JP5762333B2 - Method for measuring the level in a continuous casting mold - Google Patents

Method for measuring the level in a continuous casting mold Download PDF

Info

Publication number
JP5762333B2
JP5762333B2 JP2012030512A JP2012030512A JP5762333B2 JP 5762333 B2 JP5762333 B2 JP 5762333B2 JP 2012030512 A JP2012030512 A JP 2012030512A JP 2012030512 A JP2012030512 A JP 2012030512A JP 5762333 B2 JP5762333 B2 JP 5762333B2
Authority
JP
Japan
Prior art keywords
mold
distance
molten metal
level
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012030512A
Other languages
Japanese (ja)
Other versions
JP2013166167A (en
Inventor
信貴 中川
信貴 中川
景続 森
景続 森
秀和 鍋内
秀和 鍋内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Texeng Co Ltd filed Critical Nippon Steel Corp
Priority to JP2012030512A priority Critical patent/JP5762333B2/en
Publication of JP2013166167A publication Critical patent/JP2013166167A/en
Application granted granted Critical
Publication of JP5762333B2 publication Critical patent/JP5762333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

本発明は、連続鋳造機の鋳型内の溶湯(例えば、溶鋼)の湯面レベルの測定方法に関する。   The present invention relates to a method for measuring the level of molten metal (for example, molten steel) in a mold of a continuous casting machine.

鋳造中、溶鋼の湯面が上下に変動すると、安定した鋳造ができないだけでなく、湯面に浮遊するスカムやパウダーが、溶鋼内に巻込まれ表面欠陥となったり、鋳片圧延後の割れの原因となるため、従来から連続鋳造機の鋳型内の溶鋼の湯面レベルを放射線式、熱電対式、又は、渦流式の測定機器(センサー)を使用して測定し、湯面レベルの制御が行われてきた。   If the molten steel surface fluctuates up and down during casting, not only stable casting cannot be performed, but also scum and powder floating on the molten steel are entrained in the molten steel, resulting in surface defects and cracks after slab rolling. For this reason, the level of molten steel in the mold of a continuous casting machine has been measured using a radiation type, thermocouple, or eddy current type measuring device (sensor). Has been done.

近年では、鋳片の表面品質に対する要求がますます厳しくなり、これに対処できるよう、測定精度及び応答性の点から、渦流式センサーが主に使用されている。   In recent years, demands on the surface quality of slabs have become increasingly severe, and eddy current sensors are mainly used from the viewpoint of measurement accuracy and responsiveness to cope with this.

一方、連続鋳造では、鋳片寸法、特に、鋳片幅を変更するために、鋳造途中で鋳型の短辺を動かして鋳型幅を変えることがある。渦流式センサーにおいては、鋳型短辺の壁面とセンサー間の距離が変わると、湯面とセンサー間の電圧特性が変化し、湯面レベルを正確に測定することができなくなる場合があった。   On the other hand, in continuous casting, in order to change the slab size, particularly the slab width, the mold width may be changed by moving the short side of the mold during casting. In the eddy current sensor, when the distance between the wall surface of the mold short side and the sensor changes, the voltage characteristic between the molten metal surface and the sensor changes, and the molten metal surface level may not be measured accurately.

このことを踏まえ、特許文献1には、鋳造開始前に、鋳型の影響を取り除く補正をした電圧特性を用いる湯面検出装置が開示されている。しかし、この湯面検出装置では、鋳造途中で鋳造幅を変更すると、変更途中、及び、変更後の湯面レベルを正確に測定することができない。   In view of this, Patent Document 1 discloses a molten metal level detection device that uses voltage characteristics corrected to remove the influence of the mold before the start of casting. However, in this molten metal level detection device, if the casting width is changed during casting, the molten metal level during and after the change cannot be accurately measured.

特許文献2には、予め、鋳造幅の変更に対応して電圧特性を設定しておき、変更があった場合にも、鋳造を中断せずに湯面レベルの計測を継続できる計測方法が開示されている。しかし、この計測方法では、予め設定した電圧特性テーブルしかもたないので、鋳造途中で、鋳造幅を変更すると、変更途中の湯面レベルを正確に計測することができない。   Patent Document 2 discloses a measurement method in which voltage characteristics are set in advance corresponding to a change in casting width, and even when there is a change, measurement of the molten metal surface level can be continued without interrupting casting. Has been. However, in this measuring method, since there is only a preset voltage characteristic table, if the casting width is changed during casting, it is not possible to accurately measure the molten metal surface level during the change.

このように、連鋳鋳型内の湯面レベルを渦流式センサーで測定する場合、鋳造途中で、鋳造幅の変更により鋳型壁面とセンサー間の距離が変化すると、湯面とセンサー間の電圧特性が変化し、変更途中の湯面レベルを精度よく測定することができなかった。   In this way, when the level of molten metal in the continuous casting mold is measured with an eddy current sensor, if the distance between the mold wall and the sensor changes due to a change in the casting width during casting, the voltage characteristics between the molten metal and the sensor will change. It changed and the hot water level in the middle of a change was not able to be measured accurately.

特開昭59−43316号公報JP 59-43316 A 特開平08−68682号公報Japanese Patent Application Laid-Open No. 08-68682

本発明は、連鋳鋳型内の湯面レベルを渦流式センサーで測定する場合における上記課題を踏まえ、鋳造途中で鋳造幅を変更した場合でも、湯面レベルを一定に保持して、高品質の鋳片を継続して鋳造するために、変更中の湯面レベルを精度よく測定する方法を提供することを目的とする。   The present invention is based on the above problem in measuring the molten metal level in a continuous casting mold with a eddy current sensor, and even when the casting width is changed during casting, the molten metal level is kept constant, and high quality is maintained. An object of the present invention is to provide a method for accurately measuring the level of a molten steel surface being changed in order to continuously cast a slab.

本発明者らは、上記課題を解決する手法について鋭意研究した結果、鋳型短辺と渦流式センサーの距離に基づいて、湯面と渦流式センサー間の電圧特性を適宜補正すれば、変更途中の湯面レベルも、精度良く測定できることを見いだした。   As a result of earnestly researching the method for solving the above problems, the present inventors have corrected the voltage characteristics between the molten metal surface and the eddy current sensor appropriately based on the distance between the mold short side and the eddy current sensor. We found that the hot water level can be measured with high accuracy.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)連続鋳造中の湯面レベルを鋳型内に固定した渦流式センサーで測定する方法において、
鋳型短辺からの影響を受けない位置における湯面と渦流式センサー間の電圧特性を基準とし、鋳型と渦流式センサーの距離に応じ、下記式で定義する電圧補正量ΔVで基準電圧特性を連続的に補正し、
補正した上記電圧特性に基づいて、湯面レベルを測定する
ことを特徴とする連続鋳造鋳型内の湯面レベル測定方法。
(1) In a method of measuring the level of molten metal during continuous casting with a vortex sensor fixed in a mold,
Based on the voltage characteristics between the molten metal surface and the eddy current sensor at a position that is not affected by the short side of the mold, the reference voltage characteristics are continuously applied with the voltage correction amount ΔV defined by the following formula according to the distance between the mold and the eddy current sensor. Correction,
A method for measuring a molten metal level in a continuous casting mold, wherein the molten metal surface level is measured based on the corrected voltage characteristics.

β≦X(L):ΔV=α(L)・(X(L)−β)
β>X(L):ΔV=0
α(L):渦流センサーと鋳型短辺との距離を横軸とし電圧を縦軸としてプロットし た際のセンサーと鋳型短辺との距離によって電圧が変化する領域のプロッ トの傾きから湯面レベル(L)毎に算出する補正係数
X(L):湯面と渦流式センサー間の電圧特性が影響を受けない、鋳型と渦流式セン
サー間の最小距離
β:鋳型と渦流式センサー間の距離
β ≦ X (L): ΔV = α (L) · (X (L) −β)
β> X (L): ΔV = 0
alpha (L): melt-surface from the plot of the slope of the region in which the voltage varies with the distance of the distance between the horizontal axis and the sensor when plotting voltage as a vertical axis and the mold short side of the eddy current sensor and the mold short side Correction coefficient to be calculated for each level (L) X (L): The voltage characteristics between the molten metal surface and the eddy current sensor are not affected.
Minimum distance between sir β: Distance between mold and vortex sensor

本発明によれば、連続鋳造中に、鋳型幅を変更して渦流式湯面センサーと鋳型短辺との距離に変化があっても、鋳型内の湯面レベルを、継続して精度良く計測し、鋳造作業を中断することなく、高品質の鋳片を継続して鋳造することができる。   According to the present invention, even during continuous casting, even if there is a change in the distance between the vortex-type hot-water surface sensor and the mold short side by changing the mold width, the hot-water surface level in the mold is continuously and accurately measured. Thus, high quality slabs can be continuously cast without interrupting the casting operation.

溶鋼の連続鋳造の一態様を示す図である。It is a figure which shows the one aspect | mode of the continuous casting of molten steel. 湯面−センサー間の距離が130mmの場合における鋳型短辺−渦流センサー間の距離と発生電圧との関係を示す図である。It is a figure which shows the relationship between the distance between a mold short side-vortex sensor, and a generated voltage in case the distance between a molten metal surface and a sensor is 130 mm. 従来制御方法と本発明制御方法の結果を対比して示す図である。(a)は、従来制御方法(電圧補正なし)を示し、(b)は、本発明制御方法(電圧補正あり)を示す。It is a figure which compares and shows the result of the conventional control method and this invention control method. (A) shows the conventional control method (without voltage correction), and (b) shows the control method of the present invention (with voltage correction).

本発明について、図面に基づいて説明する。   The present invention will be described with reference to the drawings.

図1に、溶鋼の連続鋳造の一態様を示す。鋳型1内には、タンディッシュ3から浸漬ノズル2で、溶鋼4が供給される。鋳造中、溶鋼4の湯面5が上下に変動すると、湯面5に浮遊するスカムやパウダーが、溶鋼内に巻込まれ表面欠陥となったり、鋳片圧延後の割れの原因となるので、鋳造中、湯面5のレベルを一定に保持する必要がある。   In FIG. 1, the one aspect | mode of the continuous casting of molten steel is shown. In the mold 1, molten steel 4 is supplied from the tundish 3 with the immersion nozzle 2. If the molten metal surface 5 of the molten steel 4 fluctuates up and down during casting, the scum or powder floating on the molten metal surface 5 is caught in the molten steel and causes surface defects or cracks after slab rolling. It is necessary to keep the level of the hot water surface 5 constant.

そのため、湯面5のレベルを、鋳型1の内側に固定した渦流式センサー6で測定し、制御装置9で、湯面5のレベルが常に一定になるように、スライディグノズル7及び/又はストッパーノズル8の開度を制御する。   Therefore, the level of the molten metal surface 5 is measured by the eddy current type sensor 6 fixed inside the mold 1, and the sliding nozzle 7 and / or the stopper is used by the control device 9 so that the level of the molten metal surface 5 is always constant. The opening degree of the nozzle 8 is controlled.

しかし、渦流式センサーの場合、鋳造中に鋳型幅を変更して鋳型短辺と渦流式センサーとの距離が変化すると、鋳型と渦流式センサー間の磁界が変化するため、湯面と渦流式センサー間の電圧特性が変化して、湯面レベルを正確に測定することができない。   However, in the case of the eddy current sensor, if the mold width is changed during casting and the distance between the short side of the mold and the eddy current sensor changes, the magnetic field between the mold and the eddy current sensor changes. The voltage characteristics between them change, and the molten metal level cannot be measured accurately.

それ故、鋳造途中で鋳造幅を変更する必要がある場合、鋳造作業を中断して、渦流式センサーの電圧特性を設定し直す必要があった。鋳造作業の中断は、作業効率の低下を招いていた。   Therefore, when it is necessary to change the casting width during casting, it is necessary to interrupt the casting operation and reset the voltage characteristics of the eddy current sensor. The interruption of the casting operation has led to a decrease in work efficiency.

そこで、本発明者らは、鋳造幅を変更する場合でも、鋳型短辺と渦流式センサーの距離に基づいて、湯面と渦流式センサー間の電圧特性を補正すれば、湯面レベルを精度よく計測できると発想した。   Therefore, even when the casting width is changed, the present inventors can accurately adjust the molten metal surface level by correcting the voltage characteristics between the molten metal surface and the eddy current sensor based on the distance between the mold short side and the eddy current sensor. I thought I could measure it.

本発明者らは、鋳造幅の変更、即ち鋳型短辺と渦流式センサーの距離の変化が、湯面と渦流式センサー間の電圧特性に及ぼす影響を、以下の方法で測定して定量化した。   The inventors measured and quantified the influence of the change in casting width, that is, the change in the distance between the mold short side and the eddy current sensor, on the voltage characteristics between the molten metal surface and the eddy current sensor by the following method. .

まず、鋳造をしていないオフラインの状態で、渦流式センサーを鋳型内の所定の位置に設置し、鉄板等の模擬湯面板を用いて、センサーと模擬湯面板との距離を変えて発生電圧を測定し、湯面−センサー間の電圧特性テーブルを作成する。この測定を、鋳型幅を変えて、即ち、渦流式センサーと鋳型短辺との距離を変えて行い、鋳型幅別(渦流式センサーと鋳型短辺との距離別)の電圧特性テーブルを作成する。   First, in an offline state where casting is not performed, the eddy current sensor is installed at a predetermined position in the mold, and the generated voltage is changed by changing the distance between the sensor and the simulated molten metal plate using a simulated molten metal plate such as an iron plate. Measure and create a voltage characteristic table between the molten metal surface and the sensor. This measurement is performed by changing the mold width, that is, by changing the distance between the eddy current sensor and the mold short side, and creating a voltage characteristic table for each mold width (by the distance between the eddy current sensor and the mold short side). .

渦流式センサーと鋳型短辺の距離が十分に離れると、それ距離が離れても電圧特性が変化しないようになる。これを、基準テーブル(鋳型短辺からの影響を受けない鋳造幅における電圧特性テーブル)とする。   If the distance between the eddy current sensor and the short side of the mold is sufficiently large, the voltage characteristics will not change even if the distance is long. This is used as a reference table (voltage characteristic table in the casting width not affected by the mold short side).

作成した各電圧特性テーブルから同一湯面レベルの電圧データを渦流式センサーと鋳型短辺との距離を横軸としてプロットして、センサーと鋳型短辺との距離によって電圧が変化する領域のプロットの傾きを補正係数α(L)として求める。   Plot the voltage data of the same molten metal level from each voltage characteristic table created with the distance between the eddy current sensor and the mold short side as the horizontal axis, and plot the area where the voltage changes depending on the distance between the sensor and the mold short side. The inclination is obtained as a correction coefficient α (L).

また、センサーと鋳型短辺との距離によって電圧が変化しない領域の鋳型と渦流式センサー間の最小距離X(L)を求める。   Further, the minimum distance X (L) between the mold and the eddy current sensor in the region where the voltage does not change depending on the distance between the sensor and the mold short side is obtained.

図2に、測定結果の一例を示す。湯面−センサー間の距離が130mmの場合における鋳型短辺−渦流センサー間の距離と発生電圧との関係を示す。   FIG. 2 shows an example of the measurement result. The relationship between the distance between the mold short side and the eddy current sensor and the generated voltage when the distance between the molten metal surface and the sensor is 130 mm is shown.

図2に示すように、湯面−センサー間の距離が130mmの場合、鋳型短辺とセンサーの距離が250mm以上では電圧は変わらず、250mm以下では距離が短くなるほど、発生電圧が高くなり、その傾きは0.0002であった。この場合、α(130)=0.0002、X(130)=250mmとなる。   As shown in FIG. 2, when the distance between the molten metal surface and the sensor is 130 mm, the voltage does not change when the distance between the short side of the mold and the sensor is 250 mm or more, and when the distance is 250 mm or less, the generated voltage increases as the distance decreases. The slope was 0.0002. In this case, α (130) = 0.0002 and X (130) = 250 mm.

湯面−センサー間の距離が遠いほど、発生電圧が小さくなるので、鋳型からの影響が大きくなる。それ故、湯面レベルを正確に測定しようとする場合、発生電圧から鋳型の影響分を取り除く補正が必要となるのである。   The longer the distance between the hot water surface and the sensor, the smaller the generated voltage, and the greater the influence from the mold. Therefore, in order to accurately measure the molten metal surface level, it is necessary to make a correction for removing the influence of the mold from the generated voltage.

このように、渦流式センサーと鋳型短辺間の距離の一次関数として電圧特性が変化し、かつ、その距離が一定値以上となると、電圧特性は、鋳型短辺からの影響を受けなくなることが解る。この点も、本発明の基礎をなす知見である。   Thus, when the voltage characteristic changes as a linear function of the distance between the eddy current sensor and the mold short side, and the distance exceeds a certain value, the voltage characteristic may not be affected by the mold short side. I understand. This point is also the knowledge forming the basis of the present invention.

以上のようにして、湯面−センサー間の距離(湯面レベル)毎に補正係数α(L)と最小距離X(L)を求める。   As described above, the correction coefficient α (L) and the minimum distance X (L) are obtained for each distance between the molten metal surface and the sensor (water surface level).

本発明者らは、以上のことを前提に、鋳型短辺の影響を定量化し、湯面−センサー間の電圧特性を補正する下記式を設定した。この点が、本発明の特徴である。   Based on the above assumption, the present inventors have quantified the influence of the short side of the mold and set the following equation for correcting the voltage characteristics between the molten metal surface and the sensor. This is a feature of the present invention.

β≦X(L)の場合:電圧補正量ΔV=α(L)・(X(L)−β)
β>X(L)の場合:電圧補正量ΔV=0
α(L):渦流センサーと鋳型短辺との距離を横軸とし電圧を縦軸としてプロットし た際のセンサーと鋳型短辺との距離によって電圧が変化する領域のプロッ トの傾きから湯面レベル(L)毎に算出する補正係数
X(L):湯面−センサー間の距離に応じた、鋳型短辺からの影響を受けない鋳型短 辺と渦流式センサー間の最小距離
β:鋳型と渦流式センサー間の距離
When β ≦ X (L): Voltage correction amount ΔV = α (L) · (X (L) −β)
When β> X (L): voltage correction amount ΔV = 0
alpha (L): melt-surface from the plot of the slope of the region in which the voltage varies with the distance of the distance between the horizontal axis and the sensor when plotting voltage as a vertical axis and the mold short side of the eddy current sensor and the mold short side Correction coefficient calculated for each level (L) X (L): Minimum distance between the mold short side and the eddy current sensor that is not affected by the mold short side according to the distance between the molten metal surface and the sensor. Distance between eddy current sensors

このようにして求められる電圧補正量ΔVを基に、センサーと鋳型短辺との距離ごとに、電圧と湯面レベルの関係を求めておき、鋳造時には、該当するセンサーと鋳型短辺との距離に応じた電圧と湯面レベルの関係から湯面レベルを算出し制御を行う。   Based on the voltage correction amount ΔV obtained in this way, the relationship between the voltage and the molten metal surface level is obtained for each distance between the sensor and the mold short side, and at the time of casting, the distance between the corresponding sensor and the mold short side. The hot water level is calculated from the relationship between the voltage and the hot water level according to the control, and control is performed.

鋳造途中で鋳型幅を変更して、センサーと鋳型短辺の距離が変わる場合には、予め求めておいた距離に応じた電圧と湯面レベルの関係から、又は、逐次電圧補正量ΔVを算出して補正することで、湯面レベルを精度よく算出して制御することができる。   When the mold width is changed during casting and the distance between the sensor and the mold short side changes, the voltage correction amount ΔV is calculated from the relationship between the voltage and the molten metal surface level corresponding to the distance obtained in advance. Thus, the hot water level can be accurately calculated and controlled.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
鋳型厚:250mm、鋳型幅:1100mmの鋳型を用いて溶鋼を連続鋳造した。鋳造途中で鋳型幅を950mmまで変更した。センサーと鋳型との距離は鋳型幅1100mmとき300mm、鋳型幅950mmのとき225mmであった。また、鋳型短辺の影響を受けない湯面―センサー間の電圧特性の基準テーブルは表1の通りである。
(Example)
Molten steel was continuously cast using a mold having a mold thickness of 250 mm and a mold width of 1100 mm. During casting, the mold width was changed to 950 mm. The distance between the sensor and the mold was 300 mm when the mold width was 1100 mm, and 225 mm when the mold width was 950 mm. Table 1 shows a reference table of the voltage characteristics between the molten metal surface and the sensor, which is not affected by the mold short side.

このとき、表2に示すα(L)、X(L)を用いて湯面-センサー間の電圧特性テーブルを補正して測定した湯面レベルと、湯面-センサー間の電圧特性テーブルを補正せずに測定した湯面レベルとを比較した。なお、湯面レベルは、熱電対でも測定した。   At this time, the molten metal surface level measured by correcting the molten metal surface-sensor voltage characteristic table using α (L) and X (L) shown in Table 2 and the molten metal surface-sensor voltage characteristic table are corrected. The hot water level measured without the comparison was compared. The hot water level was also measured with a thermocouple.

その結果を、図3に示す。鋳造開始から150秒経過後、鋳型幅を1100mmから縮小していき、350秒経過後に鋳型幅を950mmとした。渦流式センサーが検知した発生電圧に、本発明による上記補正を施さない場合、測定した湯面レベルは、熱電対で測定した湯面レベルと大きく乖離していることが解る。   The result is shown in FIG. After 150 seconds from the start of casting, the mold width was reduced from 1100 mm, and after 350 seconds, the mold width was set to 950 mm. When the above-described correction according to the present invention is not applied to the generated voltage detected by the eddy current sensor, it can be understood that the measured molten metal level is greatly deviated from the molten metal level measured by the thermocouple.

一方、渦流式センサーが検知した発生電圧に、本発明による補正を施した場合、測定した湯面レベルは、熱電対で測定した湯面レベルと一致している。   On the other hand, when the correction according to the present invention is applied to the generated voltage detected by the eddy current sensor, the measured hot water surface level coincides with the hot water surface level measured by the thermocouple.

このように、本発明によれば、鋳型幅を、鋳造途中で変更しても、湯面レベルを正確に測定することができ、鋳造作業を中断することなく、高品質の鋳片を継続して鋳造することができる。   Thus, according to the present invention, even if the mold width is changed during casting, the molten metal surface level can be accurately measured, and high quality slabs can be continued without interrupting the casting operation. Can be cast.

前述したように、本発明によれば、溶鋼の連続鋳造中に、鋳造幅に変化があっても、鋳型内の湯面レベルを、継続して精度良く計測し、鋳造作業を中断することなく、高品質の鋳片を継続して鋳造することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, even if there is a change in the casting width during continuous casting of molten steel, the molten metal level in the mold is continuously measured with high accuracy without interrupting the casting operation. High quality slabs can be continuously cast. Therefore, the present invention has high applicability in the steel industry.

1 鋳型
2 浸漬ノズル
3 タンディッシュ
4 溶鋼
4a 凝固殻
5 湯面
6 渦流式センサー
7 スライディグノズル
8 ストッパーノズル
9 制御装置
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Tundish 4 Molten steel 4a Solidified shell 5 Molten surface 6 Eddy current sensor 7 Sliding nozzle 8 Stopper nozzle 9 Control device

Claims (1)

連続鋳造中の湯面レベルを鋳型内に固定した渦流式センサーで測定する方法において、 鋳型短辺からの影響を受けない位置における湯面と渦流式センサー間の電圧特性を基準とし、鋳型と渦流式センサーの距離に応じ、下記式で定義する電圧補正量ΔVで基準電圧特性を連続的に補正し、
補正した上記電圧特性に基づいて、湯面レベルを測定する
ことを特徴とする連続鋳造鋳型内の湯面レベル測定方法。
β≦X(L):ΔV=α(L)・(X(L)−β)
β>X(L):ΔV=0
α(L):渦流センサーと鋳型短辺との距離を横軸とし電圧を縦軸としてプロットし た際のセンサーと鋳型短辺との距離によって電圧が変化する領域のプロッ トの傾きから湯面レベル(L)毎に算出する補正係数
X(L):湯面と渦流式センサー間の電圧特性が影響を受けない、鋳型と渦流式セン
サー間の最小距離
β:鋳型と渦流式センサー間の距離
In the method of measuring the level of molten metal during continuous casting with a vortex sensor fixed in the mold, the voltage characteristics between the mold surface and the vortex sensor at the position not affected by the short side of the mold are used as a reference. According to the distance of the sensor, the reference voltage characteristic is continuously corrected with the voltage correction amount ΔV defined by the following equation,
A method for measuring a molten metal level in a continuous casting mold, wherein the molten metal surface level is measured based on the corrected voltage characteristics.
β ≦ X (L): ΔV = α (L) · (X (L) −β)
β> X (L): ΔV = 0
alpha (L): melt-surface from the plot of the slope of the region in which the voltage varies with the distance of the distance between the horizontal axis and the sensor when plotting voltage as a vertical axis and the mold short side of the eddy current sensor and the mold short side Correction coefficient to be calculated for each level (L) X (L): The voltage characteristics between the molten metal surface and the eddy current sensor are not affected.
Minimum distance between sir β: Distance between mold and vortex sensor
JP2012030512A 2012-02-15 2012-02-15 Method for measuring the level in a continuous casting mold Active JP5762333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030512A JP5762333B2 (en) 2012-02-15 2012-02-15 Method for measuring the level in a continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030512A JP5762333B2 (en) 2012-02-15 2012-02-15 Method for measuring the level in a continuous casting mold

Publications (2)

Publication Number Publication Date
JP2013166167A JP2013166167A (en) 2013-08-29
JP5762333B2 true JP5762333B2 (en) 2015-08-12

Family

ID=49177041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030512A Active JP5762333B2 (en) 2012-02-15 2012-02-15 Method for measuring the level in a continuous casting mold

Country Status (1)

Country Link
JP (1) JP5762333B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782202B1 (en) * 2014-08-01 2015-09-24 株式会社ニレコ Eddy current mold level measuring apparatus and mold level measuring method
KR101896203B1 (en) * 2014-10-15 2018-09-07 신닛테츠스미킨 카부시키카이샤 Device, method, and computer readable storage medium for detecting molten-metal surface level in continuous casting mold

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847549A (en) * 1981-09-14 1983-03-19 Sumitomo Heavy Ind Ltd Measuring device for level of molten steel
JPS63215356A (en) * 1987-03-02 1988-09-07 Sumitomo Metal Ind Ltd Apparatus for controlling continuous casting
JPH0868682A (en) * 1994-08-31 1996-03-12 Nippon Steel Corp Molten metal level measuring method for twin belt continuous casting machine
JPH08122127A (en) * 1994-10-27 1996-05-17 Nippon Steel Corp Electromagnetic molding-level detector
JP4585709B2 (en) * 2001-05-02 2010-11-24 株式会社日鉄エレックス Simple calibration method for electromagnetic molten steel level detector

Also Published As

Publication number Publication date
JP2013166167A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
CN110961590B (en) Molten steel superheat degree-based automatic submerged nozzle slag line control method
JPWO2013094194A1 (en) Slab temperature estimation method in continuous casting, solidification completion state estimation method of slab, and continuous casting method
JP5762333B2 (en) Method for measuring the level in a continuous casting mold
JP2008213014A (en) Method for controlling shape thickness of strip
JP6354673B2 (en) Steel continuous casting method
JP5741213B2 (en) Continuous casting method
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
JP2004034090A (en) Continuous casting method for steel
JP2011131268A (en) Method for regulating casting slab weight
JP2007253170A (en) Method and device for controlling molten metal surface level in mold for continuous casting machine
JP6015914B2 (en) Beam blank casting slab continuous casting mold design method
KR101277701B1 (en) Device for controlling level of molten steel in mold and method therefor
JP6079670B2 (en) Breakout prediction method in continuous casting equipment.
JP5347402B2 (en) Method for level control in mold of continuous casting machine
JP4572685B2 (en) Twin roll casting machine
JP6428418B2 (en) Drift detection method and drift control method in continuous casting mold, molten metal level fluctuation detection method and molten metal level fluctuation control method, drift current detection device, molten metal level fluctuation detection device, and program
JP4499016B2 (en) Slab continuous casting method
JP6428419B2 (en) Method, apparatus and program for controlling flow rate of molten steel in continuous casting mold
JP6531618B2 (en) Low pass filter design method
JP2006088212A (en) Method for controlling molten metal surface level in continuous casting
JP6427945B2 (en) Bloom continuous casting method
KR101819342B1 (en) Apparatus and Method for Stabilizing mold level variation
KR100544658B1 (en) Control method for mold taper of short side plate in continuous casting of slab
JP6094368B2 (en) Continuous casting slab and continuous casting method
JP6107436B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250