JP5734054B2 - Assembly inspection apparatus and method - Google Patents

Assembly inspection apparatus and method Download PDF

Info

Publication number
JP5734054B2
JP5734054B2 JP2011076940A JP2011076940A JP5734054B2 JP 5734054 B2 JP5734054 B2 JP 5734054B2 JP 2011076940 A JP2011076940 A JP 2011076940A JP 2011076940 A JP2011076940 A JP 2011076940A JP 5734054 B2 JP5734054 B2 JP 5734054B2
Authority
JP
Japan
Prior art keywords
assembly
core
edge portion
upper edge
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011076940A
Other languages
Japanese (ja)
Other versions
JP2012210640A (en
Inventor
有司 泉野
有司 泉野
学 湯本
学 湯本
哲哉 北野
哲哉 北野
敏彦 乕田
敏彦 乕田
幸蔵 谷口
幸蔵 谷口
直人 田渕
直人 田渕
松本 圭司
圭司 松本
博好 響
博好 響
幸正 竹内
幸正 竹内
晋也 足羽
晋也 足羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011076940A priority Critical patent/JP5734054B2/en
Publication of JP2012210640A publication Critical patent/JP2012210640A/en
Application granted granted Critical
Publication of JP5734054B2 publication Critical patent/JP5734054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Description

本発明は組立品検査装置および方法に関し、組立中子等における組み付け精度に係る品質を検査するものである。   The present invention relates to an assembly inspection apparatus and method, and inspects quality related to assembly accuracy in an assembly core or the like.

従来、例えば図5に示すような組立中子1は、複数の部分品、ここでは下部中子2の部分品2a、2b、2cおよび上部中子3のそれぞれを造芯機で成型し、成型した下部中子の部分品2a、2b、2cを相互に接合して下部中子2を組立て、下部中子2の上部に上部中子3を接着剤で接合して組立ている。   Conventionally, for example, an assembly core 1 as shown in FIG. 5 is formed by molding a plurality of partial products, here, the partial products 2a, 2b, 2c of the lower core 2 and the upper core 3 with a core making machine. The lower core parts 2a, 2b and 2c are joined together to assemble the lower core 2, and the upper core 3 is joined to the upper portion of the lower core 2 with an adhesive.

このような組立中子1においては、下部中子2の部分品2a、2b、2cを相互に接合する過程において組み付け位置に誤差が生じて部分品2a、2b、2cの相互間に開きaが発生する場合には、下部中子2の部分品2a、2b、2cの頂部の高さ位置が不揃いとなる。この結果、部分品2a、2b、2cの頂部で支える上部中子3の姿勢が傾いた状態となり、この組立中子1を用いて鋳造した鋳造品の形状品質に影響を与える。   In such an assembly core 1, an error occurs in the assembly position in the process of joining the parts 2 a, 2 b, 2 c of the lower core 2 to each other, and an opening a is opened between the parts 2 a, 2 b, 2 c. When it occurs, the height positions of the tops of the partial products 2a, 2b, and 2c of the lower core 2 become uneven. As a result, the posture of the upper core 3 supported by the tops of the partial products 2a, 2b, and 2c is inclined, and the shape quality of the cast product cast using the assembly core 1 is affected.

このため、従来においては、検査員が基準ゲージを用いて組立中子1の寸法の適否を検査している。
このような鋳型の精度を検査する技術としては特許文献1に記載するものがある。これは、鋳枠の模型板に対する位置を決定する基準ピンの異常を検出する方法であり、予め前記鋳枠に設けられた目印の所定位置を測定する工程と、予め前記模型板に設けられた目印用模型部によって鋳型に成型された目印の所定位置を測定する工程と、測定された鋳枠目印所定位置と測定された鋳型目印所定位置との間の距離を算出する工程と、鋳枠目印所定位置と鋳型目印所定位置との間の距離について、実測値と、予め設定された設定値との間に偏差が存在するか否かをチェックする工程とからなる。
For this reason, conventionally, an inspector inspects the suitability of the dimensions of the assembly core 1 using a reference gauge.
As a technique for inspecting the accuracy of such a mold, there is one described in Patent Document 1. This is a method for detecting an abnormality of a reference pin that determines the position of a cast frame with respect to a model plate, a step of measuring a predetermined position of a mark provided in advance on the cast frame, and a method provided on the model plate in advance. A step of measuring a predetermined position of the mark formed on the mold by the mark model part, a step of calculating a distance between the measured predetermined position of the cast mark and the measured predetermined position of the mold mark, and a cast mark For the distance between the predetermined position and the mold mark predetermined position, the method includes a step of checking whether or not there is a deviation between the actually measured value and a preset set value.

特許3076746号公報Japanese Patent No. 3076746

ところで、検査員が基準ゲージを用いて手作業で検査を行う場合には、検査結果に各検査員の検査作業の個人差が影響する。例えば、組立中子1において基準ゲージを当てる位置や角度が各検査員よって相違し、測定誤差が生じる要因となる。あるいは、上述した構成の部分品2a、2b、2cには造芯機で成型するための型抜き勾配が設けられている。このため、基準ゲージを押し当てる組立中子1の対象位置の形状が型抜き勾配のために山なりとなっていると、基準ゲージを特定の位置に常に正確に押し当てることが容易でなく、安定した検査精度を実現することが困難であった。   By the way, when an inspector performs an inspection manually using a reference gauge, individual differences in the inspection work of each inspector affect the inspection results. For example, the position and angle at which the reference gauge is applied in the assembly core 1 are different depending on each inspector, which causes a measurement error. Alternatively, the partial products 2a, 2b, and 2c configured as described above are provided with a die-cutting gradient for molding with a core making machine. For this reason, when the shape of the target position of the assembly core 1 that presses the reference gauge is a mountain due to the die-cutting slope, it is not easy to always press the reference gauge accurately at a specific position, It was difficult to achieve stable inspection accuracy.

また、検査対象品の機種毎に基準ゲージを準備する必要があり、検査員が検査対象品の機種に対応しない基準ゲージを選択して検査を行うおそれがある。同一ラインで多品種混合生産を行なう場合には、基準ゲージの選択ミスが発生する機会が増加する。   In addition, it is necessary to prepare a reference gauge for each model of the inspection target product, and there is a risk that the inspector may select and inspect a reference gauge that does not correspond to the model of the inspection target product. When multi-mix mixed production is performed on the same line, the chances of erroneous selection of the reference gauge increase.

また、検査を行うためには、検査対象品をライン上から検査場所へ移動させる必要があり、検査に時間を要する問題があった。
本発明は上記した課題を解決するものであり、各検査員の主観的判断に依拠するために生じる検査結果のバラツキをなくし、常に客観的な判断基準で検査を行える組立品検査装置および方法を提供することを目的とする。
Further, in order to perform the inspection, it is necessary to move the inspection target product from the line to the inspection place, and there is a problem that it takes time for the inspection.
SUMMARY OF THE INVENTION The present invention solves the above-described problems, and provides an assembly inspection apparatus and method that eliminates variations in inspection results caused by relying on the subjective judgment of each inspector and can always inspect with objective judgment criteria. The purpose is to provide.

上記課題を解決するために、本発明の組立品検査装置は、複数の部分品を組み付けてなる組立品を検査するものであって、組立品を搬送軌道の搬送方向に沿って搬送する搬送装置と、組立品の上側部をなす部分品の搬送方向に沿った複数箇所に設けた搬送方向に延びる上側エッジ部の上下方向の座標値および各上側エッジ部に対応する位置で、かつ組立品の下側部をなす部分品の搬送方向に沿った複数箇所に設けた搬送方向に延びる下側エッジ部の上下方向の座標値とを検出する上下一対のセンサを有するセンサ装置と、センサ装置で検出した上側エッジ部と下側エッジ部との相対距離を搬送方向に沿った複数箇所の上側エッジ部と下側エッジ部の間において算出するコントロール部を備えたことを特徴とする。
本発明の組立品検査装置において、センサ装置は、センサの測定範囲内の上下方向の座標値を得ることができる二次元レーザ変位センサを備えることを特徴とする。
In order to solve the above-described problems, an assembly inspection apparatus according to the present invention inspects an assembly formed by assembling a plurality of partial products, and transports the assembly along the transport direction of the transport track. And the coordinate value in the vertical direction of the upper edge portion extending in the transport direction provided in a plurality of locations along the transport direction of the partial product constituting the upper portion of the assembly product, and the position corresponding to each upper edge portion, and A sensor device having a pair of upper and lower sensors for detecting the upper and lower coordinate values of the lower edge portion extending in the transport direction provided in a plurality of locations along the transport direction of the lower part , and detected by the sensor device And a control unit that calculates a relative distance between the upper edge portion and the lower edge portion between a plurality of upper edge portions and lower edge portions along the conveyance direction.
In the assembly inspection apparatus of the present invention, the sensor device includes a two-dimensional laser displacement sensor capable of obtaining a vertical coordinate value within a measurement range of the sensor.

本発明の組立品検査装置において、コントロール部は、算出した相対距離を予め定めた標準値と比較し、その差が許容範囲外であるとき、または、算出した複数の相対距離を比較し、比較した複数の相対距離の相互間の差が許容範囲外であるときに、組立品が不良品であると判断することを特徴とする。   In the assembly inspection apparatus of the present invention, the control unit compares the calculated relative distance with a predetermined standard value, and when the difference is outside the allowable range, or compares the calculated relative distances and compares them. When the difference between the plurality of relative distances is outside the allowable range, the assembly is determined to be defective.

本発明の組立品検査装置において、センサ装置は、組立品の上側エッジ部を検出する上側センサと、組立品の下側エッジ部を検出する下側センサと、上側センサと下側センサとを相対的に接近離間させるスライダを備えることを特徴とする。   In the assembly inspection apparatus of the present invention, the sensor device includes an upper sensor that detects the upper edge portion of the assembly, a lower sensor that detects the lower edge portion of the assembly, and an upper sensor and a lower sensor relative to each other. It is characterized by comprising a slider that moves close to and away from each other.

本発明の組立品検査方法は、複数の部分品を組み付けてなり、上側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる上側エッジ部を有し、各上側エッジ部に対応する位置で、かつ下側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる下側エッジ部を有する組立品を搬送装置により搬送軌道の搬送方向に沿って搬送する搬送工程と、搬送工程の途上において上側エッジ部の上下方向の座標値と下側エッジ部の上下方向の座標値とを上下一対のセンサを有するセンサ装置により検出するエッジ検出工程と、センサ装置で検出した上側エッジ部と下側エッジ部との相対距離を搬送方向に沿った複数箇所の上側エッジ部と下側エッジ部の間においてコントロール部により算出する相対距離算出工程と、算出した各相対距離が許容範囲外であるときに、組立品が不良品であると判断する品質判断工程を有することを特徴とする。 The assembly inspection method of the present invention has a plurality of partial parts assembled, and has upper edge portions extending in the conveyance direction at a plurality of locations along the conveyance direction of the partial parts forming the upper portion, and corresponds to each upper edge portion. A transporting step of transporting an assembly having lower edge portions extending in the transporting direction at a plurality of locations along the transporting direction of the partial product forming the lower side portion by the transporting device along the transporting direction of the transporting track. In the course of the transport process, an edge detection step of detecting a vertical coordinate value of the upper edge portion and a vertical coordinate value of the lower edge portion by a sensor device having a pair of upper and lower sensors, and an upper side detected by the sensor device A relative distance calculation step in which the control unit calculates a relative distance between the edge portion and the lower edge portion between a plurality of upper edge portions and lower edge portions along the transport direction, and each calculated relative distance There when it is out of the allowable range, and having a quality determination step of determining the assembly is defective.

本発明の組立中子は、複数の部分品を組み付けてなる中子であって、上側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる上側エッジ部を有し、各上側エッジ部に対応する位置で、かつ組立品の下側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる下側エッジ部を有することを特徴とする。   The assembly core of the present invention is a core formed by assembling a plurality of partial products, and has upper edge portions extending in the transport direction at a plurality of locations along the transport direction of the partial products forming the upper portion. The present invention is characterized by having lower edge portions extending in the transport direction at a plurality of locations along the transport direction of the partial product that forms the lower side portion of the assembly at positions corresponding to the edge portions.

本発明の中子の製造方法は、中子を成型する造芯機の型の内側壁に凹凸加工用プレートを設け、造芯機の型内に上方から中子原料を注入し、凹凸加工用プレートの形状に相応する凹凸部を中子に形成し、凹凸加工用プレートの周縁に対応する凹凸部の周縁を検出用エッジ部とすることを特徴とする。   In the core manufacturing method of the present invention, an unevenness processing plate is provided on the inner wall of a core forming machine mold for molding the core, and the core raw material is injected into the core forming machine mold from above, for uneven processing. An uneven portion corresponding to the shape of the plate is formed in the core, and the periphery of the uneven portion corresponding to the periphery of the uneven processing plate is used as a detection edge portion.

以上のように本発明によれば、複数の部分品を組み付けてなる組立品において、上側エッジ部と下側エッジ部とをセンサ装置により検出し、上側エッジ部と下側エッジ部との相対距離を搬送方向に沿った複数箇所の上側エッジ部と下側エッジ部の間において算出し、算出した複数の相対距離を比較することで、組立品の上側部をなす部分品と組立品の下側部をなす部分品との相対位置関係の適否を判断し、組立品の品質の良否を判断できる。よって、検査員の主観的判断に依拠することなく、常に客観的な判断基準で検査を行えるので、検査結果のバラツキをなくして、安定した品質を確保できる。   As described above, according to the present invention, in an assembly formed by assembling a plurality of partial products, the upper edge portion and the lower edge portion are detected by the sensor device, and the relative distance between the upper edge portion and the lower edge portion is detected. Is calculated between the upper edge portion and the lower edge portion at a plurality of locations along the conveying direction, and the calculated relative distance is compared, so that the upper part of the assembly and the lower part of the assembly It is possible to determine the suitability of the relative positional relationship with the component parts constituting the part and to determine the quality of the assembly. Therefore, the inspection can always be performed based on the objective determination criteria without relying on the subjective judgment of the inspector, so that variations in the inspection result can be eliminated and stable quality can be ensured.

本発明の実施の形態における組立品検査装置を示すブロック図The block diagram which shows the assembly inspection apparatus in embodiment of this invention 同組立品検査装置を示す模式図Schematic diagram showing the assembly inspection equipment 同実施の形態における組立中子を成型する造芯機を示す模式図Schematic diagram showing a core making machine for molding the assembly core in the same embodiment 同造芯機の要部を示す拡大図Enlarged view showing the main part of the core making machine 組立中子の組立方法を示す模式図Schematic diagram showing assembly method of assembly core

以下、本発明の実施の形態を図面に基づいて説明する。図1、図2に示すように、組立中子11は、複数の部分品、ここでは下部中子12の部分品12a、12b、12cおよび上部中子13のそれぞれを造芯機で成型し、成型した下部中子の部分品12a、12b、12cを相互に接合して下部中子12を組立て、下部中子12の上部に上部中子13を接着剤で接合して組立ている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1 and FIG. 2, the assembly core 11 is formed by molding a plurality of partial products, here, the partial products 12 a, 12 b, 12 c of the lower core 12 and the upper core 13 with a core making machine, The molded lower core parts 12a, 12b, and 12c are joined together to assemble the lower core 12, and the upper core 13 is joined to the upper portion of the lower core 12 with an adhesive.

上部中子13は上側部、つまり本実施の形態では中子の巾木部分に寸法計測のための上側エッジ部52a、52bを有し、上側エッジ部52a、52bが同じ高さ位置で並んでおり、下部中子12は両側の部分品12a、12cの下側部、つまり本実施の形態では中子の巾木部分に寸法計測のための下側エッジ部51a、51cを有し、下側エッジ部51a、51cが同じ高さ位置で並び、両側の部分品12a、12cの下側エッジ部51a、51cが上側エッジ部52a、52bに対応している。上側エッジ部52a、52bおよび下側エッジ部51a、51cは中子側面に形成した凹凸部の周縁であり、直線状をなす。   The upper core 13 has upper edge portions 52a and 52b for measuring dimensions in the upper portion, that is, the baseboard portion of the core in this embodiment, and the upper edge portions 52a and 52b are arranged at the same height position. The lower core 12 has lower edge portions 51a and 51c for measuring dimensions at the lower side portions 12a and 12c on both sides, that is, the baseboard portion of the core in this embodiment. The edge portions 51a and 51c are arranged at the same height position, and the lower edge portions 51a and 51c on both side parts 12a and 12c correspond to the upper edge portions 52a and 52b. The upper edge portions 52a and 52b and the lower edge portions 51a and 51c are the peripheral edges of the concavo-convex portion formed on the core side surface, and are linear.

中子の巾木部分は鋳造時に主型に納める時に中子の位置決めに使用する部位である。また、通常の鋳造ではハカセ(捨湯)道を主型に設置するが、本実施の形態では上部中子13に設けて、これを上側エッジ部52a、52bとしている。このため、鋳造品に影響を与えることなく、本発明に係る検査を行える。   The core base part of the core is a part used for positioning the core when it is placed in the main mold during casting. Further, in normal casting, a scraping (steaming) path is installed in the main mold, but in the present embodiment, it is provided in the upper core 13 and is used as the upper edge portions 52a and 52b. For this reason, the inspection according to the present invention can be performed without affecting the cast product.

この組立中子11は搬送装置53により搬送軌道の搬送方向に沿って搬送する。組立中子11は、搬送軌道上に載置した状態で、上側部をなす部分品である上部中子13に設けた上側エッジ部52a、52bが搬送方向に沿った前後の複数箇所に位置し、上側エッジ部52a、52bが搬送方向に延びており、下側部をなす部分品である下部中子12に設けた下側エッジ部51a、51cが搬送方向に沿って位置している。   The assembly core 11 is transported by the transport device 53 along the transport direction of the transport track. In the state where the assembly core 11 is placed on the transport track, the upper edge portions 52a and 52b provided on the upper core 13 which is a partial product forming the upper portion are positioned at a plurality of positions on the front and rear along the transport direction. The upper edge portions 52a and 52b extend in the transport direction, and the lower edge portions 51a and 51c provided in the lower core 12 which is a partial product forming the lower portion are positioned along the transport direction.

搬送装置53の搬送軌道の側方にはセンサ装置54が設けてある。センサ装置54は、組立中子11の上側エッジ部52a、52bを検出する上側センサ54aと、組立中子11の下側エッジ部51a、51cを検出する下側センサ54bと、上側センサ54aと下側センサ54bとを相対的に接近離間させるスライダ54cを備えており、上側センサ54aおよび下側センサ54bは二次元レーザ変位センサであり、走査方向が上下方向に延びており、センサの測定範囲内の上下方向及び奥行き方向の座標値を得ることができ、エッジ部の位置を瞬時に計測することができる。   A sensor device 54 is provided on the side of the transport track of the transport device 53. The sensor device 54 includes an upper sensor 54a that detects upper edge portions 52a and 52b of the assembly core 11, a lower sensor 54b that detects lower edge portions 51a and 51c of the assembly core 11, and an upper sensor 54a and a lower sensor 54a. The slider 54c that relatively approaches and separates from the side sensor 54b is provided. The upper sensor 54a and the lower sensor 54b are two-dimensional laser displacement sensors, and the scanning direction extends in the vertical direction. The coordinate values in the vertical direction and the depth direction can be obtained, and the position of the edge portion can be instantaneously measured.

センサ装置54は、搬送装置53による組立中子11の搬送に伴って上側エッジ部52a、52bおよび下側エッジ部51a、51cを順次に検出する。本実施の形態ではスライダ54cが上側センサ54aを上下に移動させるが、下側センサ54bを上下に移動させることも可能であり、上側センサ54aおよび下側センサ54bの両方を上下に移動させることも可能である。   The sensor device 54 sequentially detects the upper edge portions 52 a and 52 b and the lower edge portions 51 a and 51 c as the assembly core 11 is transported by the transport device 53. In this embodiment, the slider 54c moves the upper sensor 54a up and down, but the lower sensor 54b can be moved up and down, and both the upper sensor 54a and the lower sensor 54b can be moved up and down. Is possible.

センサ装置54にはコントロール部55が接続しており、搬送装置53で搬送されてくる組立中子の上側エッジ部の高さに合わせて、センサ装置54のスライダ54cで上側センサ54aを上下に移動させ、組立中子11の上側エッジ部が上側センサ54aの測定範囲内に入るようにし、図示しない光電センサで搬送されてくる組立中子を検出した時点から計測を開始する。尚、本実施形態では、組立中子の下部エッジ部は、下部中子の巾木部分に形成しており、種々の組立中子の下部エッジ部はほぼ同じ高さであるため、下部センサ54bの位置を固定としている。   A control unit 55 is connected to the sensor device 54, and the upper sensor 54 a is moved up and down by the slider 54 c of the sensor device 54 in accordance with the height of the upper edge portion of the assembly core conveyed by the conveyance device 53. Then, the upper edge portion of the assembly core 11 falls within the measurement range of the upper sensor 54a, and measurement is started when an assembly core conveyed by a photoelectric sensor (not shown) is detected. In the present embodiment, the lower edge portion of the assembly core is formed in the baseboard portion of the lower core, and the lower edge portions of various assembly cores have substantially the same height, so the lower sensor 54b. The position of is fixed.

コントロール部55はセンサ装置54で検出した搬送方向に沿った複数箇所の上側エッジ部52a、52bと下側エッジ部51a、51cの上下方向の位置を測定するとともに、上側エッジ部52a、52bと下側エッジ部51a、51cの間において、すなわち上側エッジ部52aと対応する下側エッジ部51aとの間において計測開始時から同じタイミングで計測した上側センサ54aの計測値と下側センサ54bの計測値から、その垂直方向の相対距離Y1を算出し、同様に上側エッジ部52bと対応する下側エッジ部51cとの間において相対距離Y2を算出する。   The control unit 55 measures the vertical positions of the upper edge portions 52a and 52b and the lower edge portions 51a and 51c along the conveyance direction detected by the sensor device 54, and also controls the upper edge portions 52a and 52b and the lower edge portions. The measured value of the upper sensor 54a and the measured value of the lower sensor 54b measured at the same timing from the start of measurement between the side edge portions 51a and 51c, that is, between the upper edge portion 52a and the corresponding lower edge portion 51a. Then, the relative distance Y1 in the vertical direction is calculated, and similarly, the relative distance Y2 is calculated between the upper edge portion 52b and the corresponding lower edge portion 51c.

そして、コントロール部55は、算出した複数の相対距離Y1、Y2を標準値と比較し、各相対距離Y1、Y2が正常範囲内であるか、否かを判断し、許容範囲外であるときには組立中子11が組み付け不良品であると判断する。さらに、複数の相対距離Y1、Y2の相互間の差が正常範囲内であるか、否かを判断し、許容範囲外であるときには組立中子11が組み付け不良品であると判断する。   Then, the control unit 55 compares the calculated relative distances Y1 and Y2 with the standard values to determine whether or not the relative distances Y1 and Y2 are within the normal range. It is determined that the core 11 is a defective product. Further, it is determined whether or not the difference between the plurality of relative distances Y1 and Y2 is within a normal range. If the difference is outside the allowable range, it is determined that the assembly core 11 is a defective assembly product.

この相対距離Y1、Y2の寸法情報は、閾値で正常、警告、不良の各レベルに分類することが可能であり、閾値の数を増やすことで任意の分類数を設定できる。また、寸法情報のトレンドを観察することで製造ラインを流れる組立中子11の品質の変動傾向を判断することができ、不具合箇所を推定することが可能であり、不具合の発生を未然に防止することに寸法情報のトレンドが利用できる。   The dimensional information of the relative distances Y1 and Y2 can be classified into normal, warning, and defective levels by threshold values, and an arbitrary number of classifications can be set by increasing the number of threshold values. In addition, by observing the trend of the dimension information, it is possible to determine the tendency of the quality of the assembly core 11 flowing through the production line, and it is possible to estimate the location of the failure and prevent the occurrence of the failure. In particular, the trend of dimensional information can be used.

図3に示すように、組立中子11の下部中子12の部分品12a、12b、12cおよび上部中子13を成型する造芯機60は、その成型61の内側壁に凹凸加工用プレート62を設けており、ここでは凹凸加工用プレート62が凸状をなし、下部中子12の部分品12a、12b、12cおよび上部中子13の側面に凹部を形成する。しかし、凹凸加工用プレート62を凹状となし、下部中子12の部分品12a、12b、12cおよび上部中子13の側面に凸部を形成することも可能である。   As shown in FIG. 3, the core-making machine 60 that molds the parts 12 a, 12 b, 12 c of the lower core 12 of the assembly core 11 and the upper core 13 has an uneven processing plate 62 on the inner wall of the molding 61. Here, the uneven processing plate 62 has a convex shape, and the concave parts are formed on the side parts of the partial products 12 a, 12 b, 12 c of the lower core 12 and the upper core 13. However, it is also possible to form the concavo-convex processing plate 62 into a concave shape and form convex portions on the side parts of the partial cores 12a, 12b, 12c of the lower core 12 and the upper core 13.

この造芯機60の成形型61の内部に上方から中子原料63を注入し、凹凸加工用プレート62の形状に相応する凹部を下部中子12の部分品12a、12b、12cおよび上部中子13に形成し、凹凸加工用プレート62の周縁に対応する凹部の周縁を上側エッジ部52a、52bおよび下側エッジ部51a、51cとする。   The core raw material 63 is poured into the inside of the forming die 61 of the core making machine 60 from above, and the recesses corresponding to the shape of the concavo-convex machining plate 62 are formed in the lower core 12 parts 12a, 12b, 12c and the upper core. 13, the peripheral edge of the concave portion corresponding to the peripheral edge of the uneven processing plate 62 is defined as upper edge portions 52 a and 52 b and lower edge portions 51 a and 51 c.

凹凸加工用プレート62には成形型61の母材に較べて耐磨耗性に優れた材質の部材を使用し、例えば成形型61にねずみ鋳鉄を使用し、凹凸加工用プレート62にクロムモリブデン鋼を使用する。   The irregularity processing plate 62 is made of a material having excellent wear resistance compared to the base material of the molding die 61, for example, gray cast iron is used for the molding die 61, and chromium molybdenum steel is used for the irregularity processing plate 62. Is used.

しかしながら、図4に示すように、凹凸加工用プレート62の周縁の上部辺62aは、成型61の内部に上方から注入する中子原料63にさらされるので、経年変化により劣化し、上部辺62aに対応する中子の縁を検出用エッジとすると、測定に誤差が生じ要因となる。一方、凹凸加工用プレート62の周縁の下部辺62bは中子原料63による磨耗が生じ難い。このため、凹凸加工用プレート62の周縁の下部辺62bに対応する中子の縁を検出用エッジ、本実施の形態では上側エッジ部52a、52bおよび下側エッジ部51a、51cとしている。このため、経年変化による成形型の劣化を原因とする測定誤差の発生を抑制できる。   However, as shown in FIG. 4, the upper side 62 a at the periphery of the uneven processing plate 62 is exposed to the core raw material 63 injected from above into the inside of the molding 61. If the edge of the corresponding core is used as a detection edge, an error occurs in measurement and becomes a factor. On the other hand, the lower side 62b at the periphery of the uneven processing plate 62 is less likely to be worn by the core material 63. For this reason, the edge of the core corresponding to the lower side 62b of the peripheral edge of the concavo-convex processing plate 62 is used as a detection edge, in the present embodiment, the upper edge portions 52a and 52b and the lower edge portions 51a and 51c. For this reason, generation | occurrence | production of the measurement error resulting from the deterioration of the shaping | molding die by a secular change can be suppressed.

上側エッジ部52a、52bおよび下側エッジ部51a、51cを形成する凹部は、直線形状で、40mm以上の一定巾を有し、その深さは造型時の抜型抵抗を考慮すると0.5から3mm程度である。この結果、上側エッジ部52a、52bおよび下側エッジ部51a、51cは搬送方向に直線状に一定長さを有することになり、上側エッジ部52a、52bおよび下側エッジ部51a、51cの各範囲内であれば何れの箇所においても測定可能である。   The concave portions forming the upper edge portions 52a and 52b and the lower edge portions 51a and 51c are linear and have a constant width of 40 mm or more, and the depth is 0.5 to 3 mm in consideration of the punching resistance during molding. Degree. As a result, the upper edge portions 52a and 52b and the lower edge portions 51a and 51c have a certain length in a straight line in the transport direction, and each range of the upper edge portions 52a and 52b and the lower edge portions 51a and 51c. It can be measured at any location within the range.

したがって、上側エッジ部52aと対応する下側エッジ部51aとの間においてその相対距離Y1を算出し、上側エッジ部52bと対応する下側エッジ部51cとの間においてその相対距離Y2を算出する際にも、上側エッジ部52a、52bと下側エッジ部51a、51cにおいてそれぞれ複数箇所で測定することにより、測定精度の安定化を図れる。また、上側エッジと下側エッジの相対距離は同じ計測タイミングの計測値から算出するので、搬送時に組立中子11が上下方向に振動することの影響が受け難い。   Therefore, when calculating the relative distance Y1 between the upper edge portion 52a and the corresponding lower edge portion 51a, and calculating the relative distance Y2 between the upper edge portion 52b and the corresponding lower edge portion 51c. In addition, the measurement accuracy can be stabilized by measuring at a plurality of locations in the upper edge portions 52a and 52b and the lower edge portions 51a and 51c. Further, since the relative distance between the upper edge and the lower edge is calculated from the measurement values at the same measurement timing, it is difficult to be affected by the assembly core 11 vibrating in the vertical direction during conveyance.

本実施の形態では、上側センサ54aと下側センサ54bおよびスライダ54cとでセンサ装置54を構成した。この構成では、搬送されてくる組立中子毎に上側エッジ部が形成される高さ位置が異なっていても、上側エッジ部が上側センサ54aの計測範囲内に入るようにスライダ54cで上側センサ54aを上下方向に移動してから計測を行うので、多品種の組立中子の搬送ラインへも適用しやすくなる。しかしながら、センサ装置54は、本実施の形態の構成に限るものでなく、例えば、一台のレーザ変位センサをXYステージで二次元的に移動させる構成や、1台のセンサで上下のエッジをセンシングして計測する構成とすることも可能である。   In the present embodiment, the sensor device 54 is configured by the upper sensor 54a, the lower sensor 54b, and the slider 54c. In this configuration, even if the height position at which the upper edge portion is formed differs for each assembly core that is conveyed, the upper sensor 54a is moved by the slider 54c so that the upper edge portion is within the measurement range of the upper sensor 54a. Since the measurement is performed after moving in the vertical direction, it can be easily applied to a conveyance line for various types of assembly cores. However, the sensor device 54 is not limited to the configuration of the present embodiment, and for example, a configuration in which one laser displacement sensor is moved two-dimensionally on an XY stage, or upper and lower edges are sensed by one sensor. It is also possible to adopt a configuration in which measurement is performed.

本実施の形態では、中子の組み立て最終工程で組み付け不良を検出することができ、インラインでの全数検査が実現できる。検査員の主観的判断に依拠することなく、常に客観的な判断基準で検査を行えるので、検査結果のバラツキをなくして、安定した品質を確保できる。   In the present embodiment, an assembly failure can be detected in the final assembly process of the core, and in-line 100% inspection can be realized. Since inspection can always be performed based on objective judgment criteria without relying on the subjective judgment of the inspector, it is possible to eliminate variations in inspection results and ensure stable quality.

下部中子12の部分品12a、12b、12cおよび上部中子13の組み付け位置精度を高めることで、鋳物製品に鋳バリが発生することを抑制でき、鋳バリの除去作業を低減でき、鋳バリレス化によって生産性の向上を図れる。また、グラインダーを使用する鋳バリの除去作業を低減して労働安全衛生を高めることができる。   By increasing the assembling position accuracy of the parts 12a, 12b, 12c of the lower core 12 and the upper core 13, it is possible to suppress the occurrence of casting burrs in the casting product, and to reduce the removal work of the casting burrs. Productivity can be improved by making it easier. Moreover, the removal work of the casting burr using a grinder can be reduced and occupational health and safety can be improved.

本実施の形態では組立中子11について説明したが、本発明はその他の物品にも適用可能であり、例えば鋳物製品にも適用できる。   Although the assembly core 11 has been described in the present embodiment, the present invention can be applied to other articles, for example, cast products.

11 組立中子
12 下部中子
12a、12b、12c 部分品
13 上部中子
51a、51c 下側エッジ部
52a、52b 上側エッジ部
53 搬送装置
54 センサ装置
54a 上側センサ
54b 下側センサ
54c スライダ
55 コントロール部
60 造芯機
61 成形型
62 凹凸加工用プレート
62a 上部辺
62b 下部辺
63 中子原料
Y1、Y2 相対距離
11 Assembly core 12 Lower core 12a, 12b, 12c Part 13 Upper core 51a, 51c Lower edge 52a, 52b Upper edge 53 Conveying device 54 Sensor device 54a Upper sensor 54b Lower sensor 54c Slider 55 Control unit 60 Core-making machine 61 Mold 62 Uneven processing plate 62a Upper side 62b Lower side 63 Core material Y1, Y2 Relative distance

Claims (7)

複数の部分品を組み付けてなる組立品を検査するものであって、組立品を搬送軌道の搬送方向に沿って搬送する搬送装置と、組立品の上側部をなす部分品の搬送方向に沿った複数箇所に設けた搬送方向に延びる上側エッジ部の上下方向の座標値および各上側エッジ部に対応する位置で、かつ組立品の下側部をなす部分品の搬送方向に沿った複数箇所に設けた搬送方向に延びる下側エッジ部の上下方向の座標値とを検出する上下一対のセンサを有するセンサ装置と、センサ装置で検出した上側エッジ部と下側エッジ部との相対距離を搬送方向に沿った複数箇所の上側エッジ部と下側エッジ部の間において算出するコントロール部を備えたことを特徴とする組立品検査装置。 Inspecting an assembly formed by assembling a plurality of parts, a transport device that transports the assembly along the transport direction of the transport track, and a transport direction of the part that forms the upper part of the assembly Provided at multiple locations along the transport direction of the part that forms the lower side of the assembly at the position corresponding to the coordinate value in the vertical direction of the upper edge portion extending in the transport direction provided at multiple locations and each upper edge portion The sensor device having a pair of upper and lower sensors for detecting the vertical coordinate value of the lower edge portion extending in the transport direction, and the relative distance between the upper edge portion and the lower edge portion detected by the sensor device in the transport direction. An assembly inspection apparatus comprising a control unit that calculates between a plurality of upper edge portions and lower edge portions along a plurality of locations. センサ装置は、センサの測定範囲内の上下方向の座標値を得ることができる二次元レーザ変位センサを備えることを特徴とする請求項1に記載の組立品検査装置。The assembly inspection apparatus according to claim 1, wherein the sensor device includes a two-dimensional laser displacement sensor capable of obtaining a vertical coordinate value within a measurement range of the sensor. コントロール部は、算出した相対距離を予め定めた標準値と比較し、その差が許容範囲外であるときに、または、算出した複数の相対距離を比較し、比較した複数の相対距離の相互間の差が許容範囲外であるときに、組立品が不良品であると判断することを特徴とする請求項1または2に記載の組立品検査装置。 The control unit compares the calculated relative distance with a predetermined standard value, and when the difference is outside the allowable range, or compares the calculated multiple relative distances and compares the calculated relative distances to each other. 3. The assembly inspection apparatus according to claim 1 , wherein the assembly is determined to be defective when the difference is outside the allowable range. 4. センサ装置は、組立品の上側エッジ部を検出する上側センサと、下側エッジ部を検出する下側センサと、上側センサと下側センサとを相対的に接近離間させるスライダを備えることを特徴とする請求項1または2に記載の組立品検査装置。 The sensor device includes an upper sensor for detecting the upper edge portion of the assembly, a lower sensor for detecting the lower edge portion, and a slider for relatively approaching and separating the upper sensor and the lower sensor. The assembly inspection apparatus according to claim 1 or 2 . 複数の部分品を組み付けてなり、上側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる上側エッジ部を有し、各上側エッジ部に対応する位置で、かつ下側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる下側エッジ部を有する組立品を搬送装置により搬送軌道の搬送方向に沿って搬送する搬送工程と、搬送工程の途上において上側エッジ部の上下方向の座標値と下側エッジ部の上下方向の座標値とを上下一対のセンサを有するセンサ装置により検出するエッジ検出工程と、センサ装置で検出した上側エッジ部と下側エッジ部との相対距離を搬送方向に沿った複数箇所の上側エッジ部と下側エッジ部の間においてコントロール部により算出する相対距離算出工程と、算出した各相対距離が許容範囲外であるときに、組立品が不良品であると判断する品質判断工程を有することを特徴とする組立品検査方法。 A plurality of partial parts are assembled, and there are upper edge parts extending in the conveyance direction at a plurality of locations along the conveyance direction of the partial parts forming the upper part, and the lower side parts are positioned at positions corresponding to the upper edge parts. A conveying step of conveying an assembly having a lower edge portion extending in the conveying direction at a plurality of locations along the conveying direction of the formed part along the conveying direction of the conveying track by the conveying device, and an upper edge portion in the middle of the conveying step An edge detection step of detecting a vertical coordinate value and a vertical coordinate value of the lower edge portion by a sensor device having a pair of upper and lower sensors, and an upper edge portion and a lower edge portion detected by the sensor device When the relative distance is calculated by the control unit between the upper edge portion and the lower edge portion of the plurality of locations along the conveyance direction, and each calculated relative distance is outside the allowable range Assembly inspection method characterized by having a quality determination step of determining the assembly is defective. 複数の部分品を組み付けてなる中子であって、上側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる上側エッジ部を有し、各上側エッジ部に対応する位置で、かつ組立品の下側部をなす部分品の搬送方向に沿った複数箇所に搬送方向に延びる下側エッジ部を有することを特徴とする組立中子。   It is a core formed by assembling a plurality of partial products, and has upper edge portions extending in the conveyance direction at a plurality of locations along the conveyance direction of the partial products forming the upper portion, at positions corresponding to the upper edge portions, An assembly core comprising lower edge portions extending in the transport direction at a plurality of locations along the transport direction of the partial product forming the lower side of the assembly. 中子を成型する造芯機の型の内側壁に凹凸加工用プレートを設け、造芯機の型内に上方から中子原料を注入し、凹凸加工用プレートの形状に相応する凹凸部を中子に形成し、凹凸加工用プレートの周縁に対応する凹凸部の周縁を検出用エッジ部とすることを特徴とする中子の製造方法。   An uneven processing plate is provided on the inner side wall of the core forming machine mold for molding the core, and the core material is injected into the core forming machine mold from above, so that the uneven portion corresponding to the shape of the uneven processing plate is placed inside. A method for manufacturing a core, characterized in that the edge of the concavo-convex portion corresponding to the rim of the concavo-convex processing plate is formed as a detection edge portion.
JP2011076940A 2011-03-31 2011-03-31 Assembly inspection apparatus and method Active JP5734054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076940A JP5734054B2 (en) 2011-03-31 2011-03-31 Assembly inspection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076940A JP5734054B2 (en) 2011-03-31 2011-03-31 Assembly inspection apparatus and method

Publications (2)

Publication Number Publication Date
JP2012210640A JP2012210640A (en) 2012-11-01
JP5734054B2 true JP5734054B2 (en) 2015-06-10

Family

ID=47265061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076940A Active JP5734054B2 (en) 2011-03-31 2011-03-31 Assembly inspection apparatus and method

Country Status (1)

Country Link
JP (1) JP5734054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699059A (en) * 2018-02-13 2020-09-22 新东工业株式会社 Device and method for detecting die misalignment of upper and lower casting dies

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690572B2 (en) * 2000-11-30 2011-06-01 キヤノンアネルバ株式会社 Substrate overlay device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699059A (en) * 2018-02-13 2020-09-22 新东工业株式会社 Device and method for detecting die misalignment of upper and lower casting dies
CN111699059B (en) * 2018-02-13 2022-03-08 新东工业株式会社 Device and method for detecting die misalignment of upper and lower casting dies

Also Published As

Publication number Publication date
JP2012210640A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP6193916B2 (en) Injection molding system
US11045866B2 (en) Method for preventing defect caused by shift in cavity parts
JP2015516314A (en) Positioning and fixing the casting mold to the casting mold
JP5734054B2 (en) Assembly inspection apparatus and method
KR20180103832A (en) Upper and lower mold displacement detection device and mold shift detection method
US4724886A (en) Mold cavity misalignment detection system
JP4762272B2 (en) Method and apparatus for inspection of lumber products
JP4768055B2 (en) Hot scarf cutting amount measuring method and measuring device
US20200406344A1 (en) Mold-shift detection device for upper and lower molds and mold-shift detection method for upper and lower molds
CN113134878B (en) Apparatus and method for machining a workpiece
KR20120084684A (en) Apparatus, method and system for determining a filling ratio of flux, and computer readable storage medium for recording program of determining a filling ratio of flux
IT201800003456A1 (en) MACHINE AND METHOD FOR PROCESSING CERAMIC PRODUCTS, NATURAL STONES AND SIMILAR
KR101280705B1 (en) Method for measuring width data of slabs and processing the width data
US10799941B2 (en) Flask mating misalignment detection method and detection device for molds with flasks
CN110072652B (en) Method and device for operating a casting installation
CN108620539B (en) Investment casting method for casting with complex curved surface shape
JP5790302B2 (en) Cross sectional shape verification method for tire treads
JP2011075466A (en) Flatness measuring method of mold
JP4410742B2 (en) Hot scarf cutting amount measuring method and measuring device
CN206410637U (en) A kind of high-precision modeling ladder row's section bar purchase inspection gauge
JP2021090985A (en) Core position checking method, casting making method and core position checking device
JP7189828B2 (en) Surface inspection device and surface inspection method
JP7238281B2 (en) Manufacturing method and manufacturing equipment
CN104096721A (en) Test tool for complex curved surface metal plate stamped product
JP5176100B2 (en) Detection method of burrs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150414

R150 Certificate of patent or registration of utility model

Ref document number: 5734054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150