JP3834396B2 - Water heater with memorial and hot water filling function - Google Patents

Water heater with memorial and hot water filling function Download PDF

Info

Publication number
JP3834396B2
JP3834396B2 JP27204397A JP27204397A JP3834396B2 JP 3834396 B2 JP3834396 B2 JP 3834396B2 JP 27204397 A JP27204397 A JP 27204397A JP 27204397 A JP27204397 A JP 27204397A JP 3834396 B2 JP3834396 B2 JP 3834396B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
pipe
heat exchange
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27204397A
Other languages
Japanese (ja)
Other versions
JPH10153343A (en
Inventor
良彦 田中
幸伸 野口
秋人 江田
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP27204397A priority Critical patent/JP3834396B2/en
Publication of JPH10153343A publication Critical patent/JPH10153343A/en
Application granted granted Critical
Publication of JP3834396B2 publication Critical patent/JP3834396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、追焚,湯張り機能付き給湯装置に係り、特に浴槽への湯張り制御の改良に関する。
【0002】
【従来の技術】
浴槽への湯張りを行える例えば一缶二水路型の追焚,湯張り機能付き給湯装置は公知である。この追焚,湯張り機能付き給湯装置は、共通のフレーム内において共通の熱交換部と共通の燃焼部とを上下に収容することにより構成されている。熱交換部には、給湯系配管と追焚循環系配管が通っている。この構成では、給湯を実行する時も追焚を実行する時にも、同じ燃焼部が燃焼される。
上記給湯系配管における熱交換部より下流側が、湯張り管を介して上記追焚循環系配管に接続されている。この湯張り管には湯張り弁が設けられ、湯張り時に開くようになっている。
浴槽に湯張りする時には、上記燃焼部での燃焼制御により、給湯系配管を流れる水を、熱交換部で設定温度まで加熱し、この湯を湯張り管から、追焚循環系配管を介して浴槽に供給する。
【0003】
【発明が解決しようとする課題】
ところで、上記湯張りの際に、上記熱交換部で加熱された湯が、給湯系配管,湯張り管を経て追焚循環系配管に至ると、追焚循環系配管と湯張り管との接続点から二手に分かれて追焚循環系配管内を流れ、一方は再度熱交換部を通って浴槽に達し、他方は熱交換部を通らずに浴槽に達する。そのため、熱交換部を通らない湯は設定温度のまま浴槽に供給されるが、熱交換部を通る湯はこの熱交換部で再加熱されるため設定温度より高くなって浴槽に供給される。その結果、湯張り終了時点で浴槽の湯が設定温度より高くなってしまう不都合があった。
【0004】
【課題を解決するための手段】
請求項1の発明は、(イ)共通の熱交換部と、(ロ)上記熱交換部に燃焼熱を供給する共通の燃焼部と、(ハ)上記熱交換部を通る給湯系配管および追焚循環系配管と、(ニ)上記給湯系配管における熱交換部より下流側を、上記追焚循環系配管に接続する湯張り管と、(ホ)上記湯張り管に設けられた湯張り弁と、(ヘ)上記燃焼部での燃焼を実行して上記熱交換部に燃焼熱を供給するとともに上記湯張り弁を開にすることにより、熱交換部で加熱された上記給湯系配管からの湯を、上記湯張り管,追焚系配管を介して浴槽に供給して、湯張りを実行する湯張り制御手段と、を備えた追焚,湯張り機能付き給湯装置において、
上記湯張り制御手段は、上記湯張り実行中に、湯張り管から追焚循環系配管を二手に別れて流れる湯の流量分配比、すなわち上記熱交換部を通過して再加熱されて浴槽に至る湯の流量と、熱交換部を通らず再加熱されないで浴槽に至る湯の流量との分配比の情報と、上記再加熱された湯の温度情報と、上記再加熱されない湯の温度情報に基づき、これらの合流湯の温度を演算し、この合流湯の温度が設定温度になるように上記燃焼部の燃焼を制御することを特徴とする。
【0005】
請求項2の発明は、請求項1に記載の追焚,湯張り機能付き給湯装置において、上記再加熱されない湯の温度情報は、上記給湯配管系における熱交換部の下流側、湯張り管、上記追焚循環系配管において熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管、のいずれかに設けられた第1温度センサによって検出され、上記再加熱された湯の温度情報は、上記追焚循環系配管の2本の管のうち上記湯張り管が接続されていない方の管に設けられた第2温度センサによって検出されることを特徴とする。
請求項3の発明は、請求項2に記載の追焚,湯張り機能付き給湯装置において、上記追焚循環系配管は、熱交換部内を通る受熱管と、この受熱管の一端と浴槽との間に接続された戻り管と、受熱管の他端と浴槽との間に接続された往き管とを備え、戻り管には浴槽の湯を戻り管,熱交換部,往き管の順に流れるように強制循環させるポンプが設けられ、上記湯張り管は上記往き管に接続され、上記再加熱された湯の温度が、上記戻り管に設けられた上記第2温度センサにより検出され、上記再加熱されない湯の温度が、上記給湯系配管において熱交換部から湯張り管との接続点までの経路に設けられた上記第1温度センサによって検出されることを特徴とする。
【0006】
請求項4の発明は、請求項1〜3のいずれかに記載の追焚,湯張り機能付き給湯装置において、上記湯張り制御手段で湯張りを実行することにより浴槽に蓄えられた湯の温度を検出する温度センサを備え、上記湯張り制御手段は、この温度センサで検出された浴槽の湯の温度情報と、上記湯張り時の再加熱された湯の温度情報と、上記湯張り時の再加熱されない湯の温度情報に基づいて、上記湯張り時の流量分配比を演算することを特徴とする。
請求項5の発明は、請求項4に記載の追焚,湯張り機能付き給湯装置において、上記湯張り制御手段は、上記演算された前回の湯張り時の流量分配比を用いて、次回の湯張り制御を行うことを特徴とする。
【0007】
請求項6の発明は、請求項2に記載の追焚,湯張り機能付き給湯装置において、上記給湯系配管には、熱交換部に供給される水の総流量を検出するフローセンサと、熱交換部への入水温度を検出する温度センサと、熱交換部からの出湯温度を検出する温度センサとが設けられ、上記湯張り制御手段は、これらフローセンサと2つの温度センサの検出情報に基づいて、給湯系配管を流れる水が熱交換部で受ける初期消費熱量を演算し、この初期消費熱量と、上記燃焼部からの供給熱量とから、上記再加熱に提供される熱量を演算し、この再加熱熱量と、上記出湯温度センサまたは他の温度センサからなる第1温度センサで検出された追焚循環系配管において熱交換部に向かう湯の温度と、上記第2温度センサによって検出された再加熱湯の温度から、再加熱される湯の流量を演算し、この再加熱流量と上記総流量とから上記流量分配比を演算し、演算された流量分配比を用いて現在実行している湯張りの制御を行うことを特徴とする。
【0008】
請求項7の発明は、請求項1に記載の追焚,湯張り機能付き給湯装置において、上記湯張り制御手段は、上記燃焼部からの供給熱量と、給湯系配管を流れる水が熱交換部で受ける初期消費熱量と、追焚循環系配管で再度熱交換部に向かう湯の流量および温度との関係を表すデータを記憶しており、上記給湯系配管には、熱交換部に供給される水の総流量を検出するフローセンサと、熱交換部への入水温度を検出する温度センサと、熱交換部からの出湯温度を検出する温度センサとが設けられ、上記湯張り制御手段は、これらフローセンサと2つの温度センサで検出された総流量,入水温度,出湯温度の情報に基づいて、上記初期消費熱量を演算するとともに、この初期消費熱量と上記供給熱量とから、再加熱熱量を演算し、上記演算された初期消費熱量と、上記燃焼部からの供給熱量と、上記出湯温度センサまたは上記追焚循環系配管おいて熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管に設けられた温度センサで検出された再度熱交換部に向かう湯の温度から、上記データに基づいて、再加熱される湯の流量を演算し、この再加熱流量と総流量から流量分配比を演算し、上記のようにして演算された再加熱流量および再加熱熱量と、上記の再度熱交換部に向かう湯の検出温度に基づいて、再加熱された後の湯の温度を演算し、上記演算された流量分配比と、演算された再加熱温度と、再度熱交換部に向かう湯の検出温度に基づいて、上記合流湯の温度を演算することを特徴とする。
【0009】
請求項8の発明は、(イ)互いに独立した給湯用熱交換部および追焚用熱交換部と、(ロ)これら給湯用熱交換部,追焚用熱交換部にそれぞれ燃焼熱を供給する給湯用燃焼部および追焚用燃焼部と、(ハ)上記給湯用熱交換部を通る給湯系配管と、(ニ)上記追焚用熱交換部を通る追焚循環系配管と、(ホ)上記給湯系配管における熱交換部より下流側を、上記追焚循環系配管に接続する湯張り管と、(ヘ)上記湯張り管に設けられた湯張り弁と、(ト)上記給湯用燃焼部での燃焼、および必要に応じて追焚用燃焼部での燃焼を実行して、上記給湯用熱交換部,追焚用熱交換部に燃焼熱を供給するとともに上記湯張り弁を開にすることにより、給湯系配管からの湯を上記湯張り管,追焚系配管を介して浴槽に供給して、湯張りを実行する湯張り制御手段と、を備えた追焚,湯張り機能付き給湯装置において、
上記湯張り制御手段は、上記湯張り実行中に、湯張り管から追焚循環系配管を二手に別れて流れる湯の流量分配比、すなわち上記追焚用熱交換部を通過して再加熱されて浴槽に至る湯の流量と、追焚用熱交換部を通らず再加熱されないで浴槽に至る湯の流量との分配比の情報と、上記再加熱された湯の温度情報と、上記再加熱されない湯の温度情報に基づき、これらの合流湯の温度を演算し、この合流湯の温度が設定温度になるように上記燃焼部の燃焼を制御し、上記再加熱されない湯の温度情報は、上記給湯配管系における熱交換部の下流側、湯張り管、上記追焚循環系配管において熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管、のいずれかに設けられた第1温度センサによって検出され、上記再加熱された湯の温度情報は、上記追焚循環系配管の2本の管のうち上記湯張り管が接続されていない方の管に設けられた第2温度センサによって検出され、しかも、上記湯張り制御手段で湯張りを実行することにより浴槽に蓄えられた湯の温度を検出する温度センサを備え、上記湯張り制御手段は、この温度センサで検出された浴槽の湯の温度情報と、上記湯張り時の再加熱された湯の温度情報と、上記湯張り時の再加熱されない湯の温度情報に基づいて、上記湯張り時の流量分配比を演算し、上記演算された前回の湯張り時の流量分配比を用いて、次回の湯張り制御を行うことを特徴とする。
【0010】
請求項9の発明は、請求項8の(イ)〜(ト)の構成を備えた追焚,湯張り機能付き給湯装置において、上記湯張り制御手段は、上記湯張り実行中に、湯張り管から追焚循環系配管を二手に別れて流れる湯の流量分配比、すなわち上記追焚用熱交換部を通過して再加熱されて浴槽に至る湯の流量と、追焚用熱交換部を通らず再加熱されないで浴槽に至る湯の流量との分配比の情報と、上記再加熱された湯の温度情報と、上記再加熱されない湯の温度情報に基づき、これらの合流湯の温度を演算し、この合流湯の温度が設定温度になるように上記燃焼部の燃焼を制御し、上記再加熱されない湯の温度情報は、上記給湯配管系における熱交換部の下流側、湯張り管、上記追焚循環系配管において熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管、のいずれかに設けられた第1温度センサによって検出され、上記再加熱された湯の温度情報は、上記追焚循環系配管の2本の管のうち上記湯張り管が接続されていない方の管に設けられた第2温度センサによって検出され、しかも、上記給湯系配管には、熱交換部に供給される水の総流量を検出するフローセンサと、熱交換部への入水温度を検出する温度センサと、熱交換部からの出湯温度を検出する温度センサとが設けられ、上記湯張り制御手段は、これらフローセンサと入水温度センサと出湯温度センサの検出情報に基づいて、給湯系配管を流れる水が熱交換部で受ける初期消費熱量を演算し、この初期消費熱量と、上記燃焼部からの供給熱量とから、上記再加熱に提供される熱量を演算し、この再加熱熱量と、上記出湯温度または他の温度センサからなる第1温度センサで検出された追焚用熱交換部に向かう湯の温度と、第2温度センサで検出された再加熱湯の温度から、再加熱される湯の流量を演算し、この再加熱流量と上記総流量とから上記流量分配比を演算し、演算された流量分配比を用いて現在実行している湯張りの制御を行うことを特徴とする。
【0011】
請求項10の発明は、請求項4〜9のいずれかに記載の追焚,湯張り機能付き給湯装置において、上記湯張り制御手段は、上記演算された流量分配比が下限値または上限値の少なくともいずれかを越えた時に、警報信号を出力することを特徴とする。
請求項11の発明は、請求項4〜10のいずれかに記載の追焚,湯張り機能付き給湯装置において、上記湯張り制御手段は、上記流量分配比と、環境温度と、再加熱されない湯の温度と、再加熱された湯の温度に基づいて、環境温度に起因する放熱を補償した湯張り制御を実行することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。図1に示すように追焚,湯張り機能付き給湯装置は、一缶二水路型のものであり、共通フレーム1内の上部に収容された共通の熱交換部10と、下部に収容されたガスバーナ2(共通の燃焼部)とを備えている。
熱交換部10は、多数のフィンプレート13を有し、これらフィンプレート13の下部が上記給湯用部分11として提供され、フィンプレート13の上部が追焚用部分12として提供されている。
上記ガスバーナ2には、開閉弁3と比例弁4とを設けたガス管5が接続されている。このガスバーナ5の下方にはファン6が配置されている。フレーム1の上端には排気ユニット7が設けられている。
【0013】
上記熱交換部10には、給湯系配管20と、追焚循環系配管30とが通っている。給湯系配管20は、熱交換部10の給湯用部分11を通る受熱管28と、この受熱管28の入口端に接続された給水管21と、出口端に接続された給湯管22とを備えている。給水管21には入水温度センサTHINとフローセンサ23と、水量制御弁24が設けられている。給湯管22には、給湯用熱交換器11の近傍に出湯温度センサTHOUTが設けられ、その下流端には出湯栓25が設けられている。
【0014】
上記追焚循環系配管30は、熱交換部10の追焚用部分12を通る受熱管38と、受熱管38の一端(追焚循環時における入口)を浴槽40の循環金具41に接続させる戻り管31と、受熱管38の他端(追焚循環時における出口)を循環金具41に接続させる往き管32とを備えている。
戻り管31には、復路側温度センサTH1(第1温度センサ)とポンプ35と水流スイッチ36が設けられている。上記往き管32には、往路側温度センサTH2(第2温度センサ)が設けられている。戻り管31の先端にはフィルタ39が設けられている。
【0015】
上記出湯温度センサTHOUTの下流側の給湯管22と上記戻り管31とは、湯張り管50で接続されている。これらの接続点を図1においてP1,P2で示す。この湯張り管50には、湯張り弁55と、浴槽40の水位を検出するための圧力センサ56(水位センサ)が設けられている。
【0016】
さらに給湯装置は、マイクロコンピュータを含むコントロールユニット60(湯張り制御手段)を備えている。このコントロールユニット60は、上記各種センサ23,36,56,THIN,THOUT,TH1,TH2等からの検出信号およびリモートコントローラ70(温度設定手段)からの給湯及び湯張りのための設定温度信号、同リモートコントローラ70の各種ボタンからの指令信号等を受けて、水量制御弁24,湯張り弁55,ポンプ35,ガス供給用の弁3,4を制御する。また、コントロールユニット60は、ガスバーナ5での燃焼を実行している時には、ファン6を回転させる。さらにコントロールユニット60は、警報表示器65をも制御する。
【0017】
上記構成の装置において、まず給湯作用について概略的に説明する。出湯栓25が開かれると、フローセンサ23が水流を検知する。コントロールユニット60は、この水流検知信号に応答して、給湯制御を実行する。すなわち、開閉弁3を開いてガスバーナ2にガスを供給し、燃焼を実行する。この際、フローセンサ23で検出した流量,温度センサTHINで検出された入水温度,リモートコントローラ70からの設定温度に基づいてフィードフォワード成分を演算し、温度センサTHOUTで検出された出湯温度と上記給湯設定温度に基づいて、フィードバック成分を演算し、両者を加算した制御値に基づいて比例弁4を制御したり水量制御弁24を制御することにより、出湯栓25からの出湯温度を給湯設定温度に一致させる。
【0018】
コントロールユニット60は、リモートコントローラ70の自動運転ボタンからの自動運転指令信号に応答して、自動運転を実行する。自動運転は湯張り制御から始まる。この湯張り制御では、湯張り弁55を開くとともに、ガスバーナ2での燃焼を実行する。すると、給水管21からの水は、受熱管28を通る過程で加熱され、給湯管22、湯張り管50を経、追焚循環系配管30を経て浴槽40に供給される。浴槽40の湯が設定水位に達したら(湯張りが終了したら)、湯張り弁55を閉じ燃焼を停止させてからポンプ35を駆動させることにより、浴槽40の湯を戻り管31,往き管32を介して循環させ、この時、復路側温度センサTH1で検出される浴槽40の湯が風呂設定温度(以下、設定温度)に一致しているか否かを見る。浴槽40の湯の温度が設定温度より低い場合には、ポンプ35の駆動を維持して浴槽40の湯を循環させた状態でガスバーナ2での燃焼を行って追焚を行い、浴槽40の湯の温度を設定温度に一致させる。
【0019】
その後、コントロールユニット60は、圧力センサ56からの信号に基づいて浴槽40の水位を監視し、水位が設定水位より下がった時には、上記湯張り時と同様にして、給湯用熱交換器11からの湯を浴槽40に供給し、浴槽40を設定水位に保つ(自動保水)。また、定期的に浴槽40の湯を循環させその湯温を監視し、設定温度より低い場合には浴槽40の湯を追焚して設定温度に一致させる(自動保温)。
【0020】
次に、本発明の特徴部である上記湯張り制御について詳述する。上記湯張り制御の際に、湯張り管50からの湯は接続点P2で二手に別れ、一方は戻り管31を通ってその温度を殆ど維持したまま浴槽40に供給されるが、他方は、戻り管31,受熱管38,往き管32を経て浴槽40に達するため、熱交換部10で再加熱される。
【0021】
実際に湯張りされる湯の温度,すなわち上記のように二手に別れて浴槽40で合流されるべき湯の温度TU(加重平均温度)は、受熱管38を通過しないで浴槽に供給される湯の温度T1(復路側温度センサTH1で検出される)と、受熱管38を通過した湯の温度T2(往路側温度センサTH2で検出される)と、二手に別れた湯の流量の比すなわち流量分配比X:(1ーX)で決定され、次式で表すことができる。
U=T1(1ーX)+T2・X … (1)
なお、Xは、受熱管38と往き管32を通過して再加熱される湯の分配率、(1−X)は、戻り管31のみを通過し受熱管38を通過せず再加熱されない湯の分配率である。 上記(1)式は次式のように書き換えることができる。
U=T1+ΔT・X … (2)
ただし、ΔTは、上記温度T1,T2の偏差であり(T2ーT1)で表される。
【0022】
従来のように、出湯温度センサTHOUTにより検出される出湯温度TOUTがリモートコントローラ70で設定された設定温度TSになるように、圧力比例弁4を制御して、ガスバーナ2での燃焼熱量を制御した場合には、出湯温度TOUTが上記再加熱されない湯の温度T1と実質的に等しく、設定温度TSとも実質的に等しいので、上記(2)式においてT1=TSを代入することにより、合流湯の温度TUを次式のように表すことができる。
U=TS+ΔT・X … (3)
上記(3)式から明らかなように、合流湯の温度TUは設定温度TSよりΔT・X分だけ高くなってしまう。
【0023】
そこで、本発明では、上記追焚用熱交換器12で再加熱されることにより付与される熱量を考慮して、次のような燃焼制御を実行する。すなわち、上記検出温度T1,T2を取り入れ、これら検出温度を上記(1)式に代入して、合流温度TUを求め、この演算された合流温度TUをフィードバックして設定温度TSと一致するように比例弁4を制御する。なお、上記(1)式での分配率Xを、標準分配率例えば0.5とする(すなわち標準分配比を0.5:0.5とする)。
【0024】
上述の燃焼制御の結果、上記分配率Xが湯張り時の実際の分配率と一致していれば、上記(1)式で得られる合流温度TUが設定温度TSと一致し、この設定温度TSで湯張りを行うことができるはずである。しかも、2つの温度センサTH1,TH2により、再加熱されない湯の温度T1と再加熱された湯の温度T2をリアルタイムで検出し、この検出温度を用いて合流湯の温度TUをリアルタイムで演算し、これに基づいて燃焼制御するので、正確に設定温度TSになるように湯張り温度制御を行うことができる。
【0025】
なお、上記合流湯の温度TUの演算に際しては、復路側温度センサTH1で検出される温度T1の代わりに、給湯管22に設けられた出湯温度センサTHOUTで検出された温度TOUTを第1温度センサとして用いてもよい。この温度TOUTの湯は加熱されないで浴槽40に供給される時、復路側温度センサTH1で検出される温度T1と一致するはずだからである。ただし、温度センサTHOUTから温度センサT1までの経路での放熱を無視する。この議論を一歩進めれば、上記温度T1,TOUTは、温度情報として互いに置換することができ、以下に説明する全ての実施形態でこの置換を行うことができる。また、これら温度T1,TOUTの代わりに、湯張り管50に設けた温度センサの検出情報を利用することもできる。
【0026】
上記流量分配率または流量分配比は、配管工事における戻り管31,往き管32の長さに応じて施工者が決定し、この決定した流量分配率または流量分配比をコントロールユニット60に入力してもよい。
【0027】
以下に説明する湯張り制御の形態では、上記流量分配率Xは、装置の設置施工後最初の試運転時での湯張り制御において標準値例えば0.5とし、湯張り制御した後でこれを更新する。
詳述すると、湯張り後に、ポンプ35を駆動し、復路側温度センサTH1により、浴槽40から熱交換部10に向かう湯の温度T1’(浴槽40の湯の温度)を検出する。この温度T1’が設定温度TSと一致している場合には、設定された分配率Xをそのまま維持して次回の湯張り制御時にも用いるが、異なっている場合には、分配率Xを演算して更新し、次回の湯張り制御時には更新された分配率Xを用いる。すなわち、上記(1)式は、TU=T1’を代入することにより、次式のように書き変えられる。
1’=T1(1ーX)+T2・X … (4)
(4)式は、次式のように書き変えられる。
X=(T1’−T1)/(T2−T1) … (5)
上記(5)式に基づいて分配率Xを演算し、更新するのである。
【0028】
例えば、設定温度TSを44°C、分配率Xを0.5と設定した場合、検出温度T1が42°C,検出温度T2が46°Cであり、しかも分配率Xが正しければ、上記(1)式に基づいて演算された合流温度TUは44°Cになり、設定温度TSと一致するはずである。しかし、このような状況下で湯張り制御した結果、浴槽40の湯の実際の温度T1’が43.6°Cであったとする。この場合には、分配率X=0.5の設定が間違っていたとして、上記(5)式に基づき分配率Xを演算して、0.4を得る。次回には、この分配率X=0.4を用いて燃焼制御を実行する。なお、この分配率Xの演算に際しては、検出温度T1,T2は、湯張り制御の全期間での平均値を用いてもよいし、安定してからの平均値を用いてもよい。
【0029】
上記分配率Xの更新は、主に、装置を設置施工した後に最初の試運転時に用いられた分配率を、実際の戻り管31,往き管32の長さ等に対応した分配率に設定し直したり、戻り管31の先端開口に設けられたフィルタ39の目詰まりの度合いの経時変化に対応して分配率を修正するためになされる。
【0030】
上記演算された分配率Xは、本装置を設置施工した直後の試験運転での循環用配管30のつぶれの検出にも役立つ。すなわち、上限値X1,下限値X2を例えば0.7,0.3とし、分配率Xが上限値X1を上回った時には戻り管31のつぶれと判断し、下限値X2を下回った時には往き管32のつぶれと判断し、警報表示器65にその旨表示する。
また、上記演算された分配率Xは、上記フィルタ39の目詰まりを監視するのに役立つ。分配率Xが上限値X0(例えば0.7)を上回った時には、フィルタ39の目詰まりが許容限界を越えたと判断し、警報表示器65にその旨表示する。
【0031】
なお、上記分配率Xの更新は、寒冷時において戻り管31,往き管32および浴槽40での放熱補償の役割をも担うことができる。前述の例のように、例えば湯張り後の浴槽40の湯の温度T1’が設定温度TSより低い場合には、追焚用熱交換器12で再加熱される湯量が小さいと見込んで、分配率Xを小さくするように更新する。その結果、次回の湯張り制御では、より多くの燃焼熱量を得るように燃焼制御されることになり、浴槽の湯の温度T1’を上げるように放熱補償できるのである。
なお、上記説明において分配率と分配比を区別して説明したが、特許請求の範囲における分配比の概念は、より広く、熱交換部への流量の分配率X,熱交換部を通らない流量の分配率(1−X)をも含むものである。例えば、分配率Xの演算,または分配率(1−X)の演算は、特許請求の範囲における「分配比の演算」に相当する。
【0032】
次に、上記自動運転ボタンのオンに応答してコントロールユニット60が実行する上記自動運転のルーチンを、図2のフローチャートに基づいて詳しく説明する。まず、リモートコントローラ70により設定された設定温度TSを読み込む(ステップ101)。次に水量制御弁24を全開にし(ステップ102)、湯張り弁55を開く(ステップ103)。
【0033】
次に、復路側温度センサTH1(または出湯温度センサTHOUT)で検出された追焚用熱交換器12を通過しない湯の温度T1(または温度TOUT)と、往路側温度センサTH2で検出された追焚用熱交換器12を通過した湯の温度T2を読み込む(ステップ104)。次に、上記(1)式に基づいて合流湯の温度TUを演算し、この合流湯の温度TUが設定温度TSになるように、比例弁4を制御することによりガスバーナ2の燃焼制御を行う(ステップ105)。この燃焼制御において施工後最初の運転時には上記(1)式の分配率Xは0.5である。なお、このガスバーナ2が全開状態でありながら、合流温度TUが設定温度TSに達しない時には上記(1)式を成立させるように、水量制御弁24の開度を絞って制御する。
【0034】
次に、圧力センサ56で検出される浴槽40の水位が設定水位に達したか否かを判断する(ステップ106)。ステップ106で否定判断した場合には、上記ステップ104に戻り、湯張りを継続する。ステップ106で肯定判断した場合には、湯張りを終了する(ステップ107)。すなわち、湯張り弁55を閉じ、ガスバーナ2の燃焼制御を終了する。次に、ポンプ35を駆動させて浴槽40の温度を循環させ(ステップ108)、復路側温度センサTH1で検出された浴槽40の湯の温度T1’が設定温度TSと一致するか否かを判断する(ステップ109)。ステップ109で肯定判断した場合には、自動保温、自動保水制御に移行する(ステップ110)。
【0035】
ステップ109で否定判断の時には、前述した(5)式に基づいて分配率Xを演算し、メモリに記憶する(ステップ111)。この分配率Xは、基本的には次回の湯張り制御に用いられる。次に、この湯張り制御が装置設置施工後に最初に行われる試運転であるか否かを判断する(ステップ112)。このステップ112で肯定判断の時には、ステップ113に進み、ここで分配率Xが上限値X1と下限値X2の間の許容範囲にあるか否かを判断する。ステップ113で肯定判断の時には、上述した自動保温、自動保水制御に移行する(ステップ110)。否定判断の時には配管つぶれの表示を警報表示器65に表示させる(ステップ114)。この場合、前述したように、上限値X1より上回っている時には戻り管31のつぶれ、下限値X2より下回っている時には往き管32のつぶれと区別して表示してもよい。
【0036】
上記ステップ112で試運転ではないと判断した時には、分配率Xが上限値X0以下か否かを判断する(ステップ115)。肯定判断した時には上述した自動保温、自動保水制御に移行する(ステップ110)。否定判断の時にはフィルタ目詰まりを警報表示器65に表示させる(ステップ116)。
なお、ステップ113,115で肯定判断した後、検出温度T1’が設定温度TSより低い場合には、前述したように追い焚きを実行してからステップ110に移行してもよい。
【0037】
湯張り制御の他の態様として、浴槽40の残水を考慮して湯張り制御を行うこともできる。詳述すると、図2のステップ102を実行した後、図3のステップ201に進み、ここでポンプ35をオンする。次に、水流スイッチ36がオンか否か、すなわち、水流を検出したか否かを判断する。浴槽40に残水が無いか、残水の水位が循環金具41の位置より低い場合には、水流が検出されないので、ここで否定判断されてステップ203に進み、ここでポンプ35がオフにされる。次に、所定量の注湯を行う(ステップ204)。すなわち、湯張り弁55を開き、例えば(1)式に基づき得られた合流温度TUが設定温度TSになるようにガスバーナ2を制御する。次に、再びポンプ35をオンして(ステップ205)、水流の有無を検出する(ステップ206)。
【0038】
ステップ202,206のいずれかで肯定判断した時には、復路側温度センサTH1により検出された浴槽40の湯の温度(残水温度)を読み込んでから(ステップ207)、ポンプ35をオフにする(ステップ208)。次に、圧力センサ56により、浴槽40の水位を読み込んで、残水量を演算する(ステップ209)。次に、残水量とこれから湯張りする量と、残水温度と、設定温度TSに基づき、新しい設定温度TSを更新して(ステップ210)、ステップ103に進む。ステップ206で否定判断した時には、上記設定温度TSで注湯した湯だけが浴槽40にあるとして、207〜210をスキップし、ポンプ35をオフして(ステップ211)、設定温度の更新を行わずにステップ103に進む。
【0039】
上記実施形態においては、ステップ111で上記残水量,残水温度をも考慮して分配率Xを演算するのが好ましい。すなわち、湯張り終了時点の浴槽の湯の検出温度をT1”、湯張り終了時点の水位(湯張り量)をH’、残水の水位(残水量)をH0,残水温度をT0とすると、次式が成り立つ。
1”・H'=H0・T0+TU’(H'−H0) … (6)
ここでTU’は実際に検出された値ではないが、湯張りによって浴槽に供給された実際の合流湯の温度であり、最初に述べた制御形態における浴槽の湯の温度に相当する。
上記(6)式は、次のように書き換えることができる。
U’=(T1”・H'−H0・T0)/(H'−H0) … (7)
このTU’をステップ210で更新された設定温度と比較し、否定判断の時には、このTU’を(5)式のT1’の代わりに代入して分配率Xを得る。
【0040】
湯張り制御のさらに他の態様として、放熱補償を分配率Xと切り離して考慮してもよい。この場合、循環用配管30と浴槽40での放熱による温度低下分ΔTxは、例えば、次式で表される。
ΔTx=R・(Ts−TE) … (8)
ここで、TSは設定温度,TEは温度センサTHE(図1において想像線で示す)で検出される室温(環境温度)である。なお、設定温度TSの代わりに上述した検出温度T1またはT2の平均値,あるいは両者の和の半分の平均値を用いてもよい。Rは、浴槽40の大きさ、戻り管31,往き管32の長さによって異なるが、ここでは、平均的な大きさ,長さを想定した時の定数とする。
したがって、湯張り制御において放熱補償をするためには、(1)式を次のように書き換えればよい。
U=T1(1ーX)+T2・X+ΔTx … (1)’
そして、上記(1)’式に基づいて演算された合流湯の温度TUが設定温度TSになるように湯張り制御を実行する。
また、TU=T1’+ΔTxを上記(1)’式に代入して書き換えることにより前述した(5)式が得られる。したがって、湯張りにより得られた浴槽40の湯の温度T1’が設定温度と異なる時には、最初に述べた態様と同様にして分配率Xを求めればよい。ここで、求められた流量分配比Xには、放熱の因子は含まれていないので、配管つぶれ,目詰まりをより一層正確に検出でき、寒冷地では好適である。
なお、この態様での環境温度を検出する温度センサとして、入水温度センサTHINを用いてもよい。
【0041】
上述した全ての実施形態では、湯張り制御を実行している最中は、所定の流量分配比か、前回の湯張り制御の結果得られた流量分配比を用いている。この流量分配比を湯張り制御の最中にリアルタイムで演算し、この演算された流量分配比に基づいてより正確な湯張り制御を行うこともできる。
まず、湯張り制御中の流量分配比演算の基礎となる理論について説明する。この場合、比例弁4の開度情報(比例弁4への供給電流値)から得た供給熱量G(燃焼部2から熱交換部10へ供給される熱量であり、以下、供給熱量を供給号数と称することにする)と、フローセンサ23で検出される総流量Q(給湯配管系20の受熱管28を通る水の流量)と、出湯温度センサTHOUTからの出湯温度TOUTの情報を用いる。
【0042】
上記供給号数Gについては、理論上、次式が成立する。
G=G1+G2 ・・・ (11)
ここで、G1は、給湯系配管20の受熱管28を通る過程で、水が熱交換部10で受け取る熱量すなわち、初期消費熱量(以下、初期号数と称す)である。またG2は、二手に別れた湯のうち一方の湯が追焚循環系配管30の受熱管38を通る過程で再加熱される熱量(再加熱号数)である。
(11)式は、次式のように書き直すことができる。
G2=G−G1 ・・・ (12)
【0043】
上記初期号数G1は、上記給湯系配管20における検出情報から次式によって求める。
G1=Q(T0UT−TIN) ・・・ (13)
演算で求めた初期号数G1と上記供給号数Gとを式(12)に代入して再加熱号数G2を演算する。
【0044】
ところで、この再加熱号数G2については、理論上、次式が成立する。
G2=Q2(T2−TOUT) ・・・ (14)
ここで、Q2は、初期加熱された湯のうち受熱管38を通って再加熱される湯の流量である。なお、温度TOUTは、再加熱される前の温度であり、前述したように温度T1で置換可能である。
(14)式は、次式のように書き直すことができる。
Q2=G2/(T2−TOUT)・・・ (15)
上記のようにして演算された再加熱号数G2と、温度センサTH2,THOUTで検出された温度T2,TOUTを式(15)に代入することにより、再加熱流量Q2を得る。この再加熱流量Q2と総流量Qとに基づいて、分配率X=Q2/Qが求まり、ひいては流量分配比が求まる。そして、リアルタイムで演算される流量分配比を用いて、湯張り制御を行うのである。
【0045】
上記の湯張り制御の方式では、3つの温度情報T0UT(またはT1),TIN,T2と、総流量Qと、供給号数Gに基づいて、流量分配比を演算したが、上記温度情報のうちのいずれか1つを省いて、流量分配比を演算することができる。この場合、熱交換部10での受熱管28,38を流れる水,湯への熱分配比の経験データをコントロールユニット60のメモリに記憶させておき、湯張りの度に用いる。
【0046】
以下に述べる演算例は、復路側温度センサTH2を省くためのものである。すなわち、図1の4つの温度センサTHIN,THOUT,TH1,TH2のうち、温度センサTHIN,THOUTは、前述したように給湯制御に用いられ、温度センサTH1は追焚制御に用いられるので、一般の給湯装置として必須の温度センサである。しかし、温度センサTH2は、湯張り制御でしか用いられないので、これを省略して、構成を簡略化を図ろうとするものである。
【0047】
詳述すると、図4のグラフで例示されるような経験データを用いる。この図において、縦軸は初期号数G1を表し、横軸は給湯側出湯温度TOUTを表す。図におけるほぼリニアなラインは、それぞれ再加熱流量Q2と再加熱される前の湯の温度(換言すれば追焚側入口温度であり、上記給湯側出湯温度TOUTと等しい)の2つのファクターの組み合わせに対応するものである。図4において実線で示すラインa,b,cは、再加熱される前の湯の温度TOUTが40°Cの場合を示し、ラインaは再加熱流量Q2が4L/分の場合、ラインbは5L/分,ラインcは6L/分の場合をそれぞれ示す。また、破線で示すラインd,e,fは、再加熱される前の湯の温度TOUTが35°Cの場合を示し、ラインdは再加熱流量Q2が4L/分の場合、ラインeは5L/分,ラインfは6L/分の場合をそれぞれ示す。
【0048】
上記ラインa〜fは、あくまで例示したものであり、実際には温度TOUTと流量Q2の種々の組み合わせに対応して多数の線が描かれる。なお、図4は、供給号数Gが18号の場合を示すものであり、異なる給湯号数Gに関しても図4のグラフと同様のグラフに相当するデータが多数メモリに記憶されている。
【0049】
上記グラフから、再加熱流量Q2を求める手順について詳述する。まず、検出された温度TIN,TOUTと総流量Qにより、初期号数G1を式(13)から求める。次に、演算された初期号数G1と検出温度TOUTとから、図4における交点を求める。例えば、供給号数が18号、検出温度TOUTが40°C、初期号数G1が15号の場合、交点は図4においてAで示される。そして、温度TOUT=40°Cに対応するラインa,b,cのうち、この交点Aに対応するラインbを求める。このラインbは、温度TOUTが40°Cで流量Q2が5L/分の時の、熱量分配比を表すラインであるから、このラインbの選択により流量Q2=5L/分を求めることができ、ひいては分配率X,流量分配比を求めることができるのである。
【0050】
また、供給号数Gと初期号数G1とから、(12)式に基づいて再加熱号数G2を求めることができる。
さらに、次のようにして再加熱温度T2を求めることができる。すなわち、式(14)を書き直すと、次式のようになる。
2=G2/Q2+TOUT ・・・(16)
この式に、上記演算された再加熱流量Q2,再加熱号数G2と、検出温度TOUTを代入することにより、再加熱温度T2を演算することができる。そして、この演算された再加熱温度T2と、復路側温度センサTH1による検出温度T1(または上記検出温度TOUT)と、上記流量分配比とから、式(1)に基づいて合流湯の温度TUを得、この合流湯温度TUに基づいて、湯張り制御を行うことができる。
【0051】
図5に示す実施形態では、湯張り管50は、往き管32に接続されている。この場合、往き管32の主要部を通る湯は、熱交換部10を通過せずに浴槽40に供給され、戻り管31を通る湯が熱交換部10を通過することになる。この実施形態では、復路側温度センサTH1は、第2温度センサとして再加熱される湯の温度を検出するためと、浴槽40の湯温を検出するために用いられる。再加熱されない湯の温度情報として、出湯温度センサTOUT(第1温度センサ)の検出温度を用いることができるので、往路側温度センサは省略することができる。したがって、温度センサは、本来給湯と追焚に用いられる温度センサTHIN,THOU T,TH1だけで済む。
この図5の実施形態に係わる装置では、前述したすべての湯張り制御方式を採用に適用することができる。
【0052】
図6は、本発明を二缶二水路型の追焚,湯張り機能付き給湯装置に適用した形態を示す。この装置は、次の点で、前述した一缶二水路型の追焚,湯張り機能付き給湯装置と異なる。すなわち、2つの独立したフレーム1A,1Bの上部に給湯用熱交換部10A,追焚用熱交換部10Bをそれぞれ収容し、下部にガスバーナ2A,2B(給湯用燃焼部,追焚用燃焼部)をそれぞれ収容しするとともに、排気ユニット7A,7Bを設けている。ガス管5は2つに分岐してこれらガスバーナ2A,2Bに連なり、その分岐部には補助開閉弁9A,9Bがそれぞれ設けられている。
本実施形態ではフレーム1A,1Bは下部で連なっていて共通のファン6からの空気の供給を受けるが、完全に別体をなし、別々にファンを設置してもよい。この装置では、コントロールユニット60は、湯張り制御時に、両方の補助開閉弁9A,9Bを開くことにより、ガスバーナ2A,2Bを同時に燃焼させる。この装置では、図4のデータに基づく制御方式を除いて、前述した合流湯の温度に基づく湯張り制御(分配比演算等も含む)の全てを適用することができる。
図6において、湯張り管を往き管32に接続してもよい。こうすれば、温度センサTH2を省くことができる。
【0053】
本発明は上記実施形態に制約されず、種々の対応が可能である。例えば、一缶二水路の場合、熱交換部は給湯部分と追焚部分が上下に別れていなくてもよい。例えば、給湯系配管の受熱管が上下2列に配列され、下の列の受熱管の上に追焚循環系配管の受熱管が接するようにしてもよい。
【0054】
【発明の効果】
以上説明したように、請求項1の発明によれば、共通の熱交換部を有する装置において、流量分配比と、再加熱された湯の温度と再加熱されない湯の温度に基づいて合流湯の温度を演算し、この合流の温度が設定温度になるように湯張り制御することにより、正確な湯張り制御を行うことができる。
請求項2の発明によれば、再加熱された湯の温度と再加熱されない湯の温度を、温度センサにより検出することにより、より一層正確な湯張り制御を行うことができる。
請求項3の発明によれば、湯張り管を往き管に接続し、再加熱されない湯の温度を検出するために給湯系配管の下流側に設けられた温度センサで検出し、再加熱された湯の温度は、本来追焚制御時に用いられる戻り管の温度センサで検出することにより、往き管に温度センサを設けずに済み、構成を簡略化することができる。
請求項4の発明によれば、湯張りにより浴槽に蓄えられた湯の温度に基づいて、実際の流量分配比を演算することができる。しかも、この流量分配比の演算により、追焚循環系配管に流量計等が不要となり構成を簡略化することができる。請求項5の発明によれば、前回の湯張り制御で演算された流量分配比により湯張り制御を行うので、より一層正確な湯張り制御を行うことができる。
請求項6の発明によれば、流量分配比を湯張り制御中にリアルタイムで検出できるので、より一層正確な湯張り制御を行うことができる。
請求項7の発明によれば、追焚循環系配管に再加熱された湯の温度を検出する温度センサがなくても、この再加熱温度と流量分配比を湯張り制御中にリアルタイムで演算することができ、簡単な構成でありながら、より一層正確な湯張り制御を行うことができる。
請求項8の発明によれば、給湯用熱交換部と追焚用熱交換部が互いに独立した装置において、前回の湯張り制御で演算された実際の流量分配比と、再加熱された湯の温度と再加熱されない湯の温度に基づいて合流湯の温度を演算し、この合流の温度が設定温度になるように湯張り制御することにより、正確な湯張り制御を行うことができる。
請求項9の発明によれば、給湯用熱交換部と追焚用熱交換部が互いに独立した装置において、湯張り制御中にリアルタイムで演算された実際の流量分配比と、再加熱された湯の温度と再加熱されない湯の温度に基づいて合流湯の温度を演算し、この合流の温度が設定温度になるように湯張り制御することにより、正確な湯張り制御を行うことができる。
請求項10の発明によれば、流量分配比が上限値または下限値を越えた時に、例えば循環用配管の異常であるとして、警報信号を発することができる。
請求項11の発明によれば、放熱補償をすることによって、湯張り時に浴槽の湯をより一層確実に設定温度にすることができる。また、流量分配比もより正確に演算することができる。
【図面の簡単な説明】
【図1】本発明に係わる一缶二水路型の追焚,湯張り機能付き給湯装置の概略構成を示す図である。
【図2】同装置のコントロールユニットで実行されるルーチンを示すフローチャートである。
【図3】他の態様の湯張り制御の要部を示すフローチャートである。
【図4】さらに他の態様の湯張り制御に用いられるデータを示すグラフである。
【図5】本発明に係わる一缶二水路型の追焚,湯張り機能付き給湯装置の他の形態を示す図である。
【図6】本発明に係わる二缶二水路型の追焚,湯張り機能付き給湯装置の概略構成を示す図である。
【符号の説明】
2,2A,2B ガスバーナ(燃焼部)
10,10A,10B 熱交換部
20 給湯系配管
30 追焚循環系配管
31 戻り管
32 往き管
40 浴槽
50 湯張り管
55 湯張り弁
60 コントロールユニット(湯張り制御手段)
65 警報表示器
THIN 入水温度センサ
THOUT 出湯温度センサ(第1温度センサ)
TH1 復路側温度センサ(第1温度センサ,第2温度センサ)
TH2 往路側温度センサ(第2温度センサ,第1温度センサ)
THE 環境温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water supply device with a memorial function and a hot water filling function, and more particularly to improvement of hot water filling control to a bathtub.
[0002]
[Prior art]
For example, a canned and double water channel type memorial service and a hot water supply device with a hot water filling function are well known. This hot water supply device with a memorial service and hot water filling function is configured by vertically housing a common heat exchange unit and a common combustion unit in a common frame. A hot water supply system piping and a memorial circulation system piping pass through the heat exchange section. In this configuration, the same combustion section is combusted both when hot water supply is performed and when the memory is performed.
A downstream side of the heat exchange section in the hot water supply system pipe is connected to the remedy circulation system pipe via a hot water filling pipe. This hot water filling pipe is provided with a hot water filling valve so that it opens when the hot water is filled.
When hot water is filled in the bathtub, the water flowing through the hot water supply system pipe is heated to the set temperature in the heat exchange section by the combustion control in the combustion section, and this hot water is heated from the hot water fill pipe through the memorial circulation system pipe. Supply to the bathtub.
[0003]
[Problems to be solved by the invention]
By the way, when the hot water heated in the heat exchange section reaches the memorial circulation system pipe via the hot water supply pipe and the hot water filling pipe, the connection between the memorial circulation system pipe and the hot water filling pipe is performed. From the point, it is divided into two hands and flows in the memorial circulation system piping, one reaches the bathtub through the heat exchange part again, and the other reaches the bathtub without passing through the heat exchange part. Therefore, hot water that does not pass through the heat exchanging portion is supplied to the bathtub at the set temperature, but hot water that passes through the heat exchanging portion is reheated by the heat exchanging portion, and thus is higher than the set temperature and is supplied to the bathtub. As a result, there was a disadvantage that the hot water in the bathtub became higher than the set temperature at the end of the hot water filling.
[0004]
[Means for Solving the Problems]
The invention of claim 1 includes (a) a common heat exchange part, (b) a common combustion part for supplying combustion heat to the heat exchange part, and (c) a hot water supply system pipe and an additional pipe passing through the heat exchange part.焚 circulation system piping, (d) a hot water filling pipe connecting the downstream side of the heat exchange part in the hot water supply system piping to the additional circulation circuit piping, and (e) a hot water filling valve provided in the hot water filling pipe And (f) performing combustion in the combustion section to supply combustion heat to the heat exchanging section and opening the hot water filling valve from the hot water supply system pipe heated in the heat exchanging section. In a hot water supply device with a remedy and hot water filling function, comprising hot water filling means for supplying hot water to the bathtub via the hot water filling pipe and the remedy system piping and executing the hot water filling,
During the hot water filling, the hot water filling control means is divided into two parts from the hot water filling pipe to the memorial circulation system piping. Information on the distribution ratio between the flow rate of hot water and the flow rate of hot water reaching the bathtub without passing through the heat exchanger, the temperature information of the reheated hot water, and the temperature information of the hot water not reheated. Based on this, the temperature of these combined hot water is calculated, and the combustion in the combustion section is controlled so that the temperature of the combined hot water becomes a set temperature.
[0005]
The invention according to claim 2 is the hot water supply apparatus with the memorial service and hot water filling function according to claim 1, wherein the temperature information of the hot water that is not reheated is the downstream side of the heat exchange section in the hot water supply piping system, the hot water pipe, Detected by a first temperature sensor provided in one of the two pipes connected between the heat exchanging part and the bathtub in the memorial circulation system pipe, to which the hot water pipe is connected. The temperature information of the reheated hot water is detected by a second temperature sensor provided in a pipe not connected to the hot water filling pipe among the two pipes of the memorial circulation system pipe. It is characterized by that.
According to a third aspect of the present invention, in the hot water supply apparatus with the reheating and hot water filling function according to the second aspect, the recirculation circulation system pipe includes a heat receiving pipe passing through the heat exchanging portion, one end of the heat receiving pipe, and a bathtub. And a return pipe connected between the other end of the heat receiving pipe and the bathtub, so that hot water from the bathtub flows through the return pipe, the heat exchanger, and the forward pipe in this order. A pump for forced circulation is provided, the hot water pipe is connected to the forward pipe, the temperature of the reheated hot water is detected by the second temperature sensor provided in the return pipe, and the reheating is performed. The temperature of the hot water not to be detected is detected by the first temperature sensor provided in the path from the heat exchange part to the connection point with the hot water filling pipe in the hot water supply system pipe.
[0006]
Invention of Claim 4 is the temperature of the hot water stored in the bathtub by performing the hot water filling by the hot water filling control means in the hot water supply device with the memorial service and hot water filling function according to any one of claims 1 to 3. A temperature sensor that detects the temperature of the hot water in the bathtub detected by the temperature sensor, temperature information of the reheated hot water during the hot water filling, and The flow rate distribution ratio at the time of filling is calculated based on temperature information of hot water that is not reheated.
According to a fifth aspect of the present invention, in the hot water supply device with the memorial service and the hot water filling function according to the fourth aspect, the hot water filling control means uses the flow distribution ratio at the time of the previous hot water filling, and calculates the next time. The hot water filling control is performed.
[0007]
According to a sixth aspect of the present invention, in the hot water supply device with the refilling and hot water filling function according to the second aspect, the hot water supply system pipe includes a flow sensor for detecting a total flow rate of water supplied to the heat exchange unit, A temperature sensor for detecting the temperature of water entering the exchange unit and a temperature sensor for detecting the temperature of the hot water from the heat exchange unit are provided, and the hot water filling control means is based on detection information of these flow sensors and two temperature sensors. And calculating the initial amount of heat consumed by the water flowing in the hot water supply system pipe at the heat exchange unit, and calculating the amount of heat provided to the reheating from the initial amount of heat consumed and the amount of heat supplied from the combustion unit, The amount of reheating heat, the temperature of hot water toward the heat exchange section in the recirculation circulation pipe detected by the first temperature sensor comprising the tapping temperature sensor or other temperature sensors, and the re-temperature detected by the second temperature sensor. Hot water temperature Then, the flow rate of hot water to be reheated is calculated, the flow rate distribution ratio is calculated from the reheat flow rate and the total flow rate, and the hot water filling control currently being executed is controlled using the calculated flow rate distribution ratio. It is characterized by performing.
[0008]
According to a seventh aspect of the present invention, in the hot water supply apparatus with a refilling and hot water filling function according to the first aspect, the hot water filling control means is configured such that the amount of heat supplied from the combustion portion and the water flowing through the hot water supply system pipe are heat exchange portions. Stores the data representing the relationship between the initial heat consumption received at the water flow and the flow rate and temperature of hot water flowing again toward the heat exchange section in the additional circulation system pipe, and the hot water supply system pipe is supplied to the heat exchange section A flow sensor that detects the total flow rate of water, a temperature sensor that detects the temperature of water entering the heat exchange unit, and a temperature sensor that detects the temperature of the hot water from the heat exchange unit are provided. The initial heat consumption is calculated based on the information on the total flow rate, the incoming water temperature, and the tapping temperature detected by the flow sensor and the two temperature sensors, and the reheating heat quantity is calculated from the initial heat consumption and the supplied heat amount. And the first calculated above Of the two pipes connected between the heat exchanging part and the bathtub in the hot water temperature sensor or the additional circulation circuit pipe, the hot water filling pipe is connected. Based on the above data, the flow rate of hot water to be reheated is calculated from the temperature of hot water that is detected by the temperature sensor provided on the other pipe, and then reheated. Based on the reheat flow rate and reheat heat amount calculated as described above, and the detected temperature of hot water toward the heat exchange section, the temperature of the hot water after reheating is calculated. And the temperature of the combined hot water is calculated based on the calculated flow rate distribution ratio, the calculated reheating temperature, and the detected temperature of the hot water going to the heat exchange unit again.
[0009]
The invention of claim 8 provides (a) a hot water supply heat exchanging part and an additional heat exchanging part independent of each other, and (b) supplying combustion heat to the hot water supply heat exchanging part and the additional heat exchanging part, respectively. (C) a hot water supply piping that passes through the hot water heat exchanger, (d) a hot water circulation piping that passes through the hot water exchanger, and (F) a hot water filling valve provided on the hot water filling pipe, and (g) a hot water supply combustion. Combustion in the heating section and, if necessary, in the combustion section for reheating, supply combustion heat to the heat exchange section for hot water supply and the heat exchanging section for reheating, and open the filling valve As a result, the hot water from the hot water supply system piping is supplied to the bathtub through the hot water filling pipe and the memorial system piping, and the hot water filling is executed. Tsui焚 comprising a control unit, and the water heater with water filling functions,
During the hot water filling, the hot water filling control means is reheated through the flow rate distribution ratio of the hot water flowing separately from the hot water filling pipe into the hot water circulation system pipe, that is, through the hot water heat exchanger. Information on the distribution ratio between the flow rate of hot water reaching the bathtub and the flow rate of hot water reaching the bathtub without reheating without passing through the heat exchanger for remedy, the temperature information of the reheated hot water, and the reheating Based on the temperature information of the hot water not to be calculated, the temperature of the combined hot water is calculated, the combustion of the combustion part is controlled so that the temperature of the combined hot water becomes the set temperature, and the temperature information of the hot water not to be reheated is Of the two pipes connected between the heat exchange part and the bathtub in the downstream side of the heat exchange part in the hot water supply pipe system, the hot water pipe, and the above-mentioned circulation circulation system pipe, Detected by a first temperature sensor provided in one of the tubes, The temperature information of the hot water detected is detected by a second temperature sensor provided on the other pipe of the memorial circulation system pipe that is not connected to the hot water filling pipe. A temperature sensor that detects the temperature of hot water stored in the bathtub by executing hot water filling with the control means, and the hot water control means includes temperature information of the hot water in the bathtub detected by the temperature sensor and the hot water temperature. Based on the temperature information of the reheated hot water at the time of filling and the temperature information of the non-reheated hot water at the time of hot water filling, the flow rate distribution ratio at the time of hot water filling is calculated, and the above calculated previous hot water filling time The next hot water filling control is performed using the flow rate distribution ratio.
[0010]
According to a ninth aspect of the present invention, in the hot water supply apparatus with a memorial service and a hot water filling function having the constructions of (a) to (g) of the eighth aspect, the hot water filling control means performs the hot water filling during the hot water filling operation. The flow distribution ratio of hot water that flows separately from the pipe to the recirculation circulation system pipe, that is, the flow rate of hot water that passes through the heat exchange section for reheating and reaches the bathtub, and the heat exchanger for retreat Based on the information on the distribution ratio of the hot water flow to the bathtub without passing through and reheating, the temperature information on the reheated hot water, and the temperature information on the non-reheated hot water, the temperature of these combined hot water is calculated. The temperature information of the hot water that is not reheated is controlled by the downstream side of the heat exchanging section in the hot water supply pipe system, Of the two pipes connected between the heat exchange section and the bathtub in the memorial circulation piping The temperature information of the reheated hot water detected by a first temperature sensor provided in any one of the pipes to which the tension pipe is connected is the temperature information of the recirculated hot water circulation pipe of the two pipes A flow sensor for detecting a total flow rate of water supplied to the heat exchange unit, which is detected by a second temperature sensor provided in a pipe to which the hot water filling pipe is not connected; A temperature sensor for detecting the temperature of the incoming water to the heat exchanging unit and a temperature sensor for detecting the temperature of the outgoing hot water from the heat exchanging unit, and the hot water filling control means includes the flow sensor, the incoming water temperature sensor, and the outgoing hot water temperature sensor. On the basis of the detected information, the initial heat consumed by the water flowing through the hot water supply system pipe is calculated, and the amount of heat provided to the reheating is calculated from the initial heat consumed and the amount of heat supplied from the combustion section. And re-add this Based on the amount of heat, the temperature of the hot water toward the heat exchanging part for reheating detected by the first temperature sensor comprising the tapping temperature or other temperature sensors, and the temperature of the reheated hot water detected by the second temperature sensor, The flow rate of hot water to be heated is calculated, the flow rate distribution ratio is calculated from the reheat flow rate and the total flow rate, and the hot water filling currently performed is controlled using the calculated flow rate distribution ratio. Features.
[0011]
According to a tenth aspect of the present invention, in the hot water supply apparatus with the memorial service and the hot water filling function according to any one of the fourth to ninth aspects, the hot water filling control means is configured such that the calculated flow rate distribution ratio is a lower limit value or an upper limit value. An alarm signal is output when at least one of them is exceeded.
An eleventh aspect of the present invention is the hot water supply apparatus with the memorial service or hot water filling function according to any one of the fourth to fourth aspects, wherein the hot water filling control means includes the flow rate distribution ratio, the environmental temperature, and the hot water that is not reheated. On the basis of the temperature of the water and the temperature of the reheated hot water, the hot water filling control that compensates for the heat radiation caused by the environmental temperature is executed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the hot water supply device with a memorial function and a hot water filling function is of a single can and two water channel type, and is accommodated in the lower part of the common heat exchange unit 10 accommodated in the upper part of the common frame 1. The gas burner 2 (common combustion part) is provided.
The heat exchanging unit 10 has a large number of fin plates 13, the lower portions of the fin plates 13 are provided as the hot water supply portions 11, and the upper portions of the fin plates 13 are provided as the remedy portions 12.
A gas pipe 5 provided with an on-off valve 3 and a proportional valve 4 is connected to the gas burner 2. A fan 6 is disposed below the gas burner 5. An exhaust unit 7 is provided at the upper end of the frame 1.
[0013]
A hot water supply system pipe 20 and a memorial circulation system pipe 30 pass through the heat exchange unit 10. The hot water supply system pipe 20 includes a heat receiving pipe 28 that passes through the hot water supply portion 11 of the heat exchange unit 10, a water supply pipe 21 connected to the inlet end of the heat receiving pipe 28, and a hot water supply pipe 22 connected to the outlet end. ing. The water supply pipe 21 has an incoming water temperature sensor TH.INAnd a flow sensor 23 and a water amount control valve 24 are provided. The hot water supply pipe 22 has a hot water temperature sensor TH in the vicinity of the hot water heat exchanger 11.OUTAnd a hot water tap 25 is provided at the downstream end thereof.
[0014]
The memorial circulation system pipe 30 is connected to the heat receiving pipe 38 passing through the memorizing portion 12 of the heat exchanging section 10 and one end of the heat receiving pipe 38 (inlet at the time of the memorial circulation) connected to the circulation fitting 41 of the bathtub 40. A pipe 31 and an outgoing pipe 32 for connecting the other end of the heat receiving pipe 38 (an outlet at the time of circulation circulation) to the circulation fitting 41 are provided.
The return pipe 31 includes a return side temperature sensor TH.1A (first temperature sensor), a pump 35, and a water flow switch 36 are provided. The forward pipe 32 includes a forward temperature sensor TH.2(Second temperature sensor) is provided. A filter 39 is provided at the tip of the return pipe 31.
[0015]
Hot water temperature sensor THOUTThe downstream hot water supply pipe 22 and the return pipe 31 are connected by a hot water filling pipe 50. These connection points are indicated by P1 and P2 in FIG. The hot water filling pipe 50 is provided with a hot water filling valve 55 and a pressure sensor 56 (water level sensor) for detecting the water level of the bathtub 40.
[0016]
Further, the hot water supply apparatus includes a control unit 60 (hot water filling control means) including a microcomputer. The control unit 60 includes the various sensors 23, 36, 56, TH,IN, THOUT, TH1, TH2In response to a detection signal from the remote controller 70, a set temperature signal for hot water supply and hot water filling from the remote controller 70 (temperature setting means), command signals from various buttons of the remote controller 70, etc. The valve 55, the pump 35, and the gas supply valves 3 and 4 are controlled. Further, the control unit 60 rotates the fan 6 when performing combustion in the gas burner 5. Furthermore, the control unit 60 also controls the alarm indicator 65.
[0017]
First, the hot water supply operation in the apparatus having the above-described configuration will be schematically described. When the tap tap 25 is opened, the flow sensor 23 detects the water flow. The control unit 60 executes hot water supply control in response to the water flow detection signal. That is, the on-off valve 3 is opened, gas is supplied to the gas burner 2, and combustion is performed. At this time, the flow rate and temperature sensor TH detected by the flow sensor 23INThe feedforward component is calculated on the basis of the incoming water temperature detected in step 1 and the set temperature from the remote controller 70, and the temperature sensor THOUTBy calculating the feedback component based on the hot water temperature detected in step 1 and the hot water supply set temperature and controlling the proportional valve 4 or the water amount control valve 24 based on the control value obtained by adding both, the hot water tap 25 The hot water temperature from is matched with the hot water supply set temperature.
[0018]
The control unit 60 executes automatic operation in response to an automatic operation command signal from the automatic operation button of the remote controller 70. Automatic operation begins with hot water filling control. In this hot water filling control, the hot water filling valve 55 is opened and combustion in the gas burner 2 is executed. Then, the water from the water supply pipe 21 is heated in the process of passing through the heat receiving pipe 28, supplied to the bathtub 40 through the hot water supply pipe 22 and the hot water filling pipe 50, and the additional circulation system pipe 30. When the hot water in the bathtub 40 reaches the set water level (when the hot water filling is completed), the hot water in the bathtub 40 is driven by closing the hot water filling valve 55 and stopping the combustion, and then driving the pump 35. At this time, the return side temperature sensor TH1It is checked whether the hot water in the bathtub 40 detected in step 1 matches the bath set temperature (hereinafter, set temperature). When the temperature of the hot water in the bathtub 40 is lower than the set temperature, the pump 35 is maintained and the hot water in the bathtub 40 is circulated, combustion is performed in the gas burner 2, and the hot water in the bathtub 40 is stored. Match the temperature of to the set temperature.
[0019]
Thereafter, the control unit 60 monitors the water level of the bathtub 40 based on a signal from the pressure sensor 56, and when the water level falls below the set water level, the control unit 60 outputs the water from the hot water supply heat exchanger 11 in the same manner as when the hot water is filled. Hot water is supplied to the bathtub 40 to keep the bathtub 40 at a set water level (automatic water retention). Moreover, the hot water of the bathtub 40 is circulated periodically, and the hot water temperature is monitored, and when it is lower than the set temperature, the hot water of the bathtub 40 is tracked and matched with the set temperature (automatic heat retention).
[0020]
Next, the hot water filling control, which is a feature of the present invention, will be described in detail. During the hot water filling control, the hot water from the hot water filling pipe 50 is separated into two hands at the connection point P2, and one of the hot water is supplied to the bathtub 40 through the return pipe 31 while maintaining the temperature thereof. Since it reaches the bathtub 40 through the return pipe 31, the heat receiving pipe 38, and the forward pipe 32, it is reheated in the heat exchange unit 10.
[0021]
The temperature of the hot water that is actually filled with water, that is, the temperature T of the hot water that is to be separated into two hands and merged in the bathtub 40 as described above.U(Weighted average temperature) is the temperature T of hot water supplied to the bathtub without passing through the heat receiving pipe 381(Return path temperature sensor TH1And the temperature T of the hot water that has passed through the heat receiving pipe 382(Outward temperature sensor TH2Is detected by the ratio of the flow rate of hot water divided into two, that is, the flow rate distribution ratio X: (1−X), and can be expressed by the following equation.
TU= T1(1-X) + T2・ X (1)
Note that X is a distribution ratio of hot water that is reheated after passing through the heat receiving pipe 38 and the forward pipe 32, and (1-X) is hot water that passes through only the return pipe 31 and does not pass through the heat receiving pipe 38 and is not reheated. Is the distribution rate. The above equation (1) can be rewritten as the following equation.
TU= T1+ ΔT · X (2)
Where ΔT is the temperature T1, T2Deviation (T2-T1).
[0022]
As before, tapping temperature sensor THOUTHot water temperature T detected byOUTIs the set temperature T set by the remote controller 70SWhen the pressure proportional valve 4 is controlled so that the amount of combustion heat in the gas burner 2 is controlled, the tapping temperature TOUTIs the temperature T of the hot water that is not reheated1Is substantially equal to the set temperature TSSince both are substantially equal, in the above equation (2), T1= TSBy substitutingUCan be expressed as:
TU= TS+ ΔT · X (3)
As is clear from the above equation (3), the temperature T of the combined hot waterUIs the set temperature TSIt becomes higher by ΔT · X.
[0023]
Therefore, in the present invention, the following combustion control is executed in consideration of the amount of heat applied by being reheated by the reheating heat exchanger 12. That is, the detected temperature T1, T2And substituting these detected temperatures into the above equation (1),UAnd the calculated confluence temperature TUIs fed back to set temperature TSThe proportional valve 4 is controlled so as to coincide with. The distribution rate X in the above equation (1) is set to a standard distribution rate, for example, 0.5 (that is, the standard distribution ratio is set to 0.5: 0.5).
[0024]
As a result of the above-described combustion control, if the distribution ratio X matches the actual distribution ratio during filling, the converging temperature T obtained by the above equation (1)UIs set temperature TSAnd this set temperature TSYou should be able to do hot water filling. Moreover, the two temperature sensors TH1, TH2The temperature T of the hot water that is not reheated by1And the temperature T of the reheated hot water2Is detected in real time, and the temperature TUIs calculated in real time, and combustion control is performed based on this calculation.SThe hot water temperature control can be performed so that
[0025]
In addition, the temperature T of the merging hot waterUWhen calculating the return side temperature sensor TH1Detected temperature T1Instead of the hot water supply temperature sensor TH provided in the hot water supply pipe 22OUTDetected temperature TOUTMay be used as the first temperature sensor. This temperature TOUTWhen the hot water is supplied to the bathtub 40 without being heated, the return side temperature sensor TH1Detected temperature T1Because it should match. However, temperature sensor THOUTTo temperature sensor T1Ignore the heat dissipation in the path up to. Taking this discussion one step further, the temperature T1, TOUTCan be substituted for each other as temperature information, and this substitution can be performed in all embodiments described below. These temperatures T1, TOUTInstead of this, detection information of a temperature sensor provided in the hot water filling tube 50 can be used.
[0026]
The flow rate distribution ratio or flow rate distribution ratio is determined by the operator according to the length of the return pipe 31 and the forward pipe 32 in the piping work, and the determined flow rate distribution ratio or flow rate distribution ratio is input to the control unit 60. Also good.
[0027]
In the hot water filling control mode described below, the flow rate distribution ratio X is set to a standard value, for example, 0.5 in the hot water filling control during the first trial run after installation of the apparatus, and is updated after the hot water filling control is performed. To do.
More specifically, after filling the hot water, the pump 35 is driven and the return side temperature sensor TH is driven.1Thus, the temperature T of the hot water from the bathtub 40 toward the heat exchange unit 101'(Temperature of hot water in the bathtub 40) is detected. This temperature T1'Is the set temperature TSIf it matches, the set distribution rate X is maintained as it is and used for the next hot water filling control, but if it is different, the distribution rate X is calculated and updated, and the next hot water control is performed. The updated distribution rate X is used during tension control. That is, the above equation (1) is expressed as TU= T1By substituting ', it can be rewritten as
T1‘= T1(1-X) + T2・ X (4)
Equation (4) can be rewritten as:
X = (T1'-T1) / (T2-T1(5)
The distribution ratio X is calculated based on the above equation (5) and updated.
[0028]
For example, set temperature TSIs set to 44 ° C and the distribution ratio X is set to 0.5, the detected temperature T1Is 42 ° C, detection temperature T2Is 46 ° C. and the distribution ratio X is correct, the confluence temperature T calculated based on the above equation (1)UBecomes 44 ° C and the set temperature TSShould match. However, as a result of the hot water filling control under such circumstances, the actual temperature T of the hot water in the bathtub 40 is determined.1It is assumed that 'is 43.6 ° C. In this case, assuming that the setting of the distribution ratio X = 0.5 is incorrect, the distribution ratio X is calculated based on the above equation (5) to obtain 0.4. Next time, the combustion control is executed using this distribution ratio X = 0.4. In calculating the distribution ratio X, the detected temperature T1, T2The average value over the whole period of hot water filling control may be used, or the average value after stabilization may be used.
[0029]
The update of the distribution ratio X is mainly performed by resetting the distribution ratio used during the first test run after installing and installing the device to a distribution ratio corresponding to the actual length of the return pipe 31 and the forward pipe 32. Alternatively, the distribution rate is corrected in accordance with the change with time of the degree of clogging of the filter 39 provided at the front end opening of the return pipe 31.
[0030]
The calculated distribution ratio X is useful for detecting the collapse of the circulation pipe 30 in the test operation immediately after the installation of the apparatus. That is, the upper limit value X1, Lower limit X2Is set to 0.7, 0.3, for example, and the distribution ratio X is the upper limit value X.1When the value exceeds the upper limit, it is determined that the return pipe 31 is crushed, and the lower limit X2If it falls below, it is determined that the forward pipe 32 has been crushed, and this is displayed on the alarm indicator 65.
The calculated distribution ratio X is useful for monitoring clogging of the filter 39. Distribution ratio X is upper limit X0When it exceeds (for example, 0.7), it is determined that the clogging of the filter 39 has exceeded the allowable limit, and this is displayed on the alarm indicator 65.
[0031]
Note that the update of the distribution ratio X can also play a role of heat dissipation compensation in the return pipe 31, the forward pipe 32, and the bathtub 40 during cold weather. As in the above example, for example, the temperature T of the hot water in the bathtub 40 after filling1'Is the set temperature TSIf it is lower, the distribution rate X is updated so as to be small, assuming that the amount of hot water reheated by the heat exchanger for remedy 12 is small. As a result, in the next hot water filling control, the combustion control is performed so as to obtain a larger amount of combustion heat.1The heat radiation can be compensated so as to increase '.
In the above description, the distribution ratio and the distribution ratio have been described separately. However, the concept of the distribution ratio in the claims is broader, and the distribution ratio X of the flow rate to the heat exchange unit, the flow rate that does not pass through the heat exchange unit. The distribution ratio (1-X) is also included. For example, the calculation of the distribution ratio X or the calculation of the distribution ratio (1-X) corresponds to “calculation of the distribution ratio” in the claims.
[0032]
Next, the routine of the automatic operation executed by the control unit 60 in response to the turning on of the automatic operation button will be described in detail based on the flowchart of FIG. First, the set temperature T set by the remote controller 70SIs read (step 101). Next, the water amount control valve 24 is fully opened (step 102), and the hot water filling valve 55 is opened (step 103).
[0033]
Next, the return side temperature sensor TH1(Or tapping temperature sensor THOUTThe temperature T of the hot water that does not pass through the heat exchanger for remedy 12 detected in1(Or temperature TOUT) And outbound temperature sensor TH2The temperature T of the hot water that has passed through the heat exchanger 12 for remedy detected in2Is read (step 104). Next, based on the above equation (1), the temperature T of the combined hot waterUTo calculate the temperature T of this combined hot waterUIs set temperature TSThus, the combustion control of the gas burner 2 is performed by controlling the proportional valve 4 (step 105). In this combustion control, the distribution rate X in the above equation (1) is 0.5 at the first operation after construction. In addition, while this gas burner 2 is in a fully open state, the merging temperature TUIs set temperature TSIf not, control is performed by reducing the opening of the water amount control valve 24 so that the above equation (1) is established.
[0034]
Next, it is determined whether or not the water level of the bathtub 40 detected by the pressure sensor 56 has reached the set water level (step 106). If a negative determination is made in step 106, the process returns to step 104 and the hot water filling is continued. If an affirmative determination is made in step 106, the hot water filling is terminated (step 107). That is, the hot water filling valve 55 is closed and the combustion control of the gas burner 2 is finished. Next, the pump 35 is driven to circulate the temperature of the bathtub 40 (step 108), and the return side temperature sensor TH1The temperature T of the hot water in the bathtub 40 detected in1'Is the set temperature TS(Step 109). When an affirmative determination is made in step 109, the process proceeds to automatic heat retention and automatic water retention control (step 110).
[0035]
When a negative determination is made at step 109, the distribution ratio X is calculated based on the above-described equation (5) and stored in the memory (step 111). This distribution rate X is basically used for the next hot water filling control. Next, it is determined whether or not this hot water filling control is a test operation performed first after the installation of the apparatus (step 112). When an affirmative determination is made in step 112, the process proceeds to step 113, where the distribution ratio X is the upper limit value X.1And lower limit X2It is judged whether it is in the tolerance | permissible_range between. When an affirmative determination is made in step 113, the process proceeds to the above-described automatic heat retention and automatic water retention control (step 110). When a negative determination is made, a display of collapsed piping is displayed on the alarm display 65 (step 114). In this case, as described above, the upper limit value X1When it is higher than that, the return pipe 31 is crushed, the lower limit X2When the distance is lower than that, the forward pipe 32 may be displayed separately from being crushed.
[0036]
When it is determined in the above step 112 that it is not a trial run, the distribution rate X is the upper limit value X0It is determined whether or not the following (step 115). When a positive determination is made, the process proceeds to the above-described automatic heat retention and automatic water retention control (step 110). When a negative determination is made, filter clogging is displayed on the alarm display 65 (step 116).
In addition, after making a positive determination in steps 113 and 115, the detected temperature T1'Is the set temperature TSIf it is lower, it may proceed to step 110 after performing the rebirth as described above.
[0037]
As another aspect of the hot water control, the hot water control can be performed in consideration of the remaining water in the bathtub 40. More specifically, after executing step 102 in FIG. 2, the process proceeds to step 201 in FIG. 3, where the pump 35 is turned on. Next, it is determined whether or not the water flow switch 36 is on, that is, whether or not a water flow has been detected. If there is no residual water in the bathtub 40 or the water level of the residual water is lower than the position of the circulation fitting 41, the water flow is not detected, so a negative determination is made here and the routine proceeds to step 203 where the pump 35 is turned off. The Next, a predetermined amount of pouring is performed (step 204). That is, the hot water filling valve 55 is opened and, for example, the merging temperature T obtained based on the equation (1)UIs set temperature TSThe gas burner 2 is controlled so that Next, the pump 35 is turned on again (step 205), and the presence or absence of water flow is detected (step 206).
[0038]
When an affirmative determination is made in either of steps 202 and 206, the return-side temperature sensor TH1After reading the temperature of the hot water in the bathtub 40 (residual water temperature) detected by (step 207), the pump 35 is turned off (step 208). Next, the water level of the bathtub 40 is read by the pressure sensor 56 and the remaining water amount is calculated (step 209). Next, the amount of remaining water, the amount of hot water filling, the remaining water temperature, and the set temperature TSNew set temperature TS(Step 210), and the process proceeds to step 103. When a negative determination is made in step 206, the set temperature TSAssuming that only the hot water poured in is in the bathtub 40, steps 207 to 210 are skipped, the pump 35 is turned off (step 211), and the process proceeds to step 103 without updating the set temperature.
[0039]
In the above embodiment, it is preferable to calculate the distribution rate X in step 111 in consideration of the residual water amount and the residual water temperature. That is, the detected temperature of the hot water in the bathtub at the end of the hot water filling is T1”, The water level (water filling amount) at the end of the water filling is H ′, and the water level (residual water amount) is H.0, T0Then, the following equation holds.
T1"・ H '= H0・ T0+ TU'(H'-H0(6)
Where TU'Is not a value actually detected, but is the actual temperature of the combined hot water supplied to the bathtub by the hot water filling, and corresponds to the temperature of the hot water in the bathtub in the first-described control mode.
The above equation (6) can be rewritten as follows.
TU’= (T1"H'-H0・ T0) / (H'-H0(7)
This TU′ Is compared with the set temperature updated in step 210.U‘T’ in equation (5)1Substituting instead of ′, the distribution ratio X is obtained.
[0040]
As yet another aspect of the hot water filling control, heat dissipation compensation may be considered separately from the distribution ratio X. In this case, the temperature decrease ΔTx due to heat radiation in the circulation pipe 30 and the bathtub 40 is expressed by the following equation, for example.
ΔTx = R · (Ts−TE(8)
Where TSIs the set temperature, TEIs the temperature sensor THEIt is a room temperature (environmental temperature) detected by an imaginary line in FIG. Set temperature TSInstead of the above-mentioned detected temperature T1Or T2You may use the average value of or the average value of the sum of both. R varies depending on the size of the bathtub 40 and the lengths of the return pipe 31 and the forward pipe 32. Here, R is a constant when an average size and length are assumed.
Therefore, in order to compensate for heat dissipation in hot water filling control, equation (1) may be rewritten as follows.
TU= T1(1-X) + T2X + ΔTx (1) ′
And the temperature T of the merged hot water calculated based on the above equation (1) 'UIs set temperature TSThe hot water filling control is executed so that
TU= T1By substituting '+ ΔTx into the above equation (1)' and rewriting, the above equation (5) is obtained. Therefore, the temperature T of the hot water in the bathtub 40 obtained by hot water filling.1When ′ is different from the set temperature, the distribution ratio X may be obtained in the same manner as described above. Here, since the calculated flow distribution ratio X does not include a heat release factor, it is possible to detect the crushing and clogging of the pipes more accurately, which is preferable in a cold region.
In addition, as a temperature sensor for detecting the environmental temperature in this aspect, the incoming water temperature sensor THINMay be used.
[0041]
In all the embodiments described above, during the hot water filling control, a predetermined flow rate distribution ratio or a flow rate distribution ratio obtained as a result of the previous hot water filling control is used. It is also possible to calculate the flow rate distribution ratio in real time during the hot water filling control, and to perform more accurate hot water control based on the calculated flow rate distribution ratio.
First, the theory that is the basis of the flow rate distribution ratio calculation during hot water control will be described. In this case, the supply heat amount G (the heat amount supplied from the combustion unit 2 to the heat exchange unit 10) obtained from the opening information of the proportional valve 4 (supply current value to the proportional valve 4). The total flow rate Q (the flow rate of water passing through the heat receiving pipe 28 of the hot water supply piping system 20) detected by the flow sensor 23, and the hot water temperature sensor TH.OUTHot water temperature T fromOUTInformation.
[0042]
The following equation holds in theory for the supply number G.
G = G1 + G2 (11)
Here, G1 is the amount of heat received by the heat exchanging unit 10 in the process of passing through the heat receiving pipe 28 of the hot water supply system pipe 20, that is, the initial heat consumption (hereinafter referred to as the initial number). G2 is the amount of heat (number of reheating) that is reheated in the process in which one of the two separate hot waters passes through the heat receiving pipe 38 of the memorial circulation system pipe 30.
Equation (11) can be rewritten as:
G2 = G−G1 (12)
[0043]
The initial number G1 is obtained from the detection information in the hot water supply piping 20 by the following equation.
G1 = Q (T0UT-TIN(13)
The reheating number G2 is calculated by substituting the initial number G1 obtained by the calculation and the supply number G to the equation (12).
[0044]
By the way, the following equation is theoretically established for the reheating number G2.
G2 = Q2 (T2-TOUT(14)
Here, Q2 is a flow rate of hot water reheated through the heat receiving pipe 38 among the hot water initially heated. The temperature TOUTIs the temperature before reheating, and as described above, the temperature T1Can be replaced with.
Equation (14) can be rewritten as:
Q2 = G2 / (T2-TOUT(15)
The reheating number G2 calculated as described above and the temperature sensor TH2, THOUTDetected temperature T2, TOUTIs substituted into equation (15) to obtain the reheating flow rate Q2. Based on the reheating flow rate Q2 and the total flow rate Q, the distribution ratio X = Q2 / Q is obtained, and thus the flow rate distribution ratio is obtained. Then, the hot water filling control is performed using the flow rate distribution ratio calculated in real time.
[0045]
In the hot water filling control method, the three temperature information T0UT(Or T1), TIN, T2The flow rate distribution ratio is calculated based on the total flow rate Q and the supply number G, but the flow rate distribution ratio can be calculated by omitting any one of the temperature information. In this case, the empirical data of the heat distribution ratio to the water and hot water flowing through the heat receiving tubes 28 and 38 in the heat exchanging unit 10 is stored in the memory of the control unit 60 and used every time hot water is filled.
[0046]
The following calculation example shows the return side temperature sensor TH.2It is for saving. That is, the four temperature sensors TH in FIG.IN, THOUT, TH1, TH2Temperature sensor THIN, THOUTIs used for hot water control as described above, and the temperature sensor TH1Is a temperature sensor that is indispensable as a general hot water supply device because it is used for memory control. However, the temperature sensor TH2Since this is used only for hot water filling control, it is intended to simplify the configuration by omitting this.
[0047]
More specifically, empirical data as illustrated in the graph of FIG. 4 is used. In this figure, the vertical axis represents the initial number G1, and the horizontal axis represents the hot water supply side tapping temperature T.OUTRepresents. The substantially linear lines in the figure are the reheating flow rate Q2 and the temperature of hot water before being reheated (in other words, the reheating side inlet temperature, the hot water supply side hot water temperature T).OUTIs equivalent to a combination of two factors. In FIG. 4, lines a, b, and c indicated by solid lines indicate the temperature T of hot water before reheating.OUTIs a case where the reheating flow rate Q2 is 4 L / min, the line b is 5 L / min, and the line c is 6 L / min. Also, lines d, e, and f indicated by broken lines indicate the temperature T of hot water before reheating.OUTIndicates a case where the temperature is 35 ° C., line d indicates a case where the reheating flow rate Q2 is 4 L / min, line e indicates 5 L / min, and line f indicates a case where 6 L / min.
[0048]
The above-mentioned lines a to f are merely examples, and in practice the temperature TOUTA number of lines are drawn corresponding to various combinations of the flow rate Q2. FIG. 4 shows a case where the supply number G is 18, and a lot of data corresponding to the same graph as the graph of FIG.
[0049]
The procedure for obtaining the reheating flow rate Q2 from the graph will be described in detail. First, the detected temperature TIN, TOUTFrom the equation (13), the initial number G1 is obtained from the total flow rate Q. Next, the calculated initial number G1 and the detected temperature TOUTFrom the above, the intersection in FIG. 4 is obtained. For example, supply number is 18, detection temperature TOUTIs 40 ° C. and the initial number G1 is 15, the intersection is indicated by A in FIG. And temperature TOUTAmong the lines a, b, and c corresponding to = 40 ° C., the line b corresponding to the intersection A is obtained. This line b has a temperature TOUTIs a line representing the heat distribution ratio when the flow rate Q2 is 5 L / min at 40 ° C., the flow rate Q2 = 5 L / min can be obtained by selecting this line b, and the distribution rate X and flow distribution The ratio can be determined.
[0050]
Further, from the supply number G and the initial number G1, the reheating number G2 can be obtained based on the equation (12).
Further, the reheating temperature T is as follows.2Can be requested. In other words, when the equation (14) is rewritten, the following equation is obtained.
T2= G2 / Q2 + TOUT  ... (16)
In this equation, the calculated reheating flow rate Q2, the reheating number G2, and the detected temperature TOUTBy substituting, the reheating temperature T2Can be calculated. The calculated reheating temperature T2And return side temperature sensor TH1Temperature detected by T1(Or the detected temperature TOUT) And the flow rate distribution ratio, the temperature T of the merging hot water based on the formula (1)UThis combined hot water temperature TUThe hot water filling control can be performed based on the above.
[0051]
In the embodiment shown in FIG. 5, the hot water filling pipe 50 is connected to the forward pipe 32. In this case, the hot water passing through the main part of the forward pipe 32 is supplied to the bathtub 40 without passing through the heat exchange unit 10, and the hot water passing through the return pipe 31 passes through the heat exchange unit 10. In this embodiment, the return side temperature sensor TH1Is used as a second temperature sensor to detect the temperature of hot water being reheated and to detect the hot water temperature of the bathtub 40. As temperature information of hot water not reheated, tapping temperature sensor TOUTSince the detected temperature of the (first temperature sensor) can be used, the forward path temperature sensor can be omitted. Therefore, the temperature sensor is a temperature sensor TH that is originally used for hot water supply and memorial service.IN, THOU T, TH1Just do it.
In the apparatus according to the embodiment of FIG. 5, all the hot water filling control systems described above can be applied.
[0052]
FIG. 6 shows a form in which the present invention is applied to a two-can two-water channel type hot water supply device with a memorial and hot water filling function. This device is different from the above-mentioned one-can two-water channel memorial and hot water supply device with a hot water filling function in the following points. That is, the hot water supply heat exchanging portion 10A and the additional heat exchanging portion 10B are accommodated in the upper part of two independent frames 1A and 1B, respectively, and the gas burners 2A and 2B (the hot water supply combusting portion and the additional combusting combustion portion) in the lower portion. And exhaust units 7A and 7B are provided. The gas pipe 5 is branched into two and is connected to the gas burners 2A and 2B, and auxiliary opening / closing valves 9A and 9B are provided at the branched portions, respectively.
In the present embodiment, the frames 1A and 1B are connected at the lower part and receive the supply of air from the common fan 6. However, the frames 1A and 1B may be completely separated from each other and may be installed separately. In this device, the control unit 60 simultaneously burns the gas burners 2A and 2B by opening both auxiliary on-off valves 9A and 9B during hot water filling control. In this apparatus, except for the control method based on the data of FIG. 4, all of the hot water filling control (including distribution ratio calculation and the like) based on the temperature of the merged hot water described above can be applied.
In FIG. 6, a hot water filled pipe may be connected to the forward pipe 32. In this way, the temperature sensor TH2Can be omitted.
[0053]
The present invention is not limited to the above-described embodiment, and various measures can be taken. For example, in the case of a single can two water channel, the heat exchange part may not have a hot water supply part and a memorial part separated vertically. For example, the heat receiving pipes of the hot water supply system piping may be arranged in two upper and lower rows, and the heat receiving pipes of the additional circulation system piping may be in contact with the heat receiving tubes of the lower row.
[0054]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the apparatus having a common heat exchanging portion, the flow rate of the combined hot water is determined based on the flow rate distribution ratio, the temperature of reheated hot water, and the temperature of hot water not reheated. Accurate hot water filling control can be performed by calculating the temperature and performing hot water filling control so that the temperature of this merge becomes the set temperature.
According to the second aspect of the invention, the temperature of the reheated hot water and the temperature of the hot water not reheated are detected by the temperature sensor, so that more accurate hot water filling control can be performed.
According to the invention of claim 3, the hot water filled pipe is connected to the forward pipe, and is detected by the temperature sensor provided on the downstream side of the hot water supply system piping in order to detect the temperature of the hot water that is not reheated, and is reheated. By detecting the temperature of the hot water with the temperature sensor of the return pipe that is originally used at the time of tracking control, it is not necessary to provide the temperature sensor in the forward pipe, and the configuration can be simplified.
According to the invention of claim 4, the actual flow rate distribution ratio can be calculated based on the temperature of hot water stored in the bathtub due to hot water filling. In addition, the calculation of the flow rate distribution ratio eliminates the need for a flow meter or the like in the additional circulation system piping, and the configuration can be simplified. According to the fifth aspect of the present invention, the hot water filling control is performed based on the flow rate distribution ratio calculated in the previous hot water filling control, so that the more accurate hot water filling control can be performed.
According to the sixth aspect of the present invention, since the flow rate distribution ratio can be detected in real time during the hot water filling control, the hot water filling control can be performed more accurately.
According to the seventh aspect of the present invention, the reheating temperature and the flow rate distribution ratio are calculated in real time during the hot water filling control even if there is no temperature sensor for detecting the temperature of the reheated hot water in the additional circulation system pipe. Therefore, it is possible to perform the hot water filling control more accurately while having a simple configuration.
According to the eighth aspect of the present invention, in the apparatus in which the hot water supply heat exchanging unit and the reheating heat exchanging unit are independent from each other, the actual flow rate distribution ratio calculated in the previous hot water filling control and the reheated hot water By calculating the temperature of the combined hot water based on the temperature and the temperature of the hot water that is not reheated, and performing the hot water filling control so that the temperature of the combined water becomes the set temperature, accurate hot water filling control can be performed.
According to the ninth aspect of the present invention, in a device in which the hot water supply heat exchanging section and the remedy heat exchanging section are independent from each other, the actual flow rate distribution ratio calculated in real time during hot water filling control and the reheated hot water The temperature of the combined hot water is calculated based on the temperature of the hot water and the temperature of the hot water that is not reheated, and the hot water filling control is performed so that the temperature of the combined water becomes the set temperature, whereby accurate hot water filling control can be performed.
According to the tenth aspect of the present invention, when the flow rate distribution ratio exceeds the upper limit value or the lower limit value, for example, an alarm signal can be issued assuming that the circulation piping is abnormal.
According to the invention of claim 11, by performing heat radiation compensation, the hot water in the bathtub can be more reliably set to the set temperature when the hot water is filled. Further, the flow distribution ratio can be calculated more accurately.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a schematic configuration of a single-bottle two-water channel type remedy and hot water supply device according to the present invention.
FIG. 2 is a flowchart showing a routine executed by the control unit of the apparatus.
FIG. 3 is a flowchart showing a main part of hot water filling control according to another embodiment.
FIG. 4 is a graph showing data used for hot water filling control according to still another embodiment.
FIG. 5 is a view showing another embodiment of a hot water supply device with a single can two water channel type memorial and hot water filling function according to the present invention.
FIG. 6 is a diagram showing a schematic configuration of a hot water supply device with a two-can two-water channel type memorial and hot water filling function according to the present invention.
[Explanation of symbols]
2,2A, 2B Gas burner (combustion part)
10, 10A, 10B Heat exchange section
20 Hot water supply system piping
30 memorial circulation piping
31 Return pipe
32 Outward pipe
40 bathtub
50 Hot water filled tube
55 Hot water filling valve
60 Control unit (water filling control means)
65 Alarm indicator
THIN  Inlet water temperature sensor
THOUT  Hot water temperature sensor (first temperature sensor)
TH1  Return side temperature sensor (first temperature sensor, second temperature sensor)
TH2  Outward temperature sensor (second temperature sensor, first temperature sensor)
THE  Environmental temperature sensor

Claims (11)

(イ)共通の熱交換部と、
(ロ)上記熱交換部に燃焼熱を供給する共通の燃焼部と、
(ハ)上記熱交換部を通る給湯系配管および追焚循環系配管と、
(ニ)上記給湯系配管における熱交換部より下流側を、上記追焚循環系配管に接続する湯張り管と、
(ホ)上記湯張り管に設けられた湯張り弁と、
(ヘ)上記燃焼部での燃焼を実行して上記熱交換部に燃焼熱を供給するとともに上記湯張り弁を開にすることにより、熱交換部で加熱された上記給湯系配管からの湯を、上記湯張り管,追焚系配管を介して浴槽に供給して、湯張りを実行する湯張り制御手段と、
を備えた追焚,湯張り機能付き給湯装置において、
上記湯張り制御手段は、上記湯張り実行中に、湯張り管から追焚循環系配管を二手に別れて流れる湯の流量分配比、すなわち上記熱交換部を通過して再加熱されて浴槽に至る湯の流量と、熱交換部を通らず再加熱されないで浴槽に至る湯の流量との分配比の情報と、上記再加熱された湯の温度情報と、上記再加熱されない湯の温度情報に基づき、これらの合流湯の温度を演算し、この合流湯の温度が設定温度になるように上記燃焼部の燃焼を制御することを特徴とする追焚,湯張り機能付き給湯装置。
(A) a common heat exchange section;
(B) a common combustion section for supplying combustion heat to the heat exchange section;
(C) a hot water supply system piping and a memorial circulation system piping passing through the heat exchange section,
(D) a hot-water pipe that connects the downstream side of the heat exchange section in the hot water supply system piping to the memorial circulation system piping;
(E) a filling valve provided on the filling pipe;
(F) Combustion in the combustion section to supply combustion heat to the heat exchange section and open the hot water filling valve to remove hot water from the hot water supply system pipe heated in the heat exchange section. A hot water filling control means for supplying hot water to the bathtub through the hot water filling pipe and the memorial system piping,
In hot water supply device with memorial service and hot water filling function,
During the hot water filling, the hot water filling control means is divided into two parts from the hot water filling pipe to the memorial circulation system piping. Information on the distribution ratio between the flow rate of hot water and the flow rate of hot water reaching the bathtub without passing through the heat exchanger, the temperature information of the reheated hot water, and the temperature information of the hot water not reheated. A hot water supply device with a remedy and hot water filling function characterized in that the temperature of the combined hot water is calculated and the combustion of the combustion section is controlled so that the temperature of the combined hot water becomes a set temperature.
上記再加熱されない湯の温度情報は、上記給湯配管系における熱交換部の下流側、湯張り管、上記追焚循環系配管において熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管、のいずれかに設けられた第1温度センサによって検出され、
上記再加熱された湯の温度情報は、上記追焚循環系配管の2本の管のうち上記湯張り管が接続されていない方の管に設けられた第2温度センサによって検出されることを特徴とする請求項1に記載の追焚,湯張り機能付き給湯装置。
The temperature information of the non-reheated hot water is obtained from the downstream side of the heat exchange section in the hot water supply piping system, the hot water pipe, and the two pipes connected between the heat exchange section and the bathtub in the additional circulation system pipe. Detected by a first temperature sensor provided in one of the pipes to which the hot water filled pipe is connected,
The temperature information of the reheated hot water is detected by a second temperature sensor provided in a pipe not connected to the hot water filling pipe among the two pipes of the memorial circulation system pipe. The hot water supply device with the memorial and hot water filling function according to claim 1,
上記追焚循環系配管は、熱交換部内を通る受熱管と、この受熱管の一端と浴槽との間に接続された戻り管と、受熱管の他端と浴槽との間に接続された往き管とを備え、戻り管には浴槽の湯を戻り管,熱交換部,往き管の順に流れるように強制循環させるポンプが設けられ、上記湯張り管は上記往き管に接続され、
上記再加熱された湯の温度が、上記戻り管に設けられた上記第2温度センサにより検出され、上記再加熱されない湯の温度が、上記給湯系配管において熱交換部から湯張り管との接続点までの経路に設けられた上記第1温度センサによって検出されることを特徴とする請求項2に記載の追焚,湯張り機能付き給湯装置。
The additional circulation system pipe includes a heat receiving pipe passing through the heat exchange section, a return pipe connected between one end of the heat receiving pipe and the bathtub, and a forward connection connected between the other end of the heat receiving pipe and the bathtub. The return pipe is provided with a pump that forcibly circulates the hot water in the bathtub so as to flow in the order of the return pipe, the heat exchange unit, and the forward pipe, and the hot water filled pipe is connected to the forward pipe,
The temperature of the reheated hot water is detected by the second temperature sensor provided in the return pipe, and the temperature of the hot water not reheated is connected from the heat exchange section to the hot water filling pipe in the hot water supply system pipe. It is detected by the first temperature sensor provided in the path to the point, and the hot water supply device with the memorial and hot water filling function according to claim 2.
上記湯張り制御手段で湯張りを実行することにより浴槽に蓄えられた湯の温度を検出する温度センサを備え、上記湯張り制御手段は、この温度センサで検出された浴槽の湯の温度情報と、上記湯張り時の再加熱された湯の温度情報と、上記湯張り時の再加熱されない湯の温度情報に基づいて、上記湯張り時の流量分配比を演算することを特徴とする請求項1〜3のいずれかに記載の追焚,湯張り機能付き給湯装置。The hot water filling control means includes a temperature sensor that detects the temperature of hot water stored in the bathtub by executing hot water filling, and the hot water filling control means includes temperature information of the hot water in the bathtub detected by the temperature sensor and The flow rate distribution ratio during the hot water filling is calculated based on the temperature information of the reheated hot water during the hot water filling and the temperature information of the hot water not reheated during the hot water filling. The hot water supply device with the memorial service and hot water filling function according to any one of 1 to 3. 上記湯張り制御手段は、上記演算された前回の湯張り時の流量分配比を用いて、次回の湯張り制御を行うことを特徴とする請求項4に記載の追焚,湯張り機能付き給湯装置。The hot water filling control means according to claim 4, wherein the hot water filling control means performs the next hot water filling control using the calculated flow rate distribution ratio at the previous hot water filling. apparatus. 上記給湯系配管には、熱交換部に供給される水の総流量を検出するフローセンサと、熱交換部への入水温度を検出する温度センサと、熱交換部からの出湯温度を検出する温度センサとが設けられ、
上記湯張り制御手段は、これらフローセンサと2つの温度センサの検出情報に基づいて、給湯系配管を流れる水が熱交換部で受ける初期消費熱量を演算し、
この初期消費熱量と、上記燃焼部からの供給熱量とから、上記再加熱に提供される熱量を演算し、
この再加熱熱量と、上記出湯温度センサまたは他の温度センサからなる第1温度センサで検出された追焚循環系配管において熱交換部に向かう湯の温度と、上記第2温度センサによって検出された再加熱湯の温度から、再加熱される湯の流量を演算し、
この再加熱流量と上記総流量とから上記流量分配比を演算し、演算された流量分配比を用いて現在実行している湯張りの制御を行うことを特徴とする請求項2に記載の追焚,湯張り機能付き給湯装置。
The hot water supply system piping includes a flow sensor that detects the total flow rate of water supplied to the heat exchange unit, a temperature sensor that detects the incoming water temperature to the heat exchange unit, and a temperature that detects the temperature of the hot water from the heat exchange unit. A sensor,
The hot water filling control means calculates the initial amount of heat consumed by water flowing through the hot water supply system pipe at the heat exchange unit based on the detection information of the flow sensor and the two temperature sensors,
From this initial heat consumption and the amount of heat supplied from the combustion section, the amount of heat provided for the reheating is calculated,
The amount of reheating heat, the temperature of hot water toward the heat exchanging section in the supplementary circulation system pipe detected by the first temperature sensor comprising the tapping temperature sensor or another temperature sensor, and the second temperature sensor. Calculate the reheated water flow rate from the reheated water temperature,
The additional flow rate according to claim 2, wherein the flow rate distribution ratio is calculated from the reheat flow rate and the total flow rate, and the hot water filling currently performed is controlled using the calculated flow rate distribution ratio.給, hot water supply device with hot water filling function.
上記湯張り制御手段は、上記燃焼部からの供給熱量と、給湯系配管を流れる水が熱交換部で受ける初期消費熱量と、追焚循環系配管で再度熱交換部に向かう湯の流量および温度との関係を表すデータを記憶しており、
上記給湯系配管には、熱交換部に供給される水の総流量を検出するフローセンサと、熱交換部への入水温度を検出する温度センサと、熱交換部からの出湯温度を検出する温度センサとが設けられ、
上記湯張り制御手段は、これらフローセンサと2つの温度センサで検出された総流量,入水温度,出湯温度の情報に基づいて、上記初期消費熱量を演算するとともに、この初期消費熱量と上記供給熱量とから、再加熱熱量を演算し、
上記演算された初期消費熱量と、上記燃焼部からの供給熱量と、上記出湯温度センサまたは上記追焚循環系配管おいて熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管に設けられた温度センサで検出された再度熱交換部に向かう湯の温度から、上記データに基づいて、再加熱される湯の流量を演算し、この再加熱流量と総流量から流量分配比を演算し、
上記のようにして演算された再加熱流量および再加熱熱量と、上記の再度熱交換部に向かう湯の検出温度に基づいて、再加熱された後の湯の温度を演算し、
上記演算された流量分配比と、演算された再加熱温度と、再度熱交換部に向かう湯の検出温度に基づいて、上記合流湯の温度を演算することを特徴とする請求項1に記載の追焚,湯張り機能付き給湯装置。
The hot water filling control means includes the amount of heat supplied from the combustion unit, the initial amount of heat consumed by the water flowing through the hot water supply system pipe in the heat exchange unit, and the flow rate and temperature of hot water that is directed again to the heat exchange unit through the additional circulation system pipe. Data representing the relationship between and
The hot water supply system piping includes a flow sensor that detects the total flow rate of water supplied to the heat exchange unit, a temperature sensor that detects the incoming water temperature to the heat exchange unit, and a temperature that detects the temperature of the hot water from the heat exchange unit. A sensor,
The hot water filling control means calculates the initial heat consumption based on the information on the total flow rate, the incoming water temperature, and the outgoing hot water temperature detected by the flow sensor and the two temperature sensors, and the initial heat consumption amount and the supplied heat amount. And calculate the amount of reheating heat,
Of the two pipes connected between the heat exchange section and the bathtub in the calculated initial heat consumption, the amount of heat supplied from the combustion section, and the tapping temperature sensor or the additional circulation system pipe, Based on the above data, the flow rate of the hot water to be reheated is calculated from the temperature of the hot water toward the heat exchanging section detected by the temperature sensor provided on the pipe to which the tension pipe is connected. Calculate flow rate distribution ratio from heating flow rate and total flow rate,
Based on the reheat flow rate and reheat heat amount calculated as described above, and the detected temperature of hot water toward the heat exchange section, the temperature of hot water after being reheated is calculated,
2. The temperature of the combined hot water is calculated based on the calculated flow rate distribution ratio, the calculated reheating temperature, and the detected temperature of the hot water going to the heat exchange unit again. Hot water supply device with memorial and hot water filling functions.
(イ)互いに独立した給湯用熱交換部および追焚用熱交換部と、
(ロ)これら給湯用熱交換部,追焚用熱交換部にそれぞれ燃焼熱を供給する給湯用燃焼部および追焚用燃焼部と、
(ハ)上記給湯用熱交換部を通る給湯系配管と、
(ニ)上記追焚用熱交換部を通る追焚循環系配管と、
(ホ)上記給湯系配管における熱交換部より下流側を、上記追焚循環系配管に接続する湯張り管と、
(ヘ)上記湯張り管に設けられた湯張り弁と、
(ト)上記給湯用燃焼部での燃焼、および必要に応じて追焚用燃焼部での燃焼を実行して、上記給湯用熱交換部,追焚用熱交換部に燃焼熱を供給するとともに上記湯張り弁を開にすることにより、給湯系配管からの湯を上記湯張り管,追焚系配管を介して浴槽に供給して、湯張りを実行する湯張り制御手段と、
を備えた追焚,湯張り機能付き給湯装置において、
上記湯張り制御手段は、上記湯張り実行中に、湯張り管から追焚循環系配管を二手に別れて流れる湯の流量分配比、すなわち上記追焚用熱交換部を通過して再加熱されて浴槽に至る湯の流量と、追焚用熱交換部を通らず再加熱されないで浴槽に至る湯の流量との分配比の情報と、上記再加熱された湯の温度情報と、上記再加熱されない湯の温度情報に基づき、これらの合流湯の温度を演算し、この合流湯の温度が設定温度になるように上記燃焼部の燃焼を制御し、
上記再加熱されない湯の温度情報は、上記給湯配管系における熱交換部の下流側、湯張り管、上記追焚循環系配管において熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管、のいずれかに設けられた第1温度センサによって検出され、
上記再加熱された湯の温度情報は、上記追焚循環系配管の2本の管のうち上記湯張り管が接続されていない方の管に設けられた第2温度センサによって検出され、
しかも、上記湯張り制御手段で湯張りを実行することにより浴槽に蓄えられた湯の温度を検出する温度センサを備え、上記湯張り制御手段は、この温度センサで検出された浴槽の湯の温度情報と、上記湯張り時の再加熱された湯の温度情報と、上記湯張り時の再加熱されない湯の温度情報に基づいて、上記湯張り時の流量分配比を演算し、
上記演算された前回の湯張り時の流量分配比を用いて、次回の湯張り制御を行うことを特徴とする追焚,湯張り機能付き給湯装置。
(A) a heat exchange part for hot water supply and a heat exchange part for remedy independent of each other;
(B) a hot water supply combustion section and a supplementary combustion section for supplying combustion heat to the hot water supply heat exchange section and the additional heat exchange section, respectively;
(C) a hot water supply system piping passing through the heat exchange section for hot water supply;
(D) a memorial circulation system pipe passing through the memorial heat exchange section;
(E) a hot-water pipe connecting the downstream side of the heat exchange part in the hot water supply system pipe to the additional circulation circuit pipe;
(F) a filling valve provided on the filling pipe;
(G) While performing combustion in the hot water supply combustion section and, if necessary, combustion in the additional combustion section, supplying combustion heat to the hot water supply heat exchange section and additional heat exchange section By opening the hot water filling valve, hot water from the hot water supply system pipe is supplied to the bathtub via the hot water filling pipe and the memorial system pipe, and hot water filling control means for executing the hot water filling,
In hot water supply device with memorial service and hot water filling function,
During the hot water filling, the hot water filling control means is reheated through the flow rate distribution ratio of the hot water flowing separately from the hot water filling pipe into the hot water circulation system pipe, that is, through the hot water heat exchanger. Information on the distribution ratio between the flow rate of hot water reaching the bathtub and the flow rate of hot water reaching the bathtub without reheating without passing through the heat exchanger for remedy, the temperature information of the reheated hot water, and the reheating Based on the temperature information of the hot water not to be calculated, the temperature of these combined hot water is calculated, the combustion of the combustion section is controlled so that the temperature of the combined hot water becomes the set temperature,
The temperature information of the non-reheated hot water is obtained from the downstream side of the heat exchange section in the hot water supply piping system, the hot water pipe, and the two pipes connected between the heat exchange section and the bathtub in the additional circulation system pipe. Detected by a first temperature sensor provided in one of the pipes to which the hot water filled pipe is connected,
The temperature information of the reheated hot water is detected by a second temperature sensor provided in a pipe not connected to the hot water filling pipe among the two pipes of the memorial circulation system pipe,
In addition, the hot water filling control means includes a temperature sensor that detects the temperature of hot water stored in the bathtub by executing hot water filling, and the hot water filling control means detects the temperature of the hot water in the bathtub detected by the temperature sensor. Based on the information, the temperature information of the reheated hot water during the hot water filling, and the temperature information of the hot water not reheated during the hot water filling, the flow rate distribution ratio during the hot water filling is calculated,
A hot water supply device having a memorial service and a hot water filling function, wherein the next hot water filling control is performed using the calculated flow rate distribution ratio at the time of the previous hot water filling.
(イ)互いに独立した給湯用熱交換部および追焚用熱交換部と、
(ロ)これら給湯用熱交換部,追焚用熱交換部にそれぞれ燃焼熱を供給する給湯用燃焼部および追焚用燃焼部と、
(ハ)上記給湯用熱交換部を通る給湯系配管と、
(ニ)上記追焚用熱交換部を通る追焚循環系配管と、
(ホ)上記給湯系配管における熱交換部より下流側を、上記追焚循環系配管に接続する湯張り管と、
(ヘ)上記湯張り管に設けられた湯張り弁と、
(ト)上記給湯用燃焼部での燃焼、および必要に応じて追焚用燃焼部での燃焼を実行して、上記給湯用熱交換部,追焚用熱交換部に燃焼熱を供給するとともに上記湯張り弁を開にすることにより、給湯系配管からの湯を上記湯張り管,追焚系配管を介して浴槽に供給して、湯張りを実行する湯張り制御手段と、
を備えた追焚,湯張り機能付き給湯装置において、
上記湯張り制御手段は、上記湯張り実行中に、湯張り管から追焚循環系配管を二手に別れて流れる湯の流量分配比、すなわち上記追焚用熱交換部を通過して再加熱されて浴槽に至る湯の流量と、追焚用熱交換部を通らず再加熱されないで浴槽に至る湯の流量との分配比の情報と、上記再加熱された湯の温度情報と、上記再加熱されない湯の温度情報に基づき、これらの合流湯の温度を演算し、この合流湯の温度が設定温度になるように上記燃焼部の燃焼を制御し、
上記再加熱されない湯の温度情報は、上記給湯配管系における熱交換部の下流側、湯張り管、上記追焚循環系配管において熱交換部と浴槽との間に接続された2本の管のうち湯張り管が接続されている方の管、のいずれかに設けられた第1温度センサによって検出され、
上記再加熱された湯の温度情報は、上記追焚循環系配管の2本の管のうち上記湯張り管が接続されていない方の管に設けられた第2温度センサによって検出され、
しかも、上記給湯系配管には、熱交換部に供給される水の総流量を検出するフローセンサと、熱交換部への入水温度を検出する温度センサと、熱交換部からの出湯温度を検出する温度センサとが設けられ、
上記湯張り制御手段は、これらフローセンサと入水温度センサと出湯温度センサの検出情報に基づいて、給湯系配管を流れる水が熱交換部で受ける初期消費熱量を演算し、
この初期消費熱量と、上記燃焼部からの供給熱量とから、上記再加熱に提供される熱量を演算し、
この再加熱熱量と、上記出湯温度または他の温度センサからなる第1温度センサで検出された追焚用熱交換部に向かう湯の温度と、第2温度センサで検出された再加熱湯の温度から、再加熱される湯の流量を演算し、
この再加熱流量と上記総流量とから上記流量分配比を演算し、演算された流量分配比を用いて現在実行している湯張りの制御を行うことを特徴とする追焚,湯張り機能付き給湯装置。
(A) a heat exchange part for hot water supply and a heat exchange part for remedy independent of each other;
(B) a hot water supply combustion section and a supplementary combustion section for supplying combustion heat to the hot water supply heat exchange section and the additional heat exchange section, respectively;
(C) a hot water supply system piping passing through the heat exchange section for hot water supply;
(D) a memorial circulation system pipe passing through the memorial heat exchange section;
(E) a hot-water pipe connecting the downstream side of the heat exchange part in the hot water supply system pipe to the additional circulation circuit pipe;
(F) a filling valve provided on the filling pipe;
(G) While performing combustion in the hot water supply combustion section and, if necessary, combustion in the additional combustion section, supplying combustion heat to the hot water supply heat exchange section and additional heat exchange section By opening the hot water filling valve, hot water from the hot water supply system pipe is supplied to the bathtub via the hot water filling pipe and the memorial system pipe, and hot water filling control means for executing the hot water filling,
In hot water supply device with memorial service and hot water filling function,
During the hot water filling, the hot water filling control means is reheated through the flow rate distribution ratio of the hot water flowing separately from the hot water filling pipe into the hot water circulation system pipe, that is, through the hot water heat exchanger. Information on the distribution ratio between the flow rate of hot water reaching the bathtub and the flow rate of hot water reaching the bathtub without reheating without passing through the heat exchanger for remedy, the temperature information of the reheated hot water, and the reheating Based on the temperature information of the hot water not to be calculated, the temperature of these combined hot water is calculated, the combustion of the combustion section is controlled so that the temperature of the combined hot water becomes the set temperature,
The temperature information of the non-reheated hot water is obtained from the downstream side of the heat exchange section in the hot water supply piping system, the hot water pipe, and the two pipes connected between the heat exchange section and the bathtub in the additional circulation system pipe. Detected by a first temperature sensor provided in one of the pipes to which the hot water filled pipe is connected,
The temperature information of the reheated hot water is detected by a second temperature sensor provided in a pipe not connected to the hot water filling pipe among the two pipes of the memorial circulation system pipe,
Moreover, in the hot water supply system piping, a flow sensor for detecting the total flow rate of water supplied to the heat exchange unit, a temperature sensor for detecting the incoming water temperature to the heat exchange unit, and the temperature of the hot water from the heat exchange unit are detected. A temperature sensor is provided,
The hot water filling control means calculates the initial amount of heat consumed by the water flowing through the hot water supply system pipe at the heat exchange part based on the detection information of the flow sensor, the incoming water temperature sensor and the outgoing hot water temperature sensor,
From this initial heat consumption and the amount of heat supplied from the combustion section, the amount of heat provided for the reheating is calculated,
The amount of reheated heat, the temperature of hot water going to the heat exchanging part for the remedy detected by the first temperature sensor comprising the tapping temperature or other temperature sensor, and the temperature of the reheated hot water detected by the second temperature sensor To calculate the flow rate of hot water to be reheated,
With the remedy and hot water filling function, the flow rate distribution ratio is calculated from the reheat flow rate and the total flow rate, and the hot water filling currently performed is controlled using the calculated flow rate distribution ratio. Hot water supply device.
上記湯張り制御手段は、上記演算された流量分配比が下限値または上限値の少なくともいずれかを越えた時に、警報信号を出力することを備えたことを特徴とする請求項4〜9のいずれかに記載の追焚,湯張り機能付き給湯装置。10. The hot water filling control means according to claim 4, further comprising outputting an alarm signal when the calculated flow rate distribution ratio exceeds at least one of a lower limit value and an upper limit value. A hot water supply device with a memorial service and hot water filling function. 上記湯張り制御手段は、上記流量分配比と、環境温度と、再加熱されない湯の温度と、再加熱された湯の温度に基づいて、環境温度に起因する放熱を補償した湯張り制御を実行することを特徴とする請求項4〜10のいずれかに記載の追焚,湯張り機能付き給湯装置。The hot water filling control means executes hot water filling control that compensates for heat dissipation caused by the environmental temperature based on the flow rate distribution ratio, the environmental temperature, the temperature of hot water that is not reheated, and the temperature of hot water that is reheated. The hot water supply apparatus with the memorial service and hot water filling function according to any one of claims 4 to 10.
JP27204397A 1996-09-25 1997-09-18 Water heater with memorial and hot water filling function Expired - Fee Related JP3834396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27204397A JP3834396B2 (en) 1996-09-25 1997-09-18 Water heater with memorial and hot water filling function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27423896 1996-09-25
JP8-274238 1996-09-25
JP27204397A JP3834396B2 (en) 1996-09-25 1997-09-18 Water heater with memorial and hot water filling function

Publications (2)

Publication Number Publication Date
JPH10153343A JPH10153343A (en) 1998-06-09
JP3834396B2 true JP3834396B2 (en) 2006-10-18

Family

ID=26550005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27204397A Expired - Fee Related JP3834396B2 (en) 1996-09-25 1997-09-18 Water heater with memorial and hot water filling function

Country Status (1)

Country Link
JP (1) JP3834396B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250403A (en) * 2005-03-09 2006-09-21 Gastar Corp Draining system for water heater
JP5752944B2 (en) * 2011-01-21 2015-07-22 株式会社ガスター One can two water channel bath water heater
JP6976118B2 (en) * 2017-09-26 2021-12-08 三菱電機株式会社 Hot water supply system

Also Published As

Publication number Publication date
JPH10153343A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
KR102449159B1 (en) Boiler for heating and hot-water supply and control method thereof
JP3834396B2 (en) Water heater with memorial and hot water filling function
JP4472576B2 (en) Mist sauna equipment
JP7343756B2 (en) Hot water equipment and hot water system
JP3834429B2 (en) Water heater
JP3264197B2 (en) Hot water supply device with solar hot water supply function
JP3748610B2 (en) Hot water supply device with memorial function
JP3777763B2 (en) Failure diagnosis device for water heater
JP3952485B2 (en) Bath water heater
JP3687616B2 (en) Hot water system
JP3628871B2 (en) Water heater
JP3834412B2 (en) Combustion equipment
JPH0424355Y2 (en)
JP2017116172A (en) Hot water supply device
JP3848741B2 (en) One can two water channel combustion system
JP2002156101A (en) Number of sets control method for fluid heater
ITPR980016A1 (en) COMBINED TYPE BOILER FOR HEATING AND FOR SANITARY WATER PRODUCTION, AND PROCEDURE
JP3881190B2 (en) Water heater with remembrance
JP3117593B2 (en) Bath kettle with water heater
JP3822702B2 (en) Combustion device
JPH0490443A (en) Method for estimating water quantity fed to heat exchanger and hot-water apparatus containing hot-water-mixing means
KR0178186B1 (en) Method for controlling hot water temperature in a gas boiler
JPH10103760A (en) Hot water feeder
JP2000274817A (en) Hot water supplying machine with automatic hot water supplying function
JP2018159531A (en) Hot water supply system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees