JP5768968B2 - Negative electrode active material for lithium ion secondary battery - Google Patents

Negative electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP5768968B2
JP5768968B2 JP2011117073A JP2011117073A JP5768968B2 JP 5768968 B2 JP5768968 B2 JP 5768968B2 JP 2011117073 A JP2011117073 A JP 2011117073A JP 2011117073 A JP2011117073 A JP 2011117073A JP 5768968 B2 JP5768968 B2 JP 5768968B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117073A
Other languages
Japanese (ja)
Other versions
JP2012199214A (en
Inventor
渡邉 学
学 渡邉
田中 修
修 田中
吉田 雅夫
雅夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011117073A priority Critical patent/JP5768968B2/en
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to US14/003,382 priority patent/US9209453B2/en
Priority to KR1020137025942A priority patent/KR101604176B1/en
Priority to EP12755031.7A priority patent/EP2685531B1/en
Priority to CN201280011514.6A priority patent/CN103403928B/en
Priority to PCT/JP2012/055665 priority patent/WO2012121240A1/en
Priority to TW101107659A priority patent/TWI467837B/en
Publication of JP2012199214A publication Critical patent/JP2012199214A/en
Application granted granted Critical
Publication of JP5768968B2 publication Critical patent/JP5768968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)などのモータ駆動用電源として用いられる二次電池や、キャパシタ等に代表される電気デバイス用の負極活物質に関するものである。   The present invention relates to a secondary battery used as a power source for driving a motor such as an electric vehicle (EV) and a hybrid electric vehicle (HEV), and a negative electrode active material for an electric device represented by a capacitor.

近年、大気汚染や地球温暖化への対策として、CO排出量の低減に向けた種々の取り組みがなされており、自動車業界においては、ハイブリット電気自動車や電気自動車の導入によるCO排出量の削減が期待されている。そして、これら車両のモータ駆動用の二次電池などの電気デバイスの開発が進んでいる。
上記したようなモータ駆動用の二次電池としては、特に高容量であることやサイクル特性に優れていることが求められる。このため、各種二次電池の中でも、高い理論エネルギーを有するリチウムイオン二次電池が注目されている。
In recent years, various efforts have been made to reduce CO 2 emissions as a measure against air pollution and global warming. In the automotive industry, CO 2 emissions have been reduced by introducing hybrid electric vehicles and electric vehicles. Is expected. And development of electric devices, such as a secondary battery for motor drive of these vehicles, is progressing.
The secondary battery for driving a motor as described above is required to have particularly high capacity and excellent cycle characteristics. For this reason, lithium ion secondary batteries having high theoretical energy are attracting attention among various secondary batteries.

このようなリチウムイオン二次電池におけるエネルギー密度を高めるためには、正極と負極の単位質量当たりに蓄えられる電気量を増大することが必要であり、このような要求を満たすためには、それぞれの活物質の選定が極めて重要なものとなる。   In order to increase the energy density in such a lithium ion secondary battery, it is necessary to increase the amount of electricity stored per unit mass of the positive electrode and the negative electrode. The selection of the active material is extremely important.

そして、特許文献1には、製造が容易で、高い放電容量を維持して、優れたサイクル特性を発揮するリチウムイオン二次電池用負極材料として、所定の粒径を備え、複数種の金属成分、合金成分と、所定の径及び長さの微細炭素成分から成る負極材料が提案されている。   Patent Document 1 discloses a negative electrode material for a lithium ion secondary battery that is easy to manufacture, maintains a high discharge capacity, and exhibits excellent cycle characteristics. A negative electrode material composed of an alloy component and a fine carbon component having a predetermined diameter and length has been proposed.

特許第4406789号公報Japanese Patent No. 4406789

しかしながら、上記特許文献1に記載の負極材料を用いたリチウムイオン二次電池においては、初期充放電効率が低く、電池としての実行容量が以下すると共に、正極側との特性バランスに欠け、電池の作製に際しての調製が非常に困難であるという問題点がある。   However, in the lithium ion secondary battery using the negative electrode material described in Patent Document 1, the initial charge / discharge efficiency is low, the effective capacity as the battery is below, and the characteristic balance with the positive electrode side is lacking. There is a problem that preparation during production is very difficult.

本発明は、従来の負極材料における上記課題を解決すべくなされたものであって、その目的とするところは、サイクル特性を保持しつつ、初期充放電効率を向上させることができるリチウムイオン二次電池などの電気デバイス用の負極活物質を提供することにある。また、このような負極活物質を適用した電気デバイス用負極及び電気デバイス、さらにはリチウムイオン二次電池を提供することにある。   The present invention has been made to solve the above-described problems in conventional negative electrode materials, and the object of the present invention is to provide a lithium ion secondary that can improve initial charge and discharge efficiency while maintaining cycle characteristics. The object is to provide a negative electrode active material for electric devices such as batteries. Moreover, it is providing the negative electrode for electric devices and an electric device which applied such a negative electrode active material, and also a lithium ion secondary battery.

本発明者らは、上記目的を達成すべく鋭意検討を繰り返した結果、負極活物質として、Si−C−Zn系3元合金を用いることによって、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of repeating earnest studies to achieve the above object, the present inventors have found that the above object can be achieved by using a Si—C—Zn ternary alloy as the negative electrode active material, and the present invention has been completed. It came to do.

すなわち、本発明は上記知見に基づくものであって、本発明の電気デバイス用負極活物質は、25質量%を超え54質量%未満のSi(ケイ素)と、1質量%を超え47質量%未満のC(炭素)と、13質量%を超え69質量%未満のZn(亜鉛)を含有し、残部が不可避不純物である合金から成ることを特徴とする。   That is, this invention is based on the said knowledge, Comprising: The negative electrode active material for electrical devices of this invention exceeds 25 mass% and less than 54 mass% Si (silicon), and exceeds 1 mass% and less than 47 mass%. C (carbon) and Zn (zinc) exceeding 13 mass% and less than 69 mass%, and the balance is made of an alloy which is an inevitable impurity.

また、本発明の電気デバイス用負極は、本発明の上記負極活物質を用いて成ることを特徴としている。
そして、本発明の電気デバイスは、本発明の上記負極活物質又は負極を用いて成ることを特徴とし、代表例として、リチウムイオン二次電池とすることができる。
Moreover, the negative electrode for electric devices of the present invention is characterized by using the negative electrode active material of the present invention.
And the electrical device of this invention is characterized by using the said negative electrode active material or negative electrode of this invention, and can be used as a lithium ion secondary battery as a representative example.

本発明によれば、電気デバイス用負極活物質として、上記組成範囲のSi−C−Zn系3元合金を用いるようにしたため、このような負極活物質を電気デバイス、例えばリチウムイオン二次電池に適用することによって、そのサイクル特性を保持しながら、初期充放電効率を向上させることができる。   According to the present invention, since the Si—C—Zn-based ternary alloy having the above composition range is used as the negative electrode active material for electric devices, such a negative electrode active material is used for an electric device such as a lithium ion secondary battery. By applying, the initial charge / discharge efficiency can be improved while maintaining the cycle characteristics.

本発明の電気デバイス用負極活物質を構成するSi−C−Zn系合金の組成範囲と共に、実施例で成膜した合金成分をプロットして示す3元組成図である。It is the ternary composition figure which plots and shows the alloy component formed into a film with the composition range of the Si-C-Zn system alloy which constitutes the anode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−C−Zn系合金の好適組成範囲を示す3元組成図である。It is a ternary composition diagram showing a preferred composition range of the Si-C-Zn based alloy constituting the negative electrode active material for electric devices of the present invention.

以下に、本発明の電気デバイス用負極活物質について、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池と共に、詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。   Below, the negative electrode active material for electric devices of this invention is demonstrated in detail with the negative electrode for lithium ion secondary batteries and lithium ion secondary battery which used this. In the present specification, “%” represents mass percentage unless otherwise specified.

本発明の電気デバイス用負極活物質は、25質量%を超え54質量%未満のSiと、1質量%を超え47質量%未満のCと、13質量%を超え69質量%未満のZnを含有し(図1参照)、残部がSi及び不可避不純物である合金から成るものであり、例えばリチウムイオン二次電池の負極に用いられる。
すなわち、上記負極活物質は、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させる第1添加元素としてのCと、この第1添加元素の濃度が増加しても電極としての容量が減少しない第2添加元素としてのZnを含有する。これによって、高容量で、高サイクル耐久性、かつ高初期充放電効率を発揮するSi(Si−C−Zn系)合金負極活物質となる。
The negative electrode active material for an electrical device of the present invention contains more than 25% by mass of Si, less than 54% by mass of Si, more than 1% by mass of less than 47% by mass of C, and more than 13% by mass of less than 69% by mass of Zn. However, the balance is made of an alloy which is Si and inevitable impurities, and is used for the negative electrode of a lithium ion secondary battery, for example.
That is, when the negative electrode active material is Li-alloyed, the concentration of C as the first additive element for suppressing the amorphous-crystal phase transition and improving the cycle life and the concentration of the first additive element are increased. Also contains Zn as a second additive element that does not reduce the capacity as an electrode. Thus, a Si (Si—C—Zn-based) alloy negative electrode active material having high capacity, high cycle durability, and high initial charge / discharge efficiency is obtained.

このとき、Si−C−Zn系合金から成る本発明の負極活物質におけるSi含有量が25質量%以下の場合には、十分な初期容量が得られず、逆に54質量%以上の場合には、従来の純Siの場合と同等のサイクル特性しか得られない。また、C含有量が1質量%以下の場合には、サイクル特性が純Siと同等になり、逆に47質量%以上の場合には、Siの含有量が相対的に低下するため、初期容量が既存の負極活物質と比べて悪化する傾向がある。一方、Zn含有量については、13質量%以下では、サイクル特性が純Siと同等になる一方、69質量%以上では、Siの含有量が低下するため、初期容量が既存の負極活物質と比べて悪化する傾向がある。   At this time, when the Si content in the negative electrode active material of the present invention made of a Si—C—Zn-based alloy is 25% by mass or less, a sufficient initial capacity cannot be obtained, and conversely, when the Si content is 54% by mass or more. Can only obtain cycle characteristics equivalent to those of conventional pure Si. In addition, when the C content is 1% by mass or less, the cycle characteristics are equivalent to that of pure Si, and conversely, when the C content is 47% by mass or more, the Si content is relatively decreased. However, there is a tendency to deteriorate compared with existing negative electrode active materials. On the other hand, when the Zn content is 13% by mass or less, the cycle characteristics are equivalent to that of pure Si. On the other hand, when the Zn content is 69% by mass or more, the Si content decreases, so the initial capacity is lower than that of the existing negative electrode active material. Tend to get worse.

なお、当該負極活物質の上記特性をさらに良好なものとする観点から、C含有量については1質量%を超え34質量%未満の範囲、Znについては17質量%を超え69質量%未満の範囲内とすることが望ましい(図2参照)。   From the viewpoint of further improving the above characteristics of the negative electrode active material, the C content is in the range of more than 1% by mass and less than 34% by mass, and the Zn is in the range of more than 17% by mass and less than 69% by mass. It is desirable to be within (see FIG. 2).

また、本発明の負極活物質は、上記3成分の他に、原料や製法に由来する不純物の含有を避けることはできない。このような不可避不純物の含有量としては、0.5質量%未満であることが好ましく、0.1質量%未満であることがより好ましい。   In addition to the above three components, the negative electrode active material of the present invention cannot contain impurities derived from raw materials and production methods. The content of such inevitable impurities is preferably less than 0.5% by mass, and more preferably less than 0.1% by mass.

本発明の負極活物質、すなわち上記組成のSi−C−Zn系合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。つまり、作製方法による合金状態や特性の違いはほとんどないことから、従来公知の作製方法をいずれも支障なく適用することができる。   The method for producing the negative electrode active material of the present invention, that is, the Si—C—Zn-based alloy having the above composition is not particularly limited, and can be produced using various conventionally known production methods. That is, since there is almost no difference in alloy state and characteristics depending on the production method, any conventionally known production method can be applied without any problem.

具体的には、例えば、多元PVD法(スパッタ法、抵抗加熱法、レーザーアブレーション法)、多元CVD法(化学気相成長法)等を利用することによって、上記組成を有する薄膜形態の合金を得ることができる。
このような合金薄膜は、集電体上に直接形成(成膜)することによって負極電極とすることができ、工程の簡略化・簡素化が図れる点で優れている。さらには、合金(負極活物質)以外のバインダや導電助剤など、他の負極活物質層を構成する成分を用いる必要がなく、負極活物質としての合金薄膜をそのまま負極とすることができるため、車両用途の実用化レベルを満足する高容量及び高エネルギー密度化が図れる点で優れている。また、活物質の電気化学特性を調べるのに適している。
Specifically, for example, by using a multi-element PVD method (sputtering method, resistance heating method, laser ablation method), a multi-element CVD method (chemical vapor deposition method) or the like, an alloy in the form of a thin film having the above composition is obtained. be able to.
Such an alloy thin film can be used as a negative electrode by being directly formed (film formation) on a current collector, and is excellent in that the process can be simplified and simplified. Furthermore, it is not necessary to use other components constituting the negative electrode active material layer such as a binder or a conductive additive other than the alloy (negative electrode active material), and the alloy thin film as the negative electrode active material can be used as a negative electrode as it is. It is excellent in that it can achieve high capacity and high energy density that satisfy the practical application level of vehicle applications. It is also suitable for investigating the electrochemical characteristics of active materials.

上記した合金薄膜の製造に際しては、多元DCマグネトロンスパッタ装置として、例えば、独立制御の3元DCマグネトロンスパッタ装置を用いることによって、基板(集電体)表面に種々の合金組成及び厚さのSi−C−Zn系合金薄膜を自在に形成することができる。
例えば、ターゲット1(Si)、ターゲット2(C)、ターゲット3(Zn)を使用し、スパッタ時間を固定し、例えば、DC電源のパワーをそれぞれSi:185W、C:30−90W、Zn:20−90Wのようにそれぞれ変化させることによって、種々の組成式を有する3元系の合金サンプルを得ることができる。ただし、スパッタ条件はスパッタ装置ごとに違うため、スパッタ装置ごとに適宜、予備実験などを通じて好適な範囲を把握しておくことが望ましい。
When manufacturing the above-described alloy thin film, for example, by using an independently controlled ternary DC magnetron sputtering apparatus as a multi-element DC magnetron sputtering apparatus, Si— of various alloy compositions and thicknesses are formed on the surface of the substrate (current collector). A C—Zn-based alloy thin film can be freely formed.
For example, the target 1 (Si), the target 2 (C), and the target 3 (Zn) are used, and the sputtering time is fixed. For example, the power of the DC power source is Si: 185 W, C: 30-90 W, and Zn: 20 By changing each to −90 W, ternary alloy samples having various composition formulas can be obtained. However, since the sputtering conditions are different for each sputtering apparatus, it is desirable to grasp a suitable range through preliminary experiments as appropriate for each sputtering apparatus.

一方、上記組成を有する粒子形態の合金の製造方法としては、例えば、メカニカルアロイ法、アークプラズマ溶融法等を利用することができる。
このような粒子形態の合金を負極活物質として使用する場合には、当該合金粒子にバインダ、導電助剤、粘度調整溶剤などを加えたスラリーを調整し、このスラリーを用いて集電体上に負極活物質層を形成することによって負極が得られる。したがって、量産化し易く、実際の電池用電極として実用化しやすい点で優れている。
On the other hand, for example, a mechanical alloy method, an arc plasma melting method, or the like can be used as a method for producing a particle-shaped alloy having the above composition.
When using such a particle-form alloy as a negative electrode active material, a slurry obtained by adding a binder, a conductive additive, a viscosity adjusting solvent, etc. to the alloy particles is prepared, and this slurry is used on the current collector. A negative electrode is obtained by forming a negative electrode active material layer. Therefore, it is excellent in that it is easily mass-produced and is easily put into practical use as an actual battery electrode.

なお、負極活物質として、粒子形態の合金を用いる場合には、その平均粒子径は、従来の負極活物質と同程度であれば、特に制限されることはない。但し、高出力化の観点からは、1〜20μmの範囲であることが好ましいが、上記した作用効果が有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。   In addition, when using the alloy of a particle form as a negative electrode active material, the average particle diameter will not be restrict | limited especially if it is comparable as the conventional negative electrode active material. However, from the viewpoint of higher output, it is preferably in the range of 1 to 20 μm, but it goes without saying that it may be out of the above range as long as the above-described effects can be effectively expressed.

本発明の電気デバイス用負極は、上記Si−C−Zn系合金から成る負極活物質を用いたものであり、このような電気デバイスとして代表的なリチウムイオン二次電池は、上記負極活物質を含む負極活物質層を集電体表面に備えた負極を電解質層及び正極と共に備えた少なくとも1つの単電池を有するものである。
以下に、このようなリチウムイオン二次電池の構成やその材料などについてそれぞれ説明する。
The negative electrode for an electric device of the present invention uses a negative electrode active material composed of the Si—C—Zn alloy, and a typical lithium ion secondary battery as such an electric device includes the negative electrode active material. It has at least one unit cell provided with the negative electrode provided with the negative electrode active material layer which contains it on the collector surface, and the electrolyte layer and the positive electrode.
Hereinafter, the configuration and materials of such a lithium ion secondary battery will be described.

リチウムイオン二次電池は、一般に、正極集電体に正極活物質等を塗布した正極と、負極集電体に負極活物質等を塗布した負極とが、電解質層を介して接続され、電池ケース内に収納された構造を有している。   Generally, a lithium ion secondary battery has a battery case in which a positive electrode obtained by applying a positive electrode active material or the like to a positive electrode current collector and a negative electrode obtained by applying a negative electrode active material or the like to a negative electrode current collector are connected via an electrolyte layer. It has a structure housed inside.

〔正極〕
リチウムイオン二次電池において、正極は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの導電性材料から成る集電体(正極集電体)の片面又は両面に、正極活物質層、すなわち正極活物質と共に、必要に応じて導電助剤やバインダを含む正極活物質層を形成した構造を備えている。
[Positive electrode]
In a lithium ion secondary battery, the positive electrode is a positive electrode active material layer, that is, a positive electrode on one or both sides of a current collector (positive electrode current collector) made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil. A structure in which a positive electrode active material layer including a conductive additive and a binder is formed as necessary together with the active material is provided.

上記集電体の厚さとしては、特に限定されず、一般には1〜30μm程度であることが好ましい。また、正極活物質層中におけるこれら正極活物質、導電助剤、バインダの配合比としては、特に限定されない。   The thickness of the current collector is not particularly limited and is generally about 1 to 30 μm. Further, the mixing ratio of these positive electrode active material, conductive additive, and binder in the positive electrode active material layer is not particularly limited.

上記正極活物質としては、例えば、リチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。   Examples of the positive electrode active material include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, solid solution systems, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. Can be mentioned.

リチウム−遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePO及びこれらの遷移金属の一部が他の元素により置換されたもの等を挙げることができる。
固溶体系としては、xLiMO・(1−x)LiNO(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO−LiMn(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。
Examples of the lithium-transition metal composite oxide include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples thereof include those in which a part of these transition metals is substituted with other elements.
As a solid solution system, xLiMO 2 · (1-x) Li 2 NO 3 (0 <x <1, M is one or more transition metals having an average oxidation state of 3+ and N is an average oxidation state of 4+), LiRO 2- LiMn 2 O 4 (R = transition metal elements such as Ni, Mn, Co and Fe).

3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。スピネルMn系としてはLiMn等が挙げられる。また、NiMn系としては、LiNi0.5Mn1.5等が挙げられる。NiCo系としては、Li(NiCo)O等が挙げられる。
場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。
Examples of the ternary system include nickel / cobalt / manganese (composite) positive electrode materials. Examples of the spinel Mn system include LiMn 2 O 4 . As the NiMn system include LiNi 0.5 Mn 1.5 O 4 and the like. Examples of the NiCo system include Li (NiCo) O 2 .
In some cases, two or more positive electrode active materials may be used in combination. Preferably, a lithium-transition metal composite oxide is used as the positive electrode active material from the viewpoint of capacity and output characteristics.

なお、上記正極活物質の粒径としては、特に限定するものではないが、一般には細かいほど望ましく、作業能率や取り扱いの容易さなどを考慮すると、平均粒径で、1〜30μm程度であればよく、5〜20μm程度であることがより好ましい。
また、上記以外の正極活物質が用いられてもよいことはもちろんであって、活物質それぞれの固有の効果を発現する上で最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士をブレンドして用いればよく、全ての活物質の粒径を必ずしも均一化させる必要はない。
In addition, although it does not specifically limit as a particle size of the said positive electrode active material, In general, it is so desirable that it is fine, and if the work efficiency, the ease of handling, etc. are considered, if it is about 1-30 micrometers in average particle diameter, It is more preferable that the thickness is about 5 to 20 μm.
In addition, positive electrode active materials other than those described above may be used, and when the optimum particle size is different for expressing the specific effects of each active material, the respective specific effects are expressed. For this purpose, the optimum particle diameters may be blended and used, and it is not always necessary to make the particle diameters of all the active materials uniform.

上記バインダは、活物質同士又は活物質と集電体とを結着させて電極構造を維持する目的で添加される。
このようなバインダとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)およびポリアクリロニトリル(PAN)などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料を用いることができる。
The binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
Examples of such a binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins In addition, rubber-based materials such as styrene butadiene rubber (SBR) can be used.

導電助剤は、導電剤とも称し、導電性を向上させるために配合される導電性の添加物を意味する。本発明に使用する導電助剤としては、特に制限されず、従来公知のものを利用することができ、例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料を挙げることができる。
導電助剤を含有させることによって、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上、電解液の保液性の向上による信頼性向上に寄与する。
The conductive auxiliary agent is also referred to as a conductive agent, and means a conductive additive that is blended to improve conductivity. The conductive aid used in the present invention is not particularly limited, and conventionally known ones can be used, and examples thereof include carbon black such as acetylene black, and carbon materials such as graphite and carbon fiber.
By containing a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improving the output characteristics of the battery and improving reliability by improving the liquid retention of the electrolytic solution.

〔負極〕
一方、負極は、正極と同様に、上記したような導電性材料から成る集電体(負極集電体)の片面又は両面に、負極活物質と共に、必要に応じて、上記した正極活物質の場合と同様の導電助剤やバインダを含有させて成る負極極活物質層を形成した構造を備えたものとすることができる。
[Negative electrode]
On the other hand, in the same way as the positive electrode, the negative electrode is formed on one or both sides of a current collector (negative electrode current collector) made of the conductive material as described above, together with the negative electrode active material, if necessary. It may have a structure in which a negative electrode active material layer formed by containing the same conductive additive or binder as in the case is formed.

本発明の電気デバイスであるリチウムイオン二次電池においては、上記した組成を備えたSi−C−Zn系合金から成る負極活物質が用いられるが、このような合金から成る負極活物質が必須成分として含有されてさえいれば、リチウムを可逆的に吸蔵及び放出できる従来公知の負極活物質を併用することに支障はない。
このような負極活物質としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等),低結晶性カーボン(ソフトカーボン,ハードカーボン),カーボンブラック(ケッチェンブラック,アセチレンブラック,チャンネルブラック,ランプブラック,オイルファーネスブラック,サーマルブラック等),フラーレン,カーボンナノチューブ,カーボンナノファイバー,カーボンナノホーン,カーボンフィブリルなどの炭素材料、Si,Ge,Sn,Pb,Al,In,Zn,H,Ca,Sr,Ba,Ru,Rh,Ir,Pd,Pt,Ag,Au,Cd,Hg,Ga,Tl,C,N,Sb,Bi,O,S,Se,Te,Cl等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO),SiOx(0<x<2),二酸化スズ(SnO),SnO(0<x<2),SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等、リチウム金属等の金属材料、リチウム−チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム−遷移金属複合酸化物を挙げることができる。
In the lithium ion secondary battery which is the electrical device of the present invention, a negative electrode active material composed of a Si—C—Zn-based alloy having the above-described composition is used. A negative electrode active material composed of such an alloy is an essential component. As long as it is contained, there is no problem in using a conventionally known negative electrode active material capable of reversibly occluding and releasing lithium.
Examples of such negative electrode active materials include graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen black, acetylene black, channel). Black, lamp black, oil furnace black, thermal black, etc.), fullerenes, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon fibrils and other carbon materials, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca , Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl, etc. are alloyed with lithium Elemental elements and oxides containing these elements (monoxide) Lee arsenide (SiO), SiOx (0 < x <2), tin dioxide (SnO 2), SnO x ( 0 <x <2), etc. SnSiO 3) and carbide (silicon carbide (SiC), etc.) or the like, a lithium metal And a lithium-transition metal composite oxide such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ).

負極としては、上記したように、負極活物質と共に導電助剤やバインダを含むスラリーを集電体表面に塗布することによって負極極活物質層を形成したもののみならず、多元PVD法やCVD法等によって負極活物質合金の薄膜を集電体表面に直接成膜したものを用いることも可能である。   As described above, the negative electrode includes not only a negative electrode active material layer formed by applying a slurry containing a conductive additive or a binder together with a negative electrode active material to the current collector surface, but also a multi-element PVD method or a CVD method. It is also possible to use a negative electrode active material alloy thin film formed directly on the surface of the current collector by the above or the like.

なお、上記においては、正極活物質層及び負極活物質層をそれぞれの集電体の片面又は両面上に形成するものとして説明したが、1枚の集電体の一方の面に正極活物質層、他方の面に負極活物質層をそれぞれに形成することもでき、このような電極は、双極型電池に適用される。   In the above description, the positive electrode active material layer and the negative electrode active material layer are described as being formed on one or both surfaces of each current collector. However, the positive electrode active material layer is formed on one surface of one current collector. A negative electrode active material layer can be formed on the other surface, respectively, and such an electrode is applied to a bipolar battery.

〔電解質層〕
電解質層は、非水電解質を含む層であって、電解質層に含まれる非水電解質は、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を有する。
なお、電解質層の厚さとしては、内部抵抗を低減させる観点から薄ければ薄いほどよく、通常1〜100μm程度、好ましくは5〜50μmの範囲とする。
(Electrolyte layer)
The electrolyte layer is a layer containing a non-aqueous electrolyte, and the non-aqueous electrolyte contained in the electrolyte layer functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge.
The thickness of the electrolyte layer is preferably as thin as possible from the viewpoint of reducing internal resistance, and is usually in the range of about 1 to 100 μm, preferably 5 to 50 μm.

非水電解質としては、このような機能を発揮できるものであれば特に限定されず、液体電解質又はポリマー電解質を用いることができる。   The nonaqueous electrolyte is not particularly limited as long as it can exhibit such a function, and a liquid electrolyte or a polymer electrolyte can be used.

液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。
また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の活物質層に添加され得る化合物を採用することができる。
The liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent. Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC).
As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc. A compound that can be added to the active material layer of the electrode can be employed.

一方、ポリマー電解質は、電解液を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質に分類される。
ゲルポリマー電解質は、好ましくはイオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されて成る構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になる点で優れている。
On the other hand, the polymer electrolyte is classified into a gel polymer electrolyte containing an electrolytic solution (gel electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution.
The gel polymer electrolyte preferably has a structure in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. The use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.

マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されず、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びこれらの共重合体等が挙げられる。
ここで、上記のイオン伝導性ポリマーは、活物質層において電解質として用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。電解液(リチウム塩及び有機溶媒)の種類は特に制限されず、上記で例示したリチウム塩などの電解質塩及びカーボネート類などの有機溶媒が用いられる。
The ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited, and examples thereof include polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), polyvinylidene fluoride and hexafluoropropylene. Examples of the copolymer include PVDF-HFP, polyethylene glycol (PEG), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and copolymers thereof.
Here, the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same. The type of the electrolytic solution (lithium salt and organic solvent) is not particularly limited, and an electrolyte salt such as the lithium salt exemplified above and an organic solvent such as carbonates are used.

真性ポリマー電解質は、上記のマトリックスポリマーにリチウム塩が溶解して成るものであって、有機溶媒を含まない。したがって、電解質として真性ポリマー電解質を用いることによって電池からの液漏れの心配がなくなり、電池の信頼性が向上することになる。   The intrinsic polymer electrolyte is formed by dissolving a lithium salt in the above matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery is improved.

ゲルポリマー電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現することができる。このような架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
これらの電解質層に含まれる非水電解質は、1種のみから成る単独のものでも、2種以上を混合したものであっても差し支えない。
The matrix polymer of gel polymer electrolyte or intrinsic polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form such a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam is applied to a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator. A polymerization process such as polymerization may be performed.
The non-aqueous electrolyte contained in these electrolyte layers may be a single type consisting of only one type or a mixture of two or more types.

なお、電解質層が液体電解質やゲルポリマー電解質から構成される場合には、電解質層にセパレータを用いる。
セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンから成る微多孔膜が挙げられる。
In addition, when an electrolyte layer is comprised from a liquid electrolyte or a gel polymer electrolyte, a separator is used for the electrolyte layer.
Specific examples of the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.

〔電池の形状〕
リチウムイオン二次電池は、上述のような正極と負極とが電解質層を介して接続された電池素子(電極構造体)を有しており、かかる電池素子を缶体やラミネート容器(包装体)などの電池ケースに収容した構造を有している。
なお、電池素子が正極、電解質層及び負極を巻回した構造を有する巻回型の電池と、正極、電解質層及び負極を積層型の電池に大別され、上述の双極型電池は積層型の構造を有する。また、電池ケースの形状や構造に応じて、いわゆるコインセル、ボタン電池、ラミネート電池などと称されることもある。
[Battery shape]
The lithium ion secondary battery has a battery element (electrode structure) in which the positive electrode and the negative electrode as described above are connected via an electrolyte layer, and the battery element can be used as a can or a laminate container (packaging body). It has a structure housed in a battery case.
The battery element is roughly divided into a wound battery having a structure in which a positive electrode, an electrolyte layer, and a negative electrode are wound, and a positive electrode, an electrolyte layer, and a negative electrode are stacked batteries, and the above bipolar battery is a stacked battery. It has a structure. Moreover, it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.

以下、本発明を実施例に基づいて詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited to these examples.

〔1〕負極の作製
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン−サンプル間距離:約100mm)を使用し、厚さ20μmのニッケル箔から成る基板(集電体)上に、以下の条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜することによって、都合31種の負極サンプルを得た。
[1] Production of negative electrode As a sputtering apparatus, an independent control type three-way DC magnetron sputtering apparatus (Daiwa Kikai Kogyo Co., Ltd., combinatorial sputter coating apparatus, gun-sample distance: about 100 mm) is used. A negative electrode active material alloy thin film having each composition was formed on a substrate (current collector) made of nickel foil under the following conditions, thereby obtaining 31 types of negative electrode samples.

(1)ターゲット(株式会社高純度化学研究所製、純度:4N)
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
C:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Zn:50.8mm径、3mm厚さ
(2)成膜条件
ベース圧力:〜7×10−6
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、C(30〜90W)、Zn(20〜90W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温
(1) Target (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 4N)
Si: 50.8 mm diameter, 3 mm thickness (with 2 mm thick oxygen-free copper backing plate)
C: 50.8 mm diameter, 3 mm thickness (with 2 mm thick oxygen-free copper backing plate)
Zn: 50.8 mm diameter, 3 mm thickness (2) Film formation conditions Base pressure: ~ 7 × 10 −6
Sputtering gas type: Ar (99.9999% or more)
Sputtering gas introduction amount: 10 sccm
Sputtering pressure: 30 mTorr
DC power supply: Si (185 W), C (30 to 90 W), Zn (20 to 90 W)
Pre-sputtering time: 1 min.
Sputtering time: 10 min.
Substrate temperature: room temperature

すなわち、上記のようなSiターゲット、Cターゲット及びZnターゲットを使用し、スパッタ時間は10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させることによって、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
ここで、サンプル作製の数例を示せば、サンプルNo.5(実施例)では、DC電源1(Siターゲット):185W、DC電源2(Cターゲット):60W、DC電源3(Znターゲット):30Wとした。また、サンプルNo.22(比較例)では、DC電源1(Siターゲット):185W、DC電源2(Cターゲット):45W、DC電源3(Znターゲット):0Wとした。さらに、サンプルNo.26(比較例)では、DC電源1(Siターゲット):185W、DC電源2(Cターゲット):0W、DC電源3(Znターゲット):28Wとした。
That is, using the Si target, C target, and Zn target as described above, the sputtering time is fixed to 10 minutes, and the power of the DC power source is changed within the above range, whereby an amorphous alloy is formed on the Ni substrate. A thin film was formed, and negative electrode samples provided with alloy thin films having various compositions were obtained.
Here, if several examples of sample preparation are shown, sample no. 5 (Example), DC power source 1 (Si target): 185 W, DC power source 2 (C target): 60 W, DC power source 3 (Zn target): 30 W. Sample No. In 22 (comparative example), DC power source 1 (Si target): 185 W, DC power source 2 (C target): 45 W, and DC power source 3 (Zn target): 0 W. Furthermore, sample no. 26 (comparative example), DC power source 1 (Si target): 185 W, DC power source 2 (C target): 0 W, DC power source 3 (Zn target): 28 W.

これら合金薄膜の成分組成を表1及び図1に示す。なお、得られた合金薄膜の分析は、下記の分析法、分析装置によった。   The component compositions of these alloy thin films are shown in Table 1 and FIG. The obtained alloy thin film was analyzed by the following analysis method and analyzer.

(3)分析方法
組成分析:SEM・EDX分析(JEOL社)、EPMA分析(JEOL社)
膜厚測定(スパッタレート算出のため):膜厚計(東京インスツルメンツ)
膜状態分析:ラマン分光測定(ブルカー社)
(3) Analysis method Composition analysis: SEM / EDX analysis (JEOL), EPMA analysis (JEOL)
Film thickness measurement (for sputter rate calculation): Film thickness meter (Tokyo Instruments)
Film state analysis: Raman spectroscopy (Bruker)

〔2〕電池の作製
上記により得られた各負極サンプルとリチウム箔(本城金属株式会社製、直径15mm、厚さ200μm)から成る対極とをセパレータ(セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルをそれぞれ作製した。
なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
[2] Production of Battery Each negative electrode sample obtained above and a counter electrode made of lithium foil (Honjo Metal Co., Ltd., diameter 15 mm, thickness 200 μm) are opposed to each other through a separator (Celgard Cellguard 2400). Then, CR2032-type coin cells were produced by injecting an electrolyte solution.
As the above electrolyte solution, ethylene carbonate (EC) and diethyl carbonate (DEC) 1: in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.

〔3〕電池の充放電試験
上記により得られたそれぞれの電池に対して以下の充放電試験を実施した。
すなわち、充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、300K(27℃)の温度に設定された恒温槽(エスペック株式会社製PFU−3K)中にて、充電過程(評価対象である負極へのLi挿入過程)では、定電流・定電圧モードとして、0.1mAにて2Vから10mVまで充電した。その後、放電過程(上記負極からのLi脱離過程)では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを50回繰り返した。
この結果を表1に併せて示す。なお、充放電容量は、合金重量当りで算出した値を示している。
[3] Battery Charging / Discharging Test The following charging / discharging test was performed on each battery obtained as described above.
That is, using a charge / discharge tester (HJ0501SM8A manufactured by Hokuto Denko Co., Ltd.), in a thermostatic chamber (PFU-3K manufactured by Espec Co., Ltd.) set at a temperature of 300K (27 ° C), In a process of inserting Li into a certain negative electrode), the battery was charged from 2 V to 10 mV at 0.1 mA as a constant current / constant voltage mode. Thereafter, in the discharge process (Li desorption process from the negative electrode), the constant current mode was set, and discharge was performed from 0.1 mA, 10 mV to 2 V. The above charging / discharging cycle was made into 1 cycle, and this was repeated 50 times.
The results are also shown in Table 1. Note that the charge / discharge capacity is a value calculated per weight of the alloy.

Figure 0005768968
Figure 0005768968

この結果、サンプル番号1〜11の合金を負極活物質として使用した実施例の電池においては、他の負極活物質を用いた電池に比べて、初期容量と維持率とのバランスに優れており、特に、図2に示すように、Siが25%を超え54%未満、Cが1%を超え34%未満、Znが17%を超え69%未満の範囲内が良好であることが確認された。   As a result, in the batteries of the examples using the alloys of sample numbers 1 to 11 as the negative electrode active material, the balance between the initial capacity and the maintenance rate is excellent as compared with the batteries using other negative electrode active materials, In particular, as shown in FIG. 2, it was confirmed that Si was more than 25% and less than 54%, C was more than 1% and less than 34%, and Zn was more than 17% and less than 69%. .

Claims (4)

質量比で、25%を超え54%未満のSiと、1%を超え47%未満のCと、13%を超え69%未満のZnを含有し、残部が不可避不純物である合金から成ることを特徴とするリチウムイオン二次電池用負極活物質。 It is made of an alloy containing, by mass ratio, more than 25% and less than 54% Si, more than 1% and less than 47% C, and more than 13% and less than 69% Zn, with the balance being inevitable impurities. A negative electrode active material for a lithium ion secondary battery . 上記合金が質量比で、34%未満のCと、17%を超えるZnを含有することを特徴とする請求項1に記載のリチウムイオン二次電池用負極活物質。 2. The negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the alloy contains, by mass ratio, less than 34% C and more than 17% Zn. 請求項1又は2に記載の負極活物質を用いて成ることを特徴とするリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, comprising the negative electrode active material according to claim 1. 請求項1又は2に記載の負極活物質、又は請求項3に記載の負極を用いて成ることを特徴とするリチウムイオン二次電池A lithium ion secondary battery comprising the negative electrode active material according to claim 1 or 2 or the negative electrode according to claim 3.
JP2011117073A 2011-03-08 2011-05-25 Negative electrode active material for lithium ion secondary battery Active JP5768968B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011117073A JP5768968B2 (en) 2011-03-08 2011-05-25 Negative electrode active material for lithium ion secondary battery
KR1020137025942A KR101604176B1 (en) 2011-03-08 2012-03-06 Negative electrode active material for electric device
EP12755031.7A EP2685531B1 (en) 2011-03-08 2012-03-06 Negative electrode active material for electrical devices
CN201280011514.6A CN103403928B (en) 2011-03-08 2012-03-06 Negative electrode active material for electrical
US14/003,382 US9209453B2 (en) 2011-03-08 2012-03-06 Negative electrode active material for electric device
PCT/JP2012/055665 WO2012121240A1 (en) 2011-03-08 2012-03-06 Negative electrode active material for electrical devices
TW101107659A TWI467837B (en) 2011-03-08 2012-03-07 Negative active material for electrical devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011050314 2011-03-08
JP2011050314 2011-03-08
JP2011117073A JP5768968B2 (en) 2011-03-08 2011-05-25 Negative electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012199214A JP2012199214A (en) 2012-10-18
JP5768968B2 true JP5768968B2 (en) 2015-08-26

Family

ID=46798198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117073A Active JP5768968B2 (en) 2011-03-08 2011-05-25 Negative electrode active material for lithium ion secondary battery

Country Status (7)

Country Link
US (1) US9209453B2 (en)
EP (1) EP2685531B1 (en)
JP (1) JP5768968B2 (en)
KR (1) KR101604176B1 (en)
CN (1) CN103403928B (en)
TW (1) TWI467837B (en)
WO (1) WO2012121240A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751448B2 (en) 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
CN104813509B (en) * 2012-11-22 2017-06-23 日产自动车株式会社 Electrical equipment negative pole and its electrical equipment is used
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
KR101821466B1 (en) * 2012-11-22 2018-01-23 닛산 지도우샤 가부시키가이샤 Negative electrode for electrical device and electrical device provided with same
EP2924772B1 (en) 2012-11-22 2021-03-17 Nissan Motor Co., Ltd Negative electrode for electric device, and electric device using the same
WO2014080892A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
JPWO2015045314A1 (en) * 2013-09-30 2017-03-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015111195A1 (en) * 2014-01-24 2015-07-30 日産自動車株式会社 Negative electrode for electrical device and electrical device using said electrode
WO2015111187A1 (en) 2014-01-24 2015-07-30 日産自動車株式会社 Electrical device
JP6202106B2 (en) 2014-01-24 2017-09-27 日産自動車株式会社 Electrical device
TWI589052B (en) * 2015-04-13 2017-06-21 國立中央大學 Electrolyte membrane
CN111584925B (en) * 2019-02-22 2021-11-05 叶小剑 Lithium iron phosphate battery and preparation method thereof
CN111564656A (en) * 2019-02-22 2020-08-21 叶小剑 Lithium polymer battery and preparation method thereof
CN111584864A (en) * 2019-02-22 2020-08-25 叶小剑 Carbon nano tube fullerene battery and preparation method thereof
US20230121670A1 (en) * 2021-10-14 2023-04-20 Nanoear Corporation, Inc. High capacity cathodes for all-solid-state thin-film batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219253B1 (en) * 1998-09-18 2015-06-10 Canon Kabushiki Kaisha Electrode material
WO2000024070A1 (en) * 1998-10-22 2000-04-27 Matsushita Electric Industrial Co., Ltd. Secondary cell having non-aqueous electrolyte
JP4442146B2 (en) * 2003-07-11 2010-03-31 ソニー株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP4406789B2 (en) * 2003-11-20 2010-02-03 福田金属箔粉工業株式会社 Negative electrode material for lithium secondary battery and method for producing the same
JP5191931B2 (en) 2008-09-17 2013-05-08 第一工業製薬株式会社 Lithium secondary battery using ionic liquid
KR101451044B1 (en) 2010-07-26 2014-10-15 닛산 지도우샤 가부시키가이샤 Bipolar battery

Also Published As

Publication number Publication date
EP2685531A4 (en) 2014-12-03
CN103403928B (en) 2015-11-25
CN103403928A (en) 2013-11-20
TWI467837B (en) 2015-01-01
JP2012199214A (en) 2012-10-18
TW201238128A (en) 2012-09-16
KR101604176B1 (en) 2016-03-16
EP2685531A1 (en) 2014-01-15
WO2012121240A1 (en) 2012-09-13
EP2685531B1 (en) 2015-11-25
US9209453B2 (en) 2015-12-08
US20130341560A1 (en) 2013-12-26
KR20130128007A (en) 2013-11-25

Similar Documents

Publication Publication Date Title
JP5904363B2 (en) Negative electrode active material for electrical devices
JP5768968B2 (en) Negative electrode active material for lithium ion secondary battery
JP5776931B2 (en) Negative electrode active material for lithium ion secondary battery
JP5751448B2 (en) Negative electrode active material for lithium ion secondary battery
JP5776888B2 (en) Negative electrode active material for electrical devices
JP5945903B2 (en) Negative electrode active material for electrical devices
JP5904364B2 (en) Negative electrode active material for electrical devices
JP5751449B2 (en) Negative electrode active material for lithium ion secondary battery
JP2013073818A (en) Composite negative electrode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R151 Written notification of patent or utility model registration

Ref document number: 5768968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151