JP4406789B2 - Negative electrode material for lithium secondary battery and method for producing the same - Google Patents

Negative electrode material for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP4406789B2
JP4406789B2 JP2003391229A JP2003391229A JP4406789B2 JP 4406789 B2 JP4406789 B2 JP 4406789B2 JP 2003391229 A JP2003391229 A JP 2003391229A JP 2003391229 A JP2003391229 A JP 2003391229A JP 4406789 B2 JP4406789 B2 JP 4406789B2
Authority
JP
Japan
Prior art keywords
component
metal
negative electrode
carbon
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003391229A
Other languages
Japanese (ja)
Other versions
JP2005158305A (en
Inventor
仁 和田
治 梶田
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2003391229A priority Critical patent/JP4406789B2/en
Publication of JP2005158305A publication Critical patent/JP2005158305A/en
Application granted granted Critical
Publication of JP4406789B2 publication Critical patent/JP4406789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用負極材料及びその製造方法に関する。   The present invention relates to a negative electrode material for a lithium secondary battery and a method for producing the same.

リチウムイオン電池、リチウムポリマー電池等のリチウム二次電池は、高いエネルギー密度を有しており、近年、移動体通信機器、携帯用電子機器等の主電源として利用が拡大している。   Lithium secondary batteries such as lithium ion batteries and lithium polymer batteries have a high energy density, and in recent years, their use is expanding as main power sources for mobile communication devices, portable electronic devices and the like.

リチウム二次電池の負極材料としては、従来、黒鉛、結晶化度の低い炭素等の各種炭素材料が広く用いられている。しかしながら、炭素材料だけを用いる場合には、使用可能な電流密度が低く、理論容量(放電容量)も不十分である。例えば、負極材料として炭素材料の一つである黒鉛だけを用いた場合には、理論容量が372mAh/gと少ないため、より一層の高容量化が望まれている。   Conventionally, various carbon materials such as graphite and carbon having a low crystallinity have been widely used as negative electrode materials for lithium secondary batteries. However, when only a carbon material is used, the usable current density is low and the theoretical capacity (discharge capacity) is also insufficient. For example, when only the graphite, which is one of the carbon materials, is used as the negative electrode material, the theoretical capacity is as low as 372 mAh / g, and thus further increase in capacity is desired.

これに対し、リチウム金属を負極材料とする場合には、高い理論容量が得られることが分かっている。しかしながら、リチウム金属を用いる場合には、充電時に負極にデンドライトが析出するため、充放電を繰り返すことによりデンドライトが正極側に達して、内部短絡が起きるというという問題がある。デンドライトは比表面積が大きいために反応活性度が高く、その表面に溶媒の分解生成物からなる電子伝導性のない界面被膜が形成されることにより、内部短絡を生じる以前にも、電池の内部抵抗が高くなって充放電効率の低下が生じる。このような理由により、負極材料にリチウム金属を用いるリチウム二次電池は、信頼性が低く、結果的にサイクル寿命が短いという問題があるため、広く実用化される段階には達していない。   On the other hand, it is known that a high theoretical capacity can be obtained when lithium metal is used as the negative electrode material. However, when lithium metal is used, dendrite is deposited on the negative electrode during charging, and therefore, there is a problem that the dendrite reaches the positive electrode side by repeating charge and discharge, thereby causing an internal short circuit. Since dendrites have a high specific surface area, the reaction activity is high, and an internal non-electroconductive film consisting of the decomposition products of the solvent is formed on the surface of the dendrites. As a result, the charge / discharge efficiency decreases. For these reasons, lithium secondary batteries using lithium metal as a negative electrode material have a problem of low reliability and consequently short cycle life, and thus have not yet reached a stage where they are widely put into practical use.

このような背景から、汎用の炭素材料よりも放電容量の大きい物質であり、リチウム金属以外の材料からなるリチウム二次電池用負極材料の開発が望まれている。例えば、錫、珪素、銀等の元素、これらの窒化物、酸化物等は、リチウムと合金を形成してリチウムを吸蔵することができ、その吸蔵量は炭素材料よりはるかに大きいため、これらの物質を含有する負極材料の開発が提案されている。   From such a background, development of a negative electrode material for a lithium secondary battery, which is a substance having a discharge capacity larger than that of a general-purpose carbon material and made of a material other than lithium metal, is desired. For example, elements such as tin, silicon and silver, nitrides and oxides thereof can form an alloy with lithium and occlude lithium, and the occlusion amount is much larger than that of carbon materials. Development of negative electrode materials containing substances has been proposed.

しかしながら、これらの物質を含有する負極材料には、充放電サイクルを繰り返すうちに、リチウムの吸蔵・放出に伴って電極の大きな膨張・収縮が生じ、電極自体が瓦解するおそれがあることが指摘されている。   However, it has been pointed out that the negative electrode material containing these substances may cause large expansion / contraction of the electrode as lithium is absorbed and released during repeated charge / discharge cycles, and the electrode itself may be broken down. ing.

その対策として、リチウムを吸蔵・放出し易い金属と、吸蔵・放出を行わない金属とからなる合金を負極材料とすることが試みられている。このような合金によれば、リチウムの吸蔵・放出を行わない金属が介在することにより電極の膨潤、微細化等を抑制できると考えられている。また、当該合金が併用する炭素材料表面に導電性を付与することにより、充放電効率を向上させることができるとも考えられている。   As a countermeasure, an attempt has been made to use an alloy composed of a metal that easily stores and releases lithium and a metal that does not store and release lithium as a negative electrode material. According to such an alloy, it is considered that the swelling, miniaturization, etc. of the electrode can be suppressed by interposing a metal that does not occlude / release lithium. It is also considered that charge / discharge efficiency can be improved by imparting conductivity to the surface of the carbon material used in combination with the alloy.

例えば、特許文献1には、Liαβγ(Aは、Na、K、Rb、Cs、Ce、Ti、Zr、Hf、V、Nb、Ta、Ca、Sr、Ba、Y、La、Cr、Mo、W、Mn、Tc、Ru、Os、Co、Rh、Ir、Ni、Pd、Cu及びAgの少なくとも1種以上、Bは、K、Mg、Ca、Sr、Ba、Al、Ga、In、Si、Ge、Sn、Pb、Sb及びBiの少なくとも1種)で示される、平均粒径0.01〜1μmであり、平均結晶子径1〜100nmである化合物と炭素材料5〜50重量部とからなる電極が開示されている。しかしながら、その実施例においては、初回放電容量及び100サイクル時の容量維持率が記載されているだけであり、長期のサイクル特性については公表されていない。前記Liαβγで示される化合物は、メカニカルアロイング法により合成されているが、予め合成しておくと、理由の詳細は不明であるが、前記した合金系の高い容量を確保できない。また、炭素材料含有法によって、Liαβγで示される化合物及び炭素からなる電極を作製することも知られているが、一般に炭素材料としては黒鉛が用いられており、ナノオーダーでの十分な集電効果は得られていない。 For example, Patent Document 1 discloses Li α A β B γ (A is Na, K, Rb, Cs, Ce, Ti, Zr, Hf, V, Nb, Ta, Ca, Sr, Ba, Y, La, At least one of Cr, Mo, W, Mn, Tc, Ru, Os, Co, Rh, Ir, Ni, Pd, Cu and Ag, B is K, Mg, Ca, Sr, Ba, Al, Ga, A compound having an average particle diameter of 0.01 to 1 μm and an average crystallite diameter of 1 to 100 nm and a carbon material of 5 to 50 weights represented by In, Si, Ge, Sn, Pb, Sb and Bi) An electrode comprising a portion is disclosed. However, in the examples, only the initial discharge capacity and the capacity maintenance rate at 100 cycles are described, and the long-term cycle characteristics are not disclosed. The compound represented by Li α A β B γ is synthesized by a mechanical alloying method, but if it is synthesized in advance, the details of the reason are unknown, but the high capacity of the above alloy system cannot be secured. . In addition, it is also known to produce an electrode composed of a compound represented by Li α A β B γ and carbon by a carbon material containing method, but in general, graphite is used as a carbon material, A sufficient current collecting effect is not obtained.

特許文献2には、LiαM1βM2γ(M1は、Ce、Ti、Zr、B、P、Mg、Ca、Sr、Ba、Y、La、Cr、Mo、W、Mn、Co、Ir、Ni、Fe、Pd、Cu、Ag、Zn、Na、K、V、Nb、Al、Ga、In、Si、Ge、Sn、Pb、Sb及びBiの少なくとも2種、M2は、Al、Ga、In、Si、Ge、Sn、Pb、Sb及びBiの少なくとも1種)で示される化合物を含む負極であって、前記化合物の平均粒径が0.05〜60μmであり、平均結晶子径が0.01〜10μmであり、炭素材料含有量が5〜50重量部であるものが開示されている。しかしながら、この文献でも、その実施例において初回放電容量及び100サイクル時の容量維持率が記載されているだけであり、長期のサイクル特性については公表されていない。LiαM1βM2γで示される化合物についても、メカニカルアロイング法で合成されているが、前記同様、予め合成しておくと合金系の高い容量を確保できない。また、炭素材料含有法によって、LiαM1βM2γで示される化合物及び炭素からなる電極を作製することも知られているが、一般に炭素材料としては黒鉛が用いられており、ナノオーダーでの十分な集電効果は得られていない。 In Patent Document 2, Li α M1 β M2 γ (M1 is Ce, Ti, Zr, B, P, Mg, Ca, Sr, Ba, Y, La, Cr, Mo, W, Mn, Co, Ir, Ni, Fe, Pd, Cu, Ag, Zn, Na, K, V, Nb, Al, Ga, In, Si, Ge, Sn, Pb, Sb, and Bi, M2 is Al, Ga, In , Si, Ge, Sn, Pb, Sb and Bi), wherein the compound has an average particle size of 0.05 to 60 μm and an average crystallite size of 0.8. What is 01-10 micrometers and whose carbon material content is 5-50 weight part is disclosed. However, in this document, only the initial discharge capacity and the capacity maintenance rate at 100 cycles are described in the examples, and the long-term cycle characteristics are not disclosed. The compound represented by Li α M1 β M2 γ is also synthesized by the mechanical alloying method. However, as described above, if synthesized beforehand, a high capacity of the alloy system cannot be secured. In addition, it is also known to produce an electrode composed of a compound represented by Li α M1 β M2 γ and carbon by a carbon material containing method, but generally graphite is used as a carbon material, A sufficient current collecting effect is not obtained.

特許文献3には、急冷凝固させた組織を有する合金が開示されており、特許文献4には、A相及びB相のどちらか一方の相が他方の相のマトリックス中に島状に分散した構造(島の平均粒径0.05〜20μm)の合金が開示されている。しかしながら、この合金材料では、大きな初期放電容量は得られるが、充放電を繰り返すうちに電極の膨張、微細化が避けられず、放電容量の低下を十分に抑制するには達していない。   Patent Document 3 discloses an alloy having a rapidly solidified structure, and Patent Document 4 discloses that one of the phases A and B is dispersed in an island shape in the matrix of the other phase. Alloys having a structure (island average particle size 0.05-20 μm) are disclosed. However, with this alloy material, a large initial discharge capacity can be obtained, but expansion and miniaturization of the electrode cannot be avoided while charging and discharging are repeated, and the reduction in discharge capacity has not been sufficiently suppressed.

特許文献5には、リチウム二次電池の充放電効率を向上させるために、炭素系材料表面にLiと合金を作らない金属(Cu)を付着させ、さらにその上にLiを付着させることが開示されている。しかしながら、当該リチウム二次電池では、充放電効率は90.7%と向上しているが、実用レベルでは99%以上の充放電効率が要求されていることを鑑みると未だ性能が不十分である。しかも、Cuを蒸着した表面にLiをさらに蒸着する方法は、安全面、コスト面等から実用的ではない。   Patent Document 5 discloses that in order to improve the charge / discharge efficiency of a lithium secondary battery, a metal (Cu) that does not form an alloy with Li is attached to the surface of the carbon-based material, and Li is further attached thereon. Has been. However, in the lithium secondary battery, the charge / discharge efficiency is improved to 90.7%, but the performance is still insufficient in view of the fact that the charge / discharge efficiency of 99% or more is required at a practical level. . Moreover, the method of further depositing Li on the surface on which Cu is deposited is not practical from the viewpoint of safety, cost, and the like.

また、特許文献6には、Liを吸蔵放出する合金層表面に炭素材料を積層した負極が開示されている。しかしながら、この文献に開示された負極では、合金層形成に際してめっきをする必要があり、炭素材料の積層に際して塗布をする必要がある等、負極形成工程が複雑であり製造費用が高価という問題がある。
特開2000−133261号公報(第2〜4頁) 特開2001−15102号公報(第2〜4頁) 特開2001−297757号公報(第5頁、図2) 特開2001−93524号公報(第2頁) 特開平10−144295号公報(第2頁) 特開2002−15729号公報(第2頁)
Patent Document 6 discloses a negative electrode in which a carbon material is laminated on the surface of an alloy layer that occludes and releases Li. However, in the negative electrode disclosed in this document, there is a problem that the negative electrode forming process is complicated and the manufacturing cost is high, for example, it is necessary to perform plating when forming the alloy layer, and it is necessary to apply the carbon material when laminating. .
JP 2000-133261 A (pages 2 to 4) JP 2001-15102 A (pages 2 to 4) JP 2001-297757 A (5th page, FIG. 2) JP 2001-93524 A (page 2) JP 10-144295 A (2nd page) JP 2002-15729 A (page 2)

本発明は、従来技術に比して製造が容易であり、高い放電容量を維持しつつ、優れたサイクル特性を発揮するリチウム二次電池用負極材料を提供することを主な目的とする。   The main object of the present invention is to provide a negative electrode material for a lithium secondary battery that is easier to manufacture than the prior art and that exhibits excellent cycle characteristics while maintaining a high discharge capacity.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の成分から構成されるリチウム二次電池用負極材料が上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that a negative electrode material for a lithium secondary battery composed of specific components can achieve the above object, and has completed the present invention.

即ち、本発明は、下記のリチウム二次電池用負極材料及びその製造方法に係るものである。
1.金属A成分、金属B成分、金属C成分、前記B成分とC成分との合金成分、及び炭素成分から構成される複合粉末からなるリチウム二次電池用負極材料であって、
(1)金属A成分が、Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素からなる群から選ばれる少なくとも1種であり、
(2)金属B成分が、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnからなる群から選ばれる少なくとも1種であり、
(3)金属C成分が、Ga、Ge、Sb、Si及びSnからなる群から選ばれる少なくとも1種であり、
(4)金属A成分、金属B成分、金属C成分及び炭素成分の含有割合(但し、金属B成分及び金属C成分には、合金成分中の金属B成分及び金属C成分も含む)が、各成分の合計量を100原子%とした場合に、金属A成分5〜20原子%、金属B成分5〜35原子%、金属C成分20〜55原子%及び炭素成分5〜50原子%であり、
(5)複合粉末の一次粒子の10%以上が粒径10〜500nmの範囲内であり、
(6)炭素成分が、径50〜300nm、且つ、長さ1〜20μmの微細炭素材料である
ことを特徴とするリチウム二次電池用負極材料。
.炭素成分が、カーボンファイバー、多層カーボンナノチューブ、又は単層カーボンナノチューブと多層カーボンナノチューブとの混合物である上記項1記載のリチウム二次電池用負極材料。
.炭素成分からなる導電性の3次元網目構造を含む上記項1又は2に記載のリチウム二次電池用負極材料。
.金属A成分、金属B成分、金属C成分及び炭素成分の含有割合(但し、金属B成分及び金属C成分には、合金成分中の金属B成分及び金属C成分も含む)が、各成分の合計量を100原子%とした場合に、金属A成分5〜15原子%、金属B成分20〜35原子%、金属C成分35〜55原子%及び炭素成分20〜40原子%である上記項1〜のいずれかに記載のリチウム二次電池用負極材料。
.金属A成分が、Co、Fe、Ni、Ti、V及びWの少なくとも1種であり、金属B成分が、Ag、Al、Cu、In、Mg、Y及びZnの少なくとも1種であり、金属C成分が、Sb、Si及びSnの少なくとも1種である上記項1〜のいずれかに記載のリチウム二次電池用負極材料。
.金属B成分−金属C成分の組み合わせが、Ag−Sb、Ag−Sn、Al−Si、Au−Ga、Au−Ge、Au−Sb、Au−Si、Au−Sn、Cu−Sb、Cu−Si、Cu−Sn、In−Sn、Mg−Sn、Pd−Sn、Pt−Sn、Y−Si、Y−Sn、Zn−Sb及びZn−Siの少なくとも1種である上記項1〜のいずれかに記載のリチウム二次電池用負極材料。
.下記工程を有するリチウム二次電池用負極材料の製造方法:
(1)Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素の少なくとも1種である金属A成分、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnの少なくとも1種である金属B成分並びにGa、Ge、Sb、Si及びSnの少なくとも1種である金属C成分を混合後、メカニカルアロイング処理により前記3成分からなる複合粉末を得る工程1、及び
(2)前記複合粉末に炭素成分として径50〜300nm、且つ、長さ1〜20μmの微細炭素材料を混合後、さらにメカニカルアロイング処理する工程2。
.上記項1〜のいずれかに記載のリチウム二次電池用負極材料からなる層を集電体上に有するリチウム二次電池用負極。
.上記項記載の負極を搭載したリチウム二次電池であって、初充電を経た後に負極材料中にLiBC型化合物(但し、B及びCは、金属B成分及び金属C成分を示す)を有しているリチウム二次電池。
That is, this invention relates to the following negative electrode material for lithium secondary batteries, and its manufacturing method.
1. A negative electrode material for a lithium secondary battery comprising a composite powder composed of a metal A component, a metal B component, a metal C component, an alloy component of the B component and the C component, and a carbon component,
(1) The metal A component is at least one selected from the group consisting of Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr, and a rare earth element,
(2) The metal B component is at least one selected from the group consisting of Ag, Al, Au, Cu, In, Mg, Pd, Pt, Y and Zn,
(3) The metal C component is at least one selected from the group consisting of Ga, Ge, Sb, Si and Sn,
(4) The content ratio of the metal A component, the metal B component, the metal C component and the carbon component (however, the metal B component and the metal C component include the metal B component and the metal C component in the alloy component), respectively. When the total amount of the components is 100 atomic%, the metal A component is 5 to 20 atomic%, the metal B component is 5 to 35 atomic%, the metal C component is 20 to 55 atomic%, and the carbon component is 5 to 50 atomic%.
(5) Ri Der range more than 10% of the particle size 10~500nm of the primary particles of the composite powder,
(6) A negative electrode material for a lithium secondary battery , wherein the carbon component is a fine carbon material having a diameter of 50 to 300 nm and a length of 1 to 20 m .
2 . Item 2. The negative electrode material for a lithium secondary battery according to Item 1, wherein the carbon component is carbon fiber, multi-walled carbon nanotube, or a mixture of single-walled carbon nanotube and multi-walled carbon nanotube.
3 . Item 3. The negative electrode material for a lithium secondary battery according to Item 1 or 2 , comprising a conductive three-dimensional network structure made of a carbon component.
4. The content ratio of the metal A component, the metal B component, the metal C component, and the carbon component (however, the metal B component and the metal C component include the metal B component and the metal C component in the alloy component) are the total of each component. Items 1 to 5 above when the amount is 100 atomic%, metal A component 5-15 atomic%, metal B component 20-35 atomic%, metal C component 35-55 atomic%, and carbon component 20-40 atomic%. 4. The negative electrode material for a lithium secondary battery according to any one of 3 above.
5 . The metal A component is at least one of Co, Fe, Ni, Ti, V and W, the metal B component is at least one of Ag, Al, Cu, In, Mg, Y and Zn, and the metal C Item 5. The negative electrode material for a lithium secondary battery according to any one of Items 1 to 4 , wherein the component is at least one of Sb, Si, and Sn.
6 . The combination of metal B component-metal C component is Ag-Sb, Ag-Sn, Al-Si, Au-Ga, Au-Ge, Au-Sb, Au-Si, Au-Sn, Cu-Sb, Cu-Si. Any one of the above items 1 to 4 , which is at least one of Cu, Sn, In-Sn, Mg-Sn, Pd-Sn, Pt-Sn, Y-Si, Y-Sn, Zn-Sb, and Zn-Si The negative electrode material for lithium secondary batteries as described in 2.
7 . Manufacturing method of negative electrode material for lithium secondary battery having the following steps:
(1) Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr and a metal A component which is at least one of rare earth elements, Ag, Al, Au, Cu, In, Mg, Pd , Pt, Y and Zn at least one metal B component and Ga, Ge, Sb, Si and Sn at least one metal C component mixed, and then a composite powder comprising the above three components by mechanical alloying treatment And (2) Step 2 of further subjecting the composite powder to a mechanical alloying treatment after mixing a fine carbon material having a diameter of 50 to 300 nm and a length of 1 to 20 μm as a carbon component.
8 . The negative electrode for lithium secondary batteries which has a layer which consists of a negative electrode material for lithium secondary batteries in any one of said claim | item 1-6 on a collector.
9 . A lithium secondary battery including the negative electrode according to Item 8 , wherein a Li 2 BC type compound (where B and C are a metal B component and a metal C component) is contained in the negative electrode material after initial charging. Has a lithium secondary battery.

本発明のリチウム二次電池用負極材料からなる層を集電体上に有する負極を搭載したリチウム二次電池(リチウムイオン電池、リチウムポリマー電池等)は、初充電により負極材料中にLi2BC(但し、B及びCは、金属B成分及び金属C成分を示す)で示されるリチウム含有三元化合物を生成する。そのため、リチウム二次電池の初期放電容量が大きく、しかもサイクル特性が優れている。 A lithium secondary battery (lithium ion battery, lithium polymer battery, etc.) equipped with a negative electrode having a layer made of a negative electrode material for a lithium secondary battery according to the present invention on a current collector has Li 2 BC in the negative electrode material when initially charged. (However, B and C represent a metal B component and a metal C component). For this reason, the lithium secondary battery has a large initial discharge capacity and excellent cycle characteristics.

本発明の製造方法によれば、上記効果を奏するリチウム二次電池用負極材料を容易且つ確実に製造できる。   According to the production method of the present invention, a negative electrode material for a lithium secondary battery that exhibits the above effects can be produced easily and reliably.

リチウム二次電池用負極材料
本発明のリチウム二次電池用負極材料は、金属A成分、金属B成分、金属C成分、前記B成分とC成分との合金成分、及び炭素成分から構成される複合粉末からなるリチウム二次電池用負極材料であって、
(1)金属A成分が、Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素からなる群から選ばれる少なくとも1種であり、
(2)金属B成分が、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnからなる群から選ばれる少なくとも1種であり、
(3)金属C成分が、Ga、Ge、Sb、Si及びSnからなる群から選ばれる少なくとも1種であり、
(4)金属A成分、金属B成分、金属C成分及び炭素成分の含有割合(但し、金属B成分及び金属C成分には、合金成分中の金属B成分及び金属C成分も含む)が、各成分の合計量を100原子%とした場合に、金属A成分5〜20原子%、金属B成分5〜35原子%、金属C成分20〜55原子%及び炭素成分5〜50原子%であり、
(5)複合粉末の一次粒子の10%以上が粒径10〜500nmの範囲内である
ことを特徴とする
〔金属A成分〕
金属A成分は、Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素からなる群から選ばれる少なくとも1種である。希土類元素としては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びLuの少なくとも1種が挙げられる。この中でも、特にCo、Fe、Ni、Ti、V及びWの少なくとも1種が好ましく、Co、Fe、Ni、Ti及びVの少なくとも1種がより好ましい。
〔金属B成分〕
金属B成分は、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnからなる群から選ばれる少なくとも1種である。この中でも、特にAg、Al、Cu、In、Mg、Y及びZnの少なくとも1種が好ましく、Ag、Al、Cu及びZnの少なくとも1種がより好ましい。
〔金属C成分〕
金属C成分は、Ga、Ge、Sb、Si及びSnから選ばれる少なくとも1種である。この中でも、特にSb、Si及びSnの少なくとも1種が好ましい。
〔前記B成分とC成分との合金成分〕
合金成分は、前記B成分及びC成分からなる合金であればよく、例えば、1)B成分にC成分が固溶した合金、2)B成分とC成分との金属間化合物、3)C成分にB成分が固溶した合金、等が挙げられる。
Negative electrode material for lithium secondary battery The negative electrode material for lithium secondary battery of the present invention is a composite comprising a metal A component, a metal B component, a metal C component, an alloy component of the B component and the C component, and a carbon component. A negative electrode material for a lithium secondary battery made of powder,
(1) The metal A component is at least one selected from the group consisting of Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr, and a rare earth element,
(2) The metal B component is at least one selected from the group consisting of Ag, Al, Au, Cu, In, Mg, Pd, Pt, Y and Zn,
(3) The metal C component is at least one selected from the group consisting of Ga, Ge, Sb, Si and Sn,
(4) The content ratio of the metal A component, the metal B component, the metal C component and the carbon component (however, the metal B component and the metal C component include the metal B component and the metal C component in the alloy component), respectively. When the total amount of the components is 100 atomic%, the metal A component is 5 to 20 atomic%, the metal B component is 5 to 35 atomic%, the metal C component is 20 to 55 atomic%, and the carbon component is 5 to 50 atomic%.
(5) 10% or more of the primary particles of the composite powder are in the range of particle size of 10 to 500 nm [Metal A component]
The metal A component is at least one selected from the group consisting of Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr, and rare earth elements. The rare earth element includes at least one of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu. Among these, at least one of Co, Fe, Ni, Ti, V, and W is particularly preferable, and at least one of Co, Fe, Ni, Ti, and V is more preferable.
[Metal B component]
The metal B component is at least one selected from the group consisting of Ag, Al, Au, Cu, In, Mg, Pd, Pt, Y, and Zn. Among these, at least one of Ag, Al, Cu, In, Mg, Y, and Zn is particularly preferable, and at least one of Ag, Al, Cu, and Zn is more preferable.
[Metal C component]
The metal C component is at least one selected from Ga, Ge, Sb, Si and Sn. Among these, at least one of Sb, Si and Sn is particularly preferable.
[Alloy component of the B component and the C component]
The alloy component may be an alloy composed of the B component and the C component. For example, 1) an alloy in which the C component is dissolved in the B component, 2) an intermetallic compound of the B component and the C component, and 3) the C component. And alloys in which the B component is dissolved.

B成分−C成分の組み合わせは特に限定されず、例えば、Ag−Sb、Ag−Sn、Al−Si、Au−Sb、Au−Si、Au−Sn、Au−Ga、Au−Ge、Cu−Sb、Cu−Si、Cu−Sn、In−Sn、Mg−Sn、Pd−Sn、Pt−Sn、Y−Si、Y−Sn、Zn−Sb、Zn−Si等が挙げられる。この中でも、特にAg−Sb、Ag−Sn、Al−Si、Cu−Sb、Cu−Si、Cu−Sn、Mg−Sn、Zn−Sb及びZn−Siの組み合わせが好ましい。   The combination of the B component and the C component is not particularly limited. For example, Ag-Sb, Ag-Sn, Al-Si, Au-Sb, Au-Si, Au-Sn, Au-Ga, Au-Ge, Cu-Sb Cu—Si, Cu—Sn, In—Sn, Mg—Sn, Pd—Sn, Pt—Sn, Y—Si, Y—Sn, Zn—Sb, Zn—Si, and the like. Among these, combinations of Ag—Sb, Ag—Sn, Al—Si, Cu—Sb, Cu—Si, Cu—Sn, Mg—Sn, Zn—Sb, and Zn—Si are particularly preferable.

金属間化合物としては、例えば、Ag13Sb3、Ag3Sn、Cu3Sb、Cu2Sb、Cu3Si、Cu3Sn、Cu6Sn5、Mg2Sn、Zn3Sb2、Zn4Sb3、ZnSb等が挙げられる。 Examples of the intermetallic compound include Ag 13 Sb 3 , Ag 3 Sn, Cu 3 Sb, Cu 2 Sb, Cu 3 Si, Cu 3 Sn, Cu 6 Sn 5 , Mg 2 Sn, Zn 3 Sb 2 , and Zn 4 Sb. 3 and ZnSb.

合金成分中のB成分−C成分の割合は特に限定されないが、例えば、1)B成分とC成分の合金であれば、B成分18〜82原子%、好ましくは25〜75原子%、C成分18〜82原子%、好ましくは25〜75原子%程度である。2)B成分とC成分との金属間化合物であれば、B成分18〜82原子%、好ましくは25〜75原子%、C成分18〜82原子%、好ましくは25〜75原子%程度である。
〔炭素成分〕
炭素成分としては特に限定されないが、複合粉末中に導電性の3次元網目構造を形成できるものであれば好ましい。導電性の3次元網目構造が形成されていれば、リチウム二次電池用負極材料として十分な集電効果が得られるとともに、リチウム吸蔵時の電極(特に合金成分)の体積膨張を効果的に抑制できる。
The ratio of the B component to the C component in the alloy component is not particularly limited. For example, in the case of 1) an alloy of the B component and the C component, the B component is 18 to 82 atomic%, preferably 25 to 75 atomic%, and the C component. It is 18 to 82 atomic%, preferably about 25 to 75 atomic%. 2) If it is an intermetallic compound of the B component and the C component, the B component is 18 to 82 atomic%, preferably 25 to 75 atomic%, the C component is 18 to 82 atomic%, preferably about 25 to 75 atomic%. .
[Carbon component]
Although it does not specifically limit as a carbon component, If a conductive three-dimensional network structure can be formed in composite powder, it is preferable. If a conductive three-dimensional network structure is formed, a sufficient current collecting effect can be obtained as a negative electrode material for lithium secondary batteries, and volume expansion of electrodes (particularly alloy components) during lithium occlusion can be effectively suppressed. it can.

炭素成分としては、例えば、微細炭素材料が挙げられる。具体的には、径50〜300nm、好ましくは75〜200nm、且つ、長さ1〜20μm、好ましくは2〜10μmの微細炭素材料が挙げられる。このような形状特性は、導電性の3次元網目構造を形成し易いため有利である。   Examples of the carbon component include a fine carbon material. Specifically, a fine carbon material having a diameter of 50 to 300 nm, preferably 75 to 200 nm, and a length of 1 to 20 μm, preferably 2 to 10 μm can be mentioned. Such a shape characteristic is advantageous because it is easy to form a conductive three-dimensional network structure.

微細炭素材料としては、具体的には、カーボンファイバー;単層カーボンナノチューブ;多層カーボンナノチューブ;単層カーボンナノチューブと多層カーボンナノチューブとの混合物等が挙げられる。この中でも、特にカーボンファイバー;多層カーボンナノチューブ;又は単層カーボンナノチューブと多層カーボンナノチューブとの混合物を好適に使用できる。尚、多層カーボンナノチューブは、チューブ径の異なる大小の単層カーボンナノチューブが入れ子状に数層重なったものである。   Specific examples of the fine carbon material include carbon fiber; single-walled carbon nanotube; multi-walled carbon nanotube; and a mixture of single-walled carbon nanotube and multi-walled carbon nanotube. Among these, carbon fiber; multi-walled carbon nanotubes; or a mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes can be preferably used. Multi-walled carbon nanotubes are obtained by nesting several single-walled carbon nanotubes having different tube diameters in a nested manner.

カーボンナノチューブを用いる場合には、金属的な導電性が発現されるため高い集電機能が得られる。またカーボンナノチューブはしなやかな柔軟構造を有しているため、Li吸蔵時の体積膨張を緩和させる機能が得られ、高容量且つサイクル特性の維持に寄与する。単層カーボンナノチューブと多層カーボンナノチューブとの混合物であれば、多層カーボンナノチューブのみを用いる場合に比して、複合粉末のより内部(微細)にまで3次元網目構造を形成し得るため好ましい。図1に、微細炭素材料が導電性の3次元網目構造を形成している複合粉末の内部構造の模式図を示す。   When carbon nanotubes are used, a high current collecting function can be obtained because metallic conductivity is exhibited. Moreover, since the carbon nanotube has a supple flexible structure, the function which relieves the volume expansion at the time of Li occlusion is acquired, and it contributes to maintenance of a high capacity | capacitance and cycling characteristics. A mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes is preferable because a three-dimensional network structure can be formed even inside (fine) the composite powder as compared with the case of using only multi-walled carbon nanotubes. FIG. 1 shows a schematic diagram of the internal structure of a composite powder in which a fine carbon material forms a conductive three-dimensional network structure.

上記炭素材料に加えて、カーボンブラックを併用することが好ましい。カーボンブラックを併用することにより、複合粉末のより内部(細部)にまで導電性を付与できる。カーボンブラックの粒子径は特に限定されないが、一次粒子径が通常15〜60nm、好ましくは25〜50nm程度である。カーボンブラックの添加量は特に限定されず、所望の導電性の程度に応じて適宜設定できる。
〔複合粉末の特性〕
本発明における複合粉末は、金属A成分、金属B成分、金属C成分及び炭素成分の含有割合(但し、金属B成分及び金属C成分には、合金成分中の金属B成分及び金属C成分も含む)が、各成分の合計量を100原子%とした場合に、金属A成分5〜20原子%、金属B成分5〜35原子%、金属C成分20〜55原子%及び炭素成分5〜50原子%であればよい。この中でも、特に金属A成分5〜15原子%、金属B成分20〜35原子%、金属C成分35〜55原子%及び炭素成分20〜40原子%が好ましい。特に炭素成分の含有割合に関しては、5〜50原子%の範囲内に設定すれば、導電性の3次元網目構造が形成され易く、且つ、炭素成分(特にカーボンナノチューブ)の凝集及び容量の低下を抑制できる。
In addition to the carbon material, carbon black is preferably used in combination. By using carbon black in combination, conductivity can be imparted to the interior (details) of the composite powder. The particle diameter of carbon black is not particularly limited, but the primary particle diameter is usually 15 to 60 nm, preferably about 25 to 50 nm. The amount of carbon black added is not particularly limited, and can be appropriately set according to the desired degree of conductivity.
[Characteristics of composite powder]
The composite powder in the present invention is a content ratio of a metal A component, a metal B component, a metal C component and a carbon component (however, the metal B component and the metal C component include the metal B component and the metal C component in the alloy component). ) When the total amount of each component is 100 atomic%, the metal A component is 5 to 20 atomic%, the metal B component is 5 to 35 atomic%, the metal C component is 20 to 55 atomic%, and the carbon component is 5 to 50 atomic%. %. Among these, metal A component 5-15 atomic%, metal B component 20-35 atomic%, metal C component 35-55 atomic%, and carbon component 20-40 atomic% are preferable. In particular, when the content ratio of the carbon component is set within the range of 5 to 50 atomic%, a conductive three-dimensional network structure is easily formed, and the carbon component (particularly, carbon nanotube) is aggregated and the capacity is reduced. Can be suppressed.

本発明における複合粉末は、一次粒子の10重量%以上が粒径10〜500nmの範囲内であればよい。ナノオーダーの一次粒子が含まれることにより、後述するように優れた効果が得られる。但し、後述するメカニカルアロイング法により当該複合粉末を調製した場合には、各成分の組み合わせによって複合粉末中にミクロンオーダーの一次粒子が含まれ得る。この場合でも、一次粒子の10%以上が粒径10〜500nmの範囲内であれば、ミクロンオーダーの一次粒子が混在することは許容される。また、ミクロンオーダーの一次粒子は、複合粉末の微粉化の防止、導電性の向上等に寄与し得る。尚、本願明細書における一次粒子の粒径は、透過型電子顕微鏡観察により求めた値である。   The composite powder in this invention should just have 10 weight% or more of primary particles in the range of 10-500 nm of particle sizes. By including nano-order primary particles, excellent effects can be obtained as described later. However, when the composite powder is prepared by a mechanical alloying method to be described later, primary particles of micron order can be included in the composite powder by a combination of components. Even in this case, if 10% or more of the primary particles are within the range of the particle size of 10 to 500 nm, it is allowed to mix primary particles of micron order. Further, primary particles of micron order can contribute to prevention of pulverization of the composite powder, improvement of conductivity, and the like. In addition, the particle diameter of the primary particle in this specification is the value calculated | required by transmission electron microscope observation.

上記の観点から、複合粉末中の一次粒子の粒径は、10%以上、好ましくは50%以上、より好ましくは90%以上の一次粒子が粒径10〜500nmの範囲内、好ましくは10〜200nmの範囲内にあればよい。特に、粒径10〜500nmの所定のナノオーダー一次粒子が多く存在すると、電極の長寿命化・高容量化の効果が得られる。   From the above viewpoint, the particle size of the primary particles in the composite powder is 10% or more, preferably 50% or more, more preferably 90% or more of the primary particles in the range of 10 to 500 nm, preferably 10 to 200 nm. If it is in the range. In particular, when a large number of predetermined nano-order primary particles having a particle size of 10 to 500 nm are present, the effect of extending the life and capacity of the electrode can be obtained.

所定割合の一次粒子の粒径が上記範囲内にあることによって、リチウム吸蔵時に原子の再配列が可逆的に生じ易くなり、所期の特性が発揮される。また、複合粉末中に炭素成分からなる導電性の3次元網目構造を形成し易くなる。粒径についてより具体的に説明すると、粒径10nmを下回る一次粒子は、粉砕に長時間を要するため好ましくなく、粒径500nmを上回る一次粒子は、リチウム吸蔵時に原子の可逆的な再配列が起こり難いため好ましくない。   When the particle size of the primary particles at a predetermined ratio is within the above range, the rearrangement of atoms is likely to occur reversibly during lithium occlusion, and the desired characteristics are exhibited. Moreover, it becomes easy to form a conductive three-dimensional network structure composed of carbon components in the composite powder. More specifically, regarding the particle size, primary particles having a particle size of less than 10 nm are not preferable because a long time is required for pulverization, and primary particles having a particle size of more than 500 nm cause reversible rearrangement of atoms during lithium occlusion. It is not preferable because it is difficult.

リチウム二次電池用負極材料の製造方法
本発明のリチウム二次電池用負極材料の製造方法は特に限定されないが、例えば、下記工程を有する製造方法により好適に製造できる:
(1)Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素の少なくとも1種である金属A成分、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnの少なくとも1種である金属B成分並びにGa、Ge、Sb、Si及びSnの少なくとも1種である金属C成分を混合後、メカニカルアロイング処理により前記3成分からなる複合粉末を得る工程1、及び
(2)前記複合粉末に炭素成分を混合後、さらにメカニカルアロイング処理する工程2。
Manufacturing method of negative electrode material for lithium secondary battery The manufacturing method of the negative electrode material for lithium secondary battery of this invention is not specifically limited, For example, it can manufacture suitably with the manufacturing method which has the following process:
(1) Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr and a metal A component which is at least one of rare earth elements, Ag, Al, Au, Cu, In, Mg, Pd , Pt, Y and Zn at least one metal B component and Ga, Ge, Sb, Si and Sn at least one metal C component mixed, and then a composite powder comprising the above three components by mechanical alloying treatment And (2) a step 2 in which a carbon component is mixed with the composite powder and then mechanical alloying is performed.

この製造方法では、先ず炭素成分以外を混合してメカニカルアロイング処理を行った後、炭素成分を加えてさらにメカニカルアロイング処理を行う。即ち、ABCの3成分を複合化後、さらに炭素成分を加えて複合化して 複合粉末を得る。メカニカルアロイング処理では、B成分及びC成分の一部が合金化する。この製造方法は、複合粉末中に炭素成分からなる導電性の3次元網目構造が形成され易いため好ましい。   In this manufacturing method, the components other than the carbon component are first mixed and mechanically alloyed, and then the carbon component is added and further mechanically alloyed. That is, after combining the three components of ABC, a carbon component is further added to form a composite powder. In the mechanical alloying process, a part of the B component and the C component are alloyed. This manufacturing method is preferable because a conductive three-dimensional network structure composed of a carbon component is easily formed in the composite powder.

メカニカルアロイング処理は公知の方法を適用できる。例えば、機械的接合力により原料成分の混合・付着を繰返しながら全体を複合化(一部合金化)する装置を用いて処理すればよい。処理装置としては、メカニカルアロイング処理が可能な、一般に粉体分野で使用される混合機、分散機、粉砕機等が使用できる。具体的には、ライカイ機、ボールミル、振動ミル、アジテーターミル等が例示される。特に、ネットワーク間に存在する主に電池活物質を含む粉末であって積層・凝集状態にあるものを効率よく分散させるために、剪断力を付与できる混合機を用いるのが好ましい。   A known method can be applied to the mechanical alloying process. For example, the processing may be performed using a device that combines (partially alloys) the whole while repeating mixing and adhesion of raw material components by mechanical bonding force. As the processing apparatus, a mixer, a disperser, a pulverizer, etc., which can be mechanically alloyed and are generally used in the powder field, can be used. Specific examples include a reiki machine, a ball mill, a vibration mill, an agitator mill, and the like. In particular, it is preferable to use a mixer capable of applying a shearing force in order to efficiently disperse the powders mainly containing the battery active material present between the networks and in a laminated / aggregated state.

処理装置の操作条件は特に限定されないが、遠心加速度(投入エネルギー)としては、通常5〜20G程度、好ましくは7〜15G程度とすればよい。処理時間は各成分の種類に応じて適宜設定できる。例えば、ABC成分の混合物の処理では、ABC成分が複合化し、且つ、BC成分が一部合金化する限り処理時間は特に限定されないが、通常1〜10時間程度である。また、炭素成分添加後の処理では、ABC及び炭素成分の全てが複合化する限り特に限定されないが、通常0.5〜10時間程度である。   The operating conditions of the processing apparatus are not particularly limited, but the centrifugal acceleration (input energy) is usually about 5 to 20 G, preferably about 7 to 15 G. The treatment time can be appropriately set according to the type of each component. For example, in the treatment of a mixture of ABC components, the treatment time is not particularly limited as long as the ABC component is complexed and the BC component is partially alloyed, but it is usually about 1 to 10 hours. Moreover, in the process after carbon component addition, although it will not specifically limit as long as all ABC and a carbon component are compounded, it is about 0.5 to 10 hours normally.

メカニカルアロイング処理に供するA、B及びC成分の粒径としては限定的ではないが、通常1〜40μm、好ましくは2〜20μm程度である。上記範囲内であれば、メカニカルアロイング処理において各成分を均一に分散させ易く、粒径10〜200nm程度の微細な複合粉末一次粒子が得られ易い。   Although it does not limit as a particle size of A, B, and C component which are provided to a mechanical alloying process, it is 1-40 micrometers normally, Preferably it is about 2-20 micrometers. If it is in the said range, it will be easy to disperse | distribute each component uniformly in a mechanical alloying process, and a fine composite powder primary particle | grain with a particle size of about 10-200 nm will be easy to be obtained.

上記処理により得られる微細な一次粒子は、通常は凝集して二次凝集物となっている。例えば、メカニカルアロイング法で複合粉末を製造する場合には、レーザー回折法により調べると、二次凝集物の粒径は最大で38〜150μm程度である。   The fine primary particles obtained by the above treatment are usually aggregated into secondary aggregates. For example, when the composite powder is produced by the mechanical alloying method, the particle size of the secondary aggregate is about 38 to 150 μm at the maximum when examined by the laser diffraction method.

二次凝集物の粒度は特に限定されないが、負極材料として用いる場合には、二次凝集物の90%以上、好ましくは99.9%以上が粒径1〜105μmの範囲内にあることが好ましく、1〜50μmの範囲内がより好ましい。また、二次凝集物の粒径については、5〜50μmの範囲内が好ましく、5〜10μm程度がより好ましい。二次凝集物の粒径が上記範囲内であれば、電極の作製を高精度に行うことができる。尚、二次凝集物の粒径は、レーザー回折法又は走査電子顕微鏡観察により求めたものである。   The particle size of the secondary aggregate is not particularly limited, but when used as a negative electrode material, 90% or more, preferably 99.9% or more of the secondary aggregate is preferably in the range of 1 to 105 μm in particle size. The range of 1 to 50 μm is more preferable. Moreover, about the particle size of a secondary aggregate, the inside of the range of 5-50 micrometers is preferable, and about 5-10 micrometers is more preferable. If the particle size of the secondary aggregate is within the above range, the electrode can be produced with high accuracy. The particle size of the secondary aggregate is determined by laser diffraction method or scanning electron microscope observation.

リチウム二次電池用負極及びそれを搭載した電池
本発明のリチウム二次電池用負極は、本発明のリチウム二次電池用負極材料からなる層を集電体上に有する。負極の構成としては、前記した本発明における複合粉末を負極材料とする他は、公知のものが使用できる。例えば、該複合粉末に必要に応じて樹脂系バインダー、導電助材等を配合後、金属箔集電体等の公知の集電体上に複合粉末層(負極層)を形成して一体化(乾燥・プレス等)することにより負極を作製できる。
Negative electrode for lithium secondary battery and battery equipped with the same The negative electrode for lithium secondary battery of the present invention has a layer made of the negative electrode material for lithium secondary battery of the present invention on a current collector. As the structure of the negative electrode, known materials can be used except that the composite powder in the present invention described above is used as a negative electrode material. For example, after blending the composite powder as necessary with a resin binder, a conductive additive, etc., a composite powder layer (negative electrode layer) is formed on a known current collector such as a metal foil current collector and integrated ( The negative electrode can be produced by drying and pressing.

樹脂系バインダーとしては、例えば、ポリビリニデンフルオライド(PVdF)をN−メチルピロリドン(NMP)に溶解させたペースト等が使用できる。導電助材としては、例えば、カーボンブラック等が使用できる。金属箔集電体としては、例えば、銅、ニッケル、鉄、チタン、コバルト等の少なくとも1種からなる金属箔が使用できる。   As the resin binder, for example, a paste in which polybilinidene fluoride (PVdF) is dissolved in N-methylpyrrolidone (NMP) can be used. As the conductive aid, for example, carbon black or the like can be used. As the metal foil current collector, for example, a metal foil made of at least one of copper, nickel, iron, titanium, cobalt and the like can be used.

負極層の厚みは特に限定されないが、一般に2〜100μm、好ましくは5〜60μm程度とすればよい。厚みが2μm未満では、実用的な電気容量を得ることが困難な場合がある。厚みが100μm超過では、集電体が負極材料を支持できない場合がある。   The thickness of the negative electrode layer is not particularly limited, but is generally 2 to 100 μm, preferably about 5 to 60 μm. If the thickness is less than 2 μm, it may be difficult to obtain a practical electric capacity. When the thickness exceeds 100 μm, the current collector may not support the negative electrode material.

次いで、該負極を搭載したリチウム二次電池を作製する場合には、公知のリチウム二次電池の電池要素(正極、セパレーター、電解液等)を用いて、常法に従って、角型、円筒型、コイン型等のリチウム二次電池に組み立てればよい。   Next, when producing a lithium secondary battery equipped with the negative electrode, a battery element (positive electrode, separator, electrolyte, etc.) of a known lithium secondary battery is used, and a square shape, a cylindrical shape, What is necessary is just to assemble to lithium secondary batteries, such as a coin type.

正極材料としては、例えば、LiCoO2、LiNiO2、LiNn24等のリチウム含有酸化物等を使用できる。セパレーターとしては、公知のリチウム二次電池に用いられるものが使用できる。電解液を構成する溶媒としては、公知のリチウム塩を溶解できる非プロトン性及び低誘電率の溶媒が好ましい。例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ジメチルカーボネート(DMC)、ジエチレンカーボネート、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ−ブチロラクトン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の少なくとも1種が挙げられる。電解質リチウム塩としては、例えば、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiCl、LiBr、CH3SO3Li、CF3SO3Li等の少なくとも1種が挙げられる。 Examples of the positive electrode material that can be used include lithium-containing oxides such as LiCoO 2 , LiNiO 2 , and LiNn 2 O 4 . As a separator, what is used for a well-known lithium secondary battery can be used. As the solvent constituting the electrolytic solution, an aprotic and low dielectric constant solvent capable of dissolving a known lithium salt is preferable. For example, ethylene carbonate (EC), propylene carbonate, dimethyl carbonate (DMC), diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3 Examples include at least one of -dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide and the like. Examples of the electrolyte lithium salt include at least one of LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, and the like. Can be mentioned.

得られた本発明のリチウム二次電池は、負極材料として所定成分を所定割合で含むため、初充電によるリチウム吸蔵時に、負極材料中にLi2BC(但し、B及びCはB成分及びC成分を示す)で示される面心立方構造のリチウム含有三元化合物を形成する。この三元化合物は、合金の分相がなくリチウム吸蔵することが可能であり、リチウム吸蔵時の体積変化の抑制に寄与する。これにより、単に従来法のようにリチウムを吸蔵・放出する金属と吸蔵・放出しない金属との合金からなる負極材料とは異なる効果が得られる。 Since the obtained lithium secondary battery of the present invention contains a predetermined component as a negative electrode material in a predetermined ratio, Li 2 BC (where B and C are B component and C component) in the negative electrode material at the time of lithium occlusion by initial charge. A lithium-containing ternary compound having a face-centered cubic structure shown in FIG. This ternary compound has no phase separation of the alloy and can occlude lithium and contributes to suppression of volume change during occlusion of lithium. Thus, an effect different from that of a negative electrode material made of an alloy of a metal that occludes / releases lithium and a metal that does not occlude / release as in the conventional method can be obtained.

即ち、初充電でリチウム含有三元化合物を形成することにより、高容量を長期に亘り維持できる。予め、メカニカルアロイング処理でリチウム含有三元化合物を製造した場合には、原因の詳細は未解明であるが、Li吸蔵量が本来合金のもつ容量まで得られず、低容量になる問題がある。これに対し、本発明の負極材料では、初充電(リチウム吸蔵)時に上記リチウム含有三元化合物を形成し、次の放電(リチウム放出)時に元の複合材料に戻り、一部リチウムを含む不可逆な化合物が残る。かかるメカニズムにより、初充電(1回目)で形成した不可逆なリチウム化合物が骨格として存在し、2回目以後の充放電では、そのリチウム化合物を介してリチウムの吸蔵・放出が行われる。これにより、充放電による電極の体積変化・微粉化が抑制されつつ、電極の劣化抑制・サイクル特性寿命向上の効果が実現される。   That is, high capacity can be maintained over a long period of time by forming a lithium-containing ternary compound by initial charging. When lithium-containing ternary compounds are produced in advance by mechanical alloying, the details of the cause are unclear, but the amount of Li occlusion cannot be obtained up to the capacity of the alloy, and there is a problem that the capacity becomes low. . On the other hand, in the negative electrode material of the present invention, the lithium-containing ternary compound is formed at the time of initial charge (lithium occlusion), returns to the original composite material at the next discharge (lithium release), and is irreversible partially containing lithium. The compound remains. By this mechanism, an irreversible lithium compound formed in the first charge (first time) exists as a skeleton, and in the second and subsequent charge / discharge, lithium is occluded / released via the lithium compound. Thereby, while suppressing the volume change / micronization of the electrode due to charge / discharge, the effect of suppressing the deterioration of the electrode and improving the cycle characteristic life can be realized.

以下、具体的に、リチウム含有三元化合物を介して行われるリチウムの吸蔵・放出のメカニズムについて説明する。   Hereinafter, the mechanism of the occlusion / release of lithium performed through the lithium-containing ternary compound will be specifically described.

本発明の負極材料では、リチウムの吸蔵放出過程がリチウム含有三元化合物LiB2CとLi2BCとを介して行われる。 In the negative electrode material of the present invention, the process of occluding and releasing lithium is performed via lithium-containing ternary compounds LiB 2 C and Li 2 BC.

例えば、Fe/Ag/Sn/C(原子比)=18/18/34/30の複合材料を用いた負極では、2サイクル目の放電容量は590mAh/gとなり、1サイクル目よりも容量が約370mAh/g低下する。この不可逆な容量変化は、1回目の充電で生成したAgLi2Sn相に起因するものと考えられる。Fe/Ag/Sn/C(原子比)=18/18/34/30の複合材料で、Li吸蔵放出に関与する相は、Ag3Sn及びSnである。リチウム吸蔵過程で、上記の相が、三元化合物Ag2LiSn相及びAgLi2Sn相に変化する。さらにLiを吸蔵した場合には、二元化合物のLiAg相、Li4.4Sn相等に分相するため、リチウム含有量の観点からは、三元化合物AgLi2Sn相までに留めることが好ましい。 For example, in a negative electrode using a composite material of Fe / Ag / Sn / C (atomic ratio) = 18/18/34/30, the discharge capacity at the second cycle is 590 mAh / g, and the capacity is about more than that at the first cycle. Decrease by 370 mAh / g. This irreversible capacity change is considered to be caused by the AgLi 2 Sn phase generated by the first charge. In the composite material of Fe / Ag / Sn / C (atomic ratio) = 18/18/34/30, the phases involved in Li storage / release are Ag 3 Sn and Sn. During the lithium occlusion process, the above phase changes into a ternary compound Ag 2 LiSn phase and an AgLi 2 Sn phase. Further, when Li is occluded, it is separated into LiAg phase, Li 4.4 Sn phase, etc. of the binary compound. From the viewpoint of lithium content, it is preferable to keep it up to the ternary compound AgLi 2 Sn phase.

リチウムの吸蔵放出過程がAg2LiSn(密度7920kg/m3)及びAgLi2Sn(密度5630kg/m3)を介して行われることにより、Ag3Sn(密度9932kg/m3)に対する体積変化は、各々1.25倍(Ag2LiSn)及び1.76倍(AgLi2Sn)となる。Sn(密度7286kg/m3)がLiを吸蔵してLi4.4Sn(密度1920kg/m3)になる場合の体積変化が3.8倍であることと比較すると、三元化合物が形成される場合には体積増加が非常に少ない。このため、電極の膨潤・微細化による容量低下が抑制されてサイクル寿命が向上すると考えられる。その結果、本発明のリチウム二次電池用負極材料を用いれば、放電容量が高く、充放電に伴う劣化が少ないサイクル特性に優れたリチウム二次電池が得られる。 The volume change with respect to Ag 3 Sn (density 9932 kg / m 3 ) is carried out through the process of occluding and releasing lithium via Ag 2 LiSn (density 7920 kg / m 3 ) and AgLi 2 Sn (density 5630 kg / m 3 ). 1.25 times (Ag 2 LiSn) and 1.76 times (AgLi 2 Sn), respectively. Sn the volume change may become (density 7286kg / m 3) is occludes Li Li 4.4 Sn (density 1920kg / m 3) is compared with that which is 3.8 times, if ternary compound is formed There is very little volume increase. For this reason, it is thought that the capacity | capacitance fall by swelling and refinement | miniaturization of an electrode is suppressed and cycle life improves. As a result, when the negative electrode material for a lithium secondary battery of the present invention is used, a lithium secondary battery having a high discharge capacity and less cycle characteristics with charge / discharge can be obtained.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜38及び比較例1〜17
表1(実施例1〜38)及び表2(比較例1〜16)に示す通りにA成分、B成分及びC成分の金属粉末を混合後、混合物100重量部に対して滑剤としてステアリン酸0.5重量部添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を2時間行ってABC複合体を得た。メカニカルアロイング処理に供した各成分の粒径は、5〜20nmであった。さらに複合体に表1の所定比率(原子%)の微細炭素材料粉末(径100nm、長さ10μmのカーボンファイバー)を混合後、同様のメカニカルアロイング処理を2時間行ってリチウム二次電池用負極材料(複合粉末)を得た。複合粉末は、A、B、C、BC合金成分及び炭素成分から構成されていた。
Examples 1-38 and Comparative Examples 1-17
As shown in Table 1 (Examples 1 to 38) and Table 2 (Comparative Examples 1 to 16), after mixing metal powders of component A, component B and component C, stearic acid 0 as a lubricant with respect to 100 parts by weight of the mixture .5 parts by weight was added, put into a planetary ball mill manufactured by Fritche, and subjected to mechanical alloying for 2 hours to obtain an ABC composite. The particle size of each component subjected to the mechanical alloying treatment was 5 to 20 nm. Further, after mixing the composite with fine carbon material powder (carbon fiber having a diameter of 100 nm and a length of 10 μm) at a predetermined ratio (atomic%) shown in Table 1, the same mechanical alloying treatment was performed for 2 hours to form a negative electrode for a lithium secondary battery. A material (composite powder) was obtained. The composite powder was composed of A, B, C, BC alloy component and carbon component.

複合粉末の一次粒子の粒径を透過型電子顕微鏡で測定した結果、実施例1〜38及び比較例1〜16で得られた全ての一次粒子径が50〜200nmの範囲内であった。   As a result of measuring the particle size of the primary particles of the composite powder with a transmission electron microscope, all the primary particle sizes obtained in Examples 1 to 38 and Comparative Examples 1 to 16 were in the range of 50 to 200 nm.

比較例17では、表2に示す通りのA成分、B成分及びC成分の金属粉末を混合後、実施例と同様のメカニカルアロイング処理を2時間行った。次いで、炭素成分を加えた後、メカニカルアロイング処理ではなく、搖動回転型混合機を用いて2時間混合して複合粉末を調製した。比較例17では、ABC成分は複合化(BC成分は一部合金化)していたが、炭素成分は複合化しておらず、ABC複合体と炭素成分とが単に混合された状態であった。以下、比較例17で得られた粉末も便宜的に複合粉末と称する。   In Comparative Example 17, after the metal powders of A component, B component and C component as shown in Table 2 were mixed, the mechanical alloying treatment similar to the example was performed for 2 hours. Subsequently, after adding a carbon component, it mixed for 2 hours using not a mechanical alloying process but the peristaltic rotary mixer, and prepared composite powder. In Comparative Example 17, the ABC component was composited (the BC component was partially alloyed), but the carbon component was not composited, and the ABC composite and the carbon component were simply mixed. Hereinafter, the powder obtained in Comparative Example 17 is also referred to as a composite powder for convenience.

次いで、複合粉末85重量部に、ポリビニリデンフルオライド(PVdF)をN−メチルピロリドン(NMP)に溶解させたペースト10重量部及びカーボンブラック5重量部を添加・混合してスラリーを調製した。   Next, 10 parts by weight of a paste prepared by dissolving polyvinylidene fluoride (PVdF) in N-methylpyrrolidone (NMP) and 5 parts by weight of carbon black were added to and mixed with 85 parts by weight of the composite powder to prepare a slurry.

次いで、厚さ12μmの電解銅箔に上記スラリーを乗せて、ドクターブレードでラミネートしてシート化した。得られたシートを80℃で10分間乾燥してNMPを揮発除去後、ロールプレス機により、電解銅箔からなる集電体及び複合粉末からなる負極層を強固に密着接合させた。これを1cm2の円形ポンチで抜き取り、120℃で6時間真空乾燥させて厚さ10μmの負極とした。 Next, the slurry was placed on an electrolytic copper foil having a thickness of 12 μm, and laminated with a doctor blade to form a sheet. The obtained sheet was dried at 80 ° C. for 10 minutes to volatilize and remove NMP, and then a current collector made of an electrolytic copper foil and a negative electrode layer made of a composite powder were firmly adhered and bonded by a roll press. This was extracted with a 1 cm 2 circular punch and vacuum dried at 120 ° C. for 6 hours to obtain a negative electrode having a thickness of 10 μm.

上記電極を負極とし、金属リチウムを正極として、1モルのリチウムPF6をエチレンカーボネート(EC)+ジメチルカーボネ−ト(DMC)(EC:DMC=1:2(体積比))に溶解したものを電解液として、ドライボックス中でコイン型モデル電池(CR2032タイプ)を作製した。 1 mol of lithium PF 6 dissolved in ethylene carbonate (EC) + dimethyl carbonate (DMC) (EC: DMC = 1: 2 (volume ratio)) using the above electrode as a negative electrode, metallic lithium as a positive electrode Was used as an electrolyte solution to prepare a coin-type model battery (CR2032 type) in a dry box.

このモデル電池の評価を次の方法により行った。即ち、モデル電池を、0.2mA/cm2 の定電流で0Vに達するまで放電し、10分間の休止後、0.2mA/cm2の定電流で1.0Vに達するまで充電した。これを1サイクルとして、繰り返し充放電を行って放電容量を調べた。 This model battery was evaluated by the following method. That is, the model battery was discharged at a constant current of 0.2 mA / cm 2 until reaching 0 V, and after resting for 10 minutes, it was charged at a constant current of 0.2 mA / cm 2 until reaching 1.0 V. With this as one cycle, charge / discharge was repeated and the discharge capacity was examined.

実施例1〜38の複合粉末を負極材料として用いたモデル電池の評価結果を表1に示す。比較例1〜17の複合粉末を負極材料として用いたモデル電池の評価結果を表2に示す。   Table 1 shows the evaluation results of model batteries using the composite powders of Examples 1 to 38 as the negative electrode material. Table 2 shows the evaluation results of the model batteries using the composite powders of Comparative Examples 1 to 17 as the negative electrode material.

表2の比較例17は、実施例8と原料成分が同一であるが、50サイクル目において220mAh/gとサイクル特性が優れていない。これは、複合粉末中の微細炭素成分が単に混合されているだけであり、ABC複合体とさらに複合化していないことが要因と考えられる。 In Comparative Example 17 of Table 2, the raw material components are the same as in Example 8, but the cycle characteristics are not excellent at 220 mAh / g at the 50th cycle. This is considered to be because the fine carbon component in the composite powder is merely mixed and is not further combined with the ABC composite.

一方、実施例の製造方法により得られた複合粉末を用いた電池では、良好なサイクル特性が得られた。これは、複合粉末中に所定のBC成分からなる合金成分を含むこと、及びおそらく炭素成分からなる導電性の3次元網目構造が形成されたことが要因と考えられる。   On the other hand, in the battery using the composite powder obtained by the manufacturing method of the example, good cycle characteristics were obtained. This is considered to be due to the fact that the composite powder contains an alloy component composed of a predetermined BC component and that a conductive three-dimensional network structure composed of a carbon component is probably formed.

表1及び表2の結果から明らかなように、各実施例の複合粉末を負極としたリチウム二次電池(モデル電池)では、初期放電容量が高く、50サイクル後の放電容量も250mA/g以上、300サイクル後でも200mAh/g以上と十分に容量維持されている。   As is clear from the results in Tables 1 and 2, the lithium secondary battery (model battery) using the composite powder of each example as a negative electrode has a high initial discharge capacity and a discharge capacity after 50 cycles of 250 mA / g or more. Even after 300 cycles, the capacity is sufficiently maintained at 200 mAh / g or more.

図2は、実施例8(Ag/Fe/Sn/C=18/18/34/30(原子%))の負極材料を用いた電池と、比較例8(Sn=100(原子%))、比較例9(C=100(原子%))の負極材料を用いたモデル電池について、放電容量とサイクル数との関係を示すグラフである。図2から明らかなように、実施例の電池については、初期容量が960mAh/gであって、300サイクル後でも412mAh/gの容量を維持しており、サイクル特性の低下が少なく、比較例の負極材料を用いた電池と比較して、優れたサイクル寿命を有することが分かる。なお、炭素材料を用いない電池(Ag/Fe/Sn=26/26/52(原子%))は、300サイクル後でも307mAh/gの高容量を示しているが、サイクル特性の低下が大きく、容量維持に課題がある。   FIG. 2 shows a battery using the negative electrode material of Example 8 (Ag / Fe / Sn / C = 18/18/34/30 (atomic%)), Comparative Example 8 (Sn = 100 (atomic%)), It is a graph which shows the relationship between discharge capacity and the number of cycles about the model battery using the negative electrode material of the comparative example 9 (C = 100 (atomic%)). As is clear from FIG. 2, the battery of the example has an initial capacity of 960 mAh / g, maintains a capacity of 412 mAh / g even after 300 cycles, and has little deterioration in cycle characteristics. It can be seen that the battery has an excellent cycle life as compared with the battery using the negative electrode material. Note that a battery not using a carbon material (Ag / Fe / Sn = 26/26/52 (atomic%)) shows a high capacity of 307 mAh / g even after 300 cycles, but the cycle characteristics are greatly reduced. There is a problem in capacity maintenance.

充電時にLiが吸蔵されると、下記式(1)に示すように、C成分のLi化合化が進む。また下記式(2)に示すように B3Cでは、Li吸蔵量が増加するとともに、LiB2CからLi2BCを生成する反応が生じる。同時に下記式(3)で示すような反応もあると考えられる。さらに下記式(4)に示すように、Li含有率の高いリチウム含有三元化合物が生成すると考えられる。Li吸蔵時に、Li含有量の上限をLi2BC化合物に留めることにより、良好な電極特性が得られ易い。これは、Li2BCよりもさらにLi吸蔵量を増やすと、Li2BC化合物が二元化合物のLiB化合物、LiC化合物等に分相して電極特性が劣化し易くなるためである。図3に、BC型複合合金のリチウム吸蔵による構造変化模式図により、ナノメーターサイズのBC合金粒子とLiとの反応から、リチウム含有三元化合物の形成過程を示す。図3中のLiwCは、下記式のLixCと同義である。
(1)xLi+C⇔LixC(x≦4.4)
(2)2Li+B3C⇔LiB2C+B+Li⇔Li2BC+B2
(3)LiBC+B+LixC⇔Li2BC+LiyC(拡散反応)
(4)(y+z)Li+Li2BC⇔Li2+y1-zC+zLiB(y≦2.4、z≦1)
図4は、透過電子顕微鏡Fe/Ag/Sn/C=18/18/34/30(原子%)複合合金電極のリチウム吸蔵状態の内部構造組織を示す。図中の濃色(点1、2)はLiAg2Sn、灰色(点3,4)はLi2AgSnの各三元化合物を、明色(5、6)はLiSn系、LiAg化合物を示し、BC複合合金がLiを吸蔵してリチウム三元化合物を形成していることが分かる。
If Li is occluded at the time of charge, as shown in the following formula (1), the Li compound of the C component proceeds. Further, as shown in the following formula (2), in B 3 C, the amount of Li occlusion increases and a reaction for generating Li 2 BC from LiB 2 C occurs. At the same time, it is considered that there is a reaction represented by the following formula (3). Furthermore, as shown in the following formula (4), it is considered that a lithium-containing ternary compound having a high Li content is generated. It is easy to obtain good electrode characteristics by keeping the upper limit of the Li content in the Li 2 BC compound during Li storage. This is because when the Li storage amount is further increased than Li 2 BC, the Li 2 BC compound is phase-divided into binary LiB compounds, LiC compounds, etc., and the electrode characteristics are likely to deteriorate. FIG. 3 shows a process of forming a lithium-containing ternary compound from a reaction between nanometer-sized BC alloy particles and Li, using a schematic diagram of structural changes caused by occlusion of lithium in a BC type composite alloy. LiwC in FIG. 3 is synonymous with LixC in the following formula.
(1) xLi + C⇔LixC (x ≦ 4.4)
(2) 2Li + B 3 C⇔LiB 2 C + B + Li⇔Li 2 BC + B 2
(3) LiBC + B + LixC⇔Li 2 BC + LiyC (diffusion reaction)
(4) (y + z) Li + Li 2 BC⇔Li 2 + y B 1-z C + zLiB (y ≦ 2.4, z ≦ 1)
FIG. 4 shows the internal structure of the lithium occlusion state of the transmission electron microscope Fe / Ag / Sn / C = 18/18/34/30 (atomic%) composite alloy electrode. In the figure, dark colors (points 1 and 2) are LiAg 2 Sn, gray (points 3 and 4) are Li 3 AgSn ternary compounds, and light colors (5 and 6) are LiSn-based and LiAg compounds, It can be seen that the BC composite alloy occludes Li to form a lithium ternary compound.

図5には、実施例3の透過電子顕微鏡による複合合金材料の内部構造組織を示す。(a)の結果からは、この複合合金材料の内部構造は数10nmオーダーの微結晶粒子から構成されていることが分かる。また、(b)の透過電子顕微鏡とEDS分布の結果からは、Sn微結結晶中にAg及びFeが存在していることが分かり、複合合金材料中に微細に存在していることが分かる。   In FIG. 5, the internal structure of the composite alloy material by the transmission electron microscope of Example 3 is shown. From the result of (a), it can be seen that the internal structure of the composite alloy material is composed of microcrystalline particles of the order of several tens of nm. Further, from the results of the transmission electron microscope and the EDS distribution of (b), it can be seen that Ag and Fe are present in the Sn fine crystals, and that they are finely present in the composite alloy material.

微細炭素材料が3次元の網目構造をもつ複合粉末の内部構造組織の模式図である。It is a schematic diagram of the internal structure of the composite powder in which the fine carbon material has a three-dimensional network structure. 実施例としてFe/Ag/Sn/C=18/18/34/30(原子%)の負極材料を用いた電池と、比較例としてFe/Ag/Sn=26/26/52、C=100、Sn=100(原子%)の負極材料を用いた電池について、放電容量とサイクル数との関係を示す図である。A battery using a negative electrode material of Fe / Ag / Sn / C = 18/18/34/30 (atomic%) as an example, and Fe / Ag / Sn = 26/26/52, C = 100 as a comparative example, It is a figure which shows the relationship between discharge capacity and cycle number about the battery using the negative electrode material of Sn = 100 (atomic%). リチウムを吸蔵する際の本発明負極材料の内部構造変化を模式的に示した図である。It is the figure which showed typically the internal structure change of this invention negative electrode material at the time of occluding lithium. 本発明負極材料のリチウム吸蔵状態の内部構造組織を示す透過電子顕微鏡写真図である。It is a transmission electron microscope photograph figure which shows the internal structure of the lithium occlusion state of this invention negative electrode material. 実施例3の負極材料の内部構造組織を示す透過電子顕微鏡写真図(a)、Sn結晶中のAgとFeの存在を示す透過電子顕微鏡とEDS分布の写真図(b)である。It is the transmission electron microscope photograph figure (a) which shows the internal structure of the negative electrode material of Example 3, the transmission electron microscope which shows presence of Ag and Fe in Sn crystal, and the photograph figure (b) of EDS distribution.

Claims (9)

金属A成分、金属B成分、金属C成分、前記B成分とC成分との合金成分、及び炭素成分から構成される複合粉末からなるリチウム二次電池用負極材料であって、
(1)金属A成分が、Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素からなる群から選ばれる少なくとも1種であり、
(2)金属B成分が、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnからなる群から選ばれる少なくとも1種であり、
(3)金属C成分が、Ga、Ge、Sb、Si及びSnからなる群から選ばれる少なくとも1種であり、
(4)金属A成分、金属B成分、金属C成分及び炭素成分の含有割合(但し、金属B成分及び金属C成分には、合金成分中の金属B成分及び金属C成分も含む)が、各成分の合計量を100原子%とした場合に、金属A成分5〜20原子%、金属B成分5〜35原子%、金属C成分20〜55原子%及び炭素成分5〜50原子%であり、
(5)複合粉末の一次粒子の10%以上が粒径10〜500nmの範囲内であり、
(6)炭素成分が、径50〜300nm、且つ、長さ1〜20μmの微細炭素材料である
ことを特徴とするリチウム二次電池用負極材料。
A negative electrode material for a lithium secondary battery comprising a composite powder composed of a metal A component, a metal B component, a metal C component, an alloy component of the B component and the C component, and a carbon component,
(1) The metal A component is at least one selected from the group consisting of Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr, and a rare earth element,
(2) The metal B component is at least one selected from the group consisting of Ag, Al, Au, Cu, In, Mg, Pd, Pt, Y and Zn,
(3) The metal C component is at least one selected from the group consisting of Ga, Ge, Sb, Si and Sn,
(4) The content ratio of the metal A component, the metal B component, the metal C component and the carbon component (however, the metal B component and the metal C component include the metal B component and the metal C component in the alloy component), respectively. When the total amount of the components is 100 atomic%, the metal A component is 5 to 20 atomic%, the metal B component is 5 to 35 atomic%, the metal C component is 20 to 55 atomic%, and the carbon component is 5 to 50 atomic%.
(5) Ri Der range more than 10% of the particle size 10~500nm of the primary particles of the composite powder,
(6) A negative electrode material for a lithium secondary battery , wherein the carbon component is a fine carbon material having a diameter of 50 to 300 nm and a length of 1 to 20 m .
炭素成分が、カーボンファイバー、多層カーボンナノチューブ、又は単層カーボンナノチューブと多層カーボンナノチューブとの混合物である請求項1記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 1, wherein the carbon component is carbon fiber, multi-walled carbon nanotube, or a mixture of single-walled carbon nanotube and multi-walled carbon nanotube. 炭素成分からなる導電性の3次元網目構造を含む請求項1又は2に記載のリチウム二次電池用負極材料。 An anode material for lithium secondary battery according to claim 1 or 2 including a three-dimensional network structure of conductivity comprising carbon component. 金属A成分、金属B成分、金属C成分及び炭素成分の含有割合(但し、金属B成分及び金属C成分には、合金成分中の金属B成分及び金属C成分も含む)が、各成分の合計量を100原子%とした場合に、金属A成分5〜15原子%、金属B成分20〜35原子%、金属C成分35〜55原子%及び炭素成分20〜40原子%である請求項1〜のいずれかに記載のリチウム二次電池用負極材料。 The content ratio of the metal A component, the metal B component, the metal C component, and the carbon component (however, the metal B component and the metal C component include the metal B component and the metal C component in the alloy component) are the total of each component. When the amount is 100 atomic%, the metal A component is 5 to 15 atomic%, the metal B component is 20 to 35 atomic%, the metal C component is 35 to 55 atomic%, and the carbon component is 20 to 40 atomic%. 4. The negative electrode material for a lithium secondary battery according to any one of 3 above. 金属A成分が、Co、Fe、Ni、Ti、V及びWの少なくとも1種であり、金属B成分が、Ag、Al、Cu、In、Mg、Y及びZnの少なくとも1種であり、金属C成分が、Sb、Si及びSnの少なくとも1種である請求項1〜のいずれかに記載のリチウム二次電池用負極材料。 The metal A component is at least one of Co, Fe, Ni, Ti, V and W, the metal B component is at least one of Ag, Al, Cu, In, Mg, Y and Zn, and the metal C component, Sb, anode material for lithium secondary battery according to any one of claims 1 to 4, at least one of Si and Sn. 金属B成分−金属C成分の組み合わせが、Ag−Sb、Ag−Sn、Al−Si、Au−Ga、Au−Ge、Au−Sb、Au−Si、Au−Sn、Cu−Sb、Cu−Si、Cu−Sn、In−Sn、Mg−Sn、Pd−Sn、Pt−Sn、Y−Si、Y−Sn、Zn−Sb及びZn−Siの少なくとも1種である請求項1〜のいずれかに記載のリチウム二次電池用負極材料。 The combination of metal B component-metal C component is Ag-Sb, Ag-Sn, Al-Si, Au-Ga, Au-Ge, Au-Sb, Au-Si, Au-Sn, Cu-Sb, Cu-Si. , Cu-Sn, in-Sn , Mg-Sn, either Pd-Sn, Pt-Sn, Y-Si, Y-Sn, claim 1-4 is at least one of Zn-Sb and Zn-Si The negative electrode material for lithium secondary batteries as described in 2. 下記工程を有するリチウム二次電池用負極材料の製造方法:
(1)Co、Cr、Fe、Mn、Mo、Nb、Ni、Ti、V、W、Zr及び希土類元素の少なくとも1種である金属A成分、Ag、Al、Au、Cu、In、Mg、Pd、Pt、Y及びZnの少なくとも1種である金属B成分並びにGa、Ge、Sb、Si及びSnの少なくとも1種である金属C成分を混合後、メカニカルアロイング処理により前記3成分からなる複合粉末を得る工程1、及び
(2)前記複合粉末に炭素成分として径50〜300nm、且つ、長さ1〜20μmの微細炭素材料を混合後、さらにメカニカルアロイング処理する工程2。
Manufacturing method of negative electrode material for lithium secondary battery having the following steps:
(1) Co, Cr, Fe, Mn, Mo, Nb, Ni, Ti, V, W, Zr and a metal A component which is at least one of rare earth elements, Ag, Al, Au, Cu, In, Mg, Pd , Pt, Y and Zn at least one metal B component and Ga, Ge, Sb, Si and Sn at least one metal C component mixed, and then a composite powder comprising the above three components by mechanical alloying treatment And (2) Step 2 of further subjecting the composite powder to a mechanical alloying treatment after mixing a fine carbon material having a diameter of 50 to 300 nm and a length of 1 to 20 μm as a carbon component.
請求項1〜のいずれかに記載のリチウム二次電池用負極材料からなる層を集電体上に有するリチウム二次電池用負極。 The negative electrode for lithium secondary batteries which has the layer which consists of a negative electrode material for lithium secondary batteries in any one of Claims 1-6 on a collector. 請求項記載の負極を搭載したリチウム二次電池であって、初充電を経た後に負極材料中にLiBC型化合物(但し、B及びCは、金属B成分及び金属C成分を示す)を有しているリチウム二次電池。 A lithium secondary battery equipped with a negative electrode of claim 8 wherein, Li 2 BC-type compound in the negative electrode material after passing through the first charge (but, B and C show the metal component B and a metal component C) Has a lithium secondary battery.
JP2003391229A 2003-11-20 2003-11-20 Negative electrode material for lithium secondary battery and method for producing the same Expired - Lifetime JP4406789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391229A JP4406789B2 (en) 2003-11-20 2003-11-20 Negative electrode material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391229A JP4406789B2 (en) 2003-11-20 2003-11-20 Negative electrode material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005158305A JP2005158305A (en) 2005-06-16
JP4406789B2 true JP4406789B2 (en) 2010-02-03

Family

ID=34718355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391229A Expired - Lifetime JP4406789B2 (en) 2003-11-20 2003-11-20 Negative electrode material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4406789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121240A1 (en) 2011-03-08 2012-09-13 日産自動車株式会社 Negative electrode active material for electrical devices
WO2012121241A1 (en) 2011-03-07 2012-09-13 日産自動車株式会社 Negative electrode active material for electrical device, and electrical device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4324794B2 (en) 2004-11-09 2009-09-02 ソニー株式会社 Negative electrode active material and secondary battery
US7906238B2 (en) * 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP5099299B2 (en) * 2006-02-28 2012-12-19 株式会社エクォス・リサーチ Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5156195B2 (en) * 2006-03-28 2013-03-06 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5313479B2 (en) * 2006-10-11 2013-10-09 パナソニック株式会社 Non-aqueous electrolyte battery
JP4462276B2 (en) 2007-02-08 2010-05-12 ソニー株式会社 Negative electrode active material and secondary battery
KR101375326B1 (en) * 2007-02-15 2014-03-18 삼성에스디아이 주식회사 Composite anode active material, method of preparing the same, anode and lithium battery containing the material
JP5205788B2 (en) * 2007-04-05 2013-06-05 株式会社デンソー Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and method for producing nonaqueous electrolyte secondary battery
CA2623407A1 (en) 2008-02-28 2009-08-28 Hydro-Quebec Composite electrode material
KR101103104B1 (en) * 2008-12-23 2012-01-04 서울대학교산학협력단 Preparation Method of ZnSb-C Composite and Anode Materials for Secondary Batteries Containing the Same Composite
WO2010114287A2 (en) * 2009-03-30 2010-10-07 주식회사 엘지화학 Composite for electrode active material and secondary battery comprising the same
EP2239803A1 (en) 2009-04-10 2010-10-13 Saft Groupe Sa Active material composition for the negative electrode of a lithium-ion accumulator.
JP5495887B2 (en) 2009-04-28 2014-05-21 株式会社デンソー Negative electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP5351618B2 (en) * 2009-06-05 2013-11-27 株式会社神戸製鋼所 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP5484816B2 (en) * 2009-08-03 2014-05-07 古河電気工業株式会社 Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery
JP5598836B2 (en) * 2009-08-03 2014-10-01 古河電気工業株式会社 Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery
JP5201123B2 (en) * 2009-12-01 2013-06-05 ソニー株式会社 Negative electrode active material and secondary battery
JP5598752B2 (en) * 2010-03-26 2014-10-01 株式会社ニコン Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN101847721A (en) * 2010-05-19 2010-09-29 宁波职业技术学院 Carbon-coated antimony-zinc alloy material of cathode for lithium-ion battery and method for preparing same
CN103329316B (en) * 2010-10-29 2016-04-13 尤米科尔公司 Based on the negative material of Si
JP2012113945A (en) * 2010-11-24 2012-06-14 Daido Steel Co Ltd Negative electrode material for lithium ion battery and method for producing the same
DE112011103917T5 (en) * 2010-11-26 2013-10-02 Ulvac, Inc. Positive electrode for lithium-sulfur secondary battery and method for its formation
JP5751449B2 (en) 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
KR20140096261A (en) * 2011-08-19 2014-08-05 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 Anode materials for lithium-ion batteries
JP5602262B2 (en) * 2013-01-29 2014-10-08 昭和電工株式会社 Composite electrode material
US9368789B2 (en) 2013-04-16 2016-06-14 Board Of Regents, The University Of Texas System Nanocomposite anode materials for sodium-ion batteries
JP2018518817A (en) * 2015-06-23 2018-07-12 ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University Electrode, battery cell and battery device
CN105244480B (en) * 2015-08-31 2018-02-23 上海汉行科技有限公司 A kind of lithium ion battery anode material and preparation method thereof
KR102198713B1 (en) * 2019-01-16 2021-01-05 금오공과대학교 산학협력단 METHODS FOR MANUFACTURING Nb-Sb INTERMETALLIC COMPOUND, ELECTRODE MATERIALS FOR SECONDARY BATTERY INCLUDING COMPOUND MANUFACTURED THEREBY, AND Li-ION OR Na-ION SECONDARY BATTERY COMPRISING THE SAME
CN111082038B (en) * 2019-11-28 2023-03-21 中南大学 Low-boron-content lithium-boron alloy electrode material for lithium battery and application
CN112620649B (en) * 2020-11-30 2022-04-12 华中科技大学 Aluminum alloy material and laser 3D printing aluminum alloy component based on same
CN115074570B (en) * 2022-06-27 2022-11-15 山东大学 Metal indium-carbon composite material for potassium ion battery and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296795A (en) * 1994-04-25 1995-11-10 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery, and lithium secondary battery using it
JP3559720B2 (en) * 1998-01-30 2004-09-02 キヤノン株式会社 Lithium secondary battery and method of manufacturing the same
JP2000212676A (en) * 1999-01-26 2000-08-02 Japan Storage Battery Co Ltd Lithium storable intermetallic compound and lithium secondary battery
JP2000268879A (en) * 1999-03-18 2000-09-29 Hitachi Ltd Lithium secondary battery
JP2002093416A (en) * 2000-09-11 2002-03-29 Canon Inc Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JP4058585B2 (en) * 2000-10-17 2008-03-12 福田金属箔粉工業株式会社 Negative electrode material for lithium battery and manufacturing method thereof
JP3466576B2 (en) * 2000-11-14 2003-11-10 三井鉱山株式会社 Composite material for negative electrode of lithium secondary battery and lithium secondary battery
JP4140222B2 (en) * 2001-04-09 2008-08-27 ソニー株式会社 Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method
JP3533664B2 (en) * 2001-06-27 2004-05-31 ソニー株式会社 Negative electrode material and battery using the same
JP3714205B2 (en) * 2001-07-10 2005-11-09 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2003077476A (en) * 2001-09-03 2003-03-14 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP4029265B2 (en) * 2001-11-20 2008-01-09 福田金属箔粉工業株式会社 Negative electrode material for lithium battery and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121241A1 (en) 2011-03-07 2012-09-13 日産自動車株式会社 Negative electrode active material for electrical device, and electrical device
US9362557B2 (en) 2011-03-07 2016-06-07 Nissan Motor Co., Ltd. Negative electrode active material for electric device, negative electrode for electric device and electric device
WO2012121240A1 (en) 2011-03-08 2012-09-13 日産自動車株式会社 Negative electrode active material for electrical devices
US9209453B2 (en) 2011-03-08 2015-12-08 Nissan Motor Co., Ltd. Negative electrode active material for electric device

Also Published As

Publication number Publication date
JP2005158305A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4406789B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP4029291B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP4654381B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP5516860B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP5636526B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
JP2004228059A (en) Negative electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery
JPH08153541A (en) Lithium secondary battery
JP2003303585A (en) Battery
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP2004296412A (en) Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2004362789A (en) Negative electrode material and secondary battery using it
JP4058585B2 (en) Negative electrode material for lithium battery and manufacturing method thereof
TWI437746B (en) Non-aqueous electrolyte secondary battery
JP2004087264A (en) Negative electrode material for non-water electrolysis liquid secondary battery, and its manufacturing method
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JP4379971B2 (en) Electrical energy storage element
JP5706065B2 (en) Composite negative electrode active material, manufacturing method thereof, and negative electrode and lithium battery employing the same
JP5234600B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and method for producing negative electrode for lithium ion secondary battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2000090922A (en) Lithium secondary battery, its negative electrode material, and manufacture of the material
JP2005317447A (en) Battery
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4406789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term