JP5765467B1 - Chemical injection control apparatus and method - Google Patents

Chemical injection control apparatus and method Download PDF

Info

Publication number
JP5765467B1
JP5765467B1 JP2014109277A JP2014109277A JP5765467B1 JP 5765467 B1 JP5765467 B1 JP 5765467B1 JP 2014109277 A JP2014109277 A JP 2014109277A JP 2014109277 A JP2014109277 A JP 2014109277A JP 5765467 B1 JP5765467 B1 JP 5765467B1
Authority
JP
Japan
Prior art keywords
chemical
amount
water
water supply
chemical injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014109277A
Other languages
Japanese (ja)
Other versions
JP2015224815A (en
Inventor
周子 進邦
周子 進邦
幸祐 志村
幸祐 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014109277A priority Critical patent/JP5765467B1/en
Priority to PCT/JP2015/055019 priority patent/WO2015129618A1/en
Priority to EP15754856.1A priority patent/EP3112750A4/en
Priority to US15/115,463 priority patent/US10179743B2/en
Priority to TW104106329A priority patent/TWI654395B/en
Application granted granted Critical
Publication of JP5765467B1 publication Critical patent/JP5765467B1/en
Publication of JP2015224815A publication Critical patent/JP2015224815A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ボイラ給水中の薬品濃度を目標範囲内に安定して維持することができるボイラの薬品注入制御装置及び方法を提供する。【解決手段】薬品注入制御装置は、給水流量を測定する流量計10と、薬液を給水ライン又は給水タンクに注入する薬注ポンプ7と、薬品タンク6内の薬液量を計測するセンサー9と、流量計10により測定結果に比例して薬注ポンプ7の吐出量を制御する制御器12と、を備える。制御器12は、第1所定期間ごとに目標薬注量を変更し、該第1所定期間当たりの給水流量及び目標薬注量から該第1所定期間ごとの薬液使用量を求め、センサー9から第2所定期間における薬品タンク内薬液減少量を取得し、第2所定期間内の複数の第1所定期間に対応する前記薬液使用量を積算して薬液減少想定量を求め、前記薬品タンク内薬液減少量と前記薬液減少想定量とを比較し、比較結果に基づいて薬注ポンプ7を制御する。【選択図】図1A boiler chemical injection control apparatus and method capable of stably maintaining a chemical concentration in boiler feed water within a target range. A chemical injection control device includes a flow meter for measuring a water supply flow rate, a chemical injection pump for injecting a chemical liquid into a water supply line or a water supply tank, a sensor for measuring a chemical liquid amount in the chemical tank, And a controller 12 that controls the discharge amount of the medicinal pump 7 in proportion to the measurement result by the flow meter 10. The controller 12 changes the target chemical injection amount for each first predetermined period, obtains the chemical usage amount for each first predetermined period from the feed water flow rate and the target chemical injection amount for the first predetermined period, The amount of chemical solution in the chemical tank in the second predetermined period is acquired, and the amount of chemical liquid used corresponding to a plurality of first predetermined periods in the second predetermined period is integrated to obtain an estimated amount of chemical solution reduction, and the chemical in the chemical tank is obtained The amount of decrease is compared with the estimated amount of drug solution decrease, and the medicinal pump 7 is controlled based on the comparison result. [Selection] Figure 1

Description

本発明は、ボイラ供給水に対して薬品を注入する薬品注入制御装置及び方法に関する。   The present invention relates to a chemical injection control apparatus and method for injecting chemicals into boiler feed water.

通常、低圧ボイラの給水ポンプは、ボイラ水位が設定下限値以下になった場合に作動開始し、ボイラ水位が設定上限値に達すると停止又は水位に応じた流量調整を行うように制御される。そのため、給水ポンプは、ボイラの燃焼状態に応じて不定期に稼動したり、流量が変動したりする。小型貫流ボイラを複数設置して運転している場合、各ボイラの給水ポンプが不定期に稼動又は流量変動するため、給水母管の給水流量は大きく変動することになる。   Usually, the feed pump of the low-pressure boiler is controlled to start when the boiler water level becomes equal to or lower than the set lower limit value, and to stop or adjust the flow rate according to the water level when the boiler water level reaches the set upper limit value. Therefore, the feed water pump operates irregularly or the flow rate fluctuates according to the combustion state of the boiler. When a plurality of small once-through boilers are installed and operated, the feed water flow rate of the feed water mother pipe greatly fluctuates because the feed water pumps of each boiler operate irregularly or the flow rate fluctuates.

小型貫流ボイラの薬液注入の制御としては、マイコン制御、給水ポンプのオン/オフ信号に基づく制御、流量計のパルス信号やアナログ信号による制御等が一般的である。   As control of chemical solution injection in a small once-through boiler, microcomputer control, control based on an on / off signal of a feed water pump, control based on a pulse signal or an analog signal of a flow meter, and the like are common.

マイコン制御では、ボイラの燃焼状態及び燃焼時間に応じた量の給水がボイラに供給されたものと判断し、それに応じて薬注ポンプの稼動時間が決定される。このマイコン制御では、薬注ポンプは給水ポンプの稼動と必ずしも連動しておらず、給水ポンプが動いていないときに薬注ポンプが動いたり、反対に給水ポンプが動いていても薬注ポンプが稼動しなかったりする場合がある。そのため、マイコン制御では、給水中の薬品濃度が大幅に変動し易い。   In the microcomputer control, it is determined that an amount of water supply corresponding to the combustion state and combustion time of the boiler is supplied to the boiler, and the operation time of the chemical injection pump is determined accordingly. With this microcomputer control, the chemical injection pump is not necessarily linked with the operation of the water supply pump, and the chemical injection pump operates when the water supply pump is not moving, or vice versa. There are times when it does not. Therefore, in the microcomputer control, the chemical concentration in the water supply is likely to fluctuate significantly.

給水ポンプのオン/オフ信号により薬注ポンプを制御する方法では、給水ポンプが稼動している時に薬注ポンプが稼動するため、マイコン制御より給水中での薬品濃度の変動は小さくなる。しかし、給水ポンプの起動直後や停止直前は給水流量がやや少なくなるため、薬品濃度が高くなる   In the method of controlling the chemical injection pump by the on / off signal of the feed water pump, since the chemical injection pump is operated when the feed water pump is in operation, the variation in the chemical concentration in the feed water is smaller than the microcomputer control. However, the chemical concentration increases because the feed water flow rate is slightly reduced immediately after the feed water pump is started and immediately before it is stopped.

給水流量計のパルス信号又はアナログ信号により薬注ポンプを制御する方法では、給水流量に比例して薬注ポンプのストローク数が決定されるため、給水中の薬品濃度を目標濃度に近いものとすることができる。しかし、この制御では、給水ポンプ又は薬注ポンプの能力が低下した場合に、実際の薬注量と目標薬注量との誤差が大きくなる。   In the method of controlling the chemical injection pump by the pulse signal or analog signal of the feed water flow meter, the number of strokes of the chemical injection pump is determined in proportion to the feed water flow rate, so the chemical concentration in the feed water is close to the target concentration. be able to. However, in this control, when the capacity of the water supply pump or the chemical injection pump is reduced, an error between the actual chemical injection amount and the target chemical injection amount increases.

低圧ボイラは水処理効果を持つ化合物を複数種組合せた多機能清缶剤を一剤または二剤で注入することが多いが、ドレン回収または原水水質の変動により給水水質または給水温度が変動し、アルカリ補助剤量、脱酸素剤量、防食剤量、分散剤量等の必要量のバランスが変動して、特定の成分が不足または過剰となることがあった。   Low pressure boilers often inject one or two multifunctional cleaning agents that combine multiple types of compounds with water treatment effects, but the quality of the feed water or feed water fluctuates due to drain recovery or fluctuations in raw water quality. The balance of required amounts such as the amount of alkali adjuvant, amount of oxygen scavenger, amount of anticorrosive, and amount of dispersant may fluctuate, causing specific components to be insufficient or excessive.

防食成分は、給水に対する添加濃度で管理する方法と、ボイラ水中濃度で管理する方法とがある。前者の方法は、ドレン回収の有無によらず給水中濃度を一定に保つように薬注する。後者の方法を、ボイラ水の電気伝導率が設定上限値に達するとブロー水を排出し、設定下限値になるとブロー水の排出を止めることで濃縮度を管理しているボイラに適用した場合、ドレン回収率や給水水質の変動により給水の電気伝導率が変動すると濃縮度が変動するため、給水流量に比例させて薬注を行っても、ボイラ水中の薬剤濃度を一定に管理できなかった。   There are a method of managing the anticorrosive component by the concentration added to the feed water and a method of managing it by the concentration in the boiler water. In the former method, the concentration of the feed water is kept constant regardless of the presence or absence of drain recovery. When the latter method is applied to a boiler that controls the concentration by discharging blow water when the electrical conductivity of the boiler water reaches the set upper limit value and stopping discharge of blow water when the set lower limit value is reached, When the electrical conductivity of the feed water varies due to fluctuations in the drain recovery rate and feed water quality, the concentration varies, so even if chemical injection is performed in proportion to the feed water flow rate, the chemical concentration in the boiler water cannot be managed to be constant.

前述したような給水に対する薬注濃度が維持できない課題と、ボイラの稼動条件により必要な薬注濃度が変動する課題とが複合的に作用することにより、ボイラ水処理を最適に保つことは困難であった。薬品濃度が目標値よりも低いと、防食剤の効果が不十分となって腐食が進行したり、脱酸素剤の脱酸素効果が小さくなり蒸気に多量の酸素が移行して復水配管での腐食を発生させたりする等、水処理効果が不十分となることがある。一方、薬品を過剰に添加した場合には、ボイラ水中の電気伝導率が過度に高くなり、キャリーオーバーが発生したり、薬品コストが増加したりする。   It is difficult to maintain the boiler water treatment optimally by the combined action of the above-mentioned problem that the chemical concentration for the feed water cannot be maintained and the problem that the required chemical concentration varies depending on the operating conditions of the boiler. there were. If the chemical concentration is lower than the target value, the effect of the anti-corrosion agent will be insufficient and corrosion will progress, or the deoxidation effect of the oxygen scavenger will be reduced and a large amount of oxygen will transfer to the steam and Water treatment effects may be insufficient, such as causing corrosion. On the other hand, when an excessive amount of chemicals is added, the electrical conductivity in the boiler water becomes excessively high, causing carry-over and increasing chemical costs.

ドレン回収又は原水水質の変動により、薬注目標値、すなわち薬注ポンプ吐出量を変更する方法としては、特開2010−159965で挙げられたような給水中の炭酸濃度に応じてpH調整剤の薬注ポンプの稼働時間を決定する方法や、特開平10−82503のように給水温度に応じて薬注ポンプの稼働時間を決定する方法などがあるが、いずれも先に述べたような薬注ポンプまたは給水ポンプの性能低下などによる吐出量の変化には対応できていない。   As a method of changing the drug injection target value, that is, the discharge rate of the drug injection pump, due to fluctuations in the drain recovery or raw water quality, the pH adjuster can be adjusted according to the carbonic acid concentration in the feed water as described in JP2010-159965A. There are a method for determining the operating time of the medicinal pump, and a method for determining the operating time of the medicinal pump according to the feed water temperature as disclosed in JP-A-10-82503, both of which are as described above. It is not possible to cope with changes in the discharge rate due to performance degradation of the pump or feed water pump.

薬注濃度が一定の場合には薬品減少量と給水流量積算値を記録することで、人の手で期間平均の薬注濃度を確認することも可能だが、ドレン回収または原水水質の変動に応じて薬注ポンプの吐出条件を切り替える場合には、その都度薬品減少量及び給水流量積算値を確認しなければならない。プロセスでの蒸気使用状況、天候、気温等に左右されるドレン回収や原水水質の変動を常に把握し、薬注ポンプの吐出条件を変更することは現実的でなく、薬注濃度を目標通りに管理できているか否か確認することはできなかった。   If the chemical injection concentration is constant, it is possible to check the average chemical injection concentration over a period of time by recording the amount of chemical decrease and the integrated value of the feed water flow rate. However, depending on changes in drain recovery or raw water quality Therefore, each time the discharge conditions of the chemical injection pump are switched, the chemical reduction amount and the integrated value of the feed water flow rate must be confirmed. It is not realistic to constantly monitor drain recovery and raw water quality fluctuations that are affected by the steam usage, weather, temperature, etc. in the process, and change the discharge conditions of the chemical injection pump. It was not possible to confirm whether or not it was managed.

特許4390473号Japanese Patent No.4390473 特開2010−159965JP 2010-159965 A 特開平10−82503JP-A-10-82503

本発明は、以上の実情に鑑みてなされたものであり、ボイラ給水中の薬品濃度を目標範囲内に安定して維持することができるボイラの薬品注入制御装置及び方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a chemical injection control device and method for a boiler that can stably maintain the chemical concentration in the boiler feed water within a target range. To do.

本発明(第1発明)のボイラの薬品注入制御装置は、給水タンクからボイラに給水を供給するための給水ラインと、前記給水ラインを流れる給水流量を測定する給水流量測定手段と、薬品タンクに貯留されたボイラ水処理薬品を含有する薬液を前記給水ライン又は給水タンクに注入する薬注ポンプと、前記薬品タンク内に貯留された薬液の量を計測する薬液量計測手段と、前記給水流量測定手段により測定された給水流量に比例して前記薬注ポンプの吐出量を制御する制御手段と、を備え、前記制御手段は、第1所定期間ごとに目標薬注量を変更し、前記給水流量測定手段によって測定される該第1所定期間当たりの給水流量と、該第1所定期間の目標薬注量とから該第1所定期間ごとの薬液使用量を求め、前記薬液量計測手段の計測結果から、前記第1所定期間より長い第2所定期間における薬品タンク内薬液減少量を求め、前記第2所定期間内の複数の第1所定期間に対応する前記薬液使用量を積算して、該第2所定期間における薬液減少想定量を求め、前記薬品タンク内薬液減少量と前記薬液減少想定量とを比較し、比較結果に基づいて前記薬注ポンプを制御することを特徴とする。   The boiler chemical injection control device according to the present invention (first invention) includes a water supply line for supplying water to the boiler from a water supply tank, a water supply flow rate measuring means for measuring a water supply flow rate flowing through the water supply line, and a chemical tank. A chemical injection pump for injecting a chemical solution containing the stored boiler water treatment chemical into the water supply line or water supply tank, a chemical amount measuring means for measuring the amount of the chemical solution stored in the chemical tank, and the water supply flow rate measurement Control means for controlling the discharge amount of the chemical injection pump in proportion to the feed water flow rate measured by the means, the control means changing the target chemical injection amount every first predetermined period, and the supply water flow rate A chemical solution usage amount for each first predetermined period is obtained from the feed water flow rate per first predetermined period measured by the measuring unit and the target chemical injection amount for the first predetermined period, and the measurement result of the chemical amount measuring unit Or The amount of decrease in the chemical liquid in the chemical tank in the second predetermined period longer than the first predetermined period is obtained, and the amount of the chemical liquid used corresponding to the plurality of first predetermined periods in the second predetermined period is integrated, and the second An estimated amount of chemical solution decrease in a predetermined period is obtained, the chemical solution decrease amount in the chemical tank is compared with the estimated amount of chemical solution decrease, and the chemical injection pump is controlled based on the comparison result.

第1発明では、前記薬液量計測手段が、前記薬品タンク中の薬液による圧力を検出する圧力センサー、前記薬品タンク中の薬品の水位高さを検出する水位計、又は前記薬品タンク中の薬品重量を検出する重量計のいずれかである。   In the first invention, the chemical liquid amount measuring means detects a pressure sensor that detects a pressure due to the chemical liquid in the chemical tank, a water level meter that detects a water level height of the chemical in the chemical tank, or a chemical weight in the chemical tank Is one of the weight scales to detect.

第1発明では、前記制御手段は、前記給水流量測定手段により測定された給水流量に対して比例係数を乗じて得た目標吐出量となるように前記薬注ポンプを制御し、前記薬品タンク内薬液減少量と前記薬液減少想定量との差に基づいて、前記比例係数を補正することが好ましい。   In the first invention, the control means controls the chemical injection pump so as to obtain a target discharge amount obtained by multiplying a feed water flow rate measured by the feed water flow rate measuring means by a proportional coefficient, It is preferable to correct the proportionality coefficient based on the difference between the chemical solution decrease amount and the estimated chemical solution decrease amount.

第1発明では、前記ボイラは複数個設けられており、前記給水ラインは、前記給水タンクに連なる給水母管と、該給水母管から分岐した複数の給水分岐管とを有しており、各給水分岐管が各ボイラに接続され、該給水分岐管にそれぞれ給水ポンプが設けられており、前記薬注ポンプは、前記給水母管又は給水タンクに薬注してもよい。   In the first invention, a plurality of the boilers are provided, and the water supply line includes a water supply mother pipe connected to the water supply tank, and a plurality of water supply branch pipes branched from the water supply mother pipe, A water supply branch pipe is connected to each boiler, and each of the water supply branch pipes is provided with a water supply pump, and the chemical injection pump may inject the chemical into the water supply mother pipe or the water supply tank.

第1発明では、前記給水ラインには給水の温度又は水質を検出するセンサーが設けられ、前記制御手段は、前記センサーの検出結果に基づいて前記目標薬注量を変更してもよい。   In the first invention, the water supply line may be provided with a sensor for detecting the temperature or quality of the water supply, and the control means may change the target chemical injection amount based on a detection result of the sensor.

第1発明では、前記給水タンクに補給水を供給する補給水ライン及び前記給水ラインにはそれぞれ温度又は水質を検出するセンサーが設けられ、前記制御手段は、各センサーの検出結果からドレン回収率を算出し、該ドレン回収率に基づいて前記目標薬注量を変更してもよい。   In the first invention, a supply water line for supplying makeup water to the feed water tank and a sensor for detecting temperature or water quality are provided in each of the water supply lines, and the control means calculates a drain recovery rate from a detection result of each sensor. It may be calculated and the target chemical injection amount may be changed based on the drain recovery rate.

第1発明では、前記給水タンクに補給水を供給する補給水ラインに流量計が設けられ、前記制御手段は、前記流量計の流量測定値の積算値と、前記給水流量測定手段の流量測定値の積算値とからドレン回収率を演算し、該ドレン回収率に基づいて前記目標薬注量を変更してもよい。   In the first invention, a flow meter is provided in a makeup water line that supplies makeup water to the feed water tank, and the control means includes an integrated value of a flow rate measurement value of the flow meter and a flow rate measurement value of the feed water flow rate measurement means. It is also possible to calculate a drain recovery rate from the integrated value and to change the target chemical injection amount based on the drain recovery rate.

第1発明では、前記給水ラインには第1電気伝導率計が設けられ、前記ボイラは、第2電気伝導率計を内蔵し、該第2電気伝導率計の測定値が所定値以下となった場合に連続ブローラインの電磁弁を閉じ、該測定値が所定値以上となった場合に該電磁弁を開け、前記制御手段は、該第1電気伝導率計の測定値及び該第2電気伝導率計の測定値から該ボイラの濃縮度を算出し、該濃縮度に基づいて前記目標薬注量を変更してもよい。   In the first invention, the water supply line is provided with a first electrical conductivity meter, and the boiler incorporates a second electrical conductivity meter, and the measured value of the second electrical conductivity meter becomes a predetermined value or less. The electromagnetic valve of the continuous blow line is closed and the electromagnetic valve is opened when the measured value is equal to or greater than a predetermined value, and the control means includes the measured value of the first conductivity meter and the second electric meter. The boiler concentration may be calculated from the measured value of the conductivity meter, and the target drug injection amount may be changed based on the concentration.

第1発明では、前記ボイラには電気伝導率計が内蔵されており、前記制御手段は、該電気伝導率計の測定値が所定値以上となった場合、該測定値が該所定値未満となるまで前記目標薬注量を低下させてもよい。   In the first invention, the boiler has a built-in electric conductivity meter, and when the measured value of the electric conductivity meter exceeds a predetermined value, the control means determines that the measured value is less than the predetermined value. You may reduce the said target chemical injection amount until it becomes.

第1発明では、前記薬品タンク、前記薬注ポンプ、及び前記薬液量計測手段はそれぞれ複数設けられ、前記制御手段は、各薬注ポンプを個別に制御してもよい。   In the first invention, a plurality of the chemical tanks, the chemical injection pumps, and the chemical liquid amount measuring means may be provided, and the control means may control each chemical injection pump individually.

本発明(第2発明)のボイラの薬品注入制御方法は、給水タンクからボイラに給水を供給するための給水ライン又は給水タンクに、薬品タンクに貯留されたボイラ水処理薬品を含有する薬液を注入する薬注ポンプを制御する薬品注入制御方法であって、前記給水ラインを流れる給水流量を測定する工程と、測定した給水流量に比例して前記薬注ポンプの吐出量を制御する工程と、第1所定期間ごとに目標薬注量を変更する工程と、前記第1所定期間当たりの給水流量と、該第1所定期間の目標薬注量とから該第1所定期間ごとの薬液使用量を求める工程と、前記第1所定期間より長い第2所定期間における薬品タンク内薬液減少量を測定する工程と、前記第2所定期間内の複数の第1所定期間に対応する前記薬液使用量を積算して、該第2所定期間における薬液減少想定量を求める工程と、前記薬品タンク内薬液減少量と前記薬液減少想定量とを比較し、比較結果に基づいて前記薬注ポンプを制御する工程と、を備える。   The boiler chemical injection control method of the present invention (second invention) injects a chemical solution containing a boiler water treatment chemical stored in a chemical tank into a water supply line or a water supply tank for supplying water to the boiler from the water supply tank. A chemical injection control method for controlling a chemical injection pump, the step of measuring a feed water flow rate flowing through the water supply line, a step of controlling the discharge amount of the chemical injection pump in proportion to the measured feed water flow rate, The amount of the chemical solution used for each first predetermined period is obtained from the step of changing the target chemical injection amount for each predetermined period, the feed water flow rate per the first predetermined period, and the target chemical injection amount for the first predetermined period. A step of measuring a chemical liquid decrease amount in a chemical tank in a second predetermined period longer than the first predetermined period, and integrating the chemical liquid usage corresponding to a plurality of first predetermined periods in the second predetermined period. The second place Comprising a step of determining the chemical reduction assumed amount of time, the relative chemical tank chemical reduction and with said chemical reduction assumed amount, and a step of controlling the chemical feed pump on the basis of the comparison result.

本発明によれば、薬注ポンプを給水流量にリアルタイムに比例させる制御と、薬注目標濃度及び給水量積算値から求まる薬液減少量目標範囲と所定期間における薬品タンク内の薬品減少量との比較結果に基づいて薬注ポンプによる薬注量を補正するフィードバック制御とを組み合わせることで、短期間で流量が大きく変動する系においても、給水中の薬品濃度を目標範囲内に安定して維持することができる。これにより、水処理薬品の効果を十分に発揮させてボイラプラントを保守し、スケール防止やブロー適正管理が達成され、省エネ運転することができる。また、薬注量の過剰によるブロー水量の増加や薬品コストの増加を防止できる。   According to the present invention, the control that causes the chemical injection pump to be proportional to the feed water flow rate in real time, and the comparison between the chemical solution reduction target range obtained from the chemical injection target concentration and the integrated water supply amount and the chemical reduction amount in the chemical tank in a predetermined period Combined with feedback control that corrects the amount of drug delivered by the medication pump based on the results, the chemical concentration in the water supply can be stably maintained within the target range even in systems where the flow rate varies greatly in a short period of time. Can do. As a result, the boiler plant can be maintained by fully exhibiting the effects of the water treatment chemicals, scale prevention and proper blow management can be achieved, and energy saving operation can be performed. Further, it is possible to prevent an increase in the amount of blown water and an increase in chemical cost due to an excessive amount of chemical injection.

本発明の実施形態に係るボイラ給水設備のブロック図である。It is a block diagram of the boiler water supply equipment which concerns on embodiment of this invention. 変形例によるボイラ給水設備のブロック図である。It is a block diagram of the boiler water supply equipment by a modification. 実施例1における給水中の飽和溶存酸素濃度を示すグラフである。It is a graph which shows the saturated dissolved oxygen concentration in the feed water in Example 1. FIG. 実施例1における蒸気凝縮水中の溶存酸素濃度を示すグラフである。2 is a graph showing a dissolved oxygen concentration in steam condensed water in Example 1. 比較例1における蒸気凝縮水中の溶存酸素濃度を示すグラフである。5 is a graph showing a dissolved oxygen concentration in steam condensed water in Comparative Example 1. 実施例2で用いたボイラ給水設備のブロック図である。It is a block diagram of the boiler water supply equipment used in Example 2. 実施例2における蒸気凝縮水のpHを示すグラフである。6 is a graph showing the pH of steam condensed water in Example 2. 比較例2における蒸気凝縮水のpHを示すグラフである。6 is a graph showing the pH of steam condensed water in Comparative Example 2. 比較例3における蒸気凝縮水のpHを示すグラフである。10 is a graph showing the pH of steam condensed water in Comparative Example 3. (a)は実施例3における薬注量を示すグラフであり、(b)は薬品減少量を示すグラフである。(A) is a graph which shows the chemical injection amount in Example 3, (b) is a graph which shows a chemical | medical agent reduction amount.

以下、図1を参照して本発明の実施の形態について説明する。図1は実施の形態に係るボイラの薬品注入制御装置を備えたボイラ給水設備のブロック図であり、給水タンク1内の給水が、給水母管2、給水母管2から分岐した複数の給水分岐管3、及び各給水分岐管3に設けられた給水ポンプ4を介して各ボイラ5に供給される。薬品タンク6にはボイラ水処理薬品を含有する薬液が貯留され、この薬液は薬注ポンプ7及び薬注ノズル8によって給水母管2に注入される。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of a boiler water supply facility equipped with a boiler chemical injection control device according to an embodiment, in which water supply in a water supply tank 1 is branched from a water supply mother pipe 2 and a water supply mother pipe 2. It is supplied to each boiler 5 via a pipe 3 and a feed water pump 4 provided in each feed water branch pipe 3. A chemical solution containing boiler water treatment chemical is stored in the chemical tank 6, and this chemical solution is injected into the feed water mother pipe 2 by a chemical injection pump 7 and a chemical injection nozzle 8.

薬品タンク6には薬液量を計測するための薬液量センサー9が設けられている。給水母管2には超音波流量計などの流量計10と、温度センサー17とが設けられ、これらの検出信号が制御器12に入力される。制御器12には、給水中の目標薬品濃度等を入力するためのタッチパネル、キーボード等の入力手段13が接続されている。   The chemical tank 6 is provided with a chemical amount sensor 9 for measuring the chemical amount. The feed water mother pipe 2 is provided with a flow meter 10 such as an ultrasonic flow meter and a temperature sensor 17, and these detection signals are input to the controller 12. The controller 12 is connected to an input means 13 such as a touch panel and a keyboard for inputting a target chemical concentration in the water supply.

本実施形態による薬品注入制御装置は、小型貫流ボイラが多缶設置された給水設備の薬品注入制御装置として適しているが、小型貫流ボイラの給水設備以外の、短期間で流量が大きく変動するボイラ給水設備にも好適である。   The chemical injection control device according to the present embodiment is suitable as a chemical injection control device for a water supply facility in which a large number of small once-through boilers are installed, but other than the water supply facility for a small once-through boiler, a boiler whose flow rate greatly varies in a short period of time. It is also suitable for water supply equipment.

給水ポンプ4は、ボイラ5の水位に応じてオン/オフ制御で運転してもよく、インバータ制御で運転するものであってもよく、特に制御方式は限定されない。   The feed water pump 4 may be operated by on / off control according to the water level of the boiler 5 or may be operated by inverter control, and the control method is not particularly limited.

薬注ノズル8による薬品の注入箇所は、小型貫流ボイラが多缶設置された場合は給水タンク1または給水母管2であることが望ましい。これは個別のボイラに給水が入るまでになるべく距離をとることで、薬品をより均一に添加することができるためである。給水母管2に薬注することにより、給水中の薬品濃度を迅速に制御することができる。薬注ポンプ7の吐出側には、接続する給水タンク1または給水母管2の圧力に応じた逆止弁を設置するのが好ましい。   It is desirable that the chemical injection point by the chemical injection nozzle 8 is the water supply tank 1 or the water supply mother pipe 2 when a large number of small once-through boilers are installed. This is because chemicals can be added more uniformly by taking a distance as much as possible until water is supplied to individual boilers. The chemical concentration in the water supply can be quickly controlled by pouring the water supply pipe 2 into the medicine. A check valve corresponding to the pressure of the water supply tank 1 or the water supply mother pipe 2 to be connected is preferably installed on the discharge side of the chemical injection pump 7.

使用する薬品は液体品または粉体を溶解して液体にしたものを用いる。その他の条件(pH、比重等)は特に問わない。   The chemicals used are liquid products or powders dissolved in liquid form. Other conditions (pH, specific gravity, etc.) are not particularly limited.

薬品タンク6は、水平断面積が上部から下部まで均一である円柱状又は角柱状であることが好ましい。薬液量センサー9により薬品タンク6内の薬液量を精度良く検出するために、薬品タンク6として、使用上問題ない範囲で、なるべく容量および水平断面積の小さいものを使用することが好ましい。   The chemical tank 6 preferably has a columnar shape or a prismatic shape with a uniform horizontal cross-sectional area from the upper part to the lower part. In order to detect the chemical amount in the chemical tank 6 with high accuracy by the chemical amount sensor 9, it is preferable to use a chemical tank 6 having a capacity and a horizontal cross-sectional area as small as possible within a range where there is no problem in use.

薬品タンク6は、緊急事態に備えてアラーム機能を備えることが好ましい。緊急事態の例としては、薬品タンク6や薬注ポンプ7からの液漏れ等が原因で薬注量が目標範囲に入らないことが複数回生じる場合や、薬品タンク6に薬液がなくなる場合、信号線の断線などが考えられる。薬品タンク6内の薬液の減少量は薬液量センサー9によって監視しているため、所定水位以下になった場合に、制御器12及び通信装置(図示せず)を介して作業者に通知する機能を備えておくことが好ましい。   The chemical tank 6 preferably has an alarm function in preparation for an emergency situation. As an example of an emergency situation, when the chemical injection amount does not enter the target range multiple times due to liquid leakage from the chemical tank 6 or the chemical injection pump 7, or when there is no chemical in the chemical tank 6, Wire breakage may be considered. Since the decrease amount of the chemical solution in the chemical tank 6 is monitored by the chemical amount sensor 9, a function for notifying the operator via the controller 12 and a communication device (not shown) when the water level falls below a predetermined water level. Is preferably provided.

薬品タンク6に薬液が追加されて薬液量センサー9の検出値が急激に上昇した場合は、薬注量演算のための給水流量および薬液減量の積算値を自動的にリセットすることで、薬注量の演算が正しく行われるようにすることができる。   When the chemical solution is added to the chemical tank 6 and the detection value of the chemical solution sensor 9 suddenly increases, the integrated value of the feed water flow rate and chemical solution reduction for the chemical injection amount calculation is automatically reset, thereby The amount calculation can be performed correctly.

薬品タンク6の薬液量を測定する薬液量センサー9としては、例えば圧力センサーを用いることができる。圧力センサーは、センサー位置から水面までの薬液の水頭圧を検知するものであるため、薬品タンク6の最下部側面に穴を開けて水平方向に設置されることが好ましい。圧力センサーで検知した水位と、あらかじめ求めた薬品タンク6の水平断面積とを乗算することにより、薬品タンク6内の薬液量が求まる。従って、圧力センサーとしては、測定できる圧力範囲が薬品タンク6の最高水位における水圧よりも大きいものを用いる。また、圧力センサーとしては、薬液に耐性があるものを用いる。なお、圧力範囲の上限値が薬品タンク6の最高水位における水圧より過剰に大きいと、薬液量の検出分解能が大きくなり、薬品タンク6内の薬液量変化の検出精度が低下するため、圧力センサーとしては、過剰に圧力範囲の大きいものより、圧力範囲の上限値が薬品タンク6の最高水位における水圧よりやや大きいものの方が好ましい。   As the chemical amount sensor 9 for measuring the chemical amount in the chemical tank 6, for example, a pressure sensor can be used. Since the pressure sensor detects the head pressure of the chemical solution from the sensor position to the water surface, it is preferable that the pressure sensor is installed in a horizontal direction with a hole formed in the lowermost side surface of the chemical tank 6. By multiplying the water level detected by the pressure sensor and the horizontal sectional area of the chemical tank 6 determined in advance, the amount of chemical in the chemical tank 6 is obtained. Accordingly, a pressure sensor having a pressure range that can be measured is larger than the water pressure at the highest water level of the chemical tank 6. In addition, a pressure sensor that is resistant to chemicals is used. Note that if the upper limit of the pressure range is excessively greater than the water pressure at the maximum water level of the chemical tank 6, the chemical amount detection resolution increases, and the detection accuracy of the chemical amount change in the chemical tank 6 decreases. It is preferable that the upper limit value of the pressure range is slightly larger than the water pressure at the highest water level of the chemical tank 6 than the excessively large pressure range.

薬液量センサー9としては、薬品タンク6中の薬液の水位高さを検出する水位計や、薬品タンク6中の薬液重量を検出する重量計を用いることもできる。   As the chemical amount sensor 9, a water level meter that detects the water level height of the chemical solution in the chemical tank 6 and a weigh scale that detects the weight of the chemical solution in the chemical tank 6 can also be used.

流量計10は、瞬間流量及び積算流量を信号出力できるものが望ましいが、瞬間流量のみ信号出力できるものでもよい。流量計10が瞬間流量のみ出力する場合、制御器12の演算部で瞬間流量を累積していくことにより積算流量を算出する。なお、流量計10が積算流量のみ出力する場合、演算部で短いインターバルでの積算値を平均流量に換算することで対応可能ではあるが、給水が始まってから薬注を行うまでにタイムラグが発生するため、流量計10は瞬間流量を信号出力できるものであることが望ましい。   The flow meter 10 is preferably capable of outputting the instantaneous flow rate and the integrated flow rate, but may be capable of outputting only the instantaneous flow rate. When the flow meter 10 outputs only the instantaneous flow rate, the integrated flow rate is calculated by accumulating the instantaneous flow rate in the calculation unit of the controller 12. In addition, when the flow meter 10 outputs only the integrated flow rate, it can be handled by converting the integrated value in a short interval to the average flow rate in the calculation unit, but there is a time lag between the start of water supply and the time when the medicine is injected. Therefore, it is desirable that the flow meter 10 can output the instantaneous flow rate as a signal.

制御器12は、流量計10からの流量信号に比例して薬注ポンプ7の吐出流量を制御する。制御器12の演算手段としてはPLC(プログラマブルロジックコントローラ)などを用いることができる。制御器12の入力ユニット及び出力ユニットは、分解能が小さく、演算速度が速いものが望ましい。   The controller 12 controls the discharge flow rate of the medicinal pump 7 in proportion to the flow signal from the flow meter 10. As the calculation means of the controller 12, a PLC (programmable logic controller) or the like can be used. It is desirable that the input unit and output unit of the controller 12 have a small resolution and a high calculation speed.

以下に、制御器12による薬注制御方法の一例について説明する。   Below, an example of the chemical injection control method by the controller 12 is demonstrated.

制御器12は、基本的には、流量計10の出力信号に基づいて薬注ポンプ7を比例制御する。具体的には、制御器12は、流量計10の検出流量信号に比例係数を乗じて薬注量信号を生成し、この薬注量信号を薬注ポンプ7の駆動回路に与え、薬注を行わせる。   The controller 12 basically proportionally controls the medicinal pump 7 based on the output signal of the flow meter 10. Specifically, the controller 12 multiplies the detected flow rate signal of the flow meter 10 by a proportional coefficient to generate a chemical injection signal, and gives the chemical injection signal to the drive circuit of the chemical injection pump 7 to perform the chemical injection. Let it be done.

そして、第1所定期間毎に目標薬注量(目標薬注濃度)を決定し、ポンプ能力(%)をn回目目標薬注量/(n−1)回目目標薬注量の比率で変更させる。目標薬注量は、給水の温度や水質、ドレン回収率、ボイラ5の濃縮度などから決定される。目標薬注量の決定方法は後述する。目標薬注量を決定する第1所定期間は、ドレン回収または原水給水質の変動に応じて決定する。目標薬注量は1分〜1日毎に決定することが好ましく、さらに好ましくは10分〜60分毎に決定する。また、制御器12は、第1所定期間ごとに、目標薬注濃度と、その間の給水流量(積算流量)とから薬品使用量、言い換えれば薬品タンク6内の薬品減少量を算出する。   Then, a target chemical injection amount (target chemical injection concentration) is determined every first predetermined period, and the pump capacity (%) is changed at a ratio of the nth target chemical injection amount / (n−1) th target chemical injection amount. . The target chemical injection amount is determined from the temperature and quality of the feed water, the drain recovery rate, the boiler 5 concentration, and the like. A method for determining the target drug injection amount will be described later. The first predetermined period for determining the target chemical injection amount is determined according to the drain recovery or the fluctuation of the raw water supply water quality. The target dose is preferably determined every 1 minute to 1 day, and more preferably every 10 to 60 minutes. Further, the controller 12 calculates a chemical usage amount, in other words, a chemical decrease amount in the chemical tank 6 from the target chemical injection concentration and the feed water flow rate (integrated flow rate) during the first predetermined period.

さらに、制御器12は、第1所定期間より長い第2所定期間が経過した時点、例えば所定時間が経過した時点または給水流量の積算値が所定の積算流量値に達した時点で、この第2所定期間での薬品減少想定量を算出する。この薬品減少想定量は、第2所定期間に含まれる複数の第1所定期間での薬品使用量の積算値である。第2所定期間に対応する所定時間または所定の積算流量値としては、その間の薬品タンク6内の薬液減少量分の水位差が50mm以上となる条件で決定することが好ましい。50mm以下とすると、第2所定期間における薬品減少量に対する薬液量センサー9の1分解能あたりの薬液減少量の比率が大きくなり、実薬注量との誤差が大きくなる。   Further, the controller 12 performs the second time when a second predetermined period longer than the first predetermined period elapses, for example, when a predetermined time elapses or when the integrated value of the feed water flow rate reaches a predetermined integrated flow value. Calculate the expected amount of drug decrease over a given period. This estimated amount of medicine decrease is an integrated value of the amount of medicine used in a plurality of first predetermined periods included in the second predetermined period. The predetermined time corresponding to the second predetermined period or the predetermined integrated flow rate value is preferably determined under the condition that the water level difference corresponding to the amount of decrease in the chemical liquid in the chemical tank 6 is 50 mm or more. If it is 50 mm or less, the ratio of the chemical solution reduction amount per resolution of the chemical solution amount sensor 9 to the chemical reduction amount in the second predetermined period increases, and the error from the actual chemical injection amount increases.

例えば、期間T1、T2、・・・、Tnの目標薬注量をCF1、CF2、・・・、CFn、給水流量(期間内の積算流量)をFV1、FV2、・・・、FVnとした場合、薬品使用量CD1、CD2、・・・、CDnは以下のように表される。
期間T1:CD1=CF1×FV1
期間T2:CD2=CF2×FV2
・・・・
期間Tn:CDn=CFn×FVn
For example, when target dosages for periods T1, T2,..., Tn are CF1, CF2,..., CFn, and the feed water flow rate (integrated flow rate within the period) is FV1, FV2,. The chemical usage amounts CD1, CD2,..., CDn are expressed as follows.
Period T1: CD1 = CF1 × FV1
Period T2: CD2 = CF2 × FV2
...
Period Tn: CDn = CFn × FVn

期間T1、T2、・・・、Tnがそれぞれ第1所定期間に相当し、T1〜Tnの通算期間が第2所定期間に相当する。薬品減少想定量SVは、SV=CD1+CD2+・・・+CDnで求まる。   The periods T1, T2,..., Tn each correspond to a first predetermined period, and the total period from T1 to Tn corresponds to a second predetermined period. The estimated drug decrease SV is obtained by SV = CD1 + CD2 +... + CDn.

制御器12は、薬液量センサー9を用いて求めた第2所定期間における実際の薬品タンク6内の薬品減少量が、第2所定期間内の薬品使用量を積算した薬品減少想定量と一致するか否か、具体的には許容誤差を含む目標範囲に入っているか否か判定し、範囲外であった場合は、目標値に合うように比例係数を補正する。そして、制御器12は、給水流量信号に、補正した比例係数を乗じて薬注量信号を生成し、薬注ポンプ7の駆動回路に入力することにより薬注量を補正する。例えば、制御器12は、薬液量センサー9を用いて求めた薬品減少量が目標範囲を下回るときには比例係数を大きくし、薬品減少量が目標範囲を上回るときには比例係数を小さくする。   The controller 12 determines that the actual drug decrease amount in the chemical tank 6 in the second predetermined period obtained by using the chemical amount sensor 9 is equal to the estimated drug decrease amount obtained by integrating the chemical use amount in the second predetermined period. Whether or not, specifically, whether or not the target range including an allowable error is exceeded. If the target range is out of the range, the proportionality coefficient is corrected to match the target value. Then, the controller 12 multiplies the feed water flow rate signal by the corrected proportionality coefficient to generate a chemical injection amount signal, and corrects the chemical injection amount by inputting it to the drive circuit of the chemical injection pump 7. For example, the controller 12 increases the proportionality coefficient when the chemical reduction amount obtained using the chemical amount sensor 9 is below the target range, and decreases the proportionality coefficient when the chemical reduction amount exceeds the target range.

例えば、薬液量センサー9を用いて求めた薬品減少量が、薬品減少想定量の目標誤差範囲の下限値よりも低いときには、薬品減少想定量と薬液量センサー9を用いて求めた実際の薬品減少量との差に応じた補正係数を比例係数に乗じて比例係数を大きくするように補正する。逆に、実際の薬品減少量が薬品減少想定量の目標誤差範囲の上限値よりも高いときには、薬品減少想定量と実際の薬品減少量との差に応じた補正係数を比例係数に乗じて比例係数を小さくするように補正する。また、比例係数の補正に際し、例えば補正後の比例係数が補正前の比例係数の±50%に収まるように、比例係数の変化率に制限を持たせてもよい。   For example, when the amount of drug decrease obtained using the chemical amount sensor 9 is lower than the lower limit value of the target error range of the estimated amount of medicine decrease, the actual amount of drug decrease obtained using the estimated amount of medicine decrease and the amount sensor 9 is used. Correction is performed so that the proportionality coefficient is increased by multiplying the proportionality coefficient by a correction coefficient corresponding to the difference from the quantity. Conversely, when the actual drug decrease amount is higher than the upper limit of the target error range for the expected drug decrease amount, it is proportional to the proportional coefficient multiplied by the correction coefficient corresponding to the difference between the estimated drug decrease amount and the actual drug decrease amount. Correct to reduce the coefficient. Further, when the proportional coefficient is corrected, for example, the rate of change of the proportional coefficient may be limited so that the corrected proportional coefficient is within ± 50% of the proportional coefficient before correction.

なお、比例係数を補正する代わりに、比例係数を乗じた後の薬注量信号を、薬品減少想定量と実際の薬品減少量との差に基づいて補正してもよい。   Instead of correcting the proportionality coefficient, the chemical injection signal after multiplying by the proportionality coefficient may be corrected based on the difference between the expected drug decrease amount and the actual drug decrease amount.

このように、薬注ポンプ7の吐出量を流量計10の検出給水流量にリアルタイムに比例させる制御と、所定期間(第2所定期間)における薬品減少量を確認して薬注量信号を微調整するフィードバック制御とを組み合わせることにより、多缶設置の小型貫流ボイラの給水配管のように、短期間で流量が大きく変動する系においても、給水中の薬品濃度を目標範囲内に安定して維持することができる。   In this way, the control to make the discharge amount of the chemical injection pump 7 proportional to the detected feed water flow rate of the flow meter 10 in real time and the chemical decrease amount in the predetermined period (second predetermined period) are confirmed to finely adjust the chemical injection signal. In combination with feedback control, the chemical concentration in the feed water is stably maintained within the target range even in systems where the flow rate fluctuates greatly in a short period of time, such as the water supply piping of small once-through boilers installed in multiple cans. be able to.

次に、目標薬注量の決定方法ついて説明する。   Next, a method for determining the target drug injection amount will be described.

例えば、温度センサー17を用いて給水温度を測定し、その測定温度における飽和溶存酸素濃度に合わせて目標薬注量を随時変更する。これにより、脱酸素剤をより効率的かつ経済的に注入できる。この方法を用いる際は、以下の式1により必要な脱酸素剤量を求めて、その量に応じて目標とする薬液量を決定する。給水温度を測定し、測定温度における飽和溶存酸素濃度を用いる手法が簡易的ではあるが、給水の溶存酸素を検出する溶存酸素計を設け、給水中の溶存酸素濃度を直接測定してもよい。   For example, the feed water temperature is measured using the temperature sensor 17, and the target chemical injection amount is changed as needed in accordance with the saturated dissolved oxygen concentration at the measurement temperature. Thereby, the oxygen scavenger can be injected more efficiently and economically. When this method is used, the required amount of oxygen scavenger is obtained by the following formula 1, and the target amount of the chemical solution is determined according to the amount. Although the method of measuring the feed water temperature and using the saturated dissolved oxygen concentration at the measurement temperature is simple, a dissolved oxygen meter that detects dissolved oxygen in the feed water may be provided to directly measure the dissolved oxygen concentration in the feed water.

必要脱酸素剤量(mg/L)
=(給水温度における飽和溶存酸素濃度/脱酸素剤1(mg/L)が除去する酸素量)×安全率 …(式1)
Necessary oxygen scavenger amount (mg / L)
= (Saturated dissolved oxygen concentration at feed water temperature / oxygen amount removed by oxygen scavenger 1 (mg / L)) × safety factor (Equation 1)

温度センサー17の測定原理は問わないが、測定温度範囲が給水温度の変動範囲を十分カバーしている必要がある。温度センサー17は、給水タンク1、または給水タンク1よりボイラ1に近い給水母管2に設置する。温度センサー17の検出部を給水に直接浸水することが望ましいが、検出部を配管表面に設置して、放温しないように検出部を保温材で覆うようにしてもよい。   The measurement principle of the temperature sensor 17 does not matter, but the measurement temperature range needs to sufficiently cover the fluctuation range of the feed water temperature. The temperature sensor 17 is installed in the water supply tank 1 or the water supply mother pipe 2 closer to the boiler 1 than the water supply tank 1. Although it is desirable to directly immerse the detection unit of the temperature sensor 17 in the water supply, the detection unit may be installed on the surface of the pipe so that the detection unit is covered with a heat insulating material so as not to release the temperature.

ドレン回収率を用いて目標薬注量を決定してもよい。ここで、ドレン回収率を求める方法としては、ドレン温度、補給水温度及び給水温度を測定し、以下の式2を用いて求める方法と、電気伝導率計により補給水および給水について電気伝導率を検出し、以下の式3を用いて求める方法と、補給水および給水について溶存物質濃度(水質)を検出し、以下の式4を用いて求める方法と、補給水ライン16に設置した流量計(図6参照)の積算値と給水母管2に設置した流量計10の積算値または各ボイラ5に接続される給水分岐管に設置した流量計(図6参照)の合算積算値とを以下の式5に代入して求める方法とがある。溶存物質濃度は、例えば塩化物イオン計を用いて検出される塩化物イオン濃度、カリウム計を用いて検出されるカリウム濃度、ナトリウム計を用いて検出されるナトリウム濃度、カルシウム計を用いて検出されるカルシウム濃度などである。ドレン回収率は他の数式、方法を用いて求めてもよい。回収されたドレンはドレンタンク14に貯留され、ドレンライン15を介して給水タンク1に供給される。   The target chemical injection amount may be determined using the drain recovery rate. Here, as a method for obtaining the drain recovery rate, the drain temperature, the makeup water temperature, and the feed water temperature are measured, and the electrical conductivity is determined for the makeup water and the feed water using the following formula 2 and the conductivity meter. Detecting and calculating using the following formula 3, and detecting the dissolved substance concentration (water quality) in the makeup water and feed water, using the following formula 4 and a flow meter installed in the makeup water line 16 ( 6) and the integrated value of the flow meter 10 installed in the feed water main pipe 2 or the total integrated value of the flow meter installed in the feed water branch pipe connected to each boiler 5 (see FIG. 6) There is a method of obtaining by substituting into Equation 5. The dissolved substance concentration is detected using, for example, a chloride ion concentration detected using a chloride ion meter, a potassium concentration detected using a potassium meter, a sodium concentration detected using a sodium meter, and a calcium meter. Such as calcium concentration. The drain recovery rate may be obtained using other mathematical formulas and methods. The collected drain is stored in the drain tank 14 and supplied to the water supply tank 1 through the drain line 15.

ドレン回収率=(給水温度―補給水温度)/(ドレン温度−補給水温度) …(式2)
ドレン回収率=1−(給水電気伝導率/補給水電気伝導率) …(式3)
ドレン回収率=1−(給水溶存物質濃度/補給水溶存物質濃度) …(式4)
ドレン回収率=(給水流量−補給水流量)/給水流量 …(式5)
Drain recovery rate = (feed water temperature-makeup water temperature) / (drain temperature-makeup water temperature) (Equation 2)
Drain recovery rate = 1- (feed water electrical conductivity / makeup water electrical conductivity) (Equation 3)
Drain recovery rate = 1- (concentration of water-soluble substances / supply water-soluble substances) (Formula 4)
Drain recovery rate = (feed water flow rate-makeup water flow rate) / feed water flow rate (Formula 5)

ドレン回収がない場合でも原水水質の変動により給水水質が大きく変動する場合がある。このような場合は、給水の電気伝導率または塩化物イオン濃度などの溶存物質濃度の値を計測して、計測値から目標薬注量を演算する方法もある。薬注目標量を決定する為に必要な物質の濃度が直接測定できない場合でも、測定が容易な他の項目との相関性を事前に確認できれば、その項目の計測値に基づいて必要薬注量を算出できる。   Even if there is no drain recovery, the quality of the feed water may vary greatly due to fluctuations in the raw water quality. In such a case, there is also a method of calculating the target chemical injection amount from the measured value by measuring the value of the dissolved substance concentration such as the electric conductivity of the feed water or the chloride ion concentration. Even if the concentration of the substance required to determine the target dose is not directly measured, if the correlation with other items that are easy to measure can be confirmed in advance, the required dose based on the measured value of that item Can be calculated.

例えば、給水の酸消費量(pH4.8)により薬注目標量を決定する際に、電気伝導率と酸消費量(pH4.8)の関係性が認められれば、電気伝導率を計測することにより、演算部で酸消費量(pH4.8)に換算し、得られた酸消費量(pH4.8)に基づいて目標薬注量を算出し、薬液の吐出量が決定される。   For example, when determining the chemical injection target amount based on the acid consumption (pH 4.8) of water supply, if the relationship between the electrical conductivity and the acid consumption (pH 4.8) is recognized, the electrical conductivity is measured. Thus, the calculation unit converts the acid consumption (pH 4.8) into the amount, and calculates the target chemical injection amount based on the obtained acid consumption (pH 4.8), thereby determining the discharge amount of the chemical solution.

ドレン回収により給水中のアルカリ成分量が変化した場合に、薬品により追加するアルカリ成分量は、以下の式6及び式7から求まる。   When the amount of alkali component in the water supply changes due to drain recovery, the amount of alkali component added by the chemical can be obtained from the following equations 6 and 7.

目標薬注量=必要アルカリ成分量(酸消費量(pH8.3))/薬液1(mg/L)あたりから発生する酸消費量(pH8.3) …(式6)
必要アルカリ成分量(酸消費量(pH8.3))(mgCaCO/L)
=(目標ボイラ水酸消費量(pH8.3)/濃縮度)−給水酸消費量(pH8.3)
=(P1/N)−〔P2×0.5×(1+α)×(1−r) 〕 …(式7)
P1:目標ボイラ水酸消費量(pH8.3)(mgCaCO/L)
P2:補給水中の酸消費量(pH4.8)(mgCaCO/L)
N:濃縮度=ボイラ水電気伝導率/給水電気伝導率
α:圧力による係数
ボイラ圧力0.5MPa α=0.3
ボイラ圧力0.7MPa α=0.4
ボイラ圧力1.0MPa α=0.5
ボイラ圧力1.5MPa α=0.6
ボイラ圧力2.0MPa α=0.7
r:ドレン回収率=1−(給水電気伝導率/補給水電気伝導率)
Target chemical injection amount = necessary alkali component amount (acid consumption (pH 8.3)) / acid consumption (pH 8.3) generated from chemical solution 1 (mg / L) (Formula 6)
Necessary alkali component amount (acid consumption (pH 8.3)) (mgCaCO 3 / L)
= (Target boiler hydroxide consumption (pH 8.3) / concentration) -feed water consumption (pH 8.3)
= (P1 / N)-[P2 × 0.5 × (1 + α) × (1-r)] (Expression 7)
P1: Target boiler hydroxide consumption (pH 8.3) (mgCaCO 3 / L)
P2: Acid consumption in make-up water (pH 4.8) (mgCaCO 3 / L)
N: Concentration = Boiler water electrical conductivity / Feed water electrical conductivity α: Coefficient by pressure Boiler pressure 0.5 MPa α = 0.3
Boiler pressure 0.7 MPa α = 0.4
Boiler pressure 1.0 MPa α = 0.5
Boiler pressure 1.5 MPa α = 0.6
Boiler pressure 2.0 MPa α = 0.7
r: Drain recovery rate = 1- (feed water electrical conductivity / makeup water electrical conductivity)

ボイラ5は、電気伝導率計を内蔵し、この電気伝導率計の測定値と所定の下限値を下回った場合に連続ブローラインの電磁弁を閉じ、所定の上限値を上回った場合に連続ブローラインの電磁弁を開けることで、缶水の濃縮度を調整するものであってもよい。この場合、制御器12は、ボイラ5に内蔵された電気伝導率計により測定されるボイラ水電気伝導率と、給水母管2又は給水分岐管3に設けた電気伝導率計により測定される給水電気伝導率とを用いて、以下の式8により濃縮度を演算する。そして、制御器12は、ボイラ5の濃縮度と、ボイラ5の缶内維持濃度とから、以下の式9を用いて薬注目標量を求めることができる。ボイラ内部で濃縮度または濃縮度を演算するための情報を有している場合には、その情報をそのまま制御器12に入力する方法もある。
濃縮度=ボイラ水電気伝導率/給水電気伝導率 …(式8)
目標薬注量(mg/L)=缶内維持濃度/濃縮度 …(式9)
The boiler 5 has a built-in electric conductivity meter. When the measured value of the electric conductivity meter is below a predetermined lower limit value, the solenoid valve of the continuous blow line is closed, and when the predetermined upper limit value is exceeded, the continuous blow is performed. You may adjust the concentration of can water by opening the electromagnetic valve of a line. In this case, the controller 12 uses the boiler water electrical conductivity measured by the electrical conductivity meter built in the boiler 5 and the water supply measured by the electrical conductivity meter provided in the feed water mother pipe 2 or the feed water branch pipe 3. Using the electrical conductivity, the concentration is calculated according to the following equation (8). And the controller 12 can obtain | require a chemical injection target amount using the following formula | equation 9 from the enrichment level of the boiler 5, and the maintenance density | concentration in a boiler 5 can. If the boiler has information for calculating the degree of enrichment or the degree of enrichment, there is a method of inputting the information to the controller 12 as it is.
Concentration = Boiler water electrical conductivity / Feed water electrical conductivity (Equation 8)
Target drug dosage (mg / L) = maintenance concentration in can / concentration (Equation 9)

ボイラ5の濃縮度は、ボイラ水及び給水の溶存物質濃度から求めてもよい。ボイラ水及び給水の溶存物質濃度を用いて、以下の式10により濃縮度を求めることができる。また、給水およびブロー水の流量を測定し、以下の式11を用いて濃縮度を求めてもよい。
濃縮度=ボイラ水溶存物質濃度/給水溶存物質濃度 …(式10)
濃縮度=給水流量/ブロー流量 …(式11)
The degree of enrichment of the boiler 5 may be obtained from the dissolved substance concentration of boiler water and feed water. Using the dissolved water concentrations of boiler water and feed water, the concentration can be determined by the following equation (10). Further, the flow rate of water supply and blow water may be measured, and the degree of concentration may be obtained using the following formula 11.
Concentration = Boiler water-soluble substance concentration / Feed water-soluble substance concentration (Formula 10)
Concentration = feed water flow rate / blow flow rate (Formula 11)

このように、対象ボイラの濃縮度の情報を制御器12に入力し、目標薬注量を決定することにより、より確実にボイラ水中薬液濃度を目標範囲に管理することができるようになる。   Thus, by inputting the information on the degree of concentration of the target boiler into the controller 12 and determining the target chemical injection amount, the chemical concentration in the boiler water can be more reliably managed within the target range.

上述したように、ボイラ本体に電気伝導率計が内蔵されている場合、この電気伝導率計の測定値が所定の上限値(ブロー制御用の上限値がある場合はその上限値とは別に設定されたさらに高い値)を超えた場合に、電気伝導率計の測定値が上限値を下回るまで目標薬注量を一定期間低減させるようにしてもよい。このことにより、キャリーオーバー発生を防止することができる。   As described above, when an electric conductivity meter is built in the boiler body, the measured value of the electric conductivity meter is set to a predetermined upper limit value (if there is an upper limit value for blow control, it is set separately from the upper limit value). If the measured value exceeds the upper limit value, the target dose may be reduced for a certain period. This can prevent the occurrence of carry over.

ドレン回収がある場合または原水水質が大きく変動する場合において、個々の薬剤成分の必要量が、ある成分では増加し、他の成分では減少することで、薬剤成分の必要量のバランスが大きく変化する場合には、薬剤成分を個別に制御することにより、経済的に水処理を行うことができる。この場合、図2に示すように、薬剤成分ごとに薬品タンク6と薬注ポンプ7を用意し、薬品タンク6毎の薬液量情報を制御器12に入力し、個々の薬品減少量を求めて、それぞれの薬注ポンプ7の吐出量を制御する。   When there is drain recovery or when the raw water quality fluctuates greatly, the required amount of individual drug components increases for one component and decreases for other components, greatly changing the balance of the required amount of drug components In some cases, water treatment can be carried out economically by individually controlling the drug components. In this case, as shown in FIG. 2, a chemical tank 6 and a chemical injection pump 7 are prepared for each chemical component, and chemical liquid amount information for each chemical tank 6 is input to the controller 12 to obtain individual chemical reduction amounts. The discharge amount of each chemical injection pump 7 is controlled.

制御器12は、給水温度、給水水質、ドレン回収率、及びボイラ濃縮度の少なくともいずれか1つの情報を取得し、取得した情報に基づいて、薬品タンク6ごとに、給水水質に応じて、又は給水中薬液濃度が一定となるように、又はボイラ水中薬液濃度が一定となるように、薬注目標量を変更することができる。図2に示す構成において、薬品タンク6の数および種類は制限されない。   The controller 12 obtains at least one information of feed water temperature, feed water quality, drain recovery rate, and boiler concentration, and for each chemical tank 6 based on the obtained information, according to the feed water quality, or The target amount of chemical injection can be changed so that the chemical concentration in the feed water is constant or the chemical concentration in the boiler water is constant. In the configuration shown in FIG. 2, the number and type of chemical tanks 6 are not limited.

以下、実施例及び比較例について説明する。この実施例及び比較例では、薬液としては、pH調整剤として水酸化カリウム(5%品)、脱酸素剤としてヒドラジン一水和物(20%品)、及びスケール防止剤として分子量4000のポリアクリル酸を溶解させたものを用いた。   Hereinafter, examples and comparative examples will be described. In this example and comparative example, the chemical solution includes potassium hydroxide (5% product) as a pH adjuster, hydrazine monohydrate (20% product) as an oxygen scavenger, and a polyacrylic having a molecular weight of 4000 as a scale inhibitor. What dissolved the acid was used.

[実施例1]
ボイラ5として、小型貫流ボイラを想定した実験用ボイラ(最大蒸発量500kg/h)2台が設置されている図1に示すボイラ給水設備の給水母管2に、本発明の薬品注入制御方法を用いて薬注した。薬注点は給水タンク出口から500mmの地点とした。配管径40Aに対して内径6mm、外径8mmのSUS製の薬注ノズル8を給水母管2の中央まで差し込み、薬注した。
[Example 1]
As the boiler 5, two experimental boilers (maximum evaporation amount 500 kg / h) assuming a small once-through boiler are installed. The chemical injection control method of the present invention is applied to the feed water pipe 2 of the boiler feed water facility shown in FIG. Used to administer. The medicinal point was set at a point 500 mm from the outlet of the water supply tank. A SUS chemical injection nozzle 8 having an inner diameter of 6 mm and an outer diameter of 8 mm with respect to the pipe diameter of 40 A was inserted to the center of the water supply mother pipe 2 to perform chemical injection.

薬品タンク6としてダイライト株式会社のダイライトタンク(N型)50Lを用いた。タンク下部に薬液量センサーをねじ込めるように加工を施した。   As a chemical tank 6, a die light tank (N-type) 50L manufactured by Dailite Co., Ltd. was used. Processing was performed so that the chemical amount sensor could be screwed into the bottom of the tank.

制御器12として株式会社キーエンス製のKV−1000、入力ユニットとしてKV−40DA、出力ユニットとしてKV−40ADを使用した。薬注ポンプ7として株式会社イワキ製EHN−B11VC1YN、流量計10として東京計装株式会社製のクランプオン式超音波流量計UL330、薬液量センサー(圧力センサー)9として株式会社センシズ製HT1−020KP−02−Vを用いた。   As the controller 12, KV-1000 manufactured by Keyence Corporation, KV-40DA as an input unit, and KV-40AD as an output unit were used. EHN-B11VC1YN manufactured by Iwaki Co., Ltd. as a chemical injection pump 7, a clamp-on type ultrasonic flow meter UL330 manufactured by Tokyo Keiki Co., Ltd. as a flow meter 10, and HT1-020KP- manufactured by Senses Co., Ltd. as a chemical amount sensor (pressure sensor) 9 02-V was used.

流量計10の積算流量は1パルス/0.1Lのパルス信号により求めて、瞬間流量は0−3500L/hを4−20mAとしたアナログ信号より求めた。圧力センサー9の検出圧力0−20kPaを4−20mAとして制御器12に入力した。薬注ポンプ7は、0−38mL/minを4−20mAとして1分間あたりのストローク数を制御することにより注入量を調整した。   The integrated flow rate of the flow meter 10 was obtained from a pulse signal of 1 pulse / 0.1 L, and the instantaneous flow rate was obtained from an analog signal in which 0-3500 L / h was 4-20 mA. The detected pressure 0-20 kPa of the pressure sensor 9 was input to the controller 12 as 4-20 mA. The chemical injection pump 7 adjusted the injection amount by controlling the number of strokes per minute with 0-38 mL / min being 4-20 mA.

ボイラ5は高燃焼固定運転とした。給水量はボイラ1台あたり400L/h、給水ポンプ4の能力は1350L/hであった。   The boiler 5 was set to a high combustion fixed operation. The amount of water supply was 400 L / h per boiler, and the capacity of the water supply pump 4 was 1350 L / h.

給水タンク1の温度を20、40、80℃に数時間ごとに変更して運転した。給水温度は、オムロン製E52−CA10AE−N(K熱電対)を給水タンク出口近傍の給水母管2の配管表面に貼り付けて上から保温材で覆って測定した。10分ごとの平均給水温度をもとに飽和溶存酸素濃度を求め、以下の式12を用いて目標薬注量を演算した。給水中の飽和溶存酸素濃度の変遷を図3に示す。使用した薬液には脱酸素成分としてヒドラジン1水和物10%が含まれており、薬液1mg/Lが除去する酸素量は0.065mg/Lであった。
目標薬注量(mg/L)=給水温度における飽和溶存酸素濃度(mg/L)/0.065 …(式12)
The temperature of the water supply tank 1 was changed to 20, 40, and 80 ° C. every few hours for operation. The feed water temperature was measured by attaching OMRON E52-CA10AE-N (K thermocouple) to the pipe surface of the feed water mother pipe 2 in the vicinity of the feed water tank outlet and covering with a heat insulating material from above. Saturated dissolved oxygen concentration was calculated | required based on the average water supply temperature for every 10 minutes, and the target chemical injection amount was computed using the following formula | equation 12. FIG. The transition of the saturated dissolved oxygen concentration in the feed water is shown in FIG. The chemical solution used contained 10% hydrazine monohydrate as a deoxygenating component, and the amount of oxygen removed by the chemical solution 1 mg / L was 0.065 mg / L.
Target chemical injection amount (mg / L) = saturated dissolved oxygen concentration at feed water temperature (mg / L) /0.065 (Equation 12)

目標薬注量に比例して薬注ポンプ7のストローク数を変化させて薬注を行いながら、ボイラ5の蒸気を熱交換器18で冷却し、蒸気凝縮水中の溶存酸素濃度を溶存酸素計19で測定し、測定結果をデータロガー20で20秒ごとにロギングした。結果を図4に示す。また、給水温度、飽和溶存酸素濃度、蒸気凝縮水中溶存酸素濃度、薬注量の値の一例を表1に示す。   While performing the chemical injection by changing the number of strokes of the chemical injection pump 7 in proportion to the target chemical injection amount, the steam in the boiler 5 is cooled by the heat exchanger 18 and the dissolved oxygen concentration in the steam condensed water is measured by the dissolved oxygen meter 19. And the measurement result was logged by the data logger 20 every 20 seconds. The results are shown in FIG. Table 1 shows an example of values of the feed water temperature, the saturated dissolved oxygen concentration, the dissolved oxygen concentration in the steam condensed water, and the chemical injection amount.

[比較例1]
薬注量を給水中に70mg/L(想定溶存酸素除去量4.55mg/L)一定注入した以外は実施例1と同じとした。ボイラ蒸気を熱交換器18で冷却した蒸気凝縮水中の溶存酸素濃度を20秒ごとにロギングした結果を図5に示す。また、表1に蒸気凝縮水中溶存酸素濃度の値の一例を示す。
[Comparative Example 1]
The same procedure as in Example 1 was conducted except that a constant amount of chemical injection was injected into the water supply at 70 mg / L (assumed dissolved oxygen removal amount: 4.55 mg / L). FIG. 5 shows the result of logging the dissolved oxygen concentration in the steam condensed water obtained by cooling the boiler steam with the heat exchanger 18 every 20 seconds. Table 1 shows an example of the value of dissolved oxygen concentration in steam condensed water.

Figure 0005765467
Figure 0005765467

実施例1では10分ごとの平均給水温度における飽和溶存酸素濃度に応じて薬注ポンプ7のストローク数を増加させることにより、蒸気凝縮水中の溶存酸素濃度を低く維持することができた。フィードバック制御となるため、給水温度が変化する境目では一時的に蒸気中溶存酸素濃度が上昇するが、溶存酸素濃度が1mg/L以下に収束した。   In Example 1, the dissolved oxygen concentration in the steam condensed water could be kept low by increasing the number of strokes of the chemical injection pump 7 according to the saturated dissolved oxygen concentration at the average feed water temperature every 10 minutes. Since the feedback control is performed, the dissolved oxygen concentration in the steam temporarily rises at the boundary where the feed water temperature changes, but the dissolved oxygen concentration converged to 1 mg / L or less.

一方、比較例1では、薬注量が一定であり、給水温度が20℃や40℃の場合は給水中の溶存酸素濃度が薬品による脱酸素能力よりも大きく、蒸気へ移行する溶存酸素濃度が多かった。   On the other hand, in Comparative Example 1, when the chemical injection amount is constant and the feed water temperature is 20 ° C. or 40 ° C., the dissolved oxygen concentration in the feed water is larger than the deoxygenation ability by the chemical, and the dissolved oxygen concentration that shifts to steam is There were many.

以上の通り、給水温度にあわせて目標薬注量を変動させることにより、過剰に薬品を注入することなく、水処理効果を効果的に発揮することができた。   As described above, by varying the target chemical injection amount according to the feed water temperature, the water treatment effect could be effectively exhibited without excessive chemical injection.

[実施例2]
図6に示すボイラ給水設備において、ボイラ個別の給水流量計23とブロー流量計24の値により求めた濃縮度を考慮して、ボイラ水のpHの目標値を11.5として酸消費量(pH8.3)が250(mgCaCO/L)となるように薬注を行った。ボイラ水を200ml/minの速度で連続的にボイラ5から取り出し、熱交換器18で冷却し、蒸気凝縮水のpHをpH計21で測定し、測定値をデータロガー20により1分ごとにロギングした結果を図7に示す。
[Example 2]
In the boiler water supply facility shown in FIG. 6, the acid consumption (pH 8) is set with the target value of the boiler water pH set to 11.5 in consideration of the concentration obtained from the values of the individual boiler feed flow meter 23 and blow flow meter 24. .3) was administered so that 250 (mgCaCO 3 / L) was obtained. The boiler water is continuously taken out from the boiler 5 at a rate of 200 ml / min, cooled by the heat exchanger 18, the pH of the steam condensed water is measured by the pH meter 21, and the measured value is logged by the data logger 20 every minute. The results are shown in FIG.

ドレン回収率は、補給水ライン16に設置した流量計22(オーバル製フローペットEG)と、流量計10の計測結果から求めた。小型貫流ボイラを想定した実験用ボイラ(最大蒸発量500kg/h)1台を高燃焼運転させた。ボイラ5の連続ブローの設定をボイラ付属の電気伝導率計の値で上限300mS/m、下限250mS/mとした。蒸気圧力は0.7MPaであった。必要薬注量は以下の式13を用いて求めた。使用薬品により発生する酸消費量(pH8.3)は100mg/Lあたり4.5(mgCaCO/L)であった。 The drain recovery rate was obtained from the measurement results of the flow meter 22 (oval flow pet EG) installed in the makeup water line 16 and the flow meter 10. One experimental boiler (maximum evaporation: 500 kg / h) assuming a small once-through boiler was operated at high combustion. The continuous blow setting of the boiler 5 was set to an upper limit of 300 mS / m and a lower limit of 250 mS / m in terms of the electric conductivity meter attached to the boiler. The vapor pressure was 0.7 MPa. The required chemical injection amount was determined using the following formula 13. The acid consumption (pH 8.3) generated by the chemicals used was 4.5 (mgCaCO 3 / L) per 100 mg / L.

必要アルカリ成分量(酸消費量(pH4.8))(mgCaCO/L)
=(P1/N)−〔P2×0.5×(1+α)×(1−r) 〕
=(250/(給水流量/ブロー流量)−{30×0.5×1.4×〔1−(給水流量−補給水流量)/給水流量) 〕} …(式13)
P1:目標ボイラ水酸消費量(pH8.3)(mgCaCO/L)
=250(mgCaCO/L)
P2:補給水中の酸消費量(pH4.8)(mgCaCO/L)
=30(mgCaCO/L)
N:濃縮度 =給水流量/ブロー流量
α:圧力による係数 ボイラ圧力0.7MPa α=0.4
r:ドレン回収率=(給水流量−補給水流量)/給水流量
Necessary alkali component (acid consumption (pH 4.8)) (mgCaCO 3 / L)
= (P1 / N)-[P2 × 0.5 × (1 + α) × (1-r)]
= (250 / (feed water flow rate / blow flow rate) − {30 × 0.5 × 1.4 × [1- (feed water flow rate−makeup water flow rate) / feed water flow rate)]} (Equation 13)
P1: Target boiler hydroxide consumption (pH 8.3) (mgCaCO 3 / L)
= 250 (mgCaCO 3 / L)
P2: Acid consumption in make-up water (pH 4.8) (mgCaCO 3 / L)
= 30 (mgCaCO 3 / L)
N: Concentration = feed water flow rate / blow flow rate α: coefficient due to pressure boiler pressure 0.7 MPa α = 0.4
r: Drain recovery rate = (feed water flow rate-makeup water flow rate) / feed water flow rate

[比較例2]
実施例2と同じボイラ給水設備を用いて給水中の薬品濃度を100mgCaCO/Lとなるように一定注入した場合にボイラ水を200ml/minの速度で連続的にボイラ5から取り出して熱交換器18で冷却し、凝縮水のpHの測定値を1分ごとにロギングした結果を図8に示す。
[Comparative Example 2]
The boiler water was continuously taken out from the boiler 5 at a rate of 200 ml / min when the chemical concentration in the feed water was constantly injected so as to be 100 mg CaCO 3 / L using the same boiler water supply equipment as in Example 2, and the heat exchanger FIG. 8 shows the result of logging the measured value of the condensed water pH every minute after cooling at 18.

[比較例3]
実施例2と同じボイラ給水設備を用いて給水中酸消費量(pH8.3)が一定となるようにボイラ水を200ml/minの速度で連続的にボイラ5から取り出して熱交換器18で冷却し、凝縮水のpHの測定値を1分ごとにロギングした結果を図9に示す。
[Comparative Example 3]
Using the same boiler water supply equipment as in Example 2, the boiler water is continuously taken out from the boiler 5 at a rate of 200 ml / min and cooled by the heat exchanger 18 so that the acid consumption (pH 8.3) in the feed water becomes constant. The result of logging the measured value of the pH of the condensed water every minute is shown in FIG.

給水中の酸消費量(pH8.3)を34.5mgCaCO/Lとなるように薬注を行った。必要薬注量は以下の式14を使用して求めた。
必要薬注量=34.5−給水酸消費量(pH4.8)から発生する酸消費量(pH8.3)
=34.5−〔P2×0.5×(1+α)×(1−r)〕
=34.5−(30×0.5×1.4×〔1−(給水流量−補給水流量)/給水流量〕 …(式14)
P1:目標ボイラ水酸消費量(pH8.3)(mgCaCO/L)=250(mgCaCO/L)
P2:補給水中の酸消費量(pH4.8)(mgCaCO/L)=30(mgCaCO/L)
α:圧力による係数 ボイラ圧力0.7MPa α=0.4
r:ドレン回収率 =(給水流量−補給水流量)/給水流量
Chemical administration was performed such that the acid consumption (pH 8.3) in the feed water was 34.5 mg CaCO 3 / L. The required chemical injection amount was determined using the following formula 14.
Necessary chemical injection amount = 34.5-acid consumption amount (pH 8.3) generated from feed water acid consumption amount (pH 4.8)
= 34.5- [P2 × 0.5 × (1 + α) × (1-r)]
= 34.5-(30 x 0.5 x 1.4 x [1- (feed water flow rate-makeup water flow rate) / feed water flow rate] (Equation 14)
P1: Target boiler hydroxide consumption (pH 8.3) (mgCaCO 3 / L) = 250 (mgCaCO 3 / L)
P2: Acid consumption in make-up water (pH 4.8) (mgCaCO 3 / L) = 30 (mgCaCO 3 / L)
α: Coefficient by pressure Boiler pressure 0.7 MPa α = 0.4
r: Drain recovery rate = (feed water flow rate-makeup water flow rate) / feed water flow rate

実施例2は、比較例2および比較例3と比較してpHが安定していることが確認できた。これは、ドレン回収および濃縮度の影響を考慮してボイラ水中の酸消費量(pH8.3)を一定範囲に保つように薬注制御を行ったためである。   In Example 2, it was confirmed that the pH was stable as compared with Comparative Example 2 and Comparative Example 3. This is because the chemical injection control was performed so as to keep the acid consumption (pH 8.3) in the boiler water within a certain range in consideration of the effects of drain recovery and concentration.

比較例2はドレン回収および濃縮度を考慮せず対給水濃度を一定に保つように薬注を行った。比較例3はドレン回収の影響を考慮し、対給水中の酸消費量(pH8.3)を一定に保つように薬注を行った。比較例2と比較例3を比較すると、比較例3の方がpH値の変動が大きい。濃縮度を給水の電気伝導率で管理しているボイラでは、ドレン回収率が下がり、補給水の電気伝導率が上がった場合には、濃縮度がさがる。一方、ドレン回収率が上がり、補給水の電気伝導率が下がった場合には濃縮度があがる。従って、酸消費量(pH8.3)に関してはある程度の緩衝機能があるといえる。このため、比較例3よりも比較例2の方が、ボイラ水中のpHの変動幅が小さくなる。しかし、その機能だけではpHの変動は吸収されず、実施例2の有効性が確認された。   In Comparative Example 2, drug administration was performed so as to keep the concentration of feed water constant without considering drain recovery and concentration. In Comparative Example 3, in consideration of the effect of drain recovery, chemical injection was performed so as to keep the acid consumption (pH 8.3) in the supplied water constant. When Comparative Example 2 and Comparative Example 3 are compared, Comparative Example 3 has a larger variation in pH value. In a boiler whose concentration is controlled by the electrical conductivity of the feed water, the drain recovery rate decreases, and when the electrical conductivity of the makeup water increases, the concentration decreases. On the other hand, when the drain recovery rate increases and the electrical conductivity of the makeup water decreases, the degree of concentration increases. Therefore, it can be said that there is a certain degree of buffering function regarding the acid consumption (pH 8.3). For this reason, the fluctuation range of pH in boiler water is smaller in Comparative Example 2 than in Comparative Example 3. However, the change in pH was not absorbed by the function alone, and the effectiveness of Example 2 was confirmed.

[実施例3]
実施例1と同じボイラ給水設備を用いて、給水温度に基づく飽和溶存酸素濃度の20分間の平均値に応じて目標薬注量すなわち薬注ポンプ吐出量と給水瞬間流量の比例係数を変更した。また、給水流量100mごとにその期間の薬液減少量と累積薬品減少量想定値を制御器12で比較し、累積薬品減少量想定値の±10%以内に入っていない場合は、累積薬品減少量想定値と(算出した実際の)薬液減少量の差の分だけ比例係数を変更した。ただし、3回目の薬注量(薬品減少量)の確認後、薬注ポンプ7の能力低下を想定して、薬注ポンプ7のストローク長を100%から30%に変更した。
[Example 3]
Using the same boiler water supply equipment as in Example 1, the proportional coefficient between the target chemical injection amount, that is, the chemical injection pump discharge amount and the instantaneous water supply flow rate was changed according to the 20-minute average value of the saturated dissolved oxygen concentration based on the water supply temperature. Furthermore, feed water flow 100m every 3 and chemical reduction of the period of the cumulative drug decrease assumed value compared in the controller 12, if not within ± 10% of the cumulative drug decrease assumed value, the cumulative drug decreases The proportionality coefficient was changed by the difference between the estimated amount and the (calculated actual) decrease amount of the chemical solution. However, after confirming the 3rd time of the chemical injection amount (chemical reduction amount), the stroke length of the chemical injection pump 7 was changed from 100% to 30% on the assumption that the capacity of the chemical injection pump 7 was reduced.

給水温度はドレン回収により15℃から85℃まで変動しており、給水温度における飽和溶存酸素濃度を用いて、以下の式15から目標薬注濃度を算出した結果を図10(a)の実線で示す。使用した薬液には、脱酸素成分としてヒドラジン1水和物10%が含まれており、薬液1mg/Lが除去する酸素量は0.065mg/Lであった。安全係数として1.5を乗じた。
必要薬注量(mg/L)
=給水温度における飽和溶存酸素濃度(mg/L)/0.065×1.5 …(式15)
The feed water temperature fluctuates from 15 ° C. to 85 ° C. due to drain recovery, and the result of calculating the target chemical injection concentration from the following equation 15 using the saturated dissolved oxygen concentration at the feed water temperature is shown by the solid line in FIG. Show. The used chemical solution contained 10% hydrazine monohydrate as a deoxygenating component, and the amount of oxygen removed by 1 mg / L of the chemical solution was 0.065 mg / L. The safety factor was multiplied by 1.5.
Required dosage (mg / L)
= Saturated dissolved oxygen concentration at feed water temperature (mg / L) /0.065×1.5 (Equation 15)

実際の20分ごとの薬注濃度を図10(a)にプロットした。この薬注濃度は給水流量100mごとに確認した薬品減少想定量と測定した薬液減少量との差、及び瞬時給水流量と薬注ポンプ吐出能力との差から導き出した。給水流量100mごとの薬品タンク6内の薬品減少量、および薬品減少想定量の誤差範囲を図10(b)にプロットした。 The actual chemical injection concentration every 20 minutes is plotted in FIG. This chemical injection concentration was derived from the difference between the estimated amount of chemical decrease confirmed at every feed water flow rate of 100 m 3 and the measured chemical solution decrease amount, and the difference between the instantaneous water supply flow rate and the chemical injection pump discharge capacity. The error range of the chemical decrease amount in the chemical tank 6 and the estimated chemical decrease amount for each feed water flow rate of 100 m 3 is plotted in FIG.

3回目の薬注量の確認が終わった後、薬注ポンプ7のストローク長を100%から30%に変更したことにより、図10(b)に示すように一時的に薬注量が低下するが、4回目及び5回目の薬注量の確認で薬注ポンプ吐出量を自動調整したことにより、6回目の薬注量確認時には、再び所定薬注濃度が維持できるようになった。このように、比較的短期な期間ごとに目標薬注濃度を変更させても、自動で薬注濃度を調整するため、ドレン回収や給水水質の変動により薬注ポンプ吐出量を変更させた時に、薬注ポンプ7や給水ポンプ4の能力低下等により目標薬注濃度範囲を維持できなくなったとしても、人の手をわずらわせることなく、経済的かつ最大限に水処理効果を発揮できるよう水処理管理を行うことができる。   After the third dose check is completed, the stroke length of the dose pump 7 is changed from 100% to 30%, so that the dose is temporarily reduced as shown in FIG. 10 (b). However, by automatically adjusting the dispensing pump discharge amount by confirming the fourth and fifth dispensing amounts, the predetermined dispensing concentration can be maintained again at the sixth dispensing amount confirmation. In this way, even if the target injection concentration is changed for each relatively short period of time, in order to automatically adjust the injection concentration, when the discharge amount of the injection pump is changed due to fluctuations in drain recovery or feed water quality, Even if the target chemical injection concentration range cannot be maintained due to a decrease in the capacity of the chemical injection pump 7 or the water supply pump 4, the water treatment effect can be exerted economically and maximally without disturbing human hands. Water treatment management can be performed.

1 給水タンク
2 給水母管
3 給水分岐管
4 給水ポンプ
5 ボイラ
6 薬品タンク
7 薬注ポンプ
9 薬液量センサー
10 流量計
14 ドレンタンク
15 ドレンライン
16 補給水ライン
17 温度センサー
18 熱交換器
19 溶存酸素計
20 データロガー
21 pH計
22 補給水流量計
23 ボイラ分岐配管流量計
24 ブロー流量計
DESCRIPTION OF SYMBOLS 1 Water supply tank 2 Water supply main pipe 3 Water supply branch pipe 4 Water supply pump 5 Boiler 6 Chemical tank 7 Chemical injection pump 9 Chemical quantity sensor 10 Flowmeter 14 Drain tank 15 Drain line 16 Supply water line 17 Temperature sensor 18 Heat exchanger 19 Dissolved oxygen Total 20 Data logger 21 pH meter 22 Makeup water flow meter 23 Boiler branch piping flow meter 24 Blow flow meter

Claims (11)

給水タンクからボイラに給水を供給するための給水ラインと、
前記給水ラインを流れる給水流量を測定する給水流量測定手段と、
薬品タンクに貯留されたボイラ水処理薬品を含有する薬液を前記給水ライン又は給水タンクに注入する薬注ポンプと、
前記薬品タンク内に貯留された薬液の量を計測する薬液量計測手段と、
前記給水流量測定手段により測定された給水流量に比例して前記薬注ポンプの吐出量を制御する制御手段と、
を備え、
前記制御手段は、
第1所定期間ごとに目標薬注量を変更し、前記給水流量測定手段によって測定される該第1所定期間当たりの給水流量と、該第1所定期間の目標薬注量とから該第1所定期間ごとの薬液使用量を求め、
前記薬液量計測手段の計測結果から、前記第1所定期間より長い第2所定期間における薬品タンク内薬液減少量を求め、
前記第2所定期間内の複数の第1所定期間に対応する前記薬液使用量を積算して、該第2所定期間における薬液減少想定量を求め、
前記薬品タンク内薬液減少量と前記薬液減少想定量とを比較し、比較結果に基づいて前記薬注ポンプを制御することを特徴とする薬品注入制御装置。
A water supply line for supplying water from the water tank to the boiler;
A feed water flow rate measuring means for measuring a feed water flow rate flowing through the feed water line;
A chemical injection pump for injecting a chemical solution containing boiler water treatment chemical stored in the chemical tank into the water supply line or the water supply tank;
A chemical amount measuring means for measuring the amount of the chemical stored in the chemical tank;
Control means for controlling the discharge rate of the chemical injection pump in proportion to the feed water flow rate measured by the feed water flow rate measuring means;
With
The control means includes
The target dose is changed for each first predetermined period, and the first predetermined dose is determined from the feed water flow rate per first predetermined period measured by the feed water flow rate measuring means and the target dose amount for the first predetermined period. Find the amount of chemical used for each period,
From the measurement result of the chemical liquid amount measuring means, obtain the chemical liquid decrease amount in the chemical tank in the second predetermined period longer than the first predetermined period,
Accumulating the amount of chemical liquid used corresponding to a plurality of first predetermined periods in the second predetermined period to obtain an estimated amount of chemical liquid decrease in the second predetermined period;
A chemical injection control device that compares a chemical solution decrease amount in the chemical tank with an estimated chemical solution decrease amount and controls the chemical injection pump based on a comparison result.
請求項1において、前記薬液量計測手段が、前記薬品タンク中の薬液による圧力を検出する圧力センサー、前記薬品タンク中の薬品の水位高さを検出する水位計、又は前記薬品タンク中の薬品重量を検出する重量計のいずれかであることを特徴とする薬品注入制御装置。   The chemical liquid amount measuring means according to claim 1, wherein the chemical liquid amount measuring means detects a pressure due to the chemical liquid in the chemical tank, a water level meter that detects a water level height of the chemical in the chemical tank, or a chemical weight in the chemical tank A chemical injection control device, characterized in that the chemical injection control device is any one of weight scales for detecting odor. 請求項1又は2において、前記制御手段は、
前記給水流量測定手段により測定された給水流量に対して比例係数を乗じて得た目標吐出量となるように前記薬注ポンプを制御し、
前記薬品タンク内薬液減少量と前記薬液減少想定量との差に基づいて、前記比例係数を補正することを特徴とする薬品注入制御装置。
The control means according to claim 1 or 2,
Controlling the chemical injection pump so as to be a target discharge amount obtained by multiplying a feed water flow rate measured by the feed water flow rate measuring means by a proportional coefficient;
The chemical injection control device, wherein the proportional coefficient is corrected based on a difference between the chemical solution decrease amount in the chemical tank and the estimated chemical solution decrease amount.
請求項1乃至3のいずれか1項において、
前記ボイラは複数個設けられており、
前記給水ラインは、前記給水タンクに連なる給水母管と、該給水母管から分岐した複数の給水分岐管とを有しており、
各給水分岐管が各ボイラに接続され、該給水分岐管にそれぞれ給水ポンプが設けられており、
前記薬注ポンプは、前記給水母管又は給水タンクに薬注することを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 3,
A plurality of the boilers are provided,
The water supply line includes a water supply mother pipe connected to the water supply tank, and a plurality of water supply branch pipes branched from the water supply mother pipe,
Each feed water branch pipe is connected to each boiler, and each feed water branch pipe is provided with a feed water pump,
The chemical injection control device, wherein the chemical injection pump performs chemical injection to the water supply mother pipe or the water supply tank.
請求項1乃至4のいずれか1項において、
前記給水ラインには給水の温度又は水質を検出するセンサーが設けられ、
前記制御手段は、前記センサーの検出結果に基づいて前記目標薬注量を変更することを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 4,
The water supply line is provided with a sensor for detecting the temperature or quality of the water supply,
The said injection | pouring control apparatus changes the said target chemical injection amount based on the detection result of the said sensor, The chemical injection control apparatus characterized by the above-mentioned.
請求項1乃至4のいずれか1項において、
前記給水タンクに補給水を供給する補給水ライン及び前記給水ラインにはそれぞれ温度又は水質を検出するセンサーが設けられ、
前記制御手段は、各センサーの検出結果からドレン回収率を算出し、該ドレン回収率に基づいて前記目標薬注量を変更することを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 4,
A sensor for detecting temperature or water quality is provided in each of the water supply line and the water supply line for supplying makeup water to the water supply tank,
The chemical injection control apparatus, wherein the control means calculates a drain recovery rate from detection results of each sensor and changes the target chemical injection amount based on the drain recovery rate.
請求項1乃至4のいずれか1項において、
前記給水タンクに補給水を供給する補給水ラインに流量計が設けられ、
前記制御手段は、前記流量計の流量測定値の積算値と、前記給水流量測定手段の流量測定値の積算値とからドレン回収率を演算し、該ドレン回収率に基づいて前記目標薬注量を変更することを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 4,
A flow meter is provided in a makeup water line for supplying makeup water to the water tank,
The control means calculates a drain recovery rate from the integrated value of the flow rate measurement value of the flow meter and the integrated value of the flow rate measurement value of the feed water flow rate measuring means, and the target chemical injection amount based on the drain recovery rate A chemical injection control device characterized by changing the above.
請求項1乃至4のいずれか1項において、
前記給水ラインには第1電気伝導率計が設けられ、
前記ボイラは、第2電気伝導率計を内蔵し、該第2電気伝導率計の測定値が所定値以下となった場合に連続ブローラインの電磁弁を閉じ、該測定値が所定値以上となった場合に該電磁弁を開け、
前記制御手段は、該第1電気伝導率計の測定値及び該第2電気伝導率計の測定値から該ボイラの濃縮度を算出し、該濃縮度に基づいて前記目標薬注量を変更することを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 4,
The water supply line is provided with a first electrical conductivity meter,
The boiler incorporates a second conductivity meter, and when the measured value of the second conductivity meter becomes a predetermined value or less, the solenoid valve of the continuous blow line is closed, and the measured value becomes a predetermined value or more. When this happens, open the solenoid valve,
The control means calculates the concentration of the boiler from the measurement value of the first conductivity meter and the measurement value of the second conductivity meter, and changes the target chemical injection amount based on the concentration. A chemical injection control device characterized by that.
請求項1乃至8のいずれか1項において、
前記ボイラには電気伝導率計が内蔵されており、
前記制御手段は、該電気伝導率計の測定値が所定値以上となった場合、該測定値が該所定値未満となるまで前記目標薬注量を低下させることを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 8,
The boiler has a built-in electric conductivity meter,
The control means, when the measured value of the electric conductivity meter is equal to or greater than a predetermined value, reduces the target drug injection amount until the measured value becomes less than the predetermined value. .
請求項1乃至9のいずれか1項において、
前記薬品タンク、前記薬注ポンプ、及び前記薬液量計測手段はそれぞれ複数設けられ、
前記制御手段は、各薬注ポンプを個別に制御することを特徴とする薬品注入制御装置。
In any one of Claims 1 thru | or 9,
A plurality of the chemical tank, the chemical injection pump, and the chemical liquid amount measuring means are provided, respectively.
The said injection | pouring means controls each chemical injection pump separately, The chemical injection control apparatus characterized by the above-mentioned.
給水タンクからボイラに給水を供給するための給水ライン又は給水タンクに、薬品タンクに貯留されたボイラ水処理薬品を含有する薬液を注入する薬注ポンプを制御する薬品注入制御方法であって、
前記給水ラインを流れる給水流量を測定する工程と、
測定した給水流量に比例して前記薬注ポンプの吐出量を制御する工程と、
第1所定期間ごとに目標薬注量を変更する工程と、
前記第1所定期間当たりの給水流量と、該第1所定期間の目標薬注量とから該第1所定期間ごとの薬液使用量を求める工程と、
前記第1所定期間より長い第2所定期間における薬品タンク内薬液減少量を測定する工程と、
前記第2所定期間内の複数の第1所定期間に対応する前記薬液使用量を積算して、該第2所定期間における薬液減少想定量を求める工程と、
前記薬品タンク内薬液減少量と前記薬液減少想定量とを比較し、比較結果に基づいて前記薬注ポンプを制御する工程と、
を備える薬品注入制御方法。
A chemical injection control method for controlling a chemical injection pump for injecting a chemical solution containing a boiler water treatment chemical stored in a chemical tank into a water supply line or a water supply tank for supplying water to the boiler from a water supply tank,
Measuring a feed water flow rate flowing through the feed water line;
Controlling the discharge rate of the chemical injection pump in proportion to the measured feed water flow rate;
A step of changing the target dosage for each first predetermined period;
A step of obtaining a chemical solution usage amount for each first predetermined period from a feed water flow rate per the first predetermined period and a target chemical injection amount for the first predetermined period;
A step of measuring a chemical liquid decrease amount in a chemical tank in a second predetermined period longer than the first predetermined period;
Integrating the amount of chemical liquid used corresponding to a plurality of first predetermined periods within the second predetermined period to obtain an estimated amount of liquid chemical decrease in the second predetermined period;
A step of comparing the chemical liquid decrease amount in the chemical tank and the chemical liquid decrease estimated amount, and controlling the chemical injection pump based on a comparison result;
A chemical injection control method comprising:
JP2014109277A 2014-02-28 2014-05-27 Chemical injection control apparatus and method Expired - Fee Related JP5765467B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014109277A JP5765467B1 (en) 2014-05-27 2014-05-27 Chemical injection control apparatus and method
PCT/JP2015/055019 WO2015129618A1 (en) 2014-02-28 2015-02-23 Method and device for controlling charging of chemical into boiler
EP15754856.1A EP3112750A4 (en) 2014-02-28 2015-02-23 Method and device for controlling charging of chemical into boiler
US15/115,463 US10179743B2 (en) 2014-02-28 2015-02-23 Device and method for controlling chemical injection into boiler
TW104106329A TWI654395B (en) 2014-02-28 2015-02-26 Boiler medicine injection control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014109277A JP5765467B1 (en) 2014-05-27 2014-05-27 Chemical injection control apparatus and method

Publications (2)

Publication Number Publication Date
JP5765467B1 true JP5765467B1 (en) 2015-08-19
JP2015224815A JP2015224815A (en) 2015-12-14

Family

ID=53887988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109277A Expired - Fee Related JP5765467B1 (en) 2014-02-28 2014-05-27 Chemical injection control apparatus and method

Country Status (1)

Country Link
JP (1) JP5765467B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538591A (en) * 2022-01-12 2022-05-27 山东莱钢永锋钢铁有限公司 Method and device suitable for controlling pH value of sewage station pretreatment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515639B2 (en) * 2015-03-31 2019-05-22 栗田工業株式会社 Water treatment management device and method
JP6885461B2 (en) * 2017-05-16 2021-06-16 株式会社島津製作所 Analytical system and network system
JP6958449B2 (en) * 2018-03-19 2021-11-02 栗田工業株式会社 Boiler water concentration multiple measuring device
JP6874739B2 (en) * 2018-05-30 2021-05-19 栗田工業株式会社 Water treatment control monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538591A (en) * 2022-01-12 2022-05-27 山东莱钢永锋钢铁有限公司 Method and device suitable for controlling pH value of sewage station pretreatment

Also Published As

Publication number Publication date
JP2015224815A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
WO2015129618A1 (en) Method and device for controlling charging of chemical into boiler
JP5765467B1 (en) Chemical injection control apparatus and method
KR20100047194A (en) Method and apparatus for controlling chemical feeding in cooling water system
KR101949546B1 (en) Liquid mass measurement and fluid transmitting apparatus
US6840744B2 (en) Continuous liquid flow system
WO2016158512A1 (en) Water-treatment management apparatus and method
US20090112364A1 (en) Chemical treatment system and method
JP2012021713A (en) Closed drain system
JP5867527B2 (en) Boiler chemical injection control apparatus and method
JP2019529095A (en) Water treatment system and method
JP2009243805A (en) Injecting method of water treatment chemical
JP6076663B2 (en) Heat recovery apparatus and heat recovery method
JP2013234813A (en) Chemical feed system
JP6724458B2 (en) Chemical injection control method
CN110603091B (en) Improvements in or relating to propellant conditioning packs
TWI839163B (en) Substrate processing apparatus and substrate processing method
JP5158417B2 (en) Control method of oxygen absorber injection amount
JP7331472B2 (en) diagnostic equipment
JP7310334B2 (en) Maintenance management device
JP2019107600A (en) Solid chemical agent dissolution and supply device and solid chemical agent dissolution method
KR20140133013A (en) Evaporator for Chlorine and Chlorine Injection System
JP6385134B2 (en) Disinfectant feeding and atomizing equipment
JP7118057B2 (en) Cooling tower regulation method and system
JP2016144788A (en) Water treatment system
KR20160052904A (en) Chemical feed of fluid storage tank

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5765467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees