JP5757102B2 - Internal defect detection method for forged products - Google Patents

Internal defect detection method for forged products Download PDF

Info

Publication number
JP5757102B2
JP5757102B2 JP2011033358A JP2011033358A JP5757102B2 JP 5757102 B2 JP5757102 B2 JP 5757102B2 JP 2011033358 A JP2011033358 A JP 2011033358A JP 2011033358 A JP2011033358 A JP 2011033358A JP 5757102 B2 JP5757102 B2 JP 5757102B2
Authority
JP
Japan
Prior art keywords
forged product
hub
ultrasonic flaw
probe
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011033358A
Other languages
Japanese (ja)
Other versions
JP2012173046A (en
Inventor
宮坂 孝範
孝範 宮坂
武藤 泰之
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011033358A priority Critical patent/JP5757102B2/en
Publication of JP2012173046A publication Critical patent/JP2012173046A/en
Application granted granted Critical
Publication of JP5757102B2 publication Critical patent/JP5757102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、鍛造品の内部欠陥検出方法に関し、より詳細には、自動車用ハブ軸受のハブなど、段付き部を有する冷間鍛造軸受部材の内部欠陥検出方法に関する。   The present invention relates to a method for detecting an internal defect in a forged product, and more particularly to a method for detecting an internal defect in a cold forged bearing member having a stepped portion such as a hub of an automobile hub bearing.

自動車用ハブ軸受のハブなど、段付き部を有する冷間鍛造軸受部材は、加工条件などによって、その中心軸を起点とした円錐状の割れである材料内部欠陥(シェブロンクラック)が発生することがある。このため、内部欠陥が生じにくい材料の開発及び加工条件の選定など、様々な対策が講じられている。   Cold forged bearing members having a stepped portion such as a hub of an automobile hub bearing may have a material internal defect (chevron crack) that is a conical crack starting from the central axis depending on processing conditions. is there. For this reason, various measures have been taken, such as the development of materials that are less prone to internal defects and the selection of processing conditions.

また、内部欠陥は部材の外部からは観察することができないため、超音波探傷法を用いて内部欠陥の有無を検査するのが一般的である。例えば、特許文献1に記載の超音波探傷法では、円筒形状の被検査物に対して主に径方向から超音波を入射して探傷を行っている。   In addition, since internal defects cannot be observed from the outside of the member, it is common to inspect the presence or absence of internal defects using an ultrasonic flaw detection method. For example, in the ultrasonic flaw detection method described in Patent Document 1, flaw detection is performed by injecting ultrasonic waves mainly into the cylindrical inspection object from the radial direction.

特公平5−85023号公報Japanese Patent Publication No. 5-85023

しかしながら、特許文献1に記載の技術は、単純な円筒形状の被検査物を対象にしたものであり、より複雑な鍛造後の製品形状を対象としたものではない。特に、上述の内部欠陥は冷間鍛造時に発生し易いため、超音波探傷は鍛造後の製品形状で行うことが望ましい。   However, the technique described in Patent Document 1 is intended for a simple cylindrical object to be inspected, and is not intended for a more complicated product shape after forging. In particular, since the above-mentioned internal defects are likely to occur during cold forging, it is desirable to perform ultrasonic flaw detection on the product shape after forging.

また、特許文献1に記載の技術を、段付き部などを含む複雑な形状の鍛造品に適用し、該鍛造品の外径面の径方向から超音波探傷すると、段付き部などで超音波が乱反射して高い探傷精度が得難い、という問題があった。   Further, when the technique described in Patent Document 1 is applied to a forged product having a complicated shape including a stepped portion and ultrasonic inspection is performed from the radial direction of the outer diameter surface of the forged product, ultrasonic waves are generated at the stepped portion and the like. There is a problem that it is difficult to obtain high flaw detection accuracy due to irregular reflection.

本発明は上述した課題を鑑みてなされたものであり、段付き部を有する鍛造品について、内部欠陥の探傷精度を高めることができる、鍛造品の内部欠陥検出方法に関する。   This invention is made | formed in view of the subject mentioned above, and relates to the internal defect detection method of a forged product which can raise the flaw detection accuracy of an internal defect about the forged product which has a step part.

本発明の上記目的は、下記の構成により達成される。
(1) 断面積の異なる少なくとも2つの軸部が接続し、且つ軸方向一端側に向かうに従い前記軸部の外径が大きくなる段付き部と、フランジ部と、を有するハブ軸受用の鍛造品を用い、
前記鍛造品と超音波探傷用探触子とを超音波伝達媒体中に配置し、超音波探傷によって前記鍛造品の内部欠陥を検出する鍛造品の内部欠陥検出方法であって、
前記超音波探傷用探触子は、前記鍛造品の段付き部と軸方向で対向するように、前記鍛造品の軸方向他端側に配置され、
前記鍛造品と前記超音波探傷用探触子との離間距離を維持した状態で、前記鍛造品を回転させつつ、前記軸方向に対して垂直な方向であるX方向に前記超音波探傷用探触子を変位させながら超音波探傷を行い、又は、前記軸方向及び前記X方向に垂直な方向をY方向としたとき、前記鍛造品と前記超音波探傷用探触子との離間距離を維持した状態で、前記X方向及び前記Y方向の両方向に前記超音波探傷用探触子を変位させながら超音波探傷を行うことを特徴とする鍛造品の内部欠陥検出方法。
(2) 前記鍛造品は、全浸しないように、前記段付き部の軸方向他端側から前記超音波伝達媒体中に浸漬されることを特徴とする(1)に記載の鍛造品の内部欠陥検出方法。
The above object of the present invention can be achieved by the following constitution.
(1) A forged product for a hub bearing having a stepped portion in which at least two shaft portions having different cross-sectional areas are connected and the outer diameter of the shaft portion increases toward one end in the axial direction, and a flange portion. Use
The forged product and the ultrasonic flaw detection probe are arranged in an ultrasonic transmission medium, and the internal defect detection method of the forged product detects the internal defect of the forged product by ultrasonic flaw detection,
The ultrasonic flaw detection probe is disposed on the other end side in the axial direction of the forged product so as to face the stepped portion of the forged product in the axial direction,
While maintaining the distance between the forged product and the ultrasonic flaw detector, the ultrasonic flaw detection probe is rotated in the X direction that is perpendicular to the axial direction while rotating the forged product. Perform ultrasonic testing while displacing the probe, or maintain the distance between the forged product and the ultrasonic testing probe when the direction perpendicular to the axial direction and the X direction is the Y direction. A method for detecting an internal defect in a forged product, wherein ultrasonic flaw detection is performed while displacing the ultrasonic flaw detection probe in both the X direction and the Y direction .
(2) The interior of the forged product according to (1), wherein the forged product is immersed in the ultrasonic transmission medium from the other axial end side of the stepped portion so as not to be completely immersed. Defect detection method.

本発明の鍛造品の内部欠陥検出方法によれば、超音波探傷用探触子は、鍛造品の段付き部と軸方向で対向するように、鍛造品の軸方向他端側に配置されるので、鍛造品は段付き部の最小径の軸部側から軸方向に超音波探傷される。したがって、段付き部における超音波の乱反射を防ぐことができ、探傷精度を維持することができる。   According to the internal defect detection method for a forged product of the present invention, the ultrasonic flaw detection probe is disposed on the other axial end side of the forged product so as to face the stepped portion of the forged product in the axial direction. Therefore, the forged product is subjected to ultrasonic flaw detection in the axial direction from the minimum diameter shaft portion side of the stepped portion. Therefore, the irregular reflection of the ultrasonic wave at the stepped portion can be prevented, and the flaw detection accuracy can be maintained.

また、鍛造品を超音波伝達媒体中に全浸せずに、一部のみ浸漬するようにしたため、鍛造品を超音波伝達媒体中に出し入れするセット時間が短縮できる。また、超音波探傷検査後、鍛造品に付着した超音波伝達媒体を除去する時間を短縮することができる。したがって、検査時間及び検査コストの低減が図れる。
さらに、鍛造品を超音波伝達媒体中に全浸する場合に比べ、超音波伝達媒体中に空気や不純物等が混入することを減少させることができる。
In addition, since the forged product is partially immersed without being completely immersed in the ultrasonic transmission medium, the set time for taking the forged product into and out of the ultrasonic transmission medium can be shortened. Moreover, the time for removing the ultrasonic transmission medium attached to the forged product after the ultrasonic flaw detection inspection can be shortened. Therefore, the inspection time and inspection cost can be reduced.
Furthermore, compared with the case where the forged product is fully immersed in the ultrasonic transmission medium, it is possible to reduce the mixing of air, impurities, and the like into the ultrasonic transmission medium.

第1実施形態に係る鍛造品の内部欠陥検出方法に使用する超音波探傷装置の概略図である。It is the schematic of the ultrasonic flaw detector used for the internal defect detection method of the forged product which concerns on 1st Embodiment. 第2実施形態に係る鍛造品の内部欠陥検出方法に使用する超音波探傷装置の概略図である。It is the schematic of the ultrasonic flaw detector used for the internal defect detection method of the forged product which concerns on 2nd Embodiment. 図2の斜視図である。FIG. 3 is a perspective view of FIG. 2.

以下、本発明の各実施形態に係る鍛造品の内部欠陥検出方法を、図面に基づいて詳細に説明する。   Hereinafter, the internal defect detection method of a forged product according to each embodiment of the present invention will be described in detail based on the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係る鍛造品の内部欠陥検出方法に使用する超音波探傷装置1の概略図である。
(First embodiment)
FIG. 1 is a schematic diagram of an ultrasonic flaw detector 1 used in a method for detecting an internal defect in a forged product according to a first embodiment of the present invention.

なお、本実施形態では、内部欠陥検出対象の鍛造品として、冷間鍛造成形品の自動車用ハブ軸受のハブ20を用いる。このハブ20は、3つの略円柱状の軸部22a,22b,22cが接続し、且つ軸方向一端側(図1中におけるZ軸方向)に向かうに従いこれら軸部22a,22b,22cの外径が大きくなる段付き部22と、段付き部22の軸方向一端面に接続し、且つ段付き部22よりも大径のフランジ部24と、フランジ部24の軸方向一端面から軸方向に突出し、フランジ部24よりも小径の突出部26と、を有している。   In the present embodiment, a hub 20 of a cold forged molded automobile hub bearing is used as a forged product for detecting internal defects. The hub 20 has three substantially cylindrical shaft portions 22a, 22b, and 22c connected to each other, and the outer diameters of the shaft portions 22a, 22b, and 22c are increased toward one end in the axial direction (the Z-axis direction in FIG. 1). Is connected to one end surface in the axial direction of the stepped portion 22, and has a larger diameter than the stepped portion 22, and protrudes in the axial direction from one end surface in the axial direction of the flange portion 24. , And a protruding portion 26 having a smaller diameter than the flange portion 24.

この超音波探傷装置1は、略平面の台15の上面に載置され、且つ内部に超音波伝達媒体である水を貯留した水槽10と、ハブ20を保持し、且つ台15に対して円周方向に回転可能なハブ保持部30と、超音波探傷用探触子40(以下、探触子と呼ぶ)を保持し、且つX方向に位置調整可能な位置調整機構50と、から構成される。   This ultrasonic flaw detector 1 is placed on the upper surface of a substantially flat table 15, holds a water tank 10 in which water as an ultrasonic transmission medium is stored, a hub 20, and is circular with respect to the table 15. A hub holding portion 30 that can rotate in the circumferential direction, and a position adjustment mechanism 50 that holds an ultrasonic flaw detection probe 40 (hereinafter referred to as a probe) and can be adjusted in the X direction. The

ハブ保持部30は、水槽10に対して回転自在に支持される基部32と、ハブ20の突出部26を収容する収容部33を備える回転盤34と、を有し、回転盤34は、ハブ20を水槽10内で保持しながら図示しない駆動機構によって回転駆動される。   The hub holding portion 30 includes a base portion 32 that is rotatably supported with respect to the water tank 10, and a turntable 34 that includes a housing portion 33 that houses the protruding portion 26 of the hub 20. While being held in the water tank 10, it is rotationally driven by a drive mechanism (not shown).

位置調整機構50は、ハブ保持部30の軸方向他端側に離間して設けられた探触子保持部52を有しており、探触子保持部52は探触子40を保持しながらX方向に変位可能な機構を備えている。   The position adjustment mechanism 50 has a probe holding portion 52 that is provided on the other end side in the axial direction of the hub holding portion 30, and the probe holding portion 52 holds the probe 40. A mechanism displaceable in the X direction is provided.

このように構成された超音波探傷装置1を用いて超音波探傷検査を行う方法を以下説明する。   A method for performing an ultrasonic flaw inspection using the ultrasonic flaw detection apparatus 1 configured as described above will be described below.

先ず、ハブ20を水槽10の水中に全浸し、ハブ20の突出部26が軸方向一端側を向くように、ハブ保持部30の回転盤34の収容部33に収容して固定する。そして、回転盤34を回転駆動することによって、ハブ20は回転盤34とともに所定速度で回転する。   First, the hub 20 is fully immersed in the water of the water tank 10, and is accommodated and fixed in the accommodating portion 33 of the rotating disk 34 of the hub holding portion 30 so that the protruding portion 26 of the hub 20 faces one end in the axial direction. Then, by rotating the rotating disk 34, the hub 20 rotates at a predetermined speed together with the rotating disk 34.

次いで、探触子40は、位置調整機構50によって移動され、その先端がハブ20の段付き部22の最小径の軸部22aと軸方向で対向し、ハブ20の中心軸と探触子40の中心軸とが一致するようにX方向の位置が設定される。また、探触子40はハブ20の軸方向他端側に所定の距離だけ離間して配置され、探触子40の先端部は水槽10の水中に浸漬される。   Next, the probe 40 is moved by the position adjusting mechanism 50, and the tip thereof is opposed to the shaft portion 22 a having the smallest diameter of the stepped portion 22 of the hub 20 in the axial direction. The position in the X direction is set so that the central axis coincides. Further, the probe 40 is disposed at a predetermined distance apart from the other axial end of the hub 20, and the tip of the probe 40 is immersed in the water of the water tank 10.

そして、探触子40に所定の大きさの電圧を印加することにより、探触子40からハブ20の軸方向他端側面に向けて、電圧の大きさに応じた出力の超音波を送波する。そして、エコーをこの探触子40により受波し、電圧信号に変換しハブ20の内部欠陥の有無を検出する。   Then, by applying a voltage having a predetermined magnitude to the probe 40, an ultrasonic wave having an output corresponding to the magnitude of the voltage is transmitted from the probe 40 toward the other axial end surface of the hub 20. To do. The echo is received by the probe 40, converted into a voltage signal, and the presence or absence of an internal defect in the hub 20 is detected.

本実施形態の場合には、このような超音波探傷を、ハブ20を回転盤34によって所定速度で回転させつつ、探触子40をハブ20との離間距離を維持しながらX軸方向に一軸変位させて行う(走査する)。   In the case of the present embodiment, such ultrasonic flaw detection is performed uniaxially in the X-axis direction while maintaining the separation distance from the hub 20 while rotating the hub 20 at a predetermined speed by the rotating disk 34. Displaced (scanned).

以上、説明したように、本実施形態のハブ(鍛造品)の内部欠陥検出方法によれば、ハブ20は冷間鍛造成形後の製品形状で超音波探傷するため、冷間鍛造時に発生し易い内部欠陥を有する短寿命品を確実に排除できる。したがって、安定的な寿命が保証された高信頼性の自動車用ハブ軸受のハブを提供できる。   As described above, according to the internal defect detection method of the hub (forged product) of the present embodiment, the hub 20 is ultrasonically flawed with the product shape after cold forging, and thus easily generated during cold forging. It is possible to reliably eliminate short-lived products having internal defects. Therefore, it is possible to provide a highly reliable automobile hub bearing hub with a stable life.

さらに、超音波探傷用探触子40は、ハブ20の段付き部22と軸方向で対向するようにハブ20の軸方向他端側に配置されるため、段付き部22の外径が小さい軸端側から軸方向に向かって超音波探傷することができる。したがって、段付き部22からの超音波の乱反射を防ぐことが可能となり、探傷精度を高めることができる。   Furthermore, since the probe for ultrasonic testing 40 is disposed on the other axial end side of the hub 20 so as to face the stepped portion 22 of the hub 20 in the axial direction, the outer diameter of the stepped portion 22 is small. Ultrasonic flaw detection can be performed in the axial direction from the shaft end side. Therefore, it is possible to prevent the irregular reflection of the ultrasonic waves from the stepped portion 22, and the flaw detection accuracy can be improved.

(第2実施形態)
図2及び3は、本発明の第2実施形態に係る鍛造品の内部欠陥検出方法に使用する超音波探傷装置の概略図である。なお、本実施形態の超音波探傷装置は、第1実施形態と比べて、ハブ保持部及び位置調整機構の構成が異なるのみであるため、他の第1実施形態と同一又は相当部分には同一又は相当符号を付すことにより説明を簡略化または省略する。なお、本実施形態においては、軸方向一端側とはZ軸負方向を指す。
(Second Embodiment)
2 and 3 are schematic views of an ultrasonic flaw detector used in a method for detecting an internal defect in a forged product according to a second embodiment of the present invention. Note that the ultrasonic flaw detector according to the present embodiment differs from the first embodiment only in the configuration of the hub holding portion and the position adjustment mechanism, and therefore is the same as or equivalent to the other first embodiment. Or description is simplified or abbreviate | omitted by attaching | subjecting an equivalent code | symbol. In the present embodiment, the one end side in the axial direction refers to the negative Z-axis direction.

本実施形態の超音波探傷装置1Aは、略平面の台15の上面に載置され、内部に超音波伝達媒体である水を貯留した水槽10と、冷間鍛造成形品の自動車用ハブ軸受のハブ20を保持及び回転可能なハブ保持部30Aと、超音波探傷用探触子40を保持及び位置調整可能な位置調整機構50Aと、から構成される。   The ultrasonic flaw detector 1A of the present embodiment is mounted on an upper surface of a substantially flat table 15 and includes a water tank 10 that stores therein water as an ultrasonic transmission medium, and an automotive hub bearing that is a cold forged product. A hub holding portion 30A capable of holding and rotating the hub 20 and a position adjusting mechanism 50A capable of holding and adjusting the position of the ultrasonic flaw detection probe 40 are configured.

ハブ保持部30Aは、台15の上面に固定され、水槽10の外側面に沿うように水槽10より上方まで延びる柱部36と、柱部36の上部からX方向に延びた延出部38と、を有しており、断面略L字形状となるように形成されている。また、延出部38の先端部には、貫通穴38aが形成されており、該貫通穴38a内には、ハブ20を保持し、且つ延出部38に対して円周方向に回転可能な回転部39が形成される。   The hub holding portion 30 </ b> A is fixed to the upper surface of the base 15, extends to the upper side of the water tank 10 along the outer surface of the water tank 10, and extends to the X direction from the upper part of the column part 36. Are formed so as to have a substantially L-shaped cross section. Further, a through hole 38a is formed at the distal end portion of the extending portion 38. The hub 20 is held in the through hole 38a and can be rotated in the circumferential direction with respect to the extending portion 38. A rotating part 39 is formed.

また、位置調整機構50Aの探触子保持部52は、ハブ保持部30Aの延出部38の軸方向他端側に設けられており、探触子保持部52は探触子40を保持しながらX方向に変位可能な機構を備えている。   Further, the probe holding portion 52 of the position adjusting mechanism 50A is provided on the other axial end side of the extending portion 38 of the hub holding portion 30A, and the probe holding portion 52 holds the probe 40. However, it has a mechanism that can be displaced in the X direction.

このように構成された超音波探傷装置1Aを用いて超音波探傷検査を行う方法を以下説明する。   A method for performing an ultrasonic flaw detection using the ultrasonic flaw detection apparatus 1A configured as described above will be described below.

先ず、ハブ20を段付き部22の軸方向他端側、すなわち段付き部22の最小径の軸部22a側から、水槽10の水中に全浸しないように、ハブ保持部30の延出部38の回転部39に固定する。より具体的には、ハブ20は、段付き部22の最小径の軸部22aの一部のみが水中に浸漬されるように、回転部39に固定される。そして、回転部39を図示しない駆動機構により回転駆動することによって、ハブ20は回転部39とともに所定速度で回転する。   First, the extension part of the hub holding part 30 is provided so that the hub 20 is not completely immersed in the water of the water tank 10 from the other axial end side of the stepped part 22, that is, from the shaft part 22 a having the smallest diameter of the stepped part 22. It fixes to the rotation part 39 of 38. More specifically, the hub 20 is fixed to the rotating portion 39 so that only a part of the shaft portion 22a having the smallest diameter of the stepped portion 22 is immersed in water. The hub 20 rotates at a predetermined speed together with the rotating unit 39 by driving the rotating unit 39 to rotate by a drive mechanism (not shown).

次いで、探触子40は、位置調整機構50Aによって移動され、その先端がハブ20の段付き部22の最小径の軸部22aと軸方向で対向し、ハブ20の中心軸と探触子40の中心軸とが一致するようにX方向の位置が設定される。また、探触子40は、ハブ20の軸方向他端側に所定の距離だけ離間して配置され、水槽10の水中に全浸される、   Next, the probe 40 is moved by the position adjusting mechanism 50 </ b> A, the tip of the probe 40 is opposed to the shaft portion 22 a having the smallest diameter of the stepped portion 22 of the hub 20 in the axial direction, and the central axis of the hub 20 and the probe 40. The position in the X direction is set so that the central axis coincides. Further, the probe 40 is disposed at a predetermined distance apart from the other axial end of the hub 20 and is fully immersed in the water of the water tank 10.

そして、ハブ20を回転部39によって所定速度で回転させつつ、探触子40をハブ20との離間距離を維持しながらX方向に一軸変位させて超音波探傷を行う。   Then, while the hub 20 is rotated at a predetermined speed by the rotating unit 39, the probe 40 is uniaxially displaced in the X direction while maintaining a separation distance from the hub 20, and ultrasonic flaw detection is performed.

以上説明したように、本実施形態のハブ(鍛造品)の内部欠陥検出方法によれば、ハブ20は、全浸しないように段付き部22の軸方向他端側から水中に浸漬される。すなわち、ハブ20の一部のみを水中に浸漬するようにしたため、ハブ20を水に出し入れするセット時間を短縮することが可能となる。また、超音波探傷後、ハブ20に付着した水を除去する時間を短縮することができるため、検査に要する時間及びコストを低減することができる。さらに、水中に、ハブ20の表面に付着した空気や不純物等が混入することを抑制することが可能となる。   As described above, according to the internal defect detection method of the hub (forged product) of the present embodiment, the hub 20 is immersed in water from the other axial end side of the stepped portion 22 so as not to be completely immersed. That is, since only a part of the hub 20 is immersed in water, it is possible to shorten the set time for taking the hub 20 into and out of water. Moreover, since the time for removing the water adhering to the hub 20 after the ultrasonic flaw detection can be shortened, the time and cost required for the inspection can be reduced. In addition, it is possible to suppress air, impurities, or the like adhering to the surface of the hub 20 from being mixed into the water.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

例えば、水槽10には超音波伝達媒体として水を貯留するとしたが、水の代わりに、防錆油等の液体を用いてもよい。   For example, although water is stored in the water tank 10 as an ultrasonic transmission medium, a liquid such as rust preventive oil may be used instead of water.

また、探触子40は、ハブ20と軸方向で対向するように、軸方向他端側に所定の距離だけ離間して配置されるとしたが、これに限定されず、例えば、グリセリンなどの接触媒質を介して探触子40とハブ20とを軸方向に密着させて超音波探傷してもよい。   In addition, the probe 40 is arranged at a predetermined distance away from the other end in the axial direction so as to face the hub 20 in the axial direction. However, the present invention is not limited to this. Ultrasonic flaw detection may be performed by closely contacting the probe 40 and the hub 20 in the axial direction via a contact medium.

また、ハブ20をハブ保持部30に固定する際、及びハブ保持器30から他の場所に搬送する際には、公知の搬送機構を用いることによって自動化してもよい。   Further, when the hub 20 is fixed to the hub holder 30 and when the hub 20 is transported from the hub holder 30 to another place, it may be automated by using a known transport mechanism.

また、上述の実施形態においては、ハブ20を所定速度で回転させ、探触子40をX方向に一軸変位させながら超音波探傷を行うとしたが、これに限定されず、探触子40をX方向及びY方向に二軸変位させながら超音波探傷を行うようにしてもよい。この場合、位置調整機構は、X方向及びY方向に移動可能であるように構成される。   In the above-described embodiment, the ultrasonic testing is performed while the hub 20 is rotated at a predetermined speed and the probe 40 is uniaxially displaced in the X direction. However, the present invention is not limited to this. Ultrasonic flaw detection may be performed while biaxially displacing in the X direction and the Y direction. In this case, the position adjustment mechanism is configured to be movable in the X direction and the Y direction.

また、第2実施形態において、ハブ20は段付き部22の最小径の軸部22aの一部のみが水中に浸漬されるとしたが、本発明の効果が得られる範囲であれば、軸部22bが水中に浸漬されてもよいし、軸部22cが水中に浸漬されてもよい。   Further, in the second embodiment, the hub 20 is described in which only a part of the shaft portion 22a having the smallest diameter of the stepped portion 22 is immersed in water. 22b may be immersed in water and the shaft part 22c may be immersed in water.

また、鍛造品として、従動輪用ハブを用いたが、中空軸からなる駆動輪用ハブを用いてもよい。   Further, although a driven wheel hub is used as the forged product, a driving wheel hub formed of a hollow shaft may be used.

また、鍛造品としては、自動車用ハブ軸受のハブに限定されず、断面積の異なる少なくとも2つの軸部が接続し、且つ軸方向一端側に向かうに従い軸部の外径が大きくなる段付き部を有する軸部材であればよい。   Further, the forged product is not limited to a hub of an automobile hub bearing, and a stepped portion in which at least two shaft portions having different cross-sectional areas are connected and the outer diameter of the shaft portion increases toward one end side in the axial direction. Any shaft member may be used.

1 超音波探傷装置
10 水槽
15 台
20 ハブ(鍛造品)
22 段付き部
22a,22b,22c 軸部
24 フランジ部
26 突出部
30、30A ハブ保持部
32 基部
33 収容部
34 回転盤
36 柱部
38 延出部
38a 貫通穴
39 回転部
40 超音波探傷用探触子
50、50A 位置調整機構
52 探触子保持部
1 Ultrasonic flaw detector 10 Water tank 15 units 20 Hub (forged product)
22 Stepped portions 22a, 22b, 22c Shaft portion 24 Flange portion 26 Protruding portion 30, 30A Hub holding portion 32 Base portion 33 Housing portion 34 Turntable 36 Column portion 38 Extension portion 38a Through hole
39 Rotating part 40 Ultrasonic flaw detector 50, 50A Position adjusting mechanism 52 Probe holding part

Claims (2)

断面積の異なる少なくとも2つの軸部が接続し、且つ軸方向一端側に向かうに従い前記軸部の外径が大きくなる段付き部と、フランジ部と、を有するハブ軸受用の鍛造品を用い、
前記鍛造品と超音波探傷用探触子とを超音波伝達媒体中に配置し、超音波探傷によって前記鍛造品の内部欠陥を検出する鍛造品の内部欠陥検出方法であって、
前記超音波探傷用探触子は、前記鍛造品の段付き部と軸方向で対向するように、前記鍛造品の軸方向他端側に配置され、
前記鍛造品と前記超音波探傷用探触子との離間距離を維持した状態で、前記鍛造品を回転させつつ、前記軸方向に対して垂直な方向であるX方向に前記超音波探傷用探触子を変位させながら超音波探傷を行い、又は、前記軸方向及び前記X方向に垂直な方向をY方向としたとき、前記鍛造品と前記超音波探傷用探触子との離間距離を維持した状態で、前記X方向及び前記Y方向の両方向に前記超音波探傷用探触子を変位させながら超音波探傷を行うことを特徴とする鍛造品の内部欠陥検出方法。
Using a forged product for a hub bearing having a stepped portion in which at least two shaft portions having different cross-sectional areas are connected and the outer diameter of the shaft portion increases toward the one end side in the axial direction, and a flange portion,
The forged product and the ultrasonic flaw detection probe are arranged in an ultrasonic transmission medium, and the internal defect detection method of the forged product detects the internal defect of the forged product by ultrasonic flaw detection,
The ultrasonic flaw detection probe is disposed on the other end side in the axial direction of the forged product so as to face the stepped portion of the forged product in the axial direction,
While maintaining the distance between the forged product and the ultrasonic flaw detector, the ultrasonic flaw detection probe is rotated in the X direction that is perpendicular to the axial direction while rotating the forged product. Perform ultrasonic testing while displacing the probe, or maintain the distance between the forged product and the ultrasonic testing probe when the direction perpendicular to the axial direction and the X direction is the Y direction. A method for detecting an internal defect in a forged product, wherein ultrasonic flaw detection is performed while displacing the ultrasonic flaw detection probe in both the X direction and the Y direction .
前記鍛造品は、全浸しないように、前記段付き部の軸方向他端側から前記超音波伝達媒体中に浸漬されることを特徴とする請求項1に記載の鍛造品の内部欠陥検出方法。   The forged product internal defect detection method according to claim 1, wherein the forged product is immersed in the ultrasonic transmission medium from the other axial end of the stepped portion so as not to be completely immersed. .
JP2011033358A 2011-02-18 2011-02-18 Internal defect detection method for forged products Expired - Fee Related JP5757102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033358A JP5757102B2 (en) 2011-02-18 2011-02-18 Internal defect detection method for forged products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033358A JP5757102B2 (en) 2011-02-18 2011-02-18 Internal defect detection method for forged products

Publications (2)

Publication Number Publication Date
JP2012173046A JP2012173046A (en) 2012-09-10
JP5757102B2 true JP5757102B2 (en) 2015-07-29

Family

ID=46976100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033358A Expired - Fee Related JP5757102B2 (en) 2011-02-18 2011-02-18 Internal defect detection method for forged products

Country Status (1)

Country Link
JP (1) JP5757102B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524062B2 (en) * 1974-03-29 1980-06-26
US3983374A (en) * 1975-06-20 1976-09-28 Uresco, Inc. Digital system for slope and curvature control
JPS6222840Y2 (en) * 1978-07-31 1987-06-10
GB2146433B (en) * 1983-09-08 1987-04-01 British Cast Iron Res Ass Ultrasonic testing
JPS63134951A (en) * 1986-11-26 1988-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method for axially symmetrical object
DE3728369A1 (en) * 1987-08-21 1989-03-02 Siemens Ag METHOD FOR DETECTING CRACKS IN A SHAFT BY MEANS OF ULTRASONIC IMPULSE SECH METHOD AND DEVICE FOR IMPLEMENTING IT
JPH01239452A (en) * 1988-03-18 1989-09-25 Kobe Steel Ltd Ultrasonic flaw detection device for cold wire drawing facility
JPH062137Y2 (en) * 1988-06-17 1994-01-19 富士バルブ株式会社 Water immersion type ultrasonic flaw detection jig
CN101023344B (en) * 2004-09-16 2011-05-11 日本精工株式会社 Ultrasonic defect detector and defect detection method for rolling bearing
FR2886732B1 (en) * 2005-06-01 2007-10-05 Jeumont Sa Sa METHOD FOR CONTROLLING THE STATE OF A ROTATING MACHINE DRIVE SHAFT
WO2007010772A1 (en) * 2005-07-20 2007-01-25 Ntn Corporation Bearing device for wheel
JP2008128829A (en) * 2006-11-21 2008-06-05 Nsk Ltd Ultrasonic inspection method and ultrasonic inspection device for rolling bearing

Also Published As

Publication number Publication date
JP2012173046A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
CN101023344B (en) Ultrasonic defect detector and defect detection method for rolling bearing
KR101789965B1 (en) Inspection apparatus and method for hub bearing
US9804129B2 (en) Apparatus for inspecting a tube
JP2008122090A (en) Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system
US20040020297A1 (en) Device and method designed for ultrasonically inspecting cylinders for longitudinal and circumferential defects and to measure wall thickness
JP2008032681A (en) Inspection method of rolling device component, and inspection device for rolling device component
JP2006153546A (en) Contact type steel pipe dimension-measuring device
JP2008256624A (en) Method, apparatus, and system for ultrasonic flaw detection of shaft member
JP5757102B2 (en) Internal defect detection method for forged products
JP2010127618A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP2010127621A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP2010014582A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2020071180A (en) Ultrasonic inspection method for differential gear unit
JP2012173117A (en) Defect inspection method and defect inspection device
JP2004163125A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2008032674A (en) Quality inspection method of rolling device component, and quality inspection device for the rolling device component
JP2016102665A (en) Ultrasonic flaw detection device
JP2016080416A (en) Echo detection position display unit
CN113138231A (en) Ultrasonic phased array detection device and method for aero-engine case ring forging
JP2010197213A (en) Device for cutting and inspecting round bar material
JP2008032682A (en) Method and apparatus for inspecting rolling device component
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
JP2015004530A (en) Ultrasonic wave inspection method and device for round-bar steel
JP2007285910A (en) Method of manufacturing welded component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5757102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees