JP5745623B2 - Surface treatment mold and mold surface treatment method - Google Patents

Surface treatment mold and mold surface treatment method Download PDF

Info

Publication number
JP5745623B2
JP5745623B2 JP2013514910A JP2013514910A JP5745623B2 JP 5745623 B2 JP5745623 B2 JP 5745623B2 JP 2013514910 A JP2013514910 A JP 2013514910A JP 2013514910 A JP2013514910 A JP 2013514910A JP 5745623 B2 JP5745623 B2 JP 5745623B2
Authority
JP
Japan
Prior art keywords
film
mold
surface treatment
silazane
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013514910A
Other languages
Japanese (ja)
Other versions
JPWO2012157073A1 (en
Inventor
裕二 齊藤
裕二 齊藤
加藤 裕久
裕久 加藤
武洋 清水
武洋 清水
小田 博文
博文 小田
宏幸 山本
宏幸 山本
紀人 相馬
紀人 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI SEIMITSU INDUSTRIAL CO., LTD.
Itoh Optical Industrial Co Ltd
Original Assignee
TOKAI SEIMITSU INDUSTRIAL CO., LTD.
Itoh Optical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI SEIMITSU INDUSTRIAL CO., LTD., Itoh Optical Industrial Co Ltd filed Critical TOKAI SEIMITSU INDUSTRIAL CO., LTD.
Publication of JPWO2012157073A1 publication Critical patent/JPWO2012157073A1/en
Application granted granted Critical
Publication of JP5745623B2 publication Critical patent/JP5745623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material

Description

本発明は、金型の少なくとも賦形面において、母材に直接又は中間膜を介して最表層にシラザン膜を備えた表面処理金型に関する。本願明細書及び特許請求の範囲において、「金型」とは、基本的には可動型と固定型とからなり、閉じられたときキャビテイを形成する割型をいい、平板状やロール形状のスタンパは除かれるものである。 The present invention relates to a surface-treated mold having a silazane film on the outermost layer directly or via an intermediate film on at least a shaping surface of the mold. In the specification and claims of the present application, the “metal mold” basically includes a movable mold and a fixed mold, and refers to a split mold that forms a cavity when closed, and is a flat plate or roll stamper. Is excluded.

特に、賦形面が、サイズ100μm以下、更には、nmサイズの凹凸を持つ金型の離型性改善に効果がある。たとえば、ナノ構造体で構成された反射防止成形品の製造・ナノピラーが形成されたバイオチップ・マイクロメータサイズの凹凸が形成された導光板など、微細凹凸の成形において有用な表面処理金型である。   In particular, it is effective in improving mold releasability of a mold having a shaping surface having a size of 100 μm or less and further having a nanometer size unevenness. For example, it is a surface treatment mold that is useful in the production of anti-reflective molded products composed of nanostructures, biochips with nanopillars, and light guide plates with micrometer-sized irregularities, etc. .

従来、微細なμmサイズ(100μm以下)からnmサイズの凹凸が表面に形成された金型や高精度な面精度が要求されるような金型などを用いて成形品を製造する場合、成形工程において、金型と樹脂の成形品との離型性が課題となって、成形品に不良が発生することが問題になっている。   Conventionally, when manufacturing molded products using molds with irregularities ranging from fine μm size (100 μm or less) to nm size on the surface or molds that require high surface accuracy, the molding process However, the mold releasability between the mold and the resin molded product becomes a problem, and it is a problem that defects occur in the molded product.

これらの問題点を解決するために、金型の最表面を表面処理して離型性向上を行っていた。   In order to solve these problems, the outermost surface of the mold has been surface treated to improve the releasability.

例えば、特許文献1では、nmサイズの凹凸を備えた金型(インプリント加工用モールド)において、金型の材料(母材)と化学的に反応する官能基(例えば、ケイ素原子を含む加水分解性基;段落0012参照)を導入した特定ペルフルオロポリエーテルで表面処理(浸漬)して、離型性を改善した発明が提案されている(要約、請求の範囲等参照)。   For example, in Patent Document 1, a functional group (for example, hydrolysis containing a silicon atom) that chemically reacts with a mold material (base material) in a mold (imprint processing mold) having nm-size irregularities. An invention has been proposed in which releasability is improved by surface treatment (immersion) with a specific perfluoropolyether introduced with a functional group (see paragraph 0012) (see summary, claims, etc.).

しかし、当該表面処理では、離型耐熱性(加熱下離型性)や離型耐久性(成形繰り返し後離型性)に問題があることが分かった。   However, it has been found that the surface treatment has problems in release heat resistance (release property under heating) and release durability (release property after repeated molding).

なお、本発明の特許性に影響を与えるものではないが、特許文献2において、本発明で使用するのと同一の表面処理薬剤(ペルフルオロアルキル基含有トリアミノシラン)を用いて光学部材(有機ガラス)に撥水性薄膜を形成する技術が提案されている。   Although it does not affect the patentability of the present invention, in Patent Document 2, the same surface treatment agent (perfluoroalkyl group-containing triaminosilane) as used in the present invention is used to form an optical member (organic glass). A technique for forming a water-repellent thin film has been proposed.

しかし、光学部材においては、金型賦形面におけるような離型耐熱性や離型耐久性は要求されない。金型賦形面においては、射出成形時等に高熱・高圧流体(溶融樹脂;200℃以上)に繰り返し晒され、さらには、熱硬化性樹脂の場合、樹脂硬化が完了するまで加熱する必要がある。このような、高度の耐熱性・耐久性は、光学部材においては想定外である。   However, the optical member does not require release heat resistance and release durability as in the mold shaping surface. The mold shaping surface is repeatedly exposed to high heat and high pressure fluid (molten resin; 200 ° C. or higher) during injection molding, etc. Further, in the case of a thermosetting resin, it is necessary to heat until the resin curing is completed. is there. Such high heat resistance and durability are unexpected in the optical member.

特開2007−326367号公報JP 2007-326367 A 特開平5−215905号公報JP-A-5-215905

本発明の目的は、高度の離型耐熱性および離型耐久性を実現し、良好な成形品を繰り返し安定生産できる表面処理金型および金型の表面処理方法を提供することにある。   An object of the present invention is to provide a surface treatment mold and a mold surface treatment method capable of realizing high mold release heat resistance and mold release durability and capable of repeatedly and stably producing good molded products.

特に、100μm以下の凹凸(例えば、導光板やマイクロレンズアレーなど)や更にはnmサイズの凹凸(例えば、反射防止機能付成形品)を持った成形品の成形に適用した場合効果が顕著となる表面処理金型および金型の表面処理方法を提供することを目的とする。   In particular, the effect becomes remarkable when applied to molding of a molded article having irregularities of 100 μm or less (for example, a light guide plate, a microlens array, etc.), or even nm-sized irregularities (for example, a molded product with an antireflection function). An object is to provide a surface treatment mold and a surface treatment method for the mold.

本発明者らは、上記目的を達成するために、鋭意開発に努力をした結果、下記構成とすれば、格段に表面処理金型の離型性が向上することを知見した。   As a result of diligent development in order to achieve the above object, the present inventors have found that the releasability of the surface treatment mold is remarkably improved if the following configuration is adopted.

金型の少なくとも賦形面において、最表層にシラザン膜を備えた表面処理金型であって、
前記シラザン膜が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、金型母材に又は隣接する中間膜に化学結合していることを特徴とする表面処理金型。
At least on the shaping surface of the mold, a surface treatment mold having a silazane film on the outermost layer,
The silazane film is composed of a polycondensation crosslinked product having a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and is chemically bonded to a mold base material or an adjacent intermediate film. Surface treatment mold characterized by.

CnF2n+1CmH2mSi(NH23(但し:n=2〜10、m=1〜4)
金型の少なくとも賦形面において、金型母材に直接又は中間膜を介して最表層にシラザン膜を備えた表面処理金型であって、
前記シラザン膜が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、前記金型母材又は隣接する中間膜に化学結合していることを特徴とする。
C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (however, n = 2 to 10, m = 1 to 4)
At least on the shaping surface of the mold, a surface treatment mold comprising a silazane film on the outermost layer directly or via an intermediate film on the mold base material,
The silazane film is composed of a polycondensation crosslinked product having a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and is chemically bonded to the mold base material or an adjacent intermediate film. It is characterized by.

なお、上記n及びmの範囲は、シラザン材料の入手乃至合成のし易さから定めたものであり、相対的なものである。   The ranges of n and m are determined from the availability of silazane materials and the ease of synthesis, and are relative.

上記構成の表面処理金型は、従来の特許文献1における加水分解性シラン基導入ペルフルオロポリエーテル(ケイ素含有有機フッ素ポリマー:段落0022参照)で被覆したものに比して、格段に離型耐熱性が向上するとともに離型耐久性も向上する。当該離型耐熱性・耐久性はシラザン膜形成面がプラズマ処理面である場合は、更に、向上する。   The surface treatment mold having the above-described structure is remarkably release heat resistant as compared with the conventional surface-treated mold coated with hydrolyzable silane group-introduced perfluoropolyether (silicon-containing organic fluoropolymer: see paragraph 0022). As well as improved mold release durability. The release heat resistance / durability is further improved when the silazane film forming surface is a plasma treated surface.

なお、金型の賦形面をナノ構造体とする場合は、金型母材自体が硬くても、HV1000以上(JIS 2244:ISO6507)の超硬膜で中間膜を形成する必要がある。金型母材自体がHV1000未満の場合は、超硬膜で中間層を形成することにより、金型の賦形面耐久性の向上も期待できる。該超硬膜としては、Siの窒化物・炭化物ないし酸化物の1種又は2種以上で形成することが望ましい。   When the mold forming surface is a nanostructure, it is necessary to form an intermediate film with a super hard film of HV1000 or higher (JIS 2244: ISO6507) even if the mold base material itself is hard. In the case where the mold base material itself is less than HV1000, it is possible to expect improvement in the shaping surface durability of the mold by forming an intermediate layer with a super hard film. The super hard film is desirably formed of one or more of Si nitrides / carbides or oxides.

また、中間膜が、前記超硬膜と金型母材との密着性が不十分と予測される場合は、第3周期4〜10属の群から1種又は2種以上選択される遷移金属で又はそれらの合金で密着膜を形成する。   Moreover, when it is predicted that the adhesion between the cemented carbide film and the mold base material is insufficient, the intermediate film is a transition metal selected from the group of the third period 4 to 10 genera. Or an alloy thereof to form an adhesion film.

本発明のシラザン膜は、離型耐熱性試験(300℃×24h)における接触角低下度が20%以内、望ましくは、10%以内を示すものとする。   The silazane film of the present invention has a contact angle decrease in a release heat resistance test (300 ° C. × 24 h) within 20%, preferably within 10%.

上記各構成の表面処理金型は、賦形面がnmサイズの凹凸を有する金型に適用する場合、シラザン膜の膜厚を5〜50nmとすることが望ましい。膜厚が薄すぎると、耐久性を得難く、膜厚が厚すぎると、nmサイズの凹凸が埋まってしまうおそれがある。   When the surface treatment mold having each of the above configurations is applied to a mold having an irregular surface with a shaping surface of nm size, it is desirable that the thickness of the silazane film is 5 to 50 nm. If the film thickness is too thin, it is difficult to obtain durability, and if the film thickness is too thick, there is a risk that nm-sized irregularities will be buried.

上記表面処理金型の表面処理方法は、シラザン膜の形成を真空蒸着により行うことが望ましい。シラザン膜の膜均一性(レベリング性)を、浸漬法に比して確保し易い。   In the surface treatment method of the surface treatment mold, it is desirable to form the silazane film by vacuum deposition. The film uniformity (leveling property) of the silazane film is easy to ensure compared to the dipping method.

更に、前記シラザン膜を形成するに先立ち、シラザン膜形成面を酸素プラズマ処理することが望ましい。シラザン膜の離型耐熱性および離型耐久性が向上する。   Further, prior to forming the silazane film, the silazane film forming surface is preferably subjected to oxygen plasma treatment. The release heat resistance and release durability of the silazane film are improved.

上記酸素プラズマの条件を、RFパワー50〜1000W×5〜3600sとする。上記条件の下限値未満では、酸素プラズマによりシラザン膜形成面に所要の親水性を付与し難く、シラザン膜との間に化学結合を得難い。上限値超では、それ以上の親水性の向上を望めず無駄である。   The oxygen plasma conditions are RF power 50 to 1000 W × 5 to 3600 s. Below the lower limit of the above conditions, it is difficult to impart the required hydrophilicity to the silazane film forming surface by oxygen plasma, and it is difficult to obtain a chemical bond with the silazane film. If the value exceeds the upper limit, no further improvement in hydrophilicity can be expected, which is useless.

本発明の技術的思想は、撥水性(耐汚染性)が要求される構造体にも適用でき、当該表面処理構造体は、下記の如く表現できる。   The technical idea of the present invention can be applied to a structure requiring water repellency (contamination resistance), and the surface treatment structure can be expressed as follows.

シラザン膜を、表面処理膜として、金型母材に直接又は中間膜を介して最表層に備えた表面処理構造体(光学部材を除く。)であって、
前記シラザン膜が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシラン(モノマー)の縮重合架橋体からなり、かつ、金型母材又は隣接する中間膜に化学結合していることを特徴とする。
A surface treatment structure (excluding an optical member) provided with a silazane film as a surface treatment film on the outermost layer directly or via an intermediate film on a mold base material,
The silazane film is made of a polycondensation crosslinked product of a perfluoroalkyl group-containing triaminosilane (monomer) represented by the following structural formula, and is chemically bonded to a mold base material or an adjacent intermediate film. .

CnF2n+1CmH2mSi(NH23(但し:n=2〜10、m=1〜4)
また、該表面処理構造体の表面処理方法は、下記の如く表現できる。
C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (however, n = 2 to 10, m = 1 to 4)
The surface treatment method of the surface treatment structure can be expressed as follows.

前記表面処理構造体の表面処理方法であって、前記シラザン膜を形成するに先立ち、シラザン膜形成面を酸素プラズマ処理することを特徴とする。   In the surface treatment method of the surface treatment structure, the silazane film forming surface is subjected to oxygen plasma treatment before the silazane film is formed.

本発明における表面処理金型の部分断面図(膜構成図)である。It is a fragmentary sectional view (film | membrane block diagram) of the surface treatment metal mold | die in this invention. 実施例・比較例の各表面処理膜(離型膜)における耐熱性試験の試験結果を示すグラフ図である。It is a graph which shows the test result of the heat resistance test in each surface treatment film | membrane (release film) of an Example and a comparative example. 同じく離型耐久性(こすり試験)の試験結果を示すグラフ図である。It is a graph which similarly shows the test result of mold release durability (rubbing test). 本発明の表面処理膜(離型膜)を施した樹脂成形金型(実機)における連続成形1万回後の反射率特性を示すグラフ図である。It is a graph which shows the reflectance characteristic after continuous shaping | molding 10,000 times in the resin molding die (real machine) which gave the surface treatment film | membrane (release film) of this invention.

以下、本発明の一実施形態について詳細に説明する。図1に、金型10の部分断面図を示す。   Hereinafter, an embodiment of the present invention will be described in detail. In FIG. 1, the fragmentary sectional view of the metal mold | die 10 is shown.

金型10は、少なくとも賦形面10aにおいて、金型母材11に直接又は中間膜13を介して最表層にシラザン膜(離型膜)15を備えた表面処理金型である。   The mold 10 is a surface-treated mold having a silazane film (release film) 15 on the outermost layer directly or via an intermediate film 13 on the mold base 11 at least on the shaping surface 10a.

なお、金型10の種類は、特に限定されない。例えば、射出成形用、プレス成形用、キャスト成形用、トランスファー成形用、等の各種金型を挙げることができる。 In addition, the kind of metal mold | die 10 is not specifically limited. For example, various molds for injection molding, press molding, cast molding, transfer molding and the like can be mentioned.

ここで、金型10の形成材としては、特に限定されない。例えば、Fe、Al、Ni、Zr、Si等の金属又はそれらの合金;WC、SiC、NiP等のセラミック;エポキシ、ポリエステル、アクリル樹脂、ポリカーボネート等の硬質樹脂、その他、無機ガラスや有機ガラスを挙げることができる。特にこれらの内で、NiP、SUS、WCが好ましい。高硬度で耐熱性に優れており、金型材として適しているためである。NiPやSUSは射出成形用の金型材として、WCはガラス成形の金型材としてそれぞれ実績を有する。   Here, the forming material of the mold 10 is not particularly limited. For example, metals such as Fe, Al, Ni, Zr, and Si or alloys thereof; ceramics such as WC, SiC, and NiP; hard resins such as epoxy, polyester, acrylic resin, and polycarbonate; and other inorganic glass and organic glass be able to. Of these, NiP, SUS, and WC are preferable. This is because it has high hardness and excellent heat resistance and is suitable as a mold material. NiP and SUS have a track record as a mold material for injection molding, and WC has a track record as a mold material for glass molding.

前記シラザン膜15が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、金型母材11に又は隣接する中間膜(超硬膜)13bに化学結合している。   The silazane film 15 is an intermediate film (superhard film) made of a polycondensation cross-linked product containing a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and adjacent to or adjacent to the mold base material 11 It is chemically bonded to 13b.

CnF2n+1CmH2mSi(NH23(但し:n=2〜10、m=1〜4)
ここで、「n=1」では、重合体繰り返し単位のペルフルオロ基(CF2)が不足して必要な離型性を得難く、「n≧11」では、モノマー分子量が大きくなって、溶剤溶解性に問題が発生し易く、取り扱い性が低下する。なお、上市品は、n=8までである。
C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (however, n = 2 to 10, m = 1 to 4)
Here, when “n = 1”, the perfluoro group (CF 2 ) of the polymer repeating unit is insufficient and it is difficult to obtain the required releasability. When “n ≧ 11”, the monomer molecular weight increases and the solvent dissolves. Problems are likely to occur, and handling is reduced. In addition, the number of products on the market is up to n = 8.

また、「m=0」のものは合成し難く、「m」が5以上であると、重合体繰り返し単位のペルフルオロ基(CF2)が不足して離型性を得難い。Also, those having “m = 0” are difficult to synthesize, and if “m” is 5 or more, the perfluoro group (CF 2 ) of the polymer repeating unit is insufficient and it is difficult to obtain releasability.

なお、入手のし易さ(合成のし易さ)および本発明の効果(シラザン膜の耐熱性、耐久性(密着性))の得やすさの見地から、n=4〜8、m=2〜4とすることが望ましい。   From the viewpoint of easy availability (ease of synthesis) and ease of obtaining the effects of the present invention (heat resistance and durability (adhesiveness) of the silazane film), n = 4 to 8, m = 2. It is desirable to set to ~ 4.

ここで、ペルフルオロアルキル基含有トリアミノシランを主体モノマーとした場合、組み合わせるモノマーとしては、ペルフルオロアルキル基を含有する又は他の官能性置換基を有するジアミノシラン、モノアミノシラン等を挙げることができる。それらの各種アミノシランは、本発明の効果(シラザン膜の耐熱性、耐久性(密着性))を阻害しない範囲の量を適宜配合可能である。   Here, when a perfluoroalkyl group-containing triaminosilane is used as a main monomer, examples of the monomer to be combined include a diaminosilane and a monoaminosilane containing a perfluoroalkyl group or having other functional substituents. These various aminosilanes can be appropriately blended in amounts that do not impair the effects of the present invention (heat resistance and durability (adhesiveness) of the silazane film).

そして、本発明においてアミノシランは、アミノ基相互が脱アンモニア(NH3)縮合して縮重合架橋体となるとともに、部分的にアミノ基がシランカップラーと同様に脱水的に金型母材ないし中間膜上の水酸基等の活性水素と化学結合すると考えられる。In the present invention, the aminosilane is condensed with deammonia (NH 3 ) to form a condensation polymerized crosslinked product, and the amino group is partially dehydrated in the same manner as the silane coupler. It is thought to be chemically bonded to active hydrogen such as the above hydroxyl group.

そして、シラザン膜形成面を、酸素プラズマ処理することにより上記水酸基の表面密度が増大すると考えられ、後述の実施例で示す如く、密着性の増大に伴い、耐熱性とともに耐久性も増大する。   Then, it is considered that the surface density of the hydroxyl group is increased by subjecting the silazane film forming surface to oxygen plasma treatment, and as shown in the examples to be described later, the heat resistance and the durability increase as the adhesion increases.

ここで、シラザン膜の厚みは、5〜50nm、望ましくは5〜30nmとする。   Here, the thickness of the silazane film is 5 to 50 nm, preferably 5 to 30 nm.

なお、シラザン膜の成膜は、通常、前記アミノシランの溶解溶液を用いて、慣用の成膜方法で行なう。例えば、ディッピング法、スピンコート法、スプレー法、気相法および真空蒸着法のいずれでもよい。   The silazane film is usually formed by a conventional film forming method using the aminosilane solution. For example, any of a dipping method, a spin coating method, a spray method, a gas phase method, and a vacuum deposition method may be used.

上記中間膜13は、必然的ではないが、金型母材がビッカース硬さ(JIS Z 2244(ISO 6507);以下単に「硬さ」という。)1000HV未満のとき、内側の密着膜13aと外側の超硬膜13bとからなるものとすることが、耐久性(特に耐擦り性)の見地から望ましい。例えば、ビッカース硬さは、金型に多用されているSCr440(クロム鋼)で320HV、SKH4(高速度工具鋼)でも722HVである。 The intermediate film 13 is not inevitable, but when the mold base material has a Vickers hardness (JIS Z 2244 (ISO 6507); hereinafter simply referred to as “hardness”) of less than 1000 HV , the inner adhesive film 13a and the outer From the viewpoint of durability (particularly, abrasion resistance), it is desirable that the super hard film 13b is formed. For example, the Vickers hardness is 320 HV for SCr440 (chromium steel) frequently used in molds and 722 HV for SKH4 (high speed tool steel).

そして、上記密着膜13aの形成材としては、第4〜6周期の4〜11族の群(Ti,Ta,Nb,Cu,W,Cr,Ni,Zr,Mo,Pt,Au,Ag,Ir,Re,Pd等)から選択される遷移金属およびSiやAl等を使用可能であるが、特に、第4周期の4〜10族の群(Ti,V,Cr,Mn,Co,Ni)が、さらには、Ti、Ni、Crが、密着性増大作用が高くて望しい。これらのものは金属間の密着膜として実績を有する。 The material for forming the adhesion film 13a is a group of groups 4 to 11 (Ti, Ta, Nb, Cu, W, Cr, Ni, Zr, Mo, Pt, Au, Ag, Ir, 4th to 6th periods ). , Re, Pd, etc.) and Si, Al, etc. can be used, but in particular, the group of groups 4 to 10 (Ti, V, Cr, Mn, Co, Ni) of the fourth period can be used. Furthermore, Ti, Ni, and Cr are desirable because they have a high adhesion increasing effect. These have a track record as an adhesion film between metals.

この密着膜は、真空蒸着、スパッタリング、イオンプレーティング等により成膜する。   This adhesion film is formed by vacuum deposition, sputtering, ion plating, or the like.

上記超硬膜としては、Si34,SiC,SiO2,TiN,Al23,DLC,C34等の各種窒化物、炭化物、酸化物などを挙げることができるが、ケイ素の窒化物(Si34)、炭化物(SiC)、酸化物(SiO2)が望ましい。シラザン膜との親和性(密着性)に優れているためである。Examples of the super hard film include various nitrides such as Si 3 N 4 , SiC, SiO 2 , TiN, Al 2 O 3 , DLC, and C 3 N 4 , carbides, and oxides. Nitride (Si 3 N 4 ), carbide (SiC), and oxide (SiO 2 ) are desirable. This is because it has excellent affinity (adhesion) with the silazane film.

当該超硬膜の厚みは5〜1000nm、望ましくは10〜600nmとする。   The superhard film has a thickness of 5 to 1000 nm, preferably 10 to 600 nm.

この超硬膜は、反応スパッタリングで成膜することが、超硬膜の形成が容易で望ましい。   It is desirable to form this super hard film by reactive sputtering because it is easy to form the super hard film.

以下、本発明の効果を確認するために比較例とともに行なった実施例について説明する。   Examples carried out together with comparative examples to confirm the effects of the present invention will be described below.

A.試験片の調製
<実施例1>
無機ガラス基板(金型母材:26mm×76mm×1mmt)に、反応性スパッタリング装置を用いて、密着膜(Cr、膜厚10nm)を成膜した。当該成膜条件は、真空度:0.5Pa、基板温度:300℃とした。
A. Preparation of test piece <Example 1>
An adhesion film (Cr, film thickness: 10 nm) was formed on an inorganic glass substrate (mold base material: 26 mm × 76 mm × 1 mmt) using a reactive sputtering apparatus. The film forming conditions were such that the degree of vacuum was 0.5 Pa and the substrate temperature was 300 ° C.

該密着膜上に、反応性スパッタリング装置で、超硬膜(Si34、膜厚500nm)を成膜した。当該成膜条件は、密着膜の場合と同じとした。A super hard film (Si 3 N 4 , film thickness 500 nm) was formed on the adhesion film by a reactive sputtering apparatus. The film formation conditions were the same as those for the adhesion film.

その後、酸素プラズマ処理(RF:500W、処理時間600s)し、ペルフルオロアルキル基含有シラザン化合物(KP-801M 信越化学工業株式会社製)を用いて、真空蒸着法でシラザン膜(膜厚15nm)を成膜して試験片とした。当該成膜条件は、真空度:2×10-3Pa、基板温度:60℃とした。

なお、上記ペルフルオロアルキル基含有シラザン化合物(特定有機ケイ素化合物)は、モノマー(ペルフルオロアルキル基含有トリアミノシラン)およびそのオリゴマーの混合物である。
Thereafter, oxygen plasma treatment (RF: 500 W, treatment time 600 s) was performed, and a silazane film (film thickness: 15 nm) was formed by a vacuum deposition method using a perfluoroalkyl group-containing silazane compound (KP-801M manufactured by Shin-Etsu Chemical Co., Ltd.). A film was prepared as a test piece. The film forming conditions were as follows: degree of vacuum: 2 × 10 −3 Pa, substrate temperature: 60 ° C.

The perfluoroalkyl group-containing silazane compound (specific organosilicon compound) is a mixture of a monomer (perfluoroalkyl group-containing triaminosilane) and an oligomer thereof.

<実施例2>
上記実施例1において、酸素プラズマ処理の工程を無くした以外は、同様にして試験片を調製した。
<Example 2>
A test piece was prepared in the same manner as in Example 1 except that the oxygen plasma treatment step was omitted.

<比較例1>
上記実施例1において、シラザン化合物の代わりに加水分解性シラン基含有ペルフルオロエーテル(KY-130 信越化学工業株式会社製)を用いた以外は、同様にして試験片を調製した。
<Comparative Example 1>
A test piece was prepared in the same manner as in Example 1 except that hydrolyzable silane group-containing perfluoroether (KY-130, Shin-Etsu Chemical Co., Ltd.) was used instead of the silazane compound.

B.評価試験
上記各試験片について、下記1)離型耐熱性試験と、2)離型耐久性試験(こすり試験)とを行なった。
B. Evaluation test Each of the above test pieces was subjected to the following 1) release heat resistance test and 2) release durability test (rubbing test).

1)離型耐熱性試験:300℃のオーブンに試験片を入れ、各経過時間後の接触角の測定を行った。接触角の測定は、接触角計(協和界面化学(株)製:CA−D型)を用いて、蒸留水による液滴法で測定した。図2に試験結果を示す。   1) Mold release heat resistance test: A test piece was placed in an oven at 300 ° C., and the contact angle after each elapsed time was measured. The contact angle was measured by a droplet method using distilled water using a contact angle meter (Kyowa Interface Chemical Co., Ltd .: CA-D type). FIG. 2 shows the test results.

図2から、本発明のシラザン膜は比較例の加水分解性シラン基含有ペルフルオロエーテルの処理膜に比して格段(予想以上)に離型耐熱性に優れていることが分かる。   FIG. 2 shows that the silazane film of the present invention is remarkably excellent in mold release heat resistance (more than expected) as compared with the hydrolyzable silane group-containing perfluoroether-treated film of the comparative example.

特に、プラズマ処理をした実施例1は24時間経過後も殆ど接触角が低下せず、さらに離型耐熱性に優れていることが分かる。   In particular, it can be seen that Example 1 subjected to the plasma treatment hardly shows a decrease in contact angle even after 24 hours, and is excellent in heat resistance for releasing.

即ち、耐熱性試験(300℃×24h)における実施例1の接触角低下度は10%以内を、実施例2の接触角低下度は20%以内を示すことが確認できた。これに対して、比較例1では、接触角低下度は12時間で約80%であった。   That is, it was confirmed that the contact angle reduction degree of Example 1 in the heat resistance test (300 ° C. × 24 h) was within 10% and the contact angle reduction degree of Example 2 was within 20%. On the other hand, in Comparative Example 1, the contact angle reduction degree was about 80% in 12 hours.

2)離型耐久性試験(こすり試験):こすり試験器(ラビングテスター)を用いて、1Kg荷重でコットン(木綿布)でこすり試験を行って、100回毎に、前記方法で接触角を測定し、3000回まで行った。図3にこすり試験の結果を示す。   2) Release durability test (rubbing test): Using a rubbing tester (rubbing tester), a rubbing test is performed with cotton (cotton cloth) at a load of 1 kg, and the contact angle is measured by the above method every 100 times. And up to 3000 times. FIG. 3 shows the result of the rubbing test.

図3から、本発明の実施例1・2は、比較例に比して明らかに離型耐久性が優れていることが分かる。特に、プラズマ処理をした実施例1は、さらに離型耐久性に優れていることが分かる。   From FIG. 3, it can be seen that Examples 1 and 2 of the present invention are clearly superior in mold release durability as compared with the comparative example. In particular, it can be seen that the plasma-treated Example 1 is further excellent in mold release durability.

C.実機金型における離型耐久性試験
ステンレス(SUS304)製の金型(3インチ平面金型)母材のキャビティ面に上記と同様の条件で、反応性スパッタリング装置を用いて密着膜(Cr、膜厚10nm)を成膜後、超硬膜(Si34、膜厚500nm)を成膜し、更に、成形品に反射防止凹凸の転写を行うためにナノメートルサイズの凹凸を賦形面所要部位に形成した。該凹凸は可視域の波長間隔以下に制御されたもの(反射防止構造)とした。
C. Release durability test in actual machine mold Adhesive film (Cr, film) on reactive cavity surface of stainless steel (SUS304) mold (3-inch flat mold) base material under the same conditions as above After forming a 10 nm thick film, a super hard film (Si 3 N 4 , 500 nm thick) is formed, and in order to transfer the anti-reflective unevenness to the molded product, nanometer-sized unevenness is required for the shaping surface. Formed in the site. The unevenness was controlled to be less than or equal to the wavelength interval in the visible range (antireflection structure).

該反射防止構造は、例えば、300nm以下の間隔で制御された凹凸間隔で、高さ160nmの凹凸を形成する。これら超硬膜へのナノメートルサイズの凹凸形成方法は、マスク(マスク材:Ag)後、慣用のドライエッチングにより形成した。   For example, the antireflection structure forms unevenness with a height of 160 nm at unevenness intervals controlled at intervals of 300 nm or less. The nanometer-sized unevenness forming method on these super hard films was formed by conventional dry etching after a mask (mask material: Ag).

その後、酸素プラズマ処理(RF:500W、処理時間600s)し、ペルフルオロアルキル基含有シラザン化合物(「KP-801M」信越化学工業株式会社製)を用いて、真空蒸着法でシラザン膜(膜厚15nm)を成膜して試験片とした。   Then, oxygen plasma treatment (RF: 500 W, treatment time 600 s), and using a perfluoroalkyl group-containing silazane compound (“KP-801M” manufactured by Shin-Etsu Chemical Co., Ltd.), a silazane film (film thickness: 15 nm) by a vacuum deposition method. Was used as a test piece.

真空蒸着の条件は、前記実施例1・2と同様である。   The conditions for vacuum deposition are the same as in Examples 1 and 2.

続いて、上記のようにして調製した実機金型を用いて、下記条件で1万回の成形耐久性実験を行った。   Subsequently, a molding durability experiment was performed 10,000 times under the following conditions using the actual mold prepared as described above.

成形機:全電動射出成形機(住友重機械工業株式会社製)
成形材料:PMMA
成形条件:金型温度110℃、樹脂温度280℃、保圧60mPa
その実験結果を図4に示す。図4から、1万回連続成形を行っても成形品の反射率特性がほぼ同じでほとんど変動していないことが分かる。このことは、離型膜(シラザン膜)の劣化が無かったことを示しており、実機金型においても充分に離型耐久性があることが確認できた。
Molding machine: All-electric injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.)
Molding material: PMMA
Molding conditions: mold temperature 110 ° C, resin temperature 280 ° C, holding pressure 60mPa
The experimental results are shown in FIG. FIG. 4 shows that the reflectance characteristics of the molded product are almost the same and hardly fluctuate even if continuous molding is performed 10,000 times. This indicates that there was no deterioration of the release film (silazane film), and it was confirmed that the actual mold had sufficient release durability.

10 金型
11 金型母材
13 中間膜
13a 密着膜
13b 超硬膜
15 離型膜(シラザン膜)
DESCRIPTION OF SYMBOLS 10 Mold 11 Mold base material 13 Intermediate film 13a Adhesion film 13b Carbide film 15 Release film (silazane film)

Claims (7)

射出成形用の金型の少なくとも賦形面において、最表層にシラザン膜を備えた表面処理金型であって、
該シラザン膜の内側に隣接してnmサイズの凹凸を有する中間膜を備え、
該中間膜の外側がSi 3 4 又はSiO 2 からなる超硬膜で形成されるとともに、
前記シラザン膜が、膜厚5〜50nmの膜厚を有するとともに、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、前記超硬膜に化学結合している、
n2n+1m2mSi(NH23(但し:n=2〜10、m=1〜4)
ことを特徴とする表面処理金型。
A surface treatment mold having a silazane film on the outermost layer, at least on the shaping surface of a mold for injection molding ,
An intermediate film having nm-sized irregularities adjacent to the inside of the silazane film,
The outer side of the intermediate film is formed of a super hard film made of Si 3 N 4 or SiO 2 ,
The silazane film has a film thickness of 5 to 50 nm and is composed of a polycondensation crosslinked product having a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and the superhard film Chemically bonded,
C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (where n = 2 to 10, m = 1 to 4)
A surface treatment mold characterized by that.
前記超硬膜の内側に更に密着膜を備え、該密着膜が第4周期の4〜10族の群から選択される遷移金属で又はそれらの合金で形成されていることを特徴とする請求項1記載の表面処理金型。 Claims wherein comprising the further contact layer on the inside of the ultra-dura, characterized in that said seal film deposition is formed in the fourth period of 4-10 transition metal or alloy thereof selected from the group of The surface treatment mold according to 1 . 前記シラザン膜が耐熱性試験(300℃×24h)における接触角低下度が20%以内を示すことを特徴とする請求項1又は2記載の表面処理金型。 3. The surface-treated mold according to claim 1, wherein the silazane film exhibits a contact angle reduction degree of 20% or less in a heat resistance test (300 ° C. × 24 h). 前記シラザン膜が耐熱性試験(300℃×24h)における接触角低下度が10%以内を示すことを特徴とする請求項3記載の表面処理金型。 The surface treatment mold according to claim 3, wherein the silazane film exhibits a contact angle decrease of 10% or less in a heat resistance test (300 ° C. × 24 h). 請求項1〜4いずれか一記載の表面処理金型の表面処理方法であって、前記シラザン膜を形成するに先立ち、シラザン膜形成面を酸素プラズマ処理することを特徴とする金型の表面処理方法。 The surface treatment method for a surface treatment mold according to any one of claims 1 to 4 , wherein the surface of the silazane film is subjected to oxygen plasma treatment before the silazane film is formed. Method. 前記酸素プラズマの条件を、RFパワー50〜1000W×5〜3600sとすることを特徴とする請求項5記載の金型の表面処理方法。 6. The mold surface treatment method according to claim 5 , wherein the condition of the oxygen plasma is an RF power of 50 to 1000 W × 5 to 3600 s. 前記シラザン膜の形成を真空蒸着により行うことを特徴とする請求項5又は6記載の金型の表面処理方法。 7. The mold surface treatment method according to claim 5, wherein the silazane film is formed by vacuum deposition.
JP2013514910A 2011-05-17 2011-05-17 Surface treatment mold and mold surface treatment method Active JP5745623B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061283 WO2012157073A1 (en) 2011-05-17 2011-05-17 Surface-treated mold and mold surface treatment method

Publications (2)

Publication Number Publication Date
JPWO2012157073A1 JPWO2012157073A1 (en) 2014-07-31
JP5745623B2 true JP5745623B2 (en) 2015-07-08

Family

ID=47176440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013514910A Active JP5745623B2 (en) 2011-05-17 2011-05-17 Surface treatment mold and mold surface treatment method

Country Status (2)

Country Link
JP (1) JP5745623B2 (en)
WO (1) WO2012157073A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164730B2 (en) * 2013-06-11 2017-07-19 Hoya株式会社 Imprint mold and manufacturing method thereof
JP6446095B2 (en) * 2017-06-16 2018-12-26 Hoya株式会社 Patterned media manufacturing substrate, patterned media, and methods of manufacturing the same
KR20230148244A (en) 2021-02-25 2023-10-24 폴렉스 아게 mold release film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550473A (en) * 1991-08-28 1993-03-02 Toshiba Corp Injection mold
JP2000254923A (en) * 2000-02-21 2000-09-19 Citizen Watch Co Ltd Mold for resin and method for forming hard coating film to mold for resin
JP2004109728A (en) * 2002-09-20 2004-04-08 Tokai Kogaku Kk Plastic lens for spectacles
JP2007053715A (en) * 2004-11-22 2007-03-01 Ricoh Co Ltd Image reader and recorder with image reader
JP2007505220A (en) * 2004-06-04 2007-03-08 アプライド マイクロストラクチャーズ,インコーポレイテッド Controlled vapor deposition of multilayer coatings bonded by oxide layers
JP2007178724A (en) * 2005-12-28 2007-07-12 Mitsubishi Rayon Co Ltd Method of manufacturing molding having uneven microstructure on its surface, and antireflection article
JP2007266384A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Mold for imprinting and manufacturing method thereof
WO2008001847A1 (en) * 2006-06-30 2008-01-03 Mitsubishi Rayon Co., Ltd. Mold, process for manufacturing mold, and process for producing sheet
JP2008164401A (en) * 2006-12-27 2008-07-17 Seiko Epson Corp Manufacturing method for timepiece dial, timepiece dial, and timepiece
JP2008184117A (en) * 2007-01-31 2008-08-14 Hino Motors Ltd Extension structure
JP2009184117A (en) * 2008-02-01 2009-08-20 Konica Minolta Opto Inc Resin molding die and method of manufacturing the same
JP2009294651A (en) * 2008-05-02 2009-12-17 Mitsubishi Rayon Co Ltd Molding and method for manufacturing the same
JP2010085409A (en) * 2008-09-30 2010-04-15 Robert Bosch Gmbh Workpiece complex and use of the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550473A (en) * 1991-08-28 1993-03-02 Toshiba Corp Injection mold
JP2000254923A (en) * 2000-02-21 2000-09-19 Citizen Watch Co Ltd Mold for resin and method for forming hard coating film to mold for resin
JP2004109728A (en) * 2002-09-20 2004-04-08 Tokai Kogaku Kk Plastic lens for spectacles
JP2007505220A (en) * 2004-06-04 2007-03-08 アプライド マイクロストラクチャーズ,インコーポレイテッド Controlled vapor deposition of multilayer coatings bonded by oxide layers
JP2007053715A (en) * 2004-11-22 2007-03-01 Ricoh Co Ltd Image reader and recorder with image reader
JP2007178724A (en) * 2005-12-28 2007-07-12 Mitsubishi Rayon Co Ltd Method of manufacturing molding having uneven microstructure on its surface, and antireflection article
JP2007266384A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Mold for imprinting and manufacturing method thereof
WO2008001847A1 (en) * 2006-06-30 2008-01-03 Mitsubishi Rayon Co., Ltd. Mold, process for manufacturing mold, and process for producing sheet
JP2008164401A (en) * 2006-12-27 2008-07-17 Seiko Epson Corp Manufacturing method for timepiece dial, timepiece dial, and timepiece
JP2008184117A (en) * 2007-01-31 2008-08-14 Hino Motors Ltd Extension structure
JP2009184117A (en) * 2008-02-01 2009-08-20 Konica Minolta Opto Inc Resin molding die and method of manufacturing the same
JP2009294651A (en) * 2008-05-02 2009-12-17 Mitsubishi Rayon Co Ltd Molding and method for manufacturing the same
JP2010085409A (en) * 2008-09-30 2010-04-15 Robert Bosch Gmbh Workpiece complex and use of the same

Also Published As

Publication number Publication date
JPWO2012157073A1 (en) 2014-07-31
WO2012157073A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Zhong et al. Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability
US7687007B2 (en) Mold for nano imprinting
US6649266B1 (en) Substrates provided with a microstructured surface, methods for the production thereof, and their use
JP6477867B2 (en) Coated mold and manufacturing method thereof
JP5309579B2 (en) Resin molding die and method for manufacturing the same
JP5865906B2 (en) Method and apparatus for producing nanostructured or smooth polymer articles
US9393737B2 (en) Resin mold for nanoimprinting
JP5062521B2 (en) Method for manufacturing replica mold and replica mold
EP2602081A1 (en) Resin mold, production method thereof, and use thereof
WO2012018048A1 (en) Resin mold for nanoimprinting and manufacturing method thereof
EP2998326B1 (en) Novel composite material, and polymer coating material precursor produced using same
JP5745623B2 (en) Surface treatment mold and mold surface treatment method
CN109594042B (en) Anti-adhesion hard coating for injection mold and preparation method thereof
EP2788161A1 (en) Spin-on-glass assisted polishing of rough substrates
Bandl et al. Application of organosilane coatings for improved anti‐adhesive properties enabling facilitated demolding in polymer processing
Do et al. Fabrication of large-scale, flexible, and robust superhydrophobic composite films using hydrophobic fumed silica nanoparticles and polydimethylsiloxane
Kodihalli Shivaprakash et al. Continuous manufacturing of reentrant structures via roll‐to‐roll process
Calderon et al. Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools
JP2022017617A (en) Fluorine-containing ether composition, coating liquid, article and production method thereof
JP5195372B2 (en) Substrate having a fluoropolymer thin film and method for producing the same
JP7272359B2 (en) Antifouling article and its manufacturing method
WO2020100760A1 (en) Substrate with water-and-oil repellent layer, vapor deposition material, and method for producing substrate with water-and-oil repellent layer
JP2010084162A (en) Method for manufacturing replica mold
JP5422855B2 (en) Transfer roll, method for producing the same, and film or sheet produced using the same
JP5709238B2 (en) Mold with release film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5745623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250