジナルシグナルから、TAA signal配列に変えることで分泌生産量は向上した。また、その効果は、これまで有効だと考えられてきたS.cerevisiaeのα−factor pre−pro leader配列と同等のものであった。   To a 0.2 cm electroporation cuvette (BIO-RAD), 80 μl of cell suspension and 10 μl (about 5 to 20 μg) of Plasmid DNA linearized by treatment with restriction enzymes were added and incubated on ice for 5 minutes. A cuvette was set on Gene Pulser (trademark of BIO-RAD) (BIO-RAD), and electroporation was performed under the conditions of 1.5 kV, 25 μF, and 200Ω. Immediately after that, cold 1M Sorbitol was added and mixed by pipetting. The whole amount was transferred to a BD FALCON (Becton Dickinson and Company) 14 ml polypropylene round tube (Becton Dickinson) and incubated at 30 ° C. for 2 hours. Went. When the selection marker is HIS4 gene, it is applied to MD Plate (MD plate: 1.34% YNB, 4 × 10-5% Biotin, 2% Glucose, 2% Agar) and incubated at 30 ° C. until colonies are formed. The obtained colonies were planted on MD Plate. Each strain was subcultured in a minimal medium BMM medium (composition: 100 mM potassium phosphate buffer (pH 6.0), 1.34% YNB, 4 × 10-5% Biotin, 0.5% Methanol) Lipase activity in the secreted production medium was measured (FIG. 4). The secretory production amount was improved by changing the CSLP original signal to the TAA signal sequence. In addition, the effect is considered to be effective so far. It was equivalent to the cerevisiae α-factor pre-pro leader sequence.

(実施例2)
P.pastorisを宿主としたTAAの分泌生産について、TAA signal配列とS.cerevisiaeのα−factor pre−pro leader配列の比較を行った。シグナル領域の異なるTAAを分泌生産させるために構築したプラスミドを図5〜6に示す。
(Example 2)
P. TAA signal sequence and S. cerevisiae for secretory production of TAA using pastoris as a host. A comparison of the cerevisiae α-factor pre-pro leader sequence was performed. Plasmids constructed for secretory production of TAAs with different signal regions are shown in FIGS.

これらのプラスミドは、実施例1で述べた組換え分泌プラスミド(図1、図2)において、CSLP(ネイティブシグナル配列含有)領域、及び、α−factor pre−pro leader、CSLP領域を、それぞれ、TAA(本来、ネイティブシグナル配列含有)領域、及び、α−factor pre−pro leader、TAA領域にかえた組換え分泌プラスミドTAA/pPIC3(Naitive signal)、及び、TAA/pPIC9である(図5、図6)。   These plasmids are the same as the recombinant secretion plasmid (FIGS. 1 and 2) described in Example 1, except that the CSLP (native signal sequence-containing) region, the α-factor pre-pro leader, and the CSLP region are respectively TAA. (Originally native signal sequence containing) region, α-factor pre-pro leader, recombinant secretory plasmid TAA / pPIC3 (Naive signal) replaced with TAA region, and TAA / pPIC9 (FIGS. 5 and 6) ).

これらのプラスミドを実施例1の記載にしたがって、それぞれ、P.pastorisに導入し、得られた形質転換体を最小培地BMMで培養した。しかしながら、経時的に活性の減少が見られたため、BMM培地に更に1%イーストエキストラクト及び2%ペプトンを加えたBMMY培地で発現誘導を行った。   Each of these plasmids was purified according to the description in Example 1, respectively. The resulting transformant was introduced into pastoris and cultured in the minimal medium BMM. However, since the activity decreased with time, expression was induced in the BMMY medium in which 1% yeast extract and 2% peptone were further added to the BMM medium.

経時的に分泌生産された培地中のTAA活性を測定した(図7)。TAAの分泌生産についてのシグナル配列の効果は、これまで有効だと考えられてきたS.cerevisiaeのα−factor pre−pro leader配列よりもTAA signal配列のほうが効果が高いことが実験データにより実証された。   TAA activity in the medium secreted and produced over time was measured (FIG. 7). The effect of the signal sequence on the secretory production of TAA has been previously considered to be effective. Experimental data demonstrated that the TAA signal sequence was more effective than the C. cerevisiae α-factor pre-pro leader sequence.

CSLP/pPIC3の作製を示す。 CSLPはCryptococcus sp. S−2で分泌生産されており、そのためCSLP遺伝子は、自身の分泌シグナル配列(ネイティブシグナル配列)を有している。The production of CSLP / pPIC3 is shown. CSLP is a Cryptococcus sp. It is secreted and produced in S-2, and therefore the CSLP gene has its own secretory signal sequence (native signal sequence). CSLP/pPIC9の作製を示す。 CSLPネイティブシグナル配列を、S.cerevisiae由来α−factorフェロモンの分泌配列であるα−factor pre−pro leaderに置き換えた、CSLPシングルコピー株作製用のPlasmidを作製した。The production of CSLP / pPIC9 is shown. The CSLP native signal sequence is designated S. Plasmid for producing a CSLP single copy strain was prepared by replacing it with α-factor pre-pro leader which is a secretory sequence of cerevisiae-derived α-factor pheromone. CSLP/pPIC3(TAA signal)の作製を示す。 CSLPネイティブシグナル配列を、TAA の分泌シグナル(TAA signal)に置き換えたCSLPシングルコピー株作成用のPlasmidを作製した。The production of CSLP / pPIC3 (TAA signal) is shown. A Plasmid for preparing a CSLP single copy strain was prepared by replacing the CSLP native signal sequence with a TAA secretion signal (TAA signal). CSLP形質転換体BMM培養時 CSLP活性経時変化を示す。The time-dependent change of CSLP activity during culture of CSLP transformant BMM is shown. TAA/pPIC3 (Native signal、TAA signal)の作製を示す。 分泌シグナルとしてネイティブ分泌シグナル、即ちTAA signalを用いたTAAシングルコピー株作成用Plasmidを作製した。The production of TAA / pPIC3 (Native signal, TAA signal) is shown. A plasmid for producing a TAA single copy strain using a native secretion signal, ie, TAA signal, as a secretion signal was prepared. TAA/pPIC9(α−factor pre−pro leader)の作製を示す。 TAAネイティブシグナル配列を、S.cerevisiae由来α−factorフェロモンの分泌配列であるα−factor pre−pro leaderに置き換えた、TAAシングルコピー株作製用のPlasmidを作製した。Production of TAA / pPIC9 (α-factor pre-pro leader) is shown. The TAA native signal sequence is designated S. A plasmid for preparing a TAA single copy strain was prepared by replacing the cerevisiae-derived α-factor pheromone secretory sequence with α-factor pre-pro leader. TAA形質転換体BMMY培養時 TAA活性経時変化を示す。The time course of TAA activity during TAA transformant BMMY culture is shown.

Claims (4)

アスペルギルス・オリーゼ(Aspergillus oryzae)由来タカ(Taka)アミラーゼシグナル配列(TAAシグナル配列)に対応する塩基配列の直下に異種タンパク質に対応する塩基配列を配した組換え分泌プラスミドを使用すること、を特徴とするピヒア・パストリス(Pichia pastoris)において異種タンパク質を高分泌させる方法。 Using a recombinant secretion plasmid in which a base sequence corresponding to a heterologous protein is arranged immediately below a base sequence corresponding to a Taka amylase signal sequence (TAA signal sequence) derived from Aspergillus oryzae To secrete a heterologous protein in Pichia pastoris. アスペルギルス・オリーゼ(Aspergillus oryzae)由来タカ(Taka)アミラーゼシグナル配列(TAAシグナル配列)に対応する塩基配列の直下に異種タンパク質に対応する塩基配列を配してなる組換え分泌プラスミドによってピヒア・パストリス(Pichia pastoris)を形質転換してなる形質転換体。 Pichia pastoris (Pichia) by a recombinant secretion plasmid in which a base sequence corresponding to a heterologous protein is arranged immediately below a base sequence corresponding to a Taka amylase signal sequence (TAA signal sequence) derived from Aspergillus oryzae pastoris) . 請求項2に記載の形質転換体を培養し、培養液から異種タンパク質を回収すること、を特徴とする異種タンパク質を製造する方法。   A method for producing a heterologous protein, comprising culturing the transformant according to claim 2 and recovering the heterologous protein from the culture solution. 該異種タンパク質がクリプトコッカス属菌由来のリパーゼ、ボトリティス属菌由来のクチナーゼ、フザリウム属菌由来のクチナーゼ、タカアミラーゼの少なくともひとつであること、を特徴とする請求項3に記載の方法。   The method according to claim 3, wherein the heterologous protein is at least one of a lipase derived from Cryptococcus, a cutinase derived from Botrytis, a cutinase derived from Fusarium, and a Takaamylase.
JP2007229085A 2007-09-04 2007-09-04 Method for high secretion of heterologous proteins in Pichia yeast Active JP5769142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229085A JP5769142B2 (en) 2007-09-04 2007-09-04 Method for high secretion of heterologous proteins in Pichia yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229085A JP5769142B2 (en) 2007-09-04 2007-09-04 Method for high secretion of heterologous proteins in Pichia yeast

Publications (2)

Publication Number Publication Date
JP2009060804A JP2009060804A (en) 2009-03-26
JP5769142B2 true JP5769142B2 (en) 2015-08-26

Family

ID=40556004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229085A Active JP5769142B2 (en) 2007-09-04 2007-09-04 Method for high secretion of heterologous proteins in Pichia yeast

Country Status (1)

Country Link
JP (1) JP5769142B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415023B2 (en) 2013-12-10 2019-09-17 Amano Enzyme Inc. Modified lipase and use thereof
EP4282960A3 (en) 2017-09-01 2024-01-24 Amano Enzyme Inc. Modified lipase and use thereof
JP7382959B2 (en) 2018-12-06 2023-11-17 天野エンザイム株式会社 Modified chrysanthemum acid esterase
JP6683867B1 (en) * 2019-07-22 2020-04-22 植田 充美 Method for producing monoclonal antibody by yeast and screening method
CN114606151B (en) * 2022-04-27 2023-05-19 南京工业大学 Recombinant pichia pastoris with beta-galactosidase displayed on surface, construction method and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69426289T2 (en) * 1993-12-10 2001-04-12 Korea Inst Sci & Tech Signal sequences for the secretion of heterologous proteins from yeast
US5919654A (en) * 1995-02-03 1999-07-06 Asahi Glass Company Ltd. Secretion signal gene and expression vector containing it
CN100532561C (en) * 1999-03-22 2009-08-26 诺沃奇梅兹有限公司 New glucoamylase and nucleic acid sequence coding same
CA2412882A1 (en) * 2000-06-30 2002-01-10 Maxygen Aps Peptide extended glycosylated polypeptides
HUP0303645A3 (en) * 2001-04-06 2005-12-28 Maxygen Holdings Ltd Georgetow Interferon gamma polypeptide variants
JP2005512524A (en) * 2001-11-02 2005-05-12 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト Human coagulation factor VII polypeptide
US20040018573A1 (en) * 2002-04-18 2004-01-29 Power Scott D Production of functional antibodies in filamentous fungi
US7785872B2 (en) * 2004-12-08 2010-08-31 Simpson Biotech Co., Ltd. Nucleic acids for enhancing gene expression and use thereof

Also Published As

Publication number Publication date
JP2009060804A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
Gellissen et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica–a comparison
van den Hazel et al. Biosynthesis and function of yeast vacuolar proteases
JP3542604B2 (en) DNA construct encoding YAP3 signal peptide
JP5769142B2 (en) Method for high secretion of heterologous proteins in Pichia yeast
CN101679992A (en) Expression system
JPH07147971A (en) Recombinant strain free from selection marker gene, method for preparation thereof and use of said strain
JP4855640B2 (en) Insulin precursor and preparation method thereof
US5521086A (en) Secretion sequence for the production of a heterologous protein in yeast
US10023618B2 (en) Protein expression strains
Kang et al. Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL‐1
US6861237B2 (en) Production of heterologous polypeptides in yeast
DE102012201297A1 (en) expression methods
WO2007029630A1 (en) Novel ceramidase and use thereof
JPS6332489A (en) Dna segment encoding specific lipase, vector for developing the same, bacteria subjected to character transformation by said vector and use thereof
Weinhandl et al. Pichia pastoris mutants as host strains for efficient secretion of recombinant branched chain aminotransferase (BCAT)
Stasyk Methylotrophic yeasts as producers of recombinant proteins
US11667922B2 (en) Fungal chaperone proteins
US20220267783A1 (en) Filamentous fungal expression system
Rinnofner et al. Strains and molecular tools for recombinant protein production in Pichia pastoris
Senerovic et al. High‐level production and covalent immobilization of Providencia rettgeri penicillin G acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability
US20220073898A1 (en) Tandem Protein Expression
AU8341098A (en) Increased production of secreted proteins by recombinant yeast cells
KR101692966B1 (en) Method for screening yeast strains with enhanced recombinant protein secretion using yeast variants having cell-wall defect
US20020150983A1 (en) Hansenula polymorpha mutants and process for the preparation of recombinant proteins using the same
JP5288902B2 (en) Cell surface display method using chitin binding domain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5769142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250