JP5765611B2 - PTC element and heating module - Google Patents

PTC element and heating module Download PDF

Info

Publication number
JP5765611B2
JP5765611B2 JP2011030509A JP2011030509A JP5765611B2 JP 5765611 B2 JP5765611 B2 JP 5765611B2 JP 2011030509 A JP2011030509 A JP 2011030509A JP 2011030509 A JP2011030509 A JP 2011030509A JP 5765611 B2 JP5765611 B2 JP 5765611B2
Authority
JP
Japan
Prior art keywords
electrode
resistance
ptc
time
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011030509A
Other languages
Japanese (ja)
Other versions
JP2012169515A (en
Inventor
健太郎 猪野
健太郎 猪野
武司 島田
武司 島田
到 上田
到 上田
年紀 木田
年紀 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011030509A priority Critical patent/JP5765611B2/en
Publication of JP2012169515A publication Critical patent/JP2012169515A/en
Application granted granted Critical
Publication of JP5765611B2 publication Critical patent/JP5765611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに用いられる、正の抵抗温度係数を有する半導体磁器組成物を有するPTC素子と、これを用いた発熱モジュールに関する。 The present invention relates to a PTC element having a semiconductor ceramic composition having a positive resistance temperature coefficient used for a PTC thermistor, a PTC heater, a PTC switch, a temperature detector, and the like, and a heat generating module using the PTC element.

従来、PTCR特性(正の抵抗率温度係数:Positive Temperature Coefficient of Resistivity)を示す材料としてBaTiOに様々な半導体化元素を加えた半導体磁器組成物(PTC材料)が提案されている。これらの半導体磁器組成物は、キュリー点以上の高温になると急激に抵抗値が増大する特性を有するので、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに用いられる。これらのキュリー温度は120℃前後であるが、用途に応じてキュリー温度をシフトさせることが必要になる。尚、本発明では、PTCR特性とジャンプ特性を区別せず、以下ジャンプ特性と記して説明する。 Conventionally, semiconductor porcelain compositions (PTC materials) obtained by adding various semiconducting elements to BaTiO 3 have been proposed as materials exhibiting PTCR characteristics (Positive Temperature Coefficient of Resistivity). Since these semiconductor porcelain compositions have the characteristic that the resistance value increases rapidly when the temperature becomes higher than the Curie point, they are used for PTC thermistors, PTC heaters, PTC switches, temperature detectors and the like. These Curie temperatures are around 120 ° C., but it is necessary to shift the Curie temperatures depending on the application. In the present invention, the PTCR characteristic and the jump characteristic are not distinguished, and will be described as a jump characteristic hereinafter.

例えば、BaTiOにSrTiOを添加することによってキュリー温度をシフトさせることが提案されているが、この場合、キュリー温度は負の方向にのみシフトし、正の方向にはシフトしない。現在、キュリー温度を正の方向にシフトさせる添加元素として知られているのはPbTiOである。しかし、PbTiOは環境汚染を引き起こす元素を含有するため、近年、PbTiOを使用しない材料が要望されている。 For example, it has been proposed to shift the Curie temperature by adding SrTiO 3 to BaTiO 3 , but in this case, the Curie temperature is shifted only in the negative direction and not in the positive direction. Currently, PbTiO 3 is known as an additive element that shifts the Curie temperature in the positive direction. However, since PbTiO 3 contains an element that causes environmental pollution, a material that does not use PbTiO 3 has been demanded in recent years.

PTC材料における大きな特徴は、PTC材料の抵抗率がキュリー点で急激に高くなること(ジャンプ特性)にあるが、これは、結晶粒界に形成された抵抗(ショットキー障壁による抵抗)が増大するために起こると考えられている。PTC材料の特性としては、この抵抗率のジャンプ特性が高く(=抵抗温度係数が高く)、かつ室温での抵抗率は低い値で安定したものが要求されている。 A major feature of the PTC material is that the resistivity of the PTC material rapidly increases at the Curie point (jump characteristic), which increases the resistance formed at the grain boundary (resistance due to the Schottky barrier). It is thought to happen because. As a characteristic of the PTC material, it is required that the jump characteristic of the resistivity is high (= the resistance temperature coefficient is high) and the resistivity at room temperature is stable at a low value.

特許文献1のようなPbを含有しないPTC材料は、ジャンプ特性に優れているものは室温抵抗率(25℃における電気抵抗率)が高く、ジャンプ特性に劣るものは室温抵抗率が低くなり過ぎるという傾向があり、安定した室温抵抗率と優れたジャンプ特性を両立することができないという問題があった。 PTC materials that do not contain Pb as in Patent Document 1 have excellent room temperature resistivity (electric resistivity at 25 ° C.) with excellent jump characteristics, and room temperature resistivity is too low with poor jump characteristics. There was a problem that stable room temperature resistivity and excellent jump characteristics could not be achieved at the same time.

そこで本発明者らは先に、上述した従来のBaTiO系半導体磁器の問題を解決するため、Pbを使用することなく、キュリー温度を正の方向へシフトすることができるとともに、室温抵抗率を大幅に低下させながらも優れたジャンプ特性を示すものとして、(BaR)TiO仮焼粉(Rは半導体化元素でLa、Dy、Eu、Gd、Yの少なくとも一種)と(BiNa)TiO仮焼粉との混合仮焼粉を成形、焼結して得られた半導体磁器組成物であって、組成式を[(BiNa)(Ba1−y1−x]TiOと表し、前記x、yが0<x≦0.2、0<y≦0.02を満足し、BiとNaの比が、Bi/Na=0.78〜1の関係にある半導体磁器組成物及びその製造方法を特許文献2で提案した。 In order to solve the problems of the above-described conventional BaTiO 3 based semiconductor ceramics, the present inventors can shift the Curie temperature in the positive direction without using Pb, and increase the room temperature resistivity. (BaR) TiO 3 calcined powder (R is a semiconducting element and at least one of La, Dy, Eu, Gd, Y) and (BiNa) TiO 3 temporary Semiconductor porcelain composition obtained by molding and sintering mixed calcined powder with calcined powder, the composition formula being represented as [(BiNa) x (Ba 1-y R y ) 1-x ] TiO 3 Wherein x and y satisfy 0 <x ≦ 0.2 and 0 <y ≦ 0.02, and the ratio of Bi and Na is Bi / Na = 0.78-1 and The manufacturing method was proposed in Patent Document 2.

また、特許文献3では、PTC材料と外部電極との間の界面抵抗の低減に着目し、AgとZnを含む第1の電極層と、第1の電極層上にAgと結合材からなる第2の電極層と、第2の電極層上にNiを含む第3電極層と、第3の電極層上にSnを含む第4の電極層とからなる外部電極を構成することにより界面抵抗の発生を抑え、よって電極全体の抵抗値の増大を抑制するPTCサーミスタが提案されている。 Further, in Patent Document 3, paying attention to reduction of the interface resistance between the PTC material and the external electrode, a first electrode layer containing Ag and Zn, and a first electrode composed of Ag and a binder on the first electrode layer. Interface electrode by forming an external electrode comprising two electrode layers, a third electrode layer containing Ni on the second electrode layer, and a fourth electrode layer containing Sn on the third electrode layer. There has been proposed a PTC thermistor that suppresses generation and thus suppresses an increase in the resistance value of the entire electrode.

特開昭56−169301号公報JP-A-56-169301 国際公開WO2006/118274A1号公報International Publication WO2006 / 118274A1 特開2010−40560号公報JP 2010-40560 A

特許文献2の半導体磁器組成物は、Pbを使用することなくキュリー温度を正の方向にシフトさせ、室温抵抗率を低減しながらも優れたジャンプ特性を示す。しかし、これまでの発明者らの研究の結果、材料と電極界面に高い界面抵抗層が存在し、それが室温抵抗の低減を妨げ、さらに経時変化の原因になることが明らかになってきた。他方、特許文献3では界面抵抗を低減できることの開示はあるものの4層構造となることから、より単純な構造が求められる。また、特許文献3では、第1層をAgとZn電極によるオーミック接触となし、第2層をAgと結合剤で形成した電極構造とすることにより抵抗値の増大を抑制できると述べている。しかし、この電極構造を特許文献2のようにBaTiOのBaの一部がBi−Naで置換されたPTC材料に単に用いても界面における界面抵抗は低減しないことが明らかになっている。 The semiconductor ceramic composition of Patent Document 2 shifts the Curie temperature in the positive direction without using Pb, and exhibits excellent jump characteristics while reducing the room temperature resistivity. However, as a result of studies by the inventors so far, it has become clear that a high interface resistance layer exists at the interface between the material and the electrode, which hinders a reduction in room temperature resistance and further causes aging. On the other hand, although Patent Document 3 discloses that the interface resistance can be reduced, it has a four-layer structure, so a simpler structure is required. Patent Document 3 states that an increase in resistance can be suppressed by forming an electrode structure in which the first layer is in ohmic contact with an Ag and Zn electrode and the second layer is formed of Ag and a binder. However, it has been clarified that even when this electrode structure is simply used for a PTC material in which a part of BaTiO 3 is replaced with Bi—Na as in Patent Document 2, the interface resistance at the interface is not reduced.

そこで、本発明の目的は、BaTiOのBaの一部がBi−Naで置換された半導体磁器組成物において、この材料と電極の界面における界面抵抗を低減させて経時変化を低減することにある。そして、優れたジャンプ特性を有するとともに経時変化を低減し、さらに室温抵抗率が低い値で安定したPTC素子を提供することである。
また、本発明の他の目的は、上記PTC素子を用いた安全性と耐久性の高い発熱モジュールを提供することである。
Accordingly, an object of the present invention is to reduce the change over time by reducing the interfacial resistance at the interface between this material and the electrode in a semiconductor ceramic composition in which a part of BaTiO 3 is substituted with Bi—Na. . Another object of the present invention is to provide a PTC element that has excellent jump characteristics, reduces change with time, and is stable at a low room temperature resistivity.
Another object of the present invention is to provide a heat generating module having high safety and durability using the PTC element.

これまでの本発明者らの鋭意研究の結果、BaTiOのBaの一部がBi−Naで置換された半導体磁器組成物(以下、PTC材料と言うことがある。)は、オーミック電極を形成するとその界面における界面抵抗が全体の電気抵抗に対して無視できないほど高くなることが分かっており、これが室温抵抗低減を妨げ、かつ経時変化の原因になっていることが分かった。この高抵抗になる原因を調査したところ、電極中のオーミック成分がPTC材料に接触していない部分が存在し、この部分が界面抵抗を高くしていることを突き止め、本発明に至った。 As a result of intensive studies by the present inventors, a semiconductor porcelain composition in which a part of BaTiO 3 is substituted with Bi—Na (hereinafter sometimes referred to as a PTC material) forms an ohmic electrode. Then, it has been found that the interfacial resistance at the interface becomes so high that it cannot be ignored with respect to the overall electrical resistance, which hinders the reduction of the room temperature resistance and causes the change with time. As a result of investigating the cause of this high resistance, it has been found that there is a portion where the ohmic component in the electrode is not in contact with the PTC material, and this portion increases the interface resistance, leading to the present invention.

すなわち、本発明は、少なくとも2つのオーミック電極と、前記電極の間に配置されたBaTiOのBaの一部がBi−Naで置換された半導体磁器組成物とを有するPTC素子であって、前記半導体磁器組成物が、組成式を[(Bi−Na)(Ba1−y−θθ1−x]Ti1−z(但し、Rは希土類元素のうち少なくとも一種、AはCa、Srのうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)と表し、前記x、y、z、θが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010、0.01≦θ≦0.20を満足し、前記オーミック電極は、その電極材料を構成する金属成分を100重量%としたとき、Agが0重量%を含み51重量%以下、残部をNi、Al、Sn、Zn、Sbのいずれか一種以上の卑金属元素からなる合金もしくは混合物の組成であり、前記電極と半導体磁器組成物の界面において電極のオーミック成分と半導体磁器組成物が接触していない面積の割合が19%以下であることを特徴とするPTC素子である。
前記オーミック電極は、卑金属成分が49重量%以上、65重量%以下の材料とすることができる。
That is, the present invention is a PTC element comprising at least two ohmic electrodes and a semiconductor ceramic composition in which a part of Ba of BaTiO 3 disposed between the electrodes is substituted with Bi-Na, the semiconductor ceramic composition, the composition formula [(Bi-Na) x ( Ba 1-y-θ R y a θ) 1-x] Ti 1-z M z O 3 ( where, R represents at least one rare earth element And A is at least one of Ca and Sr, M is at least one of Nb, Ta, and Sb), and the x, y, z, and θ are 0 <x ≦ 0.30 and 0 ≦ y ≦ 0. .020, 0 ≦ z ≦ 0.010, 0.01 ≦ θ ≦ 0.20, and the ohmic electrode has a Ag content of 0% by weight when the metal component constituting the electrode material is 100% by weight. 51% by weight or less, the balance being Ni, Al, Sn, Z A composition of the alloy or mixture comprising any one or more base metal elements Sb, the ratio of the area ohmic component and the semiconductor ceramic composition of the electrodes are not in contact at the interface of the electrode and the semiconductor ceramic composition 19% The PTC element is characterized by the following.
The ohmic electrode may be made of a material having a base metal component of 49% by weight to 65% by weight.

このPTC材料は、BaTiOのBaの一部がBi−Naで置換された半導体磁器組成物の中でも界面の界面抵抗が高くなる組成であるので、経時変化の低減効果をより高く得ることが出来る。上記組成式において、A元素は必ずしも含んでいなくても良い。従って、このときの組成式は[(Bi-Na)(Ba1−y1−x]Ti1−z(但し、Rは希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)と表し、前記x、yが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010を満足すれば良い。ここでxの範囲を0を超え0.30以下とすることで所望のキュリー温度を制御することができる。xが0.30を超えてしまうと異相ができ易くなるため好ましくない。また、yの範囲を0以上、0.020以下、zの範囲を0以上、0.010以下とすることで室温抵抗率を小さくすることが出来る。y及びzが0でも実施できるが0だと室温抵抗率が50Ω・cmに近くなりヒーター素子としての効率が比較的悪くなる。ただし、yが0.020、zが0.010を超えると室温抵抗が高くなるためヒーター素子としての効率が低くなり好ましくない。 This PTC material has a composition that increases the interfacial resistance among the semiconductor ceramic compositions in which a part of BaTiO 3 is replaced with Bi—Na, so that it is possible to obtain a higher effect of reducing the change with time. . In the above composition formula, the A element is not necessarily included. Accordingly, at least one of the composition formula [(Bi-Na) x ( Ba 1-y R y) 1-x] Ti 1-z M z O 3 ( where, R represents a rare earth element in this case, M is Nb And at least one of Ta and Sb), and x and y may satisfy 0 <x ≦ 0.30, 0 ≦ y ≦ 0.020, and 0 ≦ z ≦ 0.010. Here, the desired Curie temperature can be controlled by setting the range of x to more than 0 and 0.30 or less. If x exceeds 0.30, a different phase is easily formed, which is not preferable. The room temperature resistivity can be reduced by setting the range of y to 0 or more and 0.020 or less and the range of z to 0 or more and 0.010 or less. Even if y and z are 0, the operation can be performed. However, if y exceeds 0.020 and z exceeds 0.010, the room temperature resistance becomes high, so the efficiency as a heater element is lowered, which is not preferable.

また、A元素を含む組成は、Baサイトの一部をSr、Caで置換している以外は上記組成と共通しているので説明は省略するが、Sr及びCaで置換すると電極のオーミック成分とPTC材料の親和性が高くなり、電極のオーミック成分とPTC材料の接触する面積が増加し界面抵抗をより低減できる。ここでθが0.20を超えると抵抗温度係数αが7%/℃未満となりヒーター素子としての安全性が低く(熱暴走の危険)なるため好ましくない。 The composition containing the A element is the same as the above composition except that a part of the Ba site is substituted with Sr and Ca, so that the description is omitted. The affinity of the PTC material is increased, the area where the electrode ohmic component and the PTC material are in contact with each other is increased, and the interface resistance can be further reduced. Here, if θ exceeds 0.20, the temperature coefficient of resistance α is less than 7% / ° C. and the safety as a heater element is low (risk of thermal runaway), which is not preferable.

かかる構成により、材料と電極の界面における界面抵抗を低減することができる。ここで電極のオーミック成分とPTC材料が接触していない面積の割合が25%よりも広いと界面に形成される界面抵抗が大きくなり室温抵抗率が低減できず、経時変化を低減することが出来難くなるため好ましくない。望ましくは21%以下で、さらに望ましくは15%以下である。 With this configuration, the interface resistance at the interface between the material and the electrode can be reduced. Here, if the proportion of the area where the ohmic component of the electrode is not in contact with the PTC material is larger than 25%, the interfacial resistance formed at the interface increases, and the room temperature resistivity cannot be reduced, and the change with time can be reduced. Since it becomes difficult, it is not preferable. It is desirably 21% or less, and more desirably 15% or less.

また、本発明のPTC素子は、前記オーミック電極が、その電極材料を構成する金属成分を100重量%としたとき、Agが0重量%を含み51重量%以下、残部をNi、Al、Sn、Zn、Sbのいずれか一種以上の卑金属元素からなる合金もしくは混合物としたものである。 Further, in the PTC element of the present invention, when the ohmic electrode has a metal component constituting the electrode material as 100% by weight, Ag is 0% by weight and 51% by weight or less, and the balance is Ni, Al, Sn, It is an alloy or mixture composed of at least one base metal element of Zn or Sb.

貴金属成分と卑金属成分が混合された材料を電極に用いる場合には、電極を形成する際に卑金属成分と貴金属成分が合金を形成し、卑金属成分単体、卑金属成分と貴金属成分の合金、貴金属成分単体の3種類の層が混在する組織となる。電極と材料界面では、上記三つの層のうち貴金属成分が単体でPTC材料と接触している部分が存在すると、この部位は高抵抗になるばかりでなく、密着力不足で電極が剥がれやすく経時変化の原因になってしまうため、電極材料としては卑金属元素の割合を49重量%以上とすることで貴金属成分が単体で材料と接する面積を減らして界面抵抗を低減し、素子抵抗が低く、経時変化を抑制したPTC素子を得ることができる。卑金属成分が49重量%未満になると貴金属成分であるAgが単体で電極とPTC材料の界面に存在しやすくなり、電極のオーミック成分がPTC材料の接触していない面積を25%以下とすることが出来難くなるため好ましくない。望ましくは49重量%以上、65重量%以下で、さらに望ましくは50重量%以上、56重量%以下である。卑金属の割合が多くなると電極形成時に酸化されやすく、65重量%を超えると界面に形成される界面抵抗が増加する傾向がある。卑金属の酸化物はPTC材料との接合性が悪いため、電極と材料の間に隙間が形成されやすくなるためである。 When using a mixed material of noble metal component and base metal component for the electrode, the base metal component and the noble metal component form an alloy when forming the electrode. It becomes an organization in which three types of layers are mixed. At the electrode / material interface, if there is a part of the above three layers where the noble metal component is in contact with the PTC material alone, this part not only becomes high resistance, but the electrode easily peels off due to insufficient adhesion and changes with time. As the electrode material, the ratio of the base metal element is 49% by weight or more, so that the area where the noble metal component is in contact with the material alone is reduced, the interface resistance is reduced, the element resistance is low, and the change over time Can be obtained. When the base metal component is less than 49% by weight, the noble metal component Ag is likely to be present alone at the interface between the electrode and the PTC material, and the area where the electrode ohmic component is not in contact with the PTC material may be 25% or less. It is not preferable because it becomes difficult to do. It is desirably 49% by weight or more and 65% by weight or less, and more desirably 50% by weight or more and 56% by weight or less. When the proportion of the base metal is increased, it is easily oxidized at the time of electrode formation, and when it exceeds 65% by weight, the interface resistance formed at the interface tends to increase. This is because the base metal oxide has poor bonding properties with the PTC material, so that a gap is easily formed between the electrode and the material.

本発明の別の発明は、上記に記載したPTC素子と、このPTC素子に設けられた電力供給電極とを備えることを特徴とする発熱モジュールである。
上記したPTC素子を用いることで効率が良く、経時変化の小さな安全性の高い発熱モジュールを提供することができる。
Another invention of the present invention is a heat generating module comprising the PTC element described above and a power supply electrode provided on the PTC element.
By using the above-described PTC element, it is possible to provide a highly efficient heat generating module that is efficient and has little change with time.

本発明によれば、BaTiOのBaの一部がBi−Naで置換された半導体磁器組成物において、Pbを使用することなく優れたジャンプ特性と経時変化を低減したPTC素子を提供できる。
また、別の本発明によれば、上記PTC素子を用いた安全性と耐久性の高い発熱モジュールを提供できる。
According to the present invention, it is possible to provide a PTC element having excellent jump characteristics and reduced temporal change without using Pb in a semiconductor ceramic composition in which a part of BaTiO 3 is substituted with Bi—Na.
Moreover, according to another this invention, the heat generating module with high safety | security and durability using the said PTC element can be provided.

本発明の実施例のPTC素子の電極と材料の界面のEPMA分析結果の一例を示す説明図で、Agのマッピングである。It is explanatory drawing which shows an example of the EPMA analysis result of the interface of the electrode of the PTC element of the Example of this invention, and material, and is mapping of Ag. 図1と同様の説明図で、Znのマッピングである。It is explanatory drawing similar to FIG. 1, and is mapping of Zn. 図1と同様の説明図で、酸素のマッピングである。It is explanatory drawing similar to FIG. 1, and is an oxygen mapping. 図1と同様の説明図で、Tiのマッピングである。It is explanatory drawing similar to FIG. 1, and is mapping of Ti. 図1の酸素のマップを拡大したもので、界面における接触面積について説明する図である。FIG. 2 is an enlarged view of the oxygen map in FIG. 1 and is a diagram illustrating a contact area at an interface. 図5をトレースした模式図である。It is the schematic diagram which traced FIG. 本発明のPTC素子を用いた加熱装置(発熱モジュール)を示す模式図である。It is a schematic diagram which shows the heating apparatus (heat generating module) using the PTC element of this invention. 本発明の別の発熱モジュールであって、その一部を切り欠いて示す斜視図である。It is another heat generating module of this invention, Comprising: It is a perspective view which notches and shows a part.

以下、本発明のPTC素子の電極と材料の界面の形態について説明を加える。
まず、本発明で言う電極のオーミック成分とは卑金属元素を含有した成分を指す。本発明のPTC素子のような半導体材料と電極の接合では、通常のAgやAu、Ptなどの貴金属を接合させると界面に酸化物層が介在して非常に大きな界面抵抗が形成されることが知られている。この界面抵抗を小さくするには、ZnやNiなどの卑金属を第一層として形成して電極形成時に電極と材料の界面にできる酸化物層を卑金属が酸化されることで取り除いて界面抵抗を低減し、さらに使用中の卑金属電極の酸化による経時変化を防ぐためにAgなどの貴金属をカバー電極として用いる方法が採られている。しかし、電極形成時に卑金属成分が過度に酸化されることを防ぐため、貴金属成分と卑金属成分が混合された電極とすることも行われる。
Hereinafter, the form of the interface between the electrode and the material of the PTC element of the present invention will be described.
First, the electrode ohmic component referred to in the present invention refers to a component containing a base metal element. In the bonding of a semiconductor material such as the PTC element of the present invention and an electrode, when an ordinary noble metal such as Ag, Au, or Pt is bonded, an oxide layer is interposed at the interface, and a very large interface resistance is formed. Are known. To reduce this interfacial resistance, the base metal such as Zn or Ni is formed as the first layer, and the oxide layer formed at the interface between the electrode and the material is removed when the electrode is formed, and the interfacial metal is oxidized to reduce the interfacial resistance. Further, a method of using a noble metal such as Ag as a cover electrode is employed in order to prevent a change with time due to oxidation of the base metal electrode in use. However, in order to prevent the base metal component from being excessively oxidized during electrode formation, an electrode in which a noble metal component and a base metal component are mixed is also used.

貴金属成分と卑金属成分が混合された材料を電極に用いる場合には、電極形成時に卑金属成分と貴金属成分が合金を形成し、卑金属成分単体、卑金属成分と貴金属成分の合金、貴金属成分単体の3種類の層が混在する組織となる。電極と材料界面では、上記3つの層のうち貴金属成分が単体でPTC材料と接触している部分が存在すると、この部位は高抵抗になるばかりでなく、密着力不足で電極が剥がれやすく経時変化の原因になっていることを突き止めた。また、卑金属成分のみで電極を形成した場合にも、電極がPTC材料に接触していない部分が存在し、その部位は抵抗が高く、電極剥離の起点になりやすいため経時変化の原因となる。
そこで、本発明では電極とPTC材料の界面において、電極のオーミック成分とPTC材料との界面の形態に着目し、この界面において電極と材料が接触していない面積の割合を25%以下とすることで、素子全体の抵抗を下げ、よって経時変化を大幅に低減したPTC素子を実現することができたものである。
When a mixed material of noble metal component and base metal component is used for the electrode, the base metal component and the noble metal component form an alloy at the time of electrode formation, and the base metal component alone, the alloy of the base metal component and the noble metal component, and the noble metal component alone. It becomes an organization with a mix of layers. At the electrode / material interface, if there is a part of the above three layers where the precious metal component is in contact with the PTC material alone, this part not only becomes high resistance, but the electrode easily peels off due to insufficient adhesion and changes with time. I found out that it was the cause. Further, even when the electrode is formed only with the base metal component, there is a portion where the electrode is not in contact with the PTC material, and the portion has a high resistance and easily becomes a starting point of electrode peeling, which causes a change with time.
Therefore, in the present invention, attention is paid to the form of the interface between the ohmic component of the electrode and the PTC material at the interface between the electrode and the PTC material, and the ratio of the area where the electrode and the material are not in contact at this interface is 25% or less. Thus, it was possible to realize a PTC element in which the resistance of the entire element was lowered, and thus the change with time was greatly reduced.

ここで電極のオーミック成分とPTC材料が接していない面積の割合は、電子針微小部分析装置(Electron Probe Micro Analyzer 以下、EPMAと言う。)のマッピングなどでオーミック成分と貴金属成分の分布を割り出し、材料成分とオーミック成分が接していない部分を測定することで算出することができる。図1〜図4にAg−Zn電極とPTC材料の界面の分析例を示す。図1がAgのマッピング、図2がZnのマッピング、図3が酸素のマッピング、図4がTiのマッピングを示している。材料成分は酸化物であるため酸素が検出され(図3において5aで示したように白く見える部分)、またこの電極のオーミック成分Znは焼付け時に酸化されるために材料成分と同様に酸素が検出される(図3において5に示したように白く見える部分)。このため、電極のオーミック成分と材料が接触しているとEPMAでは連続的に酸素が検出される。しかし、界面に酸化され難い貴金属成分が偏析している箇所や、密着不良で隙間が存在する箇所は酸素が検出されない(図3の6で示した部分)。従い、図3に示されるように密着不良箇所は酸素が検出されない黒く見える部分として現れ、白く見える酸素部分は卑金属成分かPTC材料のいずれかが存在している部分として現れたマップが得られる。このマップを元に下記する測定手段によりオーミック成分が接触していない面積Sa(非接触面積)を算出する。 Here, the ratio of the area where the ohmic component of the electrode is not in contact with the PTC material is obtained by calculating the distribution of the ohmic component and the noble metal component by mapping with an electron probe microanalyzer (hereinafter referred to as EPMA). It can be calculated by measuring the portion where the material component and the ohmic component are not in contact. 1-4 show analysis examples of the interface between the Ag—Zn electrode and the PTC material. FIG. 1 shows Ag mapping, FIG. 2 shows Zn mapping, FIG. 3 shows oxygen mapping, and FIG. 4 shows Ti mapping. Since the material component is an oxide, oxygen is detected (the portion that appears white as shown by 5a in FIG. 3), and since the ohmic component Zn of this electrode is oxidized during baking, oxygen is detected in the same manner as the material component. (A portion that looks white as shown by 5 in FIG. 3). For this reason, when the ohmic component of the electrode is in contact with the material, EPMA continuously detects oxygen. However, oxygen is not detected at locations where noble metal components that are difficult to oxidize at the interface are segregated or locations where gaps exist due to poor adhesion (portions indicated by 6 in FIG. 3). Accordingly, as shown in FIG. 3, a map is obtained in which the poor adhesion portion appears as a black portion where oxygen is not detected, and the white oxygen portion appears as a portion where either a base metal component or a PTC material exists. Based on this map, the area Sa (non-contact area) where the ohmic component is not in contact is calculated by the measuring means described below.

まずTiのマッピングを元に材料と電極の界面のラインを決定する。具体的にはTiが検出される一番上側のライン(図4の50a、50bで示した部分)を材料と電極の界面のラインとする。次のこの界面のラインを酸素マッピングの図に当てはめ(図3の60a、60bで示した部分)、ライン上に接触している電極部の白い部分の長さLz(例:図3の5bで示した部分)と黒い部分(例:図3の6で示した部分)の長さLaを測定する。以上で黒っぽく見える線分の合計と白っぽく見える線分の合計をそれぞれ測定し、Laの割合(La/La+Lz)を算出する。この線分の割合は面積に反映され比例するのでLa=Saとし面積の割合として求め、この線分の割合を面積の割合を示す指標とした。 First, the interface line between the material and the electrode is determined based on the Ti mapping. Specifically, the uppermost line (the portion indicated by 50a and 50b in FIG. 4) where Ti is detected is used as the interface line between the material and the electrode. Next, the interface line is applied to the oxygen mapping diagram (the portions indicated by 60a and 60b in FIG. 3), and the length Lz of the white portion of the electrode portion in contact with the line (example: 5b in FIG. 3) The length La of the portion shown) and the black portion (example: portion shown by 6 in FIG. 3) is measured. The total of the line segment that looks black and the total of the line segment that looks whitish are measured, and the ratio of La (La / La + Lz) is calculated. Since the ratio of this line segment is reflected and proportional to the area, La = Sa is obtained as the area ratio, and this line segment ratio is used as an index indicating the area ratio.

また、界面に形成される界面抵抗は直接には測定できないので以下のように定義した。まず、両端面に電極を設けたそれぞれ厚みの異なる複数のPTC素子を用意し、25℃におけるそれぞれのPTC材料の抵抗値を測定し、横軸にPTC素子の厚み、縦軸に抵抗値をプロットしたデータを取る。このデータから厚みと抵抗値との間の近似直線を求め、所定温度の近似直線の厚みが0の時の抵抗値を便宜上求め、この厚み0の時の抵抗値を素子の両面に形成した電極面積の半分の値で割って界面における界面抵抗(Ω/cm)と定義した。言い換えれば近似直線の傾きが単位厚さあたりの材料の抵抗値を示しており、縦軸の切片がPTC材料と電極の界面抵抗を示しているものと見なした。 In addition, since the interface resistance formed at the interface cannot be measured directly, it was defined as follows. First, prepare a plurality of PTC elements with different thicknesses with electrodes on both end faces, measure the resistance value of each PTC material at 25 ° C, plot the thickness of the PTC element on the horizontal axis and the resistance value on the vertical axis Take the data. An approximate straight line between the thickness and the resistance value is obtained from this data, the resistance value when the thickness of the approximate straight line at a predetermined temperature is 0 is obtained for convenience, and the resistance value when the thickness is 0 is formed on both surfaces of the element. The interface resistance (Ω / cm 2 ) at the interface was defined by dividing by half the area. In other words, the slope of the approximate line represents the resistance value of the material per unit thickness, and the intercept on the vertical axis was regarded as indicating the interface resistance between the PTC material and the electrode.

次に、この発明に用いるPTC材料、及びこのPTC素子を得るための製造方法の一例を説明する。
PTC材料の製造方法において、組成式[(Bi−Na)(Ba1−y1−x]Ti1−zの製造に際して、(BaR)TiMO仮焼粉からなる各仮焼粉(以下、BT仮焼粉という。)と(Bi−Na)TiO仮焼粉からなる仮焼粉(以下、BNT仮焼粉という。)を別々に用意する。その後、上記BT仮焼粉とBNT仮焼粉を適宜混合した混合仮焼粉を用いて成形体を製造する。このようにBT仮焼粉とBNT仮焼粉を別途用意し、これらを混合した混合仮焼粉を成形して焼結する分割仮焼法を採用することが好ましい。
Next, an example of the PTC material used in the present invention and a manufacturing method for obtaining this PTC element will be described.
The method of manufacturing a PTC material, in the production of the composition formula [(Bi-Na) x ( Ba 1-y R y) 1-x] Ti 1-z M z O 3, consisting of (BaR) TiMO 3 calcined powder Each calcined powder (hereinafter referred to as BT calcined powder) and calcined powder composed of (Bi-Na) TiO 3 calcined powder (hereinafter referred to as BNT calcined powder) are prepared separately. Then, a molded object is manufactured using the mixed calcined powder which mixed the said BT calcined powder and BNT calcined powder suitably. Thus, it is preferable to employ a separate calcining method in which BT calcined powder and BNT calcined powder are separately prepared, and mixed calcined powder obtained by mixing these is formed and sintered.

また、組成式[(Bi−Na)(Ba1−y−θθ1−x]Ti1−zの製造に際しては、(BaRA)(TiM)O仮焼粉からなる各仮焼粉(本発明では上記同様、BT仮焼粉という。)と、(Bi−Na)TiO仮焼粉からなるBNT仮焼粉を別々に用意する。その後は上記と同様に分割仮焼法を採用する。 Further, the composition formula in the production of [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] Ti 1-z M z O 3 is, (BaRA) (TiM) O 3 calcined Each calcined powder made of powder (referred to as BT calcined powder in the present invention as mentioned above) and BNT calcined powder made of (Bi-Na) TiO 3 calcined powder are prepared separately. After that, the division calcining method is adopted as described above.

上記2種類の組成系ともBaTiOのBaの一部をBi−Naで置換した材料であって、BNT仮焼粉を用意する過程が共通している。BT仮焼粉とBNT仮焼粉はそれぞれの原料粉末をそれぞれに応じた適正温度で仮焼することで得られる。例えば、BNT仮焼粉の原料粉は、通常TiO、Bi23、Na2CO3が用いられるが、Bi23は、これらの原料粉の中では融点が最も低いので焼成による揮散がより生じ易い。そこでBiが成るべく揮散しないで、かつNaの過反応が無いように700〜950℃の比較的低温で仮焼きする。一旦、BNT仮焼粉となした後は、BNT粉自体の融点は高い値で安定するので、BT仮焼粉と混合してもより高い温度で焼成できる。このように分割仮焼法の利点はBiの揮散とNaの過反応を抑え、秤量値に対しBi−Naの組成ずれの小さいBNT仮焼粉にできることにある。 Both of the two types of composition systems are materials in which a part of BaTiO 3 is replaced with Bi—Na, and the process of preparing BNT calcined powder is common. BT calcined powder and BNT calcined powder are obtained by calcining each raw material powder at an appropriate temperature according to each. For example, the raw material powder of BNT calcined powder is usually TiO 2 , Bi 2 O 3 , or Na 2 CO 3, but Bi 2 O 3 has the lowest melting point among these raw material powders, so it volatilizes by firing. Is more likely to occur. Therefore, Bi is calcined at a relatively low temperature of 700 to 950 ° C. so that Bi is not volatilized as much as possible and there is no overreaction of Na. Once the BNT calcined powder is formed, the melting point of the BNT powder itself is stabilized at a high value, so that it can be fired at a higher temperature even when mixed with the BT calcined powder. As described above, the advantage of the divided calcining method is that the volatilization of Bi and the overreaction of Na are suppressed, and a BNT calcined powder having a small composition deviation of Bi-Na with respect to the weighed value can be obtained.

分割仮焼法を用いることにより、BNT仮焼粉のBiの揮散が抑制され、Bi−Naの組成ずれを極力防止してBiとNaのモル比率Bi/Naを精度良く制御することができ、それら仮焼粉を混合して、成形、焼結することにより、室温における抵抗率が低く、キュリー温度のバラツキが抑制されたPTC材料が得られる。しかし、分割仮焼法は必須ではない。BiとNaの比は1:1を基本とするが、一括混合法等により仮焼工程などにおいて、Biが揮散してBiとNaの比にずれが生じたものでもよい。すなわち、Bi/Na比が配合時は1:1であるが、焼結体では1:1になっていない場合なども、この発明の組成物に含まれる。 By using the divided calcining method, the volatilization of Bi in the BNT calcined powder is suppressed, the compositional deviation of Bi-Na can be prevented as much as possible, and the molar ratio Bi / Na Bi / Na can be accurately controlled. By mixing, calcining and sintering these calcined powders, a PTC material having a low resistivity at room temperature and a suppressed Curie temperature variation can be obtained. However, the split calcination method is not essential. The ratio of Bi to Na is basically 1: 1, but it may be one in which Bi is volatilized and the ratio of Bi to Na is shifted in a calcining process or the like by a batch mixing method or the like. That is, the Bi / Na ratio is 1: 1 at the time of blending, but the case of not being 1: 1 in the sintered body is also included in the composition of the present invention.

仮焼粉の粉砕粉にPVAを10重量%添加し、混合した後、造粒装置によって造粒した。成形は1軸プレス装置で行い、400〜700℃で脱バインダ後、所定の焼結条件で焼結し焼結体を得る。得られた焼結体を切削して適宜形状のPTC素体となす。電極の形成方法は電極ペーストの焼付け、スパッタ、溶射、めっきなどの方法があるが、特に限定されるものではない。 10% by weight of PVA was added to the pulverized powder of the calcined powder, mixed, and granulated by a granulator. The forming is performed with a single-screw press, and after debinding at 400 to 700 ° C., sintering is performed under predetermined sintering conditions to obtain a sintered body. The obtained sintered body is cut into a PTC body having an appropriate shape. Examples of the electrode forming method include electrode paste baking, sputtering, thermal spraying, and plating, but are not particularly limited.

但し、電極の形成条件としては300℃以上の温度に晒される時間は20分以上、1時間以下であることが望ましい。300℃以上の高温に卑金属が晒されると酸化が進み電極と材料の間に隙間が形成されやすくなってしまい、1時間以上の時間晒されると界面の界面抵抗が1Ω/cm以下とでき難くなるため好ましくない。また、20分よりも短い時間では材料と電極が密着するのに十分な時間が得られず界面の界面抵抗が高くなってしまうため好ましくない。望ましくは25分以上、50分以下、さらに望ましくは30分以上、40分以下である。 However, as an electrode forming condition, it is desirable that the time of exposure to a temperature of 300 ° C. or higher is 20 minutes or longer and 1 hour or shorter. When a base metal is exposed to a high temperature of 300 ° C. or higher, oxidation proceeds and a gap is easily formed between the electrode and the material. When exposed to a time of 1 hour or longer, the interface resistance of the interface is hardly 1 Ω / cm 2 or less. Therefore, it is not preferable. Also, a time shorter than 20 minutes is not preferable because a sufficient time for the material and the electrode to adhere cannot be obtained and the interface resistance of the interface becomes high. Desirably, it is 25 minutes or more and 50 minutes or less, and more desirably 30 minutes or more and 40 minutes or less.

また、電極形成の雰囲気は通常大気で行うが、不活性ガス雰囲気中で行うことも出来る。不活性ガス雰囲気中で電極を形成することで、界面の酸化を抑え界面抵抗をさらに低減することが出来る。ここで言う不活性ガスは窒素やアルゴンガスなどを用いることができる。また、酸化を抑える目的で真空中で電極を形成しても良い。 In addition, the atmosphere for electrode formation is usually air, but can also be performed in an inert gas atmosphere. By forming the electrode in an inert gas atmosphere, it is possible to suppress the interface oxidation and further reduce the interface resistance. Nitrogen, argon gas, etc. can be used for the inert gas said here. Moreover, you may form an electrode in a vacuum in order to suppress oxidation.

電極の厚みはペーストの焼付けでは5〜30μm程度、スパッタでは100〜1000nm程度、溶射では10〜100μm程度、めっきでは5〜30μm程度であれば良い。また、本発明は材料に直接形成する電極のみを規定しているが、卑金属電極の酸化防止や、ハンダの濡れ性向上のために第2層目の電極(カバー電極)としてAg電極などを用いることもできる。また、さらに3層以上の電極構造とすることも可能である。 The thickness of the electrode may be about 5 to 30 μm for paste baking, about 100 to 1000 nm for sputtering, about 10 to 100 μm for thermal spraying, and about 5 to 30 μm for plating. Further, the present invention defines only the electrode directly formed on the material, but an Ag electrode or the like is used as the second layer electrode (cover electrode) for preventing oxidation of the base metal electrode and improving solder wettability. You can also. Further, an electrode structure having three or more layers can be formed.

また、上記PTC材料を用いてシート成形し、厚さ数100μm程度のシート材を2種類用意し、このシートの一方に正極側の電極を、他方に負極側の電極を形成したシート成形体を1セットとし、これを複数セット積層して焼結体とする。この焼結体の端面に面した正電極同士また負電極同士を外部電極で接続する、いわゆる積層型PTC素子とすることもできる。なお、PTC材料シートの厚さは少なくとも20μm以上である必要がある。厚さが20μmよりも小さいと、焼成時に電極と材料の化学反応が進み特性が変化してしまうために好ましくない。20μm以上であれば安定した特性のPTC素子を得ることができる。 Further, a sheet molded body in which two sheets of sheet material having a thickness of about several hundreds of μm are prepared using the PTC material, and a positive electrode is formed on one of the sheets and a negative electrode is formed on the other is formed. One set is formed, and a plurality of sets are laminated to form a sintered body. A so-called multilayer PTC element in which the positive electrodes facing the end face of the sintered body or the negative electrodes are connected by an external electrode can also be used. Note that the thickness of the PTC material sheet needs to be at least 20 μm or more. If the thickness is less than 20 μm, the chemical reaction between the electrode and the material proceeds during firing and the characteristics change, which is not preferable. If it is 20 μm or more, a PTC element having stable characteristics can be obtained.

参考例1)
分割仮焼法を用いて以下の半導体磁器組成物を得た。BaCO、TiO、Laの原料粉末を準備し、(Ba0.994La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
( Reference Example 1)
The following semiconductor porcelain compositions were obtained using the division calcination method. Raw material powders of BaCO 3 , TiO 2 , and La 2 O 3 were prepared, blended so as to be (Ba 0.994 La 0.006 ) TiO 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

NaCO、Bi、TiOの原料粉末を準備し、Bi0.5Na0.5TiOとなるように秤量配合し、エタノール中で混合した。得られた混合原料粉末を、800℃で2時間大気中で仮焼し、BNT仮焼粉を用意した。 Raw material powders of Na 2 CO 3 , Bi 2 O 3 and TiO 2 were prepared, weighed and blended so as to be Bi 0.5 Na 0.5 TiO 3, and mixed in ethanol. The obtained mixed raw material powder was calcined in the air at 800 ° C. for 2 hours to prepare BNT calcined powder.

用意したBT仮焼粉とBNT仮焼粉をモル比で73:7となるように配合し、純水を媒体としてポットミルにより、混合仮焼粉の中心粒径が1.0μm〜2.0μmになるまで混合、粉砕した後、乾燥させた。該混合仮焼粉の粉砕粉にPVAを10重量%添加し、混合した後、造粒装置によって造粒した。得られた造粒粉を一軸プレス装置で成形し成形体となした。この成形体を700℃で脱バインダー後、酸素濃度0.01%(100ppm)の窒素雰囲気中にて1360℃で4時間保持し、その後徐冷して40×25×4mmの焼結体を得た。 The prepared BT calcined powder and BNT calcined powder are blended in a molar ratio of 73: 7, and the center particle size of the mixed calcined powder is 1.0 μm to 2.0 μm by a pot mill using pure water as a medium. After mixing and pulverizing until dry, it was dried. 10% by weight of PVA was added to the pulverized powder of the mixed calcined powder, mixed, and granulated by a granulator. The obtained granulated powder was molded with a uniaxial press machine to obtain a molded body. After debinding the molded body at 700 ° C., it was held at 1360 ° C. for 4 hours in a nitrogen atmosphere having an oxygen concentration of 0.01% (100 ppm), and then slowly cooled to obtain a 40 × 25 × 4 mm sintered body. It was.

得られた焼結体を10mm×10mm×1mm、10mm×10mm×0.75mm、10mm×10mm×0.50mm、10mm×10mm×0.25mmの板状に加工して試験片を4種類作製した。次に、電極材料の金属成分を100重量%としたときAgとZnの重量%を50:50とした電極ペーストを作製し、スクリーン印刷で10×10の面にそれぞれ塗布した。さらにカバー電極としてAgペーストを重ねてスクリーン印刷でそれぞれ塗布した。塗布した電極を150℃で乾燥後、大気中、昇温24℃/分、降温24℃/分、600℃、10分保持で焼き付けて電極を形成した。300℃以上の温度に素子が晒される時間は34分であった。なお、上記電極ペーストには、上記金属成分100重量%に対し、ガラスフリットを3重量%、有機バインダー25重量%を一律に添加した電極材料とした。以下の実施例、参考例、比較例でも同様とし金属成分の影響について評価した。 The obtained sintered body was processed into a plate shape of 10 mm × 10 mm × 1 mm, 10 mm × 10 mm × 0.75 mm, 10 mm × 10 mm × 0.50 mm, 10 mm × 10 mm × 0.25 mm to prepare four types of test pieces. . Next, an electrode paste in which the weight percentage of Ag and Zn was 50:50 when the metal component of the electrode material was 100% by weight was prepared and applied to a 10 × 10 surface by screen printing. Furthermore, Ag paste was applied as a cover electrode and applied by screen printing. The applied electrode was dried at 150 ° C., and then baked in the air at a temperature increase of 24 ° C./min, a temperature decrease of 24 ° C./min, 600 ° C., and 10 minutes holding to form an electrode. The time during which the device was exposed to a temperature of 300 ° C. or higher was 34 minutes. The electrode paste was prepared by uniformly adding 3% by weight of glass frit and 25% by weight of organic binder to 100% by weight of the metal component. The following examples, reference examples, and comparative examples were similarly evaluated for the influence of metal components.

評価方法については以下の通りである。
(抵抗温度係数α)
抵抗温度係数αは、恒温槽で260℃まで昇温しながら抵抗−温度特性を測定して算出した。
尚、抵抗温度係数αは次式で定義される。
α=(lnR−lnR)×100/(T−T
は最大抵抗率、TはRを示す温度、Tはキュリー温度、RはTにおける抵抗率である。ここでTは抵抗率が室温抵抗率の2倍となる温度とした。
The evaluation method is as follows.
(Resistance temperature coefficient α)
The resistance temperature coefficient α was calculated by measuring the resistance-temperature characteristics while raising the temperature to 260 ° C. in a thermostatic bath.
The resistance temperature coefficient α is defined by the following equation.
α = (lnR 1 −lnR c ) × 100 / (T 1 −T c )
R 1 is the maximum resistivity, T 1 is the temperature indicating R 1 , T c is the Curie temperature, and R c is the resistivity at T c . Here, Tc is a temperature at which the resistivity becomes twice the resistivity at room temperature.

(室温抵抗率R25
室温抵抗率R25は、25℃、4端子法で測定した。
(Room temperature resistivity R 25 )
The room temperature resistivity R 25 was measured by a four-terminal method at 25 ° C.

(経時変化)
通電試験はアルミフィン付きのヒーターに組み込み、風速4m/sで冷却しながら13Vを印加して1000時間行った。この時のフィンの温度は70℃であった。通電試験後の25℃での室温抵抗率を測定し、通電試験前と1000時間通電後の室温抵抗率の差を通電試験前の室温抵抗率で除して抵抗変化率(%)を求め、経時変化を調べた。
よって、経時変化率は次式で定義される。
{(1000時間放置した時の室温抵抗値)−(初期室温抵抗値)}/(初期室温抵抗値)×100(%)
(change over time)
The energization test was carried out for 1000 hours by applying 13 V while being incorporated in a heater with aluminum fins and cooling at a wind speed of 4 m / s. The temperature of the fin at this time was 70 degreeC. The room temperature resistivity at 25 ° C. after the energization test was measured, and the resistance change rate (%) was obtained by dividing the difference in room temperature resistivity before the energization test and after 1000 hours by the room temperature resistivity before the energization test, The change with time was examined.
Therefore, the rate of change with time is defined by the following equation.
{(Room temperature resistance value when left for 1000 hours) − (initial room temperature resistance value)} / (initial room temperature resistance value) × 100 (%)

(非接触面積の割合)
界面におけるオーミック成分とPTC材料が接触していない面積の割合は、EPMAの酸素マッピング(□50μmの領域を4箇所、計200μm)より算出した。上述したように材料成分は酸化物であるため酸素が検出され、また電極のオーミック成分は焼付け時に酸化されるために材料成分と同様に酸素が検出される。このため、電極のオーミック成分と材料が接触しているとEPMAでは連続的に酸素が検出されるが、界面に酸化され難い貴金属成分が偏析している箇所や、密着不良で隙間が存在する箇所は酸素が検出されない。このとき界面の酸素が検出されない部分はマップ上では酸素部分とは異なる色で表されるので、この領域を接触している部分と比較し、よってオーミック成分が接触していない面積(非接触面積)の割合を算出した。具体的には図5に示す酸素元素のマッピングを用いて50μmにおいて検出強度を示すカウント数16以下で黒っぽく見える線分La(図6の境界の外郭をなぞった部分10の合計)と、カウント数17以上で白っぽく見える線分Lz(図6の境界線部分9の合計)をそれぞれ測定し、Laの割合(La/La+Lz)を算出する。これを4箇所測定し、この平均値を算出した。この線分の割合は面積に反映され比例するのでLa=Saとし面積の割合として求めた。
(Non-contact area ratio)
The ratio of the area where the ohmic component and the PTC material are not in contact with each other at the interface was calculated from EPMA oxygen mapping (four 50 μm regions, total 200 μm). As described above, since the material component is an oxide, oxygen is detected, and since the ohmic component of the electrode is oxidized during baking, oxygen is detected in the same manner as the material component. For this reason, when the ohmic component of the electrode is in contact with the material, oxygen is continuously detected by EPMA, but the precious metal component that is difficult to oxidize is segregated at the interface, or there is a gap due to poor adhesion No oxygen is detected. At this time, the part where oxygen at the interface is not detected is displayed in a different color from the oxygen part on the map, so this area is compared with the part that is in contact, so the area where the ohmic component is not in contact (non-contact area) ) Was calculated. Specifically, using the oxygen element mapping shown in FIG. 5, the line segment La (the sum of the portions 10 tracing the outline of the boundary in FIG. 6) that looks black with a count number of 16 or less indicating the detection intensity at 50 μm, and the count number The line segments Lz that look whitish at 17 or more (total of the boundary line portions 9 in FIG. 6) are measured, and the ratio of La (La / La + Lz) is calculated. This was measured at four locations, and the average value was calculated. Since the ratio of this line segment is reflected and proportional to the area, La = Sa was obtained as the area ratio.

(界面抵抗)
また、電極とPTC材料との界面に形成される界面抵抗は、上記電極を設けた厚みの異なる1mm、0.75mm、0.5mm、0.25mmのPTC素子を、それぞれ25℃で抵抗値を測定し、横軸に厚み、縦軸に抵抗値をプロットしたデータを取る。このデータから厚みと抵抗値との間の近似直線を求める。この近似直線をR=a・Δt+Rと表すと(Δt:厚み、R:PTC素子の抵抗値、a:材料の抵抗率)、グラフ上で厚みΔtが0の時の抵抗値Rを便宜的に算出することができる。本発明ではこの抵抗値Rを界面抵抗と見なした。
(Interface resistance)
Also, the interfacial resistance formed at the interface between the electrode and the PTC material is the resistance value at 25 ° C. for the PTC elements with different thicknesses of 1 mm, 0.75 mm, 0.5 mm, and 0.25 mm provided with the electrode. Measure and take data plotting thickness on the horizontal axis and resistance on the vertical axis. An approximate straight line between the thickness and the resistance value is obtained from this data. When this approximate straight line is expressed as R = a · Δt + R 0 (Δt: thickness, R: resistance value of PTC element, a: resistivity of material), the resistance value R 0 when the thickness Δt is 0 on the graph is convenient. Can be calculated automatically. In the present invention, this resistance value R 0 is regarded as the interface resistance.

得られた結果を表1に示す。
その結果、室温抵抗率R25は24.1Ω・cm、電極のオーミック成分がPTC材料に接触していない面積の割合は21%、界面抵抗は0.41Ω/cm、キュリー温度163℃、抵抗温度係数αは7.5%/℃、経時変化は2.5%であった。
The obtained results are shown in Table 1.
As a result, the room temperature resistivity R 25 was 24.1 Ω · cm, the ratio of the area where the electrode ohmic component was not in contact with the PTC material was 21%, the interface resistance was 0.41 Ω / cm 2 , the Curie temperature was 163 ° C., and the resistance The temperature coefficient α was 7.5% / ° C., and the change with time was 2.5%.

抵抗温度係数αは、数値が高いほどジャンプ特性に優れており用途は広がる。例えば、抵抗温度係数αが7%/℃以上あればセンサ用途やヒータ用途などのPTC素子として十分利用できる。また、室温抵抗率は、車載用の補助ヒータ等では50Ω・cm以下の低い値で安定していることが望ましい。それ以上であれば1000Ω・cm程度までは例えば蒸気発生モジュールなどに、1000Ω・cm以上では高い耐電圧の要求されるハイブリッド車、電気自動車用のヒータや発熱モジュール等の用途に利用できる。キュリー温度は、PTC素子の用途に応じてふさわしい温度があるので、例えば130℃〜200℃程度の温度幅があると様々な用途に適用可能である。そして、経時変化は小さいほど望ましいが、上記した13Vで1000時間通電したときの室温抵抗率の経時変化が5%以下であれば実用上問題ないレベルである。
以下の発明では、車載用の補助ヒータ等での用途を目的に、室温抵抗率R25が50Ω・cm以下、抵抗温度係数αが7%/℃以上、13Vで1000時間通電したときの室温抵抗率の経時変化が5%以下の特性値を目的に評価した。
The higher the numerical value of the temperature coefficient of resistance α, the better the jump characteristics and the wider the application. For example, if the temperature coefficient of resistance α is 7% / ° C. or more, it can be sufficiently used as a PTC element for sensor use or heater use. The room temperature resistivity is desirably stable at a low value of 50 Ω · cm or less in an in-vehicle auxiliary heater or the like. If it is higher than that, it can be used for applications such as a steam generating module up to about 1000 Ω · cm, for example, a heater for a hybrid vehicle, an electric vehicle, and a heat generating module that require high withstand voltage at 1000 Ω · cm or higher. Since the Curie temperature has a temperature suitable for the use of the PTC element, for example, a temperature range of about 130 ° C. to 200 ° C. is applicable to various uses. The smaller the change over time, the better. However, if the change over time in the room temperature resistivity when energized at 13 V for 1000 hours is 5% or less, it is at a level that causes no practical problems.
In the following invention, the room temperature resistance R 25 when the room temperature resistivity R 25 is 50 Ω · cm or less, the temperature coefficient of resistance α is 7% / ° C. or more, and energized at 13 V for 1000 hours for the purpose of use as an auxiliary heater for vehicles. Evaluation was made for the purpose of a characteristic value in which the change with time in the rate was 5% or less.

参考例2〜6)
参考例2〜6は、電極のAgとZnの比率を変えた例である。AgとZnの比率を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例2〜6の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Examples 2-6)
Reference Examples 2 to 6 are examples in which the ratio of Ag and Zn of the electrode was changed. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Reference Example 1 except that the ratio of Ag and Zn was changed. The obtained results are shown in Table 1.
In the results of Reference Examples 2 to 6, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

(比較例1〜2)
比較例1〜2は、電極のAgとZnの比率をさらに変えて本発明の範囲外とした例である。AgとZnの比率を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例1〜6と比較例1〜2の結果から、電極の卑金属元素の比率が49%を下回るとオーミック成分がPTC材料に接触していない面積の割合が25%超となってしまい、界面抵抗も1.0Ω/cmを超え、経時変化が5%超になっていることが分かる。尚、卑金属元素の割合が増えるにつれてオーミック成分がPTC材料に接触していない面積は減少し、界面抵抗、室温抵抗率R25、経時変化は小さくなるが、卑金属元素の割合が70%を超えると、上記傾向は逆になり、界面抵抗、室温抵抗率、経時変化は大きくなる。これは卑金属元素の割合が多くなりすぎると、卑金属元素の酸化の影響が無視できなくなるためと考えられる。
(Comparative Examples 1-2)
Comparative Examples 1 and 2 are examples in which the ratio of Ag and Zn of the electrode was further changed to be outside the scope of the present invention. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Reference Example 1 except that the ratio of Ag and Zn was changed. The obtained results are shown in Table 1.
From the results of Reference Examples 1 to 6 and Comparative Examples 1 and 2, when the ratio of the base metal element of the electrode is less than 49%, the ratio of the area where the ohmic component is not in contact with the PTC material becomes more than 25%. It can be seen that the resistance also exceeds 1.0 Ω / cm 2 and the change with time is more than 5%. As the proportion of the base metal element increases, the area where the ohmic component is not in contact with the PTC material decreases, and the interfacial resistance, room temperature resistivity R 25 , and the change with time decrease, but when the proportion of the base metal element exceeds 70% The above tendency is reversed, and the interfacial resistance, room temperature resistivity, and change with time increase. This is considered to be because the influence of the oxidation of the base metal element cannot be ignored if the proportion of the base metal element becomes too large.

参考例7〜9)
参考例7〜9は、電極の卑金属成分にSnを用い、卑金属成分の量を変えた例である。電極の組成を変え、焼付け温度を500℃とした以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例7〜9の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Examples 7-9)
Reference Examples 7 to 9 are examples in which Sn is used as the base metal component of the electrode and the amount of the base metal component is changed. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Reference Example 1 except that the composition of the electrode was changed and the baking temperature was set to 500 ° C. The obtained results are shown in Table 1.
In the results of Reference Examples 7 to 9, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

(比較例3〜4)
比較例3〜4は電極のAgとSnの組成を本発明の範囲外とした例である。電極の組成を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例7と同様の方法で行った。得られた結果を表1に示す。
比較例3〜4の結果はオーミック成分がPTC材料に接触していない面積の割合が25%超となってしまい、界面抵抗も1.0Ω/cmを超え、経時変化が5%超の素子となっていることが分かる。参考例7〜9、及び比較例3、4の結果より、電極の卑金属元素の比率が49%を下回ると経時変化が目的の特性値を満足できなくなることが分かる。得られた特性は卑金属成分にZnを用いた場合とほぼ同様の傾向が見られ、電極のオーミック成分がPTC材料に接触していない面積の割合が特性に及ぼす影響が大きいことが分かる。
(Comparative Examples 3-4)
Comparative Examples 3 to 4 are examples in which the composition of Ag and Sn of the electrode is out of the scope of the present invention. Except for changing the composition of the electrode, the production method of the semiconductor ceramic composition, the formation method of the electrode, and the evaluation method were also performed in the same manner as in Reference Example 7. The obtained results are shown in Table 1.
The results of Comparative Examples 3 to 4 indicate that the ratio of the area where the ohmic component is not in contact with the PTC material exceeds 25%, the interface resistance exceeds 1.0 Ω / cm 2 , and the change over time exceeds 5%. It turns out that it is. From the results of Reference Examples 7 to 9 and Comparative Examples 3 and 4, it can be seen that when the ratio of the base metal element of the electrode is less than 49%, the change with time cannot satisfy the target characteristic value. The obtained characteristics tend to be almost the same as the case where Zn is used as the base metal component, and it can be understood that the ratio of the area where the ohmic component of the electrode is not in contact with the PTC material greatly affects the characteristics.

参考例10)
参考例10は電極の卑金属成分にZnとSbを用いた例である。電極の金属成分をAg:45重量%、Zn:50重量%、Sb:5重量%とした以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例10の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Example 10)
Reference Example 10 is an example using Zn and Sb as the base metal component of the electrode. The manufacturing method of the semiconductor ceramic composition, the formation method of the electrode, and the evaluation method are the same as in Reference Example 1 except that the metal component of the electrode is Ag: 45% by weight, Zn: 50% by weight, and Sb: 5% by weight. went. The obtained results are shown in Table 1.
As a result of Reference Example 10, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

参考例11)
参考例11は電極の卑金属成分にAlを用いた例である。電極の金属成分をAl:100重量%とし、焼付け温度を650℃とした以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例11の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Example 11)
Reference Example 11 is an example in which Al is used for the base metal component of the electrode. The semiconductor porcelain composition production method, electrode formation method, and evaluation method were the same as in Reference Example 1 except that the metal component of the electrode was Al: 100% by weight and the baking temperature was 650 ° C. The obtained results are shown in Table 1.
As a result of Reference Example 11, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

参考例12)
参考例12は電極の卑金属成分にNiを用いた例である。電極の金属成分をNi:100重量%とし、焼付け温度を850℃とした以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例12の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Example 12)
Reference Example 12 is an example in which Ni is used for the base metal component of the electrode. The method for producing the semiconductor ceramic composition, the method for forming the electrode, and the evaluation method were the same as in Reference Example 1 except that the metal component of the electrode was Ni: 100% by weight and the baking temperature was 850 ° C. The obtained results are shown in Table 1.
As a result of Reference Example 12, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

参考例13〜16)
参考例13〜16は、電極の焼付け条件を変えた例である。参考例13では昇温時間60℃/分、600℃で10分保持、降温時間60℃/分(300℃以上に晒される時間20分)、参考例14では昇温時間30℃/分、600℃で10分保持、降温時間30℃/分(300℃以上に晒される時間30分)、参考例15では昇温時間15℃/分、600℃で10分保持、降温時間17℃/分(300℃以上に晒される時間45分)、参考例16では昇温時間12℃/分、600℃で10分保持、降温時間12℃/分(300℃以上に晒される時間60分)で電極を焼きつけた。電極の焼付け条件を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例13〜16の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Examples 13 to 16)
Reference Examples 13 to 16 are examples in which the baking conditions for the electrodes were changed. In Reference Example 13, the temperature rising time was 60 ° C./minute, held at 600 ° C. for 10 minutes, the temperature falling time was 60 ° C./minute (20 minutes exposed to 300 ° C. or more), and in Reference Example 14, the temperature rising time was 30 ° C./minute, 600 Hold at 10 ° C. for 10 minutes, temperature drop time 30 ° C./minute (time exposed to 300 ° C. or more 30 minutes), in Reference Example 15, temperature rise time 15 ° C./minute, hold at 600 ° C. 10 minutes, temperature drop time 17 ° C./minute ( In Example 16, the electrode was heated at 12 ° C./min, held at 600 ° C. for 10 minutes, and cooled down at 12 ° C./min (60 minutes at 300 ° C.). I baked it. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Reference Example 1 except that the electrode baking conditions were changed. The obtained results are shown in Table 1.
In the results of Reference Examples 13 to 16, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

参考例17)
参考例17は電極の焼付け時の雰囲気を窒素中で行った例である。電極の焼付け条件は400℃まで30℃/分(大気)、脱バインダのため400℃で30分大気で保持、その後炉内に窒素を導入し、600℃まで30℃/分で昇温後(窒素中)、600℃で10分保持(窒素中)、降音時間30℃/分(窒素中)の条件で行った。電極の焼付け条件を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。
参考例17の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Example 17)
Reference Example 17 is an example in which the atmosphere during baking of the electrode was performed in nitrogen. Electrode baking conditions were 30 ° C./min (atmosphere) up to 400 ° C., held in the air at 400 ° C. for 30 min for binder removal, then nitrogen was introduced into the furnace, and the temperature was raised to 600 ° C. at 30 ° C./min ( In nitrogen), held at 600 ° C. for 10 minutes (in nitrogen), and sound reduction time of 30 ° C./minute (in nitrogen). A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Reference Example 1 except that the electrode baking conditions were changed. The obtained results are shown in Table 1.
As a result of Reference Example 17, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

(比較例5〜6)
比較例5〜6は電極の焼付け条件を変えた例である。比較例5では600℃の炉内に素子を投入し、10分間保持した後、炉から取り出した(300℃以上に晒される時間10分)。比較例6では昇温時間10℃/分、600℃で10分保持、降温時間10℃/分(300℃以上に晒される時間70分)、の条件で電極を焼きつけた。電極の焼付け条件を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も参考例1と同様の方法で行った。得られた結果を表1に示す。比較例5〜6の結果はオーミック成分がPTC材料に接触していない面積の割合が25%以上となってしまい、界面抵抗も1.0Ω/cmを超え、経時変化が5%以上の素子となっていることが分かる。参考例14〜16、及び比較例5、6の結果より、300℃以上に晒される時間が20分未満と短いと電極とPTC材料の密着性が悪く、非接触面積の割合が極端に大きくなってしまうことが分かる。また、300℃以上に晒される時間が60分を越えてしまうと、卑金属が過度に酸化されてしまい、非接触面積の割合が大きくなってしまい、室温抵抗も高くなってしまうことが分かる。
(Comparative Examples 5-6)
Comparative Examples 5 to 6 are examples in which the baking conditions for the electrodes were changed. In Comparative Example 5, the device was placed in a furnace at 600 ° C., held for 10 minutes, and then removed from the furnace (time for exposure to 300 ° C. or higher was 10 minutes). In Comparative Example 6, the electrode was baked under the conditions of a temperature rising time of 10 ° C./min, a temperature holding of 600 ° C. for 10 minutes, and a temperature falling time of 10 ° C./min (time for exposure to 300 ° C. or higher). A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Reference Example 1 except that the electrode baking conditions were changed. The obtained results are shown in Table 1. As a result of Comparative Examples 5-6, the ratio of the area where the ohmic component is not in contact with the PTC material is 25% or more, the interface resistance is more than 1.0 Ω / cm 2 , and the change over time is 5% or more. It turns out that it is. From the results of Reference Examples 14 to 16 and Comparative Examples 5 and 6, when the time of exposure to 300 ° C. or more is as short as less than 20 minutes, the adhesion between the electrode and the PTC material is poor, and the ratio of the non-contact area becomes extremely large. You can see that Moreover, when the time exposed to 300 degreeC or more exceeds 60 minutes, a base metal will be oxidized excessively, the ratio of a non-contact area will become large, and it turns out that room temperature resistance will also become high.

参考例18〜22)
参考例18〜22は、PTC材料の組成式を[(Bi−Na)(Ba1−y1−x]TiO(但し、RはLa)と表しxとyの比率を変えた例である。PTC材料の組成を変えた以外の半導体磁器組成物の製造方法や評価方法は参考例1と同様の方法で行った。得られた結果を表2に示す。
参考例18〜22の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Examples 18-22)
Reference Example 18-22, the composition formula of the PTC material [(Bi-Na) x ( Ba 1-y R y) 1-x] TiO 3 ( where, R represents La) changing the ratio of x and y represents the This is an example. Except for changing the composition of the PTC material, the production method and evaluation method of the semiconductor ceramic composition were the same as those in Reference Example 1. The obtained results are shown in Table 2.
In the results of Reference Examples 18 to 22, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

(比較例7〜10)
比較例7〜10は、PTC材料の組成式を[(Bi−Na)(Ba1−y1−x]TiO(但し、Rは希土類元素のうち少なくとも一種)と表しxとyの比率をさらに変えて本発明の範囲外とした例である。それ以外の半導体磁器組成物の製造方法や電極形成方法、評価方法は参考例17と同様の方法で行った。得られた結果を表2に示す。
参考例18〜20、比較例9〜10の結果より、BNTの量xが0.30を超えてしまうと室温抵抗率R25が50Ω・cm超と高くなり、経時変化も5%を超えてしまうことが分かる。これはBNTの量が多すぎて異相が増えてしまうためだと考えられる。また、参考例2、21、22と比較例7、8の結果より、希土類元素の量yが0.020を超えてしまうと室温抵抗率R25が50Ω・cm超と高くなってしまうことが分かる。希土類元素は半導体化させるために入れているが、0.02を超えると返って抵抗が高くなる傾向にある。これは異相の増加が原因と考えられる。
(Comparative Examples 7 to 10)
Comparative Example 7-10, the composition formula of the PTC material [(Bi-Na) x ( Ba 1-y R y) 1-x] TiO 3 ( where, R represents at least one kind of rare earth element) and x represents the This is an example in which the ratio of y is further changed to be outside the scope of the present invention. Other semiconductor ceramic composition production methods, electrode formation methods, and evaluation methods were the same as in Reference Example 17. The obtained results are shown in Table 2.
From the results of Reference Examples 18 to 20 and Comparative Examples 9 to 10, when the amount x of BNT exceeds 0.30, the room temperature resistivity R 25 becomes higher than 50 Ω · cm, and the change with time exceeds 5%. I understand that. This is thought to be because the amount of BNT is too large and the number of different phases increases. Further, from the results of Reference Examples 2, 21, and 22 and Comparative Examples 7 and 8, if the amount of rare earth element y exceeds 0.020, the room temperature resistivity R 25 may be as high as more than 50 Ω · cm. I understand. Rare earth elements are added to make semiconductors, but when they exceed 0.02, the resistance tends to increase. This is thought to be due to an increase in foreign phases.

参考例23)
参考例23は半導体化元素として希土類元素を用いずにTiの一部をTaで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、TiO、Taの原料粉末を準備し、Ba(Ti0.991Ta0.009)Oとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
( Reference Example 23)
Reference Example 23 is an example in which a part of Ti is replaced with Ta without using a rare earth element as a semiconducting element. A PTC material was obtained as follows using the division calcining method.
Raw material powders of BaCO 3 , TiO 2 , and Ta 2 O 5 were prepared, blended so as to be Ba (Ti 0.991 Ta 0.009 ) O 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表2に示す。
室温抵抗率R25は48.7Ω・cm、抵抗温度係数αは8.1%/℃、経時変化は4.4%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 2.
The room temperature resistivity R 25 was 48.7 Ω · cm, the temperature coefficient of resistance α was 8.1% / ° C., the change with time was 4.4%, and the target characteristics were satisfied.

参考例24〜25)
参考例24〜25はTa置換の量を変えた例である。それ以外の半導体磁器組成物の製造方法や電極形成方法、評価方法は参考例22と同様の方法で行った。得られた結果を表2に示す。
参考例24、25の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Examples 24-25)
Reference Examples 24 to 25 are examples in which the amount of Ta substitution was changed. Other semiconductor ceramic composition production methods, electrode formation methods, and evaluation methods were the same as in Reference Example 22. The obtained results are shown in Table 2.
The results of Reference Examples 24 and 25 satisfied the target characteristic values with respect to room temperature resistivity R 25 , resistance temperature coefficient α, and change with time.

(比較例11〜12)
比較例11〜12はTa置換の量を変えた例である。それ以外の半導体磁器組成物の製造方法や電極形成方法、評価方法は参考例22と同様の方法で行った。得られた結果を表2に示す。
参考例23〜25、比較例11、12の結果より、Tiの置換量zが0.010を超えてしまうと室温抵抗率R25が目的の50Ω・cmを超えてしまい、目的の特性値を満足できなくなってしまうことが分かる。半導体化するためにTiの一部をTaで置換しているが、置換量が増えるにしたがって抵抗が単調に減少しないのは異相が増えているためであると考えられる。
但し、上述した比較例7や比較例11、12及び下記する比較例13、14は、経時変化だけをとると満足できる値を示している。これらの例については、非接触面積の割合が25%以下であることが経時変化の低減に寄与していると考えられ、経時変化低減の作用効果は必ずしもPTC材料の組成にはよらないと言える
(Comparative Examples 11-12)
Comparative Examples 11 to 12 are examples in which the amount of Ta substitution was changed. Other semiconductor ceramic composition production methods, electrode formation methods, and evaluation methods were the same as in Reference Example 22. The obtained results are shown in Table 2.
From the results of Reference Examples 23 to 25 and Comparative Examples 11 and 12, when the substitution amount z of Ti exceeds 0.010, the room temperature resistivity R 25 exceeds the target 50 Ω · cm, and the target characteristic value is You can see that you are not satisfied. To make a semiconductor, a part of Ti is replaced with Ta. However, the reason why the resistance does not decrease monotonously as the amount of replacement increases is considered to be because the number of different phases increases.
However, Comparative Example 7 and Comparative Examples 11 and 12 described above and Comparative Examples 13 and 14 described below show satisfactory values when only changes with time are taken. In these examples, it is considered that the ratio of the non-contact area is 25% or less, which contributes to the reduction of the change with time, and it can be said that the effect of the change with time is not necessarily dependent on the composition of the PTC material. .

参考例26)
参考例26は半導体化元素として希土類元素を用いずにTiの一部をNbで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、TiO、Nbの原料粉末を準備し、Ba(Ti0.997Nb0.003)Oとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
( Reference Example 26)
Reference Example 26 is an example in which a part of Ti is replaced with Nb without using a rare earth element as a semiconducting element. A PTC material was obtained as follows using the division calcining method.
Raw material powders of BaCO 3 , TiO 2 , and Nb 2 O 5 were prepared, blended so as to be Ba (Ti 0.997 Nb 0.003 ) O 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表2に示す。
室温抵抗率R25は47.8Ω・cm、抵抗温度係数αは7.9%/℃、経時変化は3.9%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 2.
The room temperature resistivity R 25 was 47.8 Ω · cm, the temperature coefficient of resistance α was 7.9% / ° C., and the change with time was 3.9%, satisfying the intended characteristics.

参考例27)
参考例27は半導体化元素としてBaサイトの一部をLaで、Tiの一部をTaで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、TiO、La、Taの原料粉末を準備し、(Ba0.997La0.003)(Ti0.997Ta0.003)Oとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
( Reference Example 27)
Reference Example 27 is an example in which a part of the Ba site is replaced with La and a part of Ti is replaced with Ta as a semiconducting element. A PTC material was obtained as follows using the division calcining method.
Prepare raw material powders of BaCO 3 , TiO 2 , La 2 O 3 and Ta 2 O 5 , and blend them so as to be (Ba 0.997 La 0.003 ) (Ti 0.997 Ta 0.003 ) O 3. And mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表2に示す。
室温抵抗率R25は30.5Ω・cm、抵抗温度係数αは8.1%/℃、経時変化は3.3%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 2.
The room temperature resistivity R 25 was 30.5 Ω · cm, the temperature coefficient of resistance α was 8.1% / ° C., the change with time was 3.3%, and the desired characteristics were satisfied.

参考例28〜30)
参考例28〜30は参考例1と同様の組成と製造方法を用いて焼結体を得たものである。但し、(Ba0.9940.006)TiOの希土類元素Rを変えた例である。参考例28ではY、参考例29ではSm、参考例30ではNdでBaサイトを置換した。希土類元素の種類を変えた以外の半導体磁器組成物の製造方法や評価方法は参考例1と同様の方法で行った。得られた結果を表2に示す。
参考例28〜30の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
( Reference Examples 28-30)
Reference Examples 28 to 30 are obtained by using the same composition and manufacturing method as Reference Example 1 to obtain sintered bodies. However, this is an example in which the rare earth element R of (Ba 0.994 R 0.006 ) TiO 3 is changed. The Ba site was substituted with Y in Reference Example 28, Sm in Reference Example 29, and Nd in Reference Example 30. The manufacturing method and evaluation method of the semiconductor ceramic composition other than changing the kind of rare earth element were performed in the same manner as in Reference Example 1. The obtained results are shown in Table 2.
The results of Reference Examples 28 to 30 satisfied the target characteristic values with respect to room temperature resistivity R 25 , temperature coefficient of resistance α and change with time.

(実施例31)
実施例31は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]TiO(但し、RはLa、AはCa)と表し、Baサイトの一部をCaで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、La、TiO、CaCOの原料粉末を準備し、(Ba0.944Ca0.05La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
(Example 31)
Example 31 had a composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] TiO 3 ( where, R represents La, A is Ca) represents and, in the Ba site This is an example in which a part is replaced with Ca. A PTC material was obtained as follows using the division calcining method.
Raw material powders of BaCO 3 , La 2 O 3 , TiO 2 , and CaCO 3 were prepared, blended so as to be (Ba 0.944 Ca 0.05 La 0.006 ) TiO 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表3に示す。
室温抵抗率R25は23.5Ω・cm、抵抗温度係数αは7.3%/℃、経時変化は2.4%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 3.
The room temperature resistivity R 25 was 23.5 Ω · cm, the temperature coefficient of resistance α was 7.3% / ° C., the change with time was 2.4%, and the target characteristics were satisfied.

(実施例32〜35)
実施例32〜35は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]TiO(但し、RはLa、AはCa)と表し、Ca置換量θの比率を変えた例である。それ以外の半導体磁器組成物の製造方法や電極の形成方法、評価方法は実施例31と同様の方法で行った。得られた結果を表3に示す。
実施例32〜35の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
(Examples 32-35)
Examples 32 to 35, the composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] TiO 3 ( where, R represents La, A is Ca) represents a, Ca This is an example in which the ratio of the substitution amount θ is changed. Other methods for producing the semiconductor ceramic composition, electrode formation method, and evaluation method were the same as in Example 31. The obtained results are shown in Table 3.
The results of Examples 32 to 35 satisfied the target characteristic values with respect to room temperature resistivity R 25 , resistance temperature coefficient α, and changes with time.

(比較例13〜14)
比較例13〜14は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]TiO(但し、RはLa、AはCa)と表し、Ca置換量θの比率を請求項の範囲外とした例である。それ以外のPTC素子の作製方法及び評価方法は実施例31と同様の方法で行った。得られた結果を表3に示す。
実施例31〜35、比較例13、14の結果からθの値が増加し0.20に近づくほどオーミック成分と半導体磁器組成物が接触していない面積比率が減少し、密着性が高くなっていることが分かる。また、界面抵抗も減少し、室温抵抗率R25、抵抗温度係数α、経時変化が全て小さくなる傾向が見られた。ただし、θが0.20を超えてしまうと抵抗温度係数αが7.0を下回ってしまうため好ましくない。比較例14の結果から、θの値が0.20を大きく超えてしまうと、室温抵抗率R25が増加する傾向が見られたことから、θが0.20より多いCaの過剰な置換は逆効果になってしまうことが分かる。よって、θの値は0.20以下を目処に設定すると良い。
(Comparative Examples 13-14)
Comparative Example 13-14, the composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] TiO 3 ( where, R represents La, A is Ca) represents a, Ca This is an example in which the ratio of the substitution amount θ is outside the scope of the claims. The other methods for producing and evaluating the PTC element were performed in the same manner as in Example 31. The obtained results are shown in Table 3.
From the results of Examples 31 to 35 and Comparative Examples 13 and 14, as the value of θ increases and approaches 0.20, the area ratio at which the ohmic component and the semiconductor ceramic composition are not in contact decreases, and the adhesion becomes high. I understand that. Further, the interface resistance also decreased, and the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time were all likely to be reduced. However, if θ exceeds 0.20, the temperature coefficient of resistance α is less than 7.0, which is not preferable. From the result of Comparative Example 14, when the value of θ greatly exceeded 0.20, room temperature resistivity R 25 tended to increase. Therefore, excessive substitution of Ca with θ greater than 0.20 It turns out that it becomes a reverse effect. Therefore, the value of θ should be set to 0.20 or less.

(実施例36)
実施例36は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]TiO(但し、RはLa、AはSr)と表し、Baサイトの一部をSrで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、La、TiO、SrCOの原料粉末を準備し、(Ba0.984Sr0.01La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
(Example 36)
Example 36 had a composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] TiO 3 ( where, R represents La, A is Sr) represents and, in the Ba site This is an example in which a part is substituted with Sr. A PTC material was obtained as follows using the division calcining method.
Raw material powders of BaCO 3 , La 2 O 3 , TiO 2 , and SrCO 3 were prepared, blended so as to be (Ba 0.984 Sr 0.01 La 0.006 ) TiO 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表3に示す。
室温抵抗率R25は22.9Ω・cm、抵抗温度係数αは7.8%/℃、経時変化は2.7%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 3.
The room temperature resistivity R 25 was 22.9 Ω · cm, the temperature coefficient of resistance α was 7.8% / ° C., the change with time was 2.7%, and the target characteristics were satisfied.

(実施例37〜38)
実施例37〜38は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]TiO(但し、RはLa、AはSr)と表し、Sr置換量θの比率を変えた例である。それ以外の半導体磁器組成物の製造方法や電極の形成方法、評価方法は実施例35と同様の方法で行った。得られた結果を表3に示す。
実施例37〜38の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
(Examples 37 to 38)
Examples 37-38 had a composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] TiO 3 ( where, R represents La, A is Sr) represented as, Sr This is an example in which the ratio of the substitution amount θ is changed. Other methods for producing the semiconductor ceramic composition, electrode formation method, and evaluation method were the same as in Example 35. The obtained results are shown in Table 3.
The results of Examples 37 to 38 satisfied the target characteristic values in terms of room temperature resistivity R 25 , temperature coefficient of resistance α, and change with time.

(実施例39)
実施例39は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]TiO(但し、RはLa、AはCa、Sr)と表し、Baサイトの一部をCaとSrで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、La、TiO、CaCO、SrCOの原料粉末を準備し、(Ba0.844Ca0.10Sr0.05La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
(Example 39)
Example 39 had a composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] TiO 3 ( where, R represents La, A is Ca, Sr) represented as, Ba In this example, a part of the site is replaced with Ca and Sr. A PTC material was obtained as follows using the division calcining method.
Prepare raw material powder of BaCO 3 , La 2 O 3 , TiO 2 , CaCO 3 , SrCO 3 , and blend so as to be (Ba 0.844 Ca 0.10 Sr 0.05 La 0.006 ) TiO 3 , Mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表3に示す。
室温抵抗率R25は10.4Ω・cm、抵抗温度係数αは7.3%/℃、経時変化は1.6%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 3.
The room temperature resistivity R 25 was 10.4 Ω · cm, the temperature coefficient of resistance α was 7.3% / ° C., the change with time was 1.6%, and the target characteristics were satisfied.

(実施例40)
実施例40は、組成式を[(Bi−Na)(Ba1−θθ1−x]Ti1−z(但し、AはCa、MはTa)と表し、Baサイトの一部をCa、Tiサイトの一部をTaで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、TiO、Ta、CaCOの原料粉末を準備し、(Ba0.99Ca0.05)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
(Example 40)
Example 40 had a composition formula [(Bi-Na) x ( Ba 1-θ A θ) 1-x] Ti 1-z M z O 3 ( where, A is Ca, M is Ta) expressed as, Ba In this example, a part of the site is replaced with Ca and a part of the Ti site is replaced with Ta. A PTC material was obtained as follows using the division calcining method.
Raw material powders of BaCO 3 , TiO 2 , Ta 2 O 5 , and CaCO 3 were prepared, blended so as to be (Ba 0.99 Ca 0.05 ) TiO 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表3に示す。
室温抵抗率R25は35.3Ω・cm、抵抗温度係数αは7.7%/℃、経時変化は3.7%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 3.
The room temperature resistivity R 25 was 35.3 Ω · cm, the temperature coefficient of resistance α was 7.7% / ° C., the change with time was 3.7%, and the target characteristics were satisfied.

(実施例41〜42)
実施例41〜42は、組成式を[(Bi−Na)(Ba1−θθ1−x]Ti1−z(但し、AはCa、MはTa)と表し、Ca置換量θの比率を変えた例である。それ以外の半導体磁器組成物の製造方法や電極の形成方法、評価方法は実施例40と同様の方法で行った。得られた結果を表3に示す。
実施例41〜42の結果は、室温抵抗率R25、抵抗温度係数αおよび経時変化ともに目的の特性値を満足するものであった。
(Examples 41 to 42)
Examples 41-42 had a composition formula [(Bi-Na) x ( Ba 1-θ A θ) 1-x] Ti 1-z M z O 3 ( where, A is Ca, M is Ta) expressed as This is an example in which the ratio of the Ca substitution amount θ is changed. Other semiconductor ceramic composition production methods, electrode formation methods, and evaluation methods were the same as in Example 40. The obtained results are shown in Table 3.
In the results of Examples 41 to 42, the room temperature resistivity R 25 , the temperature coefficient of resistance α, and the change with time satisfy the target characteristic values.

(実施例43)
実施例43は、組成式を[(Bi−Na)(Ba1−y−θθ1−x]Ti1−z(但し、RはLa、AはCa、MはTa)と表し、Baサイトの一部をCaとLa、Tiサイトの一部をTaで置換した例である。分割仮焼法を用いて次のようにしてPTC材料を得た。
BaCO、La、TiO、CaCO、Taの原料粉末を準備し、(Ba0.897Ca0.10La0.003)(Ti0.997Ta0.003)Oとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BT仮焼粉を用意した。
(Example 43)
Example 43 had a composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] Ti 1-z M z O 3 ( where, R represents La, A is Ca, In this example, M is expressed as Ta), and a part of the Ba site is replaced with Ca and La, and a part of the Ti site is replaced with Ta. A PTC material was obtained as follows using the division calcining method.
Raw material powders of BaCO 3 , La 2 O 3 , TiO 2 , CaCO 3 , and Ta 2 O 5 were prepared and (Ba 0.897 Ca 0.10 La 0.003 ) (Ti 0.997 Ta 0.003 ) O It mix | blended so that it might become 3, and it mixed with the pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BT calcined powder.

BNT仮焼粉の作製は、参考例1と同様に行った。その後のBT−BNTの混合、成形、焼結、電極形成及び評価は参考例1と同様の方法で行いPTC素子となしたものである。得られた結果を表3に示す。
室温抵抗率R25は12.0Ω・cm、抵抗温度係数αは7.4%/℃、経時変化は1.5%で目的の特性を満足するものであった。
BNT calcined powder was produced in the same manner as in Reference Example 1. Subsequent mixing, molding, sintering, electrode formation, and evaluation of BT-BNT were performed in the same manner as in Reference Example 1 to obtain a PTC element. The obtained results are shown in Table 3.
The room temperature resistivity R 25 was 12.0 Ω · cm, the temperature coefficient of resistance α was 7.4% / ° C., the change with time was 1.5%, and the desired characteristics were satisfied.

(発熱モジュール)
本発明のPTC素子を、図3に示すように金属製の放熱フィン20a1、20b1、20c1に挟み込んで固定し、発熱モジュール20を得た。PTC素子11はPTC材料1aからなり、電極2a、2cはそれぞれ正極側の電力供給電極20a、20cに熱的および電気的に密着され、他方の面に形成した電極2bは負極側の電力供給電極20bに熱的および電気的に密着される。
また、電力供給電極20a、20b、20cはそれぞれ放熱フィン20a1、20b1、20c1と熱的に接続している。なお、絶縁層2dは電力供給電極20aと電力供給電極20cの間に設けられ、両者を電気的に絶縁している。発熱体11で生じた熱は電極2a、2b、2c、電力供給電極20a、20b、20c、放熱フィン20a1、20b1、20c1の順に伝わり主に放熱フィン20a1、20b1、20c1から雰囲気中に放出される。
(Heat generation module)
As shown in FIG. 3, the PTC element of the present invention was sandwiched and fixed between metal radiating fins 20 a 1, 20 b 1, and 20 c 1 to obtain a heat generating module 20. The PTC element 11 is made of a PTC material 1a, and the electrodes 2a and 2c are in thermal and electrical contact with the power supply electrodes 20a and 20c on the positive electrode side, respectively, and the electrode 2b formed on the other surface is the power supply electrode on the negative electrode side 20b is thermally and electrically adhered.
Further, the power supply electrodes 20a, 20b, and 20c are thermally connected to the radiation fins 20a1, 20b1, and 20c1, respectively. The insulating layer 2d is provided between the power supply electrode 20a and the power supply electrode 20c, and electrically insulates them. The heat generated in the heating element 11 is transmitted in the order of the electrodes 2a, 2b, 2c, the power supply electrodes 20a, 20b, 20c, and the radiation fins 20a1, 20b1, 20c1, and is mainly released from the radiation fins 20a1, 20b1, 20c1 into the atmosphere. .

電源30cを、電力供給電極20aと電力供給電極20bの間、または電力供給電極20cと電力供給電極20bの間に接続すれば消費電力は小さくなり、電力供給電極20aおよび電力供給電極20cの両方と電力供給電極20bの間に接続すれば消費電力は大きくなる。つまり、消費電力を2段階に変更することが可能である。こうして発熱モジュール20は、電源30cの負荷状況や、希望する加熱の緩急の必要度合いに応じて加熱能力を切り替え可能である。
この加熱能力切り替え可能な発熱モジュール20を電源30cに接続することで加熱装置30を構成することができる。なお、電源30cは直流電源である。発熱モジュール20の電力供給電極20aと電力供給電極20cはそれぞれ別のスイッチ30a、30bを介して電源30cの一方の電極に並列接続され、電力供給電極20bは共通端子として電源30cの他方の電極に接続される。
スイッチ30a、30bの何れか一方のみを導通させれば加熱能力を小さくして電源30cの負荷を軽くすることができ、両方を導通すれば加熱能力を大きくすることができる。
If the power supply 30c is connected between the power supply electrode 20a and the power supply electrode 20b, or between the power supply electrode 20c and the power supply electrode 20b, the power consumption is reduced, and both the power supply electrode 20a and the power supply electrode 20c If it connects between the electric power supply electrodes 20b, power consumption will become large. That is, the power consumption can be changed in two stages. In this way, the heat generating module 20 can switch the heating capacity according to the load condition of the power source 30c and the desired degree of heating.
The heating device 30 can be configured by connecting the heating module 20 capable of switching the heating capacity to the power source 30c. The power supply 30c is a DC power supply. The power supply electrode 20a and the power supply electrode 20c of the heat generating module 20 are connected in parallel to one electrode of the power supply 30c via separate switches 30a and 30b, respectively, and the power supply electrode 20b is connected to the other electrode of the power supply 30c as a common terminal. Connected.
If only one of the switches 30a and 30b is made conductive, the heating capacity can be reduced to reduce the load of the power source 30c, and if both are made conductive, the heating capacity can be increased.

この加熱装置30によれば電源30cに特別な機構を持たせなくても、PTC素子11を一定温度に維持することができる。つまり、ジャンプ特性を有するPTC材料1aがキュリー温度付近まで加熱されると、PTC材料1aの抵抗値が急激に上昇しPTC素子11に流れる電流が小さくなり、自動的にそれ以上加熱されなくなる。また、PTC素子11の温度がキュリー温度付近から低下すると再び素子に電流が流れ、PTC素子11が加熱される。このようなサイクルを繰り返してPTC素子11の温度、ひいては発熱モジュール20全体を一定にすることができるので、電源30cの位相や振幅を調整する回路、さらには温度検出機構や目標温度との比較機構、加熱電力調整回路なども不要である。
この加熱装置30は、放熱フィン20a1〜20c1の間に空気を流して空気を暖めたり、放熱フィン20a1〜20c1の間に水などの液体を通す金属管を接続して液体を温めたりすることができる。このときもPTC素子11が一定温度に保たれるので、安全な加熱装置30とすることができる。
According to the heating device 30, the PTC element 11 can be maintained at a constant temperature without providing the power supply 30c with a special mechanism. That is, when the PTC material 1a having jump characteristics is heated to near the Curie temperature, the resistance value of the PTC material 1a rapidly increases, the current flowing through the PTC element 11 decreases, and the PTC material 1a is not automatically heated any further. Further, when the temperature of the PTC element 11 decreases from around the Curie temperature, a current flows again to the element, and the PTC element 11 is heated. By repeating such a cycle, the temperature of the PTC element 11 and thus the entire heat generating module 20 can be made constant. Therefore, a circuit for adjusting the phase and amplitude of the power supply 30c, a temperature detection mechanism and a comparison mechanism with a target temperature Also, a heating power adjustment circuit and the like are unnecessary.
The heating device 30 may flow air between the radiation fins 20a1 to 20c1 to warm the air, or connect a metal tube through which a liquid such as water passes between the radiation fins 20a1 to 20c1 to warm the liquid. it can. Also at this time, since the PTC element 11 is maintained at a constant temperature, a safe heating device 30 can be obtained.

更に、本発明の変形例に係る発熱モジュール12を、図4を参照して説明する。なお、図4では説明のために発熱モジュール12の一部を切り欠いて示している。
この発熱モジュール12は略扁平直方体状のモジュールであり、実施例の半導体磁器組成物が略直方体状に加工されたPTC素子3と、素子3の上下面に設けられた電極3a、3bと、PTC素子3及び電極3a、3bとを覆う絶縁コーティング層5と、それぞれ電極3a、3bに接続し絶縁コーティング層5から外部に露出された引き出し電極4a、4bとを有する。この発熱モジュール12には、発熱モジュール12の上下面を貫通し、その内周面が絶縁コーティング層5で覆われる複数の貫通孔6が設けられている。
Furthermore, the heat generating module 12 according to a modification of the present invention will be described with reference to FIG. In FIG. 4, a part of the heat generating module 12 is notched for explanation.
The heating module 12 is a substantially flat rectangular parallelepiped module, and includes a PTC element 3 in which the semiconductor ceramic composition of the example is processed into a substantially rectangular parallelepiped shape, electrodes 3a and 3b provided on the upper and lower surfaces of the element 3, and a PTC. It has an insulating coating layer 5 that covers the element 3 and the electrodes 3a and 3b, and lead electrodes 4a and 4b that are connected to the electrodes 3a and 3b and exposed to the outside from the insulating coating layer 5, respectively. The heat generating module 12 is provided with a plurality of through holes 6 that penetrate the upper and lower surfaces of the heat generating module 12 and whose inner peripheral surface is covered with the insulating coating layer 5.

この発熱モジュール12は、例えば以下のように作製することが出来る。まず、PTC素子3に、PTC素子3の厚み方向に貫通する複数の孔を形成する。次に、この孔がPTC素子3の上下面に開口する開口周縁を除くPTC素子3の両面に電極3a、3bを形成する。なお、この電極3a、3bは上記と同様にオーミック電極と表面電極を重ねて印刷形成したものである。さらに外部引出し用電極4a、4bを設けた後、この引出し用電極4a、4bが外部に露出するようにPTC素子3と電極3a、3bの全体を絶縁性コーティング剤で覆って絶縁コーティング層5を形成し、発熱モジュール12が得られる。なお、絶縁コーティング層5を形成する際に、PTC素子3の孔の内周面を絶縁コーティング層5で覆って貫通孔6を形成する。
この発熱モジュール12は、貫通孔6に流体を流すことで流体を加熱することができる。このとき、電流の流れるPTC素子3及び電極3a、4aは絶縁コーティング層5で覆われているので、流体と直接接触することがないので導電性の液体を加熱することができる。したがって発熱モジュール12は電気導電性を有する塩水等の流体を瞬間的に加熱する用途に適している。
The heat generating module 12 can be manufactured as follows, for example. First, a plurality of holes penetrating in the thickness direction of the PTC element 3 are formed in the PTC element 3. Next, electrodes 3 a and 3 b are formed on both surfaces of the PTC element 3 except for the opening periphery where the holes open on the upper and lower surfaces of the PTC element 3. The electrodes 3a and 3b are formed by printing an ohmic electrode and a surface electrode in the same manner as described above. Further, after providing the external extraction electrodes 4a and 4b, the PTC element 3 and the electrodes 3a and 3b are entirely covered with an insulating coating agent so that the extraction electrodes 4a and 4b are exposed to the outside. The heat generating module 12 is obtained. In forming the insulating coating layer 5, the through hole 6 is formed by covering the inner peripheral surface of the hole of the PTC element 3 with the insulating coating layer 5.
The heat generating module 12 can heat the fluid by flowing the fluid through the through hole 6. At this time, since the PTC element 3 and the electrodes 3a and 4a through which the current flows are covered with the insulating coating layer 5, the conductive liquid can be heated because it is not in direct contact with the fluid. Therefore, the heat generating module 12 is suitable for an application that instantaneously heats a fluid such as salt water having electrical conductivity.

本発明により得られるPTC素子は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに最適である。また、PTC素子を構成要素とする発熱モジュールに利用することが出来る。 The PTC element obtained by the present invention is most suitable for a PTC thermistor, a PTC heater, a PTC switch, a temperature detector, and the like. Moreover, it can utilize for the heat generating module which uses a PTC element as a component.

Claims (3)

少なくとも2つのオーミック電極と、前記電極の間に配置されたBaTiOのBaの一部がBi−Naで置換された半導体磁器組成物とを有するPTC素子であって、
前記半導体磁器組成物が、組成式を[(Bi-Na)(Ba1−y−θθ1−x]Ti1−z(但し、Rは希土類元素のうち少なくとも一種、AはCa、Srのうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)と表し、前記x、y、z、θが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010、0.01≦θ≦0.20を満足し、
前記オーミック電極は、その電極材料を構成する金属成分を100重量%としたとき、Agが0重量%を含み51重量%以下、残部をNi、Al、Sn、Zn、Sbのいずれか一種以上の卑金属元素からなる合金もしくは混合物の組成であり、
前記電極と半導体磁器組成物の界面において電極のオーミック成分と半導体磁器組成物が接触していない面積の割合が19%以下であることを特徴とするPTC素子。
A PTC element comprising at least two ohmic electrodes and a semiconductor ceramic composition in which a part of Ba of BaTiO 3 disposed between the electrodes is replaced with Bi-Na.
The semiconductor ceramic composition, the composition formula [(Bi-Na) x ( Ba 1-y-θ R y A θ) 1-x] Ti 1-z M z O 3 ( where, R represents one of rare earth elements At least one, A is at least one of Ca and Sr, M is at least one of Nb, Ta, and Sb), and the x, y, z, and θ are 0 <x ≦ 0.30 and 0 ≦ y ≦. 0.020, 0 ≦ z ≦ 0.010, 0.01 ≦ θ ≦ 0.20,
In the ohmic electrode, when the metal component constituting the electrode material is 100% by weight, Ag is 0% by weight and 51% by weight or less, and the balance is at least one of Ni, Al, Sn, Zn, and Sb. An alloy or mixture of base metal elements,
The ratio of the area where the ohmic component of the electrode is not in contact with the semiconductor ceramic composition at the interface between the electrode and the semiconductor ceramic composition is 19 % or less.
前記電極は卑金属成分が49重量%以上、65重量%以下であることを特徴とする請求項1に記載のPTC素子。2. The PTC element according to claim 1, wherein the electrode has a base metal component of 49 wt% or more and 65 wt% or less. 請求項1または2に記載のPTC素子と、前記PTC素子に設けられた電力供給電極とを備えることを特徴とする発熱モジュール。
A heat generating module comprising the PTC element according to claim 1 and a power supply electrode provided on the PTC element.
JP2011030509A 2011-02-16 2011-02-16 PTC element and heating module Expired - Fee Related JP5765611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030509A JP5765611B2 (en) 2011-02-16 2011-02-16 PTC element and heating module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030509A JP5765611B2 (en) 2011-02-16 2011-02-16 PTC element and heating module

Publications (2)

Publication Number Publication Date
JP2012169515A JP2012169515A (en) 2012-09-06
JP5765611B2 true JP5765611B2 (en) 2015-08-19

Family

ID=46973375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030509A Expired - Fee Related JP5765611B2 (en) 2011-02-16 2011-02-16 PTC element and heating module

Country Status (1)

Country Link
JP (1) JP5765611B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123604A (en) * 2012-12-20 2014-07-03 Hitachi Metals Ltd Ptc element and heat generation module
EP3018662A1 (en) 2013-07-02 2016-05-11 Hitachi Metals, Ltd. Ptc element and heat-generating module
JP6424728B2 (en) 2014-07-03 2018-11-21 Tdk株式会社 Semiconductor porcelain composition and PTC thermistor
WO2017012797A1 (en) * 2015-07-17 2017-01-26 Epcos Ag Dielectric composition, dielectric element, electronic component and multi-layer electronic component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127003A (en) * 1984-07-17 1986-02-06 ティーディーケイ株式会社 Conductive paste composition
JP3178532B2 (en) * 1989-05-19 2001-06-18 ティーディーケイ株式会社 Semiconductor porcelain electronic components
KR101149634B1 (en) * 2007-06-14 2012-05-25 가부시키가이샤 무라타 세이사쿠쇼 Semiconductor ceramic material
JP5263668B2 (en) * 2008-10-02 2013-08-14 日立金属株式会社 Semiconductor porcelain composition
JP5327556B2 (en) * 2008-12-12 2013-10-30 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor

Also Published As

Publication number Publication date
JP2012169515A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5757239B2 (en) Semiconductor porcelain composition and method for producing the same, PTC element and heating module
WO2013051486A1 (en) Semiconductor porcelain composition, positive temperature coefficient element, and heat-generating module
JP5765611B2 (en) PTC element and heating module
JP5803906B2 (en) PTC element and heating element module
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP5590494B2 (en) Manufacturing method of semiconductor ceramic composition-electrode assembly
JP5626204B2 (en) Semiconductor porcelain composition, heating element and heating module
JP2012046372A (en) Ptc element and heat generating module
JP2012004496A (en) Ptc element and heat generating module
TW201319006A (en) Semiconductor ceramic, and ptc thermistor using same
JP5263668B2 (en) Semiconductor porcelain composition
JP2013182932A (en) Method for forming electrode of ptc element, and ptc element
JP2012001416A (en) Ptc element and exothermic module
JP2012224537A (en) Sintered body for ptc element, method for producing the same, the ptc element, and heat generating module
WO2015002197A1 (en) Ptc element and heat-generating module
TWI740261B (en) Use of ceramic composition, use of ceramic sintered body, and thermistor
JP2015213116A (en) Ptc device and exothermic module
JP2014123603A (en) Method for manufacturing ptc device, ptc device, and exothermic module
JP5737634B2 (en) Method for producing semiconductor porcelain composition
WO2015115422A1 (en) Ptc element and heating module
TWI430974B (en) Semiconductor porcelain composition and method of manufacturing the same
JP2012036032A (en) Semiconductor ceramic composition, method for producing the same, and ptc element and heat generating module
JP2014123604A (en) Ptc element and heat generation module
JP2013206899A (en) Layered ptc thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5765611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees