JP5729749B2 - Method for manufacturing organic electroluminescence element - Google Patents

Method for manufacturing organic electroluminescence element Download PDF

Info

Publication number
JP5729749B2
JP5729749B2 JP2010192550A JP2010192550A JP5729749B2 JP 5729749 B2 JP5729749 B2 JP 5729749B2 JP 2010192550 A JP2010192550 A JP 2010192550A JP 2010192550 A JP2010192550 A JP 2010192550A JP 5729749 B2 JP5729749 B2 JP 5729749B2
Authority
JP
Japan
Prior art keywords
layer
organic
hole injection
transport layer
hole transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010192550A
Other languages
Japanese (ja)
Other versions
JP2012049085A (en
Inventor
嘉一 坂口
嘉一 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2010192550A priority Critical patent/JP5729749B2/en
Publication of JP2012049085A publication Critical patent/JP2012049085A/en
Application granted granted Critical
Publication of JP5729749B2 publication Critical patent/JP5729749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子(有機ELともいう。)を発光体に用いた有機エレクトロルミネッセンス素子(有機EL素子ともいう。)の製造方法に関し、より詳しくは、短絡の発生が抑制され、駆動電圧が低く、長寿命の有機EL素子を得ることができる有機EL素子の製造方法に関する。 The present invention (also referred to as an organic EL.) The organic electroluminescent device (also referred to as organic EL elements.) The organic electroluminescent device using the light-emitting element related to manufacturing how, more particularly, occurrence of short circuits is suppressed , low driving voltage, a method of manufacturing the organic EL device can be obtained an organic EL device of long lifetime.

有機EL照明装置は、有機発光材料を含有する有機層を、少なくとも一方が透光性を有する1対の電極層で挟持した有機EL素子を備え、有機層で発生する光を透光性電極層、透光性基板を透過させその表面の発光面から外部へ放出させる面状光源であり、薄膜であって、低電圧で発光し、応答性に優れることから、利用価値が高い。有機EL素子の有機層は、電子輸送層、発光層、正孔輸送層、正孔注入層等が積層された積層構造を有し、発光層に対して、電子輸送層が適度なイオン化ポテンシャル(HOMO準位)差と電子親和力(LUMO準位)差を有することにより、正孔が発光層内に保持されると共に、電子が効率よく発光層へ注入され、同時に、正孔輸送層が発光層に対して適度なLUMO準位差を有することにより発光層からの電子の漏洩が阻害され、発光層において電子と正孔の再結合を促進させ、励起子を形成し励起状態となった有機ELが、低レベル順位、又は基底状態に戻る際に蛍光や、燐光を発光させる。   An organic EL lighting device includes an organic EL element in which an organic layer containing an organic light-emitting material is sandwiched between a pair of electrode layers having at least one light-transmitting property, and transmits light generated in the organic layer. It is a planar light source that transmits a translucent substrate and emits it from the light emitting surface of the surface to the outside. It is a thin film, emits light at a low voltage, and has excellent responsiveness. The organic layer of the organic EL element has a laminated structure in which an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and the like are laminated, and the electron transport layer has a moderate ionization potential ( By having a HOMO level difference and an electron affinity (LUMO level) difference, holes are held in the light emitting layer and electrons are efficiently injected into the light emitting layer. In contrast, the organic EL that has an appropriate LUMO level difference inhibits leakage of electrons from the light emitting layer, promotes recombination of electrons and holes in the light emitting layer, forms excitons, and enters an excited state. However, fluorescence or phosphorescence is emitted when returning to the low level order or the ground state.

この種の有機EL素子を備えた有機EL照明装置においては、電極層の製造工程において発生する金属片や異物により、その上に形成される有機層に厚さの薄い部分や、欠損等の欠陥部が生じ、欠陥部において電極が接触したり、電界が集中することにより短絡が発生する場合がある。薄膜、広面積の有機層においてその発生率が高くなる傾向にある。   In an organic EL lighting device equipped with this type of organic EL element, a thin piece or a defect such as a defect in the organic layer formed thereon due to metal pieces or foreign matter generated in the electrode layer manufacturing process In some cases, a short circuit may occur due to contact of an electrode in a defective part or concentration of an electric field. The incidence tends to be high in thin films and large organic layers.

このような有機EL照明装置における短絡の発生を抑制するため、有機層の製造工程において、有機層材料のガラス転移温度以上で加熱溶融することが報告されている(特許文献1)。しかしながら、有機層の加熱により、電子輸送層と発光層間においてキャリアが拡散して界面膜質が変化することにより、キャリアの再結合効果が低下し、発光効率が低下する場合がある。発光効率を低下させずに短絡の発生をより高度に抑制することができる有機EL素子が要請されている。   In order to suppress the occurrence of a short circuit in such an organic EL lighting device, it has been reported that in an organic layer manufacturing process, the material is heated and melted at a temperature equal to or higher than the glass transition temperature of the organic layer material (Patent Document 1). However, when the organic layer is heated, carriers are diffused between the electron transport layer and the light emitting layer and the interface film quality is changed, so that the recombination effect of the carriers is lowered and the light emission efficiency may be lowered. There is a demand for an organic EL element that can suppress the occurrence of a short circuit to a higher degree without lowering the light emission efficiency.

特開2001−68272JP 2001-68272 A

本発明の課題は、製造工程において発生する金属片や異物が電極層上に存在することに起因する有機層に生じる欠陥部の減少を図り、有機EL素子の耐電圧性の向上を図ることにより、短絡の発生が抑制された有機EL素子が得られる有機EL素子の製造方法を提供することにある。 The object of the present invention is to reduce the defective portion generated in the organic layer due to the presence of metal pieces and foreign substances generated in the manufacturing process on the electrode layer, and to improve the voltage resistance of the organic EL element. , Ru near to provide a method for manufacturing an organic EL device wherein an organic EL device occurrence of a short circuit is suppressed can be obtained.

本発明者らは、短絡の発生を抑制できる有機EL素子について検討した結果、正孔注入層と、正孔輸送層との間に、これらの層を形成する材料を含有する中間層を形成し、更に、これらの材料を用いて成膜する間又は成膜後に、これらの材料のガラス転移温度以上に加熱することにより、正孔注入層、正孔輸送層の被覆性を向上させることができ、欠陥部が著しく減少した有機EL素子を製造することができることの知見を得た。更に、正孔注入層と正孔輸送層間に、これら双方の層に含まれる材料を含有する中間層を形成することにより、これらの層の密着性が向上し、耐電圧性が向上した有機EL素子を製造することができることの知見を得た。このようにして得られる有機EL素子を備えた有機EL照明装置において、短絡の発生を抑制することができることの知見を得、これらの知見に基き、本発明を完成するに至った。   As a result of studying an organic EL device capable of suppressing the occurrence of a short circuit, the present inventors formed an intermediate layer containing a material for forming these layers between a hole injection layer and a hole transport layer. Furthermore, the coverage of the hole injection layer and the hole transport layer can be improved by heating to or above the glass transition temperature of these materials during or after film formation using these materials. The present inventors have found that an organic EL element having a significantly reduced defect portion can be produced. Furthermore, by forming an intermediate layer containing the material contained in both layers between the hole injection layer and the hole transport layer, the adhesion of these layers is improved, and the organic EL with improved voltage resistance The knowledge that an element can be manufactured was obtained. In the organic EL lighting device provided with the organic EL element thus obtained, the knowledge that the occurrence of a short circuit can be suppressed has been obtained, and the present invention has been completed based on these findings.

即ち、本発明は、透光性基板上に設けられる透光性電極層を含む1対の電極層と、該1対の電極層に挟持され、正孔注入層、正孔輸送層、発光層及び電子輸送層とを有する有機層とを有する有機エレクトロルミネッセンス素子の製造方法であって、透光性基板上に形成した透光性電極層上に、正孔注入層材料、該正孔注入層材料及び正孔輸送層材料、該正孔輸送層材料とを順次成膜し、これらの材料の成膜中又は成膜後、これらの材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱して、正孔注入層と、正孔輸送層と、これらの層間に介在する中間層とを形成し、有機層形成後、電極層材料を成膜中、透光性基板を0〜25℃に冷却することを特徴とする有機エレクトロルミネッセンス素子の製造方法に関する。 That is, the present invention includes a pair of electrode layers including a light-transmitting electrode layer provided on a light-transmitting substrate, and a hole injection layer, a hole transport layer, and a light emitting layer sandwiched between the pair of electrode layers. And an organic layer having an electron transport layer, wherein the hole injection layer material is formed on the translucent electrode layer formed on the translucent substrate. The material, the hole transport layer material, and the hole transport layer material are sequentially formed, and the temperature at which the reaction of these materials occurs at or above the glass transition temperature of these materials during or after the formation of these materials. and heated to a temperature, a hole injection layer, a hole transport layer, to form an intermediate layer interposed between the layers, after the organic layer is formed, in forming the electrode layer material, light-transmissive substrate Is cooled to 0 to 25 ° C., and relates to a method for producing an organic electroluminescence element.

本発明の有機EL素子の製造方法は、製造工程において発生する金属片や異物が電極層上に存在することに起因する有機層に生じる欠陥部の減少を図り、正孔注入層と正孔輸送層の密着性を向上させることにより耐電圧性が向上した有機EL素子を製造することができる。本発明の有機EL素子の製造方法により得られる有機EL素子は、短絡の発生を抑制することができ、正孔注入層と正孔輸送層間にこれらの中間のエネルギー準位を有する層が導入されることにより、駆動電圧を低下させることができ、長寿命で信頼性を向上させることができる。 The method for producing an organic EL device of the present invention reduces the defects generated in the organic layer due to the presence of metal pieces and foreign matters generated in the production process on the electrode layer, and the hole injection layer and the hole transport. By improving the adhesion of the layers, an organic EL element with improved voltage resistance can be produced. The organic EL device obtained by the method for producing an organic EL device of the present invention can suppress the occurrence of a short circuit, and a layer having an intermediate energy level is introduced between the hole injection layer and the hole transport layer. As a result, the driving voltage can be lowered, and the reliability can be improved with a long life.

本発明の有機EL素子の製造方法の工程の一部を示す説明図である。It is explanatory drawing which shows a part of process of the manufacturing method of the organic EL element of this invention. 本発明の有機EL素子の製造方法の工程の一部を示す説明図である。It is explanatory drawing which shows a part of process of the manufacturing method of the organic EL element of this invention. 本発明の有機EL素子の製造方法により得られる有機EL素子の一例を示す構成図である。It is a block diagram which shows an example of the organic EL element obtained by the manufacturing method of the organic EL element of this invention. 本発明の有機EL素子の製造方法により得られる有機EL素子の一例を用い 有機EL照明装置を示す構成図である。Is a block diagram showing an organic EL illumination equipment using an example of an organic EL device obtained by the manufacturing method of the organic EL device of the present invention.

本発明の有機エレクトロルミネッセンス素子の製造方法は、透光性基板上に設けられる透光性電極層を含む1対の電極層と、該1対の電極層に挟持され、正孔注入層、正孔輸送層、発光層及び電子輸送層とを有する有機層とを有する有機エレクトロルミネッセンス素子の製造方法であって、透光性基板上に形成した透光性電極層上に、正孔注入層材料、該正孔注入層材料及び正孔輸送層材料と、該正孔輸送層材料とを順次成膜し、これらの材料の成膜中又は成膜後、これらの材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱して、正孔注入層と、正孔輸送層と、これらの層間に介在する中間層とを形成し、有機層形成後、電極層材料を成膜中、透光性基板を0〜25℃に冷却することを特徴とする。 The method for producing an organic electroluminescent element of the present invention includes a pair of electrode layers including a light-transmitting electrode layer provided on a light-transmitting substrate, and a hole injection layer, a positive electrode sandwiched between the pair of electrode layers. A method for producing an organic electroluminescence device having an organic layer having a hole transport layer, a light emitting layer and an electron transport layer, wherein a hole injection layer material is formed on a light transmissive electrode layer formed on a light transmissive substrate. The hole injection layer material, the hole transport layer material, and the hole transport layer material are sequentially formed, and during or after the formation of these materials, these materials are heated above the glass transition temperature of these materials. The material is heated to a temperature below the temperature at which the reaction of the material occurs to form a hole injection layer, a hole transport layer, and an intermediate layer interposed between these layers. After forming the organic layer, the electrode layer material is formed. The translucent substrate is cooled to 0 to 25 ° C. in the film .

上記有機EL素子の製造に用いる透光性基板は、後述する透光性電極層を介して設けられる有機層からの光を入射し、入射面に対向する発光面から放出するものであり、有機層において発光される光の透過率が高いものが好ましい。透光性基板としては、例えば、石英ガラス、ソーダガラス、ホウケイ酸ガラス、鉛ガラス、その他、アルミノケイ酸ガラス、ホウ酸塩ガラス、リン酸塩ガラスのガラスや樹脂フィルム等を用いることができる。透光性基板は、例えば、0.1〜2mmの厚さのものを用いることができる。透光性基板は、上層に積層される透光性電極層との密着性を高めるため、表面を酸素、窒素、不活性ガス等のプラズマを用いたプラズマ処理を施したものを用いてもよい。   The translucent substrate used in the manufacture of the organic EL element is one in which light from an organic layer provided via a translucent electrode layer described later is incident and emitted from a light emitting surface facing the incident surface. Those having high transmittance of light emitted from the layer are preferred. As the translucent substrate, for example, quartz glass, soda glass, borosilicate glass, lead glass, aluminosilicate glass, borate glass, phosphate glass, a resin film, or the like can be used. As the translucent substrate, for example, a substrate having a thickness of 0.1 to 2 mm can be used. The light-transmitting substrate may have a surface subjected to plasma treatment using plasma of oxygen, nitrogen, inert gas or the like in order to improve adhesion with the light-transmitting electrode layer laminated on the upper layer. .

上記透光性基板上に透光性電極層を積層する。透光性電極層は有機層を挟持する1対の電極層を構成するものであり、有機層からの光の透過率が高い材料で形成することが好ましい。透光性電極層として、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)等の陽極として形成することができる。透光性電極層はシャドーマスクを介してスパッタ法、蒸着法、CVD法等により、透光性基板の所定の領域に透光性電極層材料を積層したり、スパッタ法、蒸着法、CVD法等により成膜した透光性電極膜をフォトリソグラフィー法により透光性電極層に形成することができる。透光性電極層の一端を延長して形成し、配線部材との接続部を形成することが好ましい。透光性電極層は、例えば、100〜300nm等の厚さに形成することができる。   A translucent electrode layer is laminated on the translucent substrate. The translucent electrode layer constitutes a pair of electrode layers sandwiching the organic layer, and is preferably formed of a material having a high light transmittance from the organic layer. The translucent electrode layer can be formed as an anode such as indium tin oxide (ITO), indium zinc oxide (IZO), or the like. The translucent electrode layer is formed by laminating a translucent electrode layer material on a predetermined region of the translucent substrate by a sputtering method, vapor deposition method, CVD method or the like through a shadow mask, or by sputtering, vapor deposition method, CVD method. A translucent electrode film formed by the above method can be formed on the translucent electrode layer by a photolithography method. It is preferable that one end of the translucent electrode layer is extended to form a connection portion with the wiring member. The translucent electrode layer can be formed to a thickness of 100 to 300 nm, for example.

透光性電極層はプラズマ処理等により、表面エネルギーを大きく接触角を小さくする表面処理を行い、表面の濡れ性を改善し、上層の正孔注入層との密着性を向上させることが好ましい。透光性電極層の表面処理は、正孔注入層の成膜前に、予め行っても、また、正孔注入層や正孔輸送層の成膜中に行うこともできる。プラズマ処理としては、酸素、窒素、アルゴン等のプラズマを発生させ、プラズマを、例えば、数十秒〜数分間、透光性電極層に照射させる処理を挙げることができる。有機層の成膜前に予め行うプラズマ処理の場合は、酸素を用いることが好ましい。   The translucent electrode layer is preferably subjected to a surface treatment that increases the surface energy and decreases the contact angle by plasma treatment or the like, thereby improving the wettability of the surface and improving the adhesion with the upper hole injection layer. The surface treatment of the translucent electrode layer can be performed in advance before the formation of the hole injection layer, or can be performed during the formation of the hole injection layer or the hole transport layer. Examples of the plasma treatment include a treatment in which a plasma of oxygen, nitrogen, argon, or the like is generated and the light-transmitting electrode layer is irradiated with the plasma, for example, for several tens of seconds to several minutes. In the case of plasma treatment performed in advance before the organic layer is formed, oxygen is preferably used.

透光性電極層上に有機層を形成する。有機層として、透光性電極層上に順次正孔注入層、中間層、正孔輸送層、発光層、電子輸送層を形成する。更に、電子注入層等を形成してもよい。   An organic layer is formed on the translucent electrode layer. As the organic layer, a hole injection layer, an intermediate layer, a hole transport layer, a light emitting layer, and an electron transport layer are sequentially formed on the translucent electrode layer. Furthermore, an electron injection layer or the like may be formed.

正孔注入層は、陽極の透光性電極層から有機層への正孔の注入障壁を下げると共に、陽極と正孔輸送層とのエネルギーレベルの相違を緩和し、陽極から注入される正孔の正孔輸送層への注入を容易にするために設けられるものである。正孔注入層を形成する正孔注入層材料として、例えば、銅フタロシアニンやスターバースト型芳香族アミンのようなアリールアミン誘導体等や、これら正孔注入性有機材料に五酸化バナジウムや三酸化モリブデン等の無機物やF4-TCNQ等の有機物を化学ドーピングして注入障壁を下げ、駆動電圧を低下させ得る正孔注入層材料を用いて形成することができる。   The hole injection layer lowers the hole injection barrier from the translucent electrode layer of the anode to the organic layer, and relaxes the difference in energy level between the anode and the hole transport layer, so that holes injected from the anode Is provided for facilitating the injection into the hole transport layer. Examples of the hole injection layer material for forming the hole injection layer include, for example, arylamine derivatives such as copper phthalocyanine and starburst type aromatic amine, and these hole injection organic materials such as vanadium pentoxide and molybdenum trioxide. The hole injection layer material can be formed by chemically doping an inorganic material such as F4-TCNQ or the like to lower the injection barrier and lower the driving voltage.

正孔注入層上に積層する中間層は、上記正孔注入層材料と後述する正孔輸送層を形成する正孔輸送層材料とを含有し、正孔注入層と正孔輸送層間に介在し、正孔注入層と正孔輸送層間の界面領域を拡張させるものである。このような中間層を有することにより、電荷の蓄積を抑制し、有機EL素子の耐電圧性を向上させることができ、短絡を抑制すると共に、これらの層間の密着性を向上させ、素子の劣化を抑制することができる。また、有機EL素子の駆動電圧の低下を図ることができる。 The intermediate layer laminated on the hole injection layer contains the hole injection layer material and a hole transport layer material that forms a hole transport layer described later, and is interposed between the hole injection layer and the hole transport layer. The interface region between the hole injection layer and the hole transport layer is expanded. By having such an intermediate layer, it is possible to suppress charge accumulation and improve the withstand voltage of the organic EL element, to suppress a short circuit and to improve the adhesion between these layers, and to deteriorate the element. Can be suppressed. Moreover, the drive voltage of the organic EL element can be reduced.

中間層を形成する中間層材料は上記正孔注入層材料と後述する正孔輸送層を形成する正孔輸送層材料とを含有するものであるが、正孔注入層側から正孔輸送層側へ向かって、正孔注入層材料の含有量を漸次減少させた材料、即ち、正孔輸送層材料の含有量を漸次増加させた材料とすることが、正孔注入層と正孔輸送層間に界面を形成させず、耐電圧性の向上を図ることができ、好ましい。   The intermediate layer material for forming the intermediate layer contains the above hole injection layer material and the hole transport layer material for forming the hole transport layer described later, but from the hole injection layer side to the hole transport layer side. Toward the hole injection layer and the hole transport layer, a material in which the content of the hole injection layer material is gradually decreased, that is, a material in which the content of the hole transport layer material is gradually increased. It is preferable because the withstand voltage can be improved without forming an interface.

中間層材料膜上に積層する正孔輸送層は、発光層への正孔の移動率を高めるため、適度なイオン化ポテンシャルを有し、同時に、発光層から電子の漏洩を阻止する電子親和力を有するものである。正孔輸送層を形成する正孔輸送層材料として、例えば、ビス(ジ(p−トリル)アミノフェニル)−1,1−シクロヘキサン、TPD、N,N'−ジフェニル−N−N−ビス(1−ナフチル)−1,1'−ビフェニル)−4,4'−ジアミン(α−NPD)等のトリフェニルジアミン類や、スターバースト型芳香族アミン等を用いることができる。   The hole transport layer stacked on the interlayer material film has an appropriate ionization potential to increase the hole transfer rate to the light emitting layer, and at the same time has an electron affinity that prevents leakage of electrons from the light emitting layer. Is. As a hole transport layer material for forming the hole transport layer, for example, bis (di (p-tolyl) aminophenyl) -1,1-cyclohexane, TPD, N, N′-diphenyl-NN—bis (1 -Naphtyl) -1,1'-biphenyl) -4,4'-diamine (α-NPD) and other triphenyldiamines, starburst aromatic amines, and the like can be used.

また、正孔輸送層と、後述する発光層との間に、これらの層を形成する正孔輸送層材料と発光材料とを含有する中間層を設け、これらの層間の界面領域を拡張させ、キャリアの再結合を抑制できる有機EL素子を形成するようにしてもよい。更に、正孔輸送層側から発光層側へ向かって、発光層材料の含有量が漸次に増加するように中間層を形成することにより、発光効率のよい有機EL素子を形成してもよい。   In addition, an intermediate layer containing a hole transport layer material and a light emitting material for forming these layers is provided between the hole transport layer and the light emitting layer described later, and the interface region between these layers is expanded, You may make it form the organic EL element which can suppress recombination of a carrier. Furthermore, an organic EL element with good luminous efficiency may be formed by forming an intermediate layer so that the content of the light emitting layer material gradually increases from the hole transport layer side toward the light emitting layer side.

正孔輸送層上に積層する発光層は、電極から注入された電子と正孔を再結合させ、蛍光、燐光を発光させ得る発光材料を含有する層である。発光層を形成する発光材料としては、例えば、トリス(8−キノリノール)アルミニウム錯体(Alq3)、ビスジフェニルビニルビフェニル(BDPVBi)、1,3−ビス(p−t−ブチルフェニル−1,3,4−オキサジアゾールイル)フェニル(OXD−7)、N,N' −ビス(2,5−ジ−t−ブチルフェニル)ペリレンテトラカルボン酸ジイミド(BPPC)、1,4ビス(N−p−トリル−N−4−(4−メチルスチリル)フェニルアミノ)ナフタレン等の低分子化合物、ポリフェニレンビニレン系ポリマー等の高分子化合物を用いることができる。   The light emitting layer stacked on the hole transport layer is a layer containing a light emitting material that can recombine electrons and holes injected from the electrode to emit fluorescence and phosphorescence. Examples of the light emitting material for forming the light emitting layer include tris (8-quinolinol) aluminum complex (Alq3), bisdiphenylvinylbiphenyl (BDPVBi), 1,3-bis (pt-butylphenyl-1,3,4). -Oxadiazolyl) phenyl (OXD-7), N, N'-bis (2,5-di-t-butylphenyl) perylenetetracarboxylic acid diimide (BPPC), 1,4 bis (Np-tolyl) A low molecular compound such as —N-4- (4-methylstyryl) phenylamino) naphthalene or a high molecular compound such as a polyphenylene vinylene polymer can be used.

また、発光材料は、ホストとドーパントの二成分系からなるものであってもよく、二成分系の発光材料においては、ホスト分子で生成した励起状態のエネルギーがドーパント分子へ移動してドーパント分子が発光する。ホスト化合物として、上記発光材料や、電子輸送性材料、正孔輸送性材料を用いることができる。例えば、Alq3等のキノリノール金属錯体に4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン(DCM)、2,3−キナクリドン等のキナクリドン誘導体や、3−(2' −ベンゾチアゾール)−7−ジエチルアミノクマリン等のクマリン誘導体をドープしたもの、電子輸送性材料のビス(2−メチル−8−ヒドロキシキノリン)−4−フェニルフェノール−アルミニウム錯体に、ペリレン等の縮合多環芳香族をドープしたもの、あるいは正孔輸送性材料の4,4' −ビス(m−トリルフェニルアミノ)ビフェニル(TPD)にルブレン等をドープしたもの、カルバゾール化合物に白金錯体やイリジウム錯体をドープしたもの等を用いることができる。   In addition, the light emitting material may be composed of a binary system of a host and a dopant. In a binary light emitting material, the excited state energy generated by the host molecule is transferred to the dopant molecule, and the dopant molecule is Emits light. As the host compound, the above light-emitting material, electron transporting material, or hole transporting material can be used. For example, quinolinol metal complexes such as Alq3 and quinacridone derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM) and 2,3-quinacridone, and 3- (2 '-Benzothiazole) -7-diethylaminocoumarin and the like doped with a coumarin derivative, electron transporting material bis (2-methyl-8-hydroxyquinoline) -4-phenylphenol-aluminum complex, condensed with perylene, etc. Doped with ring aromatic, or 4,4'-bis (m-tolylphenylamino) biphenyl (TPD), a hole transporting material doped with rubrene, etc., doped with carbazole compound with platinum complex or iridium complex Can be used.

これらの発光材料は、有機EL照明装置の目的とする発光色によって選択することができ、具体的には、緑色発光の場合はAlq3、ドーパントにキナクドリンや、クマリン等、青色発光の場合はDPVBi、ドーパントにペリレンやジスチリルアリーレン誘導体等、緑〜青緑色発光の場合はOXD−7等、赤〜オレンジ色発光の場合は、ドーパントにDCM、DCJTB等、黄色発光の場合は、ドーパントにルブレン等を用いることができる。また、白色発光を得るために、発光材料としてホストにAlq3、ゲストにDCM(橙色)等を組み合わせて使用することができる。白色発光の発光層としては、赤色、緑色、青色を発光する発光材料をそれぞれ含有する三層積層構造、或いは、青色と黄色等、補色を発光する発光材料をそれぞれ含有する二層積層構造としたり、これら各色の発光材料を多元共蒸着等で形成することによりこれらが混在する一層構造とすることもできる。更に、上記三層や二層の積層構造における各層を構成する発光材料を、水平方向に、順次、赤色、青色、緑色等と配列した発光層とすることもできる。   These luminescent materials can be selected according to the target luminescent color of the organic EL lighting device, specifically, Alq3 for green light emission, quinacdrine or coumarin as a dopant, DPVBi for blue light emission, Perylene and distyrylarylene derivatives as dopants, such as OXD-7 for green to bluish green emission, DCM, DCJTB, etc. for red to orange emission, and rubrene as dopant for yellow emission. Can be used. In order to obtain white light emission, a combination of Alq3 as a host and DCM (orange) as a guest can be used as a light emitting material. As the light emitting layer for white light emission, a three-layer laminated structure containing light emitting materials emitting red, green, and blue, or a two-layer laminated structure containing light emitting materials emitting complementary colors such as blue and yellow, respectively. Further, by forming the light emitting materials of these colors by multi-component co-evaporation or the like, a single layer structure in which they are mixed can be obtained. Furthermore, the light-emitting material constituting each layer in the three-layer or two-layer stacked structure can be a light-emitting layer in which red, blue, green, and the like are sequentially arranged in the horizontal direction.

発光層上に積層する電子輸送層は、発光層への電子の移動率を高めるため、適度なイオン化ポテンシャルを有し、同時に、発光層から正孔が漏洩するのを阻止できる電子親和力を有するものである。電子輸送層を形成する電子輸送層材料として、例えば、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(Bu−PBD)、OXD−7等のオキサジアゾール誘導体、トリアゾール誘導体、キノリノール系の金属錯体等の有機物質や、これらの有機材料にリチウム等アルカリ金属のような電子供与性物質を化学ドーピングしたものを用いることができる。   The electron transport layer stacked on the light-emitting layer has an appropriate ionization potential to increase the electron transfer rate to the light-emitting layer, and at the same time has an electron affinity that can prevent holes from leaking from the light-emitting layer. It is. Examples of the electron transport layer material for forming the electron transport layer include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (Bu-PBD), OXD- It is possible to use organic substances such as oxadiazole derivatives such as 7 and the like, triazole derivatives, quinolinol-based metal complexes, and those obtained by chemically doping these organic materials with an electron-donating substance such as an alkali metal such as lithium.

更に、電子輸送層上に、陰極に用いられるアルミニウム等金属材料の仕事関数と、電子輸送層の電子親和力(LUMO準位)のエネルギー差が大きいことに起因して電子の注入が困難になるのを緩和するために、電子注入層を設けてもよい。電子注入層を形成する電子注入層材料としては、リチウムやセシウム等のアルカリ金属、若しくは、カルシウム等のアルカリ土類金属のフッ化物や酸化物、又は、マグネシウム銀やリチウムアルミニウム合金等から選択される仕事関数の小さい物質を用いることができる。   Furthermore, it is difficult to inject electrons on the electron transport layer due to a large energy difference between the work function of a metal material such as aluminum used for the cathode and the electron affinity (LUMO level) of the electron transport layer. In order to alleviate this, an electron injection layer may be provided. The electron injection layer material for forming the electron injection layer is selected from alkali metals such as lithium and cesium, fluorides and oxides of alkaline earth metals such as calcium, magnesium silver and lithium aluminum alloys, etc. A substance having a small work function can be used.

上記材料を用いて、正孔注入層、中間層、正孔輸送層、発光層、電子輸送層、電子注入層を形成する方法として、抵抗加熱による真空蒸着法、MBE法、レーザーアブレーション法、イオンビームアシスト蒸着法等でシャドーマスクを介して所望の形状に成膜する方法を適用することができる。また、これらの材料を液状にしてインクジェット法を用いて所望の形状に形成することもでき、また、感光性塗布液にしてスピンコートやスリットコートして成膜し、フォトリソグラフィー法により所望の形状に形成することもできる。これらの方法のうち、正孔注入層及び正孔輸送層は、プラズマビームアシスト蒸着法や、イオンビームアシスト蒸着法を用いることが、透光性電極層との密着性の向上を図ることから好ましい。プラズマビームアシスト蒸着法は、蒸着材料粒子クラスターにプラスマを照射しながら成膜を行う方法である。プラズマを照射された蒸着材料は基板の自己バイアス電位により基板に引き付けられ、表面拡散効果により密着性が高く、緻密性、平滑性に優れた膜に形成され、また、基板がプラズマに直接晒されないことから、正孔注入層や正孔輸送層への悪影響を抑制することができる。これらの層への影響を回避するため、アルゴン、窒素のプラズマを用いることが好ましい。イオンビームアシスト蒸着法は、蒸着を行いながらイオンガンよりアルゴンや窒素をイオン化し照射する方法であり、密着性の高い膜が得られる。また、正孔注入層材料や、正孔輸送層材料を用いてイオンビームアシスト蒸着法により成膜途中において、これらの材料の蒸着材料粒子クラスターを一部イオン化し、負の電子を印加した基板へ向かって加速して移動させて成膜するクラスタイオンビーム法や、熱陰極法を用いることもできる。このようなクラスタイオンビーム法を適用することにより、蒸着粒子が大きな運動エネルギーを得て、付着強度が大きく、緻密な膜を形成することができる。有機層の厚さは、各層を1〜500nm、総合100〜1000nmに形成することができる。   As a method of forming a hole injection layer, an intermediate layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer using the above materials, vacuum deposition by resistance heating, MBE method, laser ablation method, ion A method of forming a film in a desired shape through a shadow mask by a beam assist vapor deposition method or the like can be applied. In addition, these materials can be made into a liquid and formed into a desired shape using an ink jet method. Alternatively, a photosensitive coating solution can be formed by spin coating or slit coating, and the desired shape can be obtained by photolithography. It can also be formed. Among these methods, it is preferable that the hole injection layer and the hole transport layer use a plasma beam assisted vapor deposition method or an ion beam assisted vapor deposition method from the viewpoint of improving the adhesion with the translucent electrode layer. . The plasma beam assisted vapor deposition method is a method of forming a film while irradiating a plasma on vapor deposition material particle clusters. The deposition material irradiated with plasma is attracted to the substrate by the self-bias potential of the substrate, and is formed into a film having high adhesion, excellent denseness and smoothness by the surface diffusion effect, and the substrate is not directly exposed to plasma. Therefore, adverse effects on the hole injection layer and the hole transport layer can be suppressed. In order to avoid the influence on these layers, it is preferable to use argon or nitrogen plasma. The ion beam assisted vapor deposition method is a method in which argon and nitrogen are ionized and irradiated from an ion gun while performing vapor deposition, and a film with high adhesion can be obtained. In addition, during the film formation by ion beam assisted vapor deposition using a hole injection layer material or a hole transport layer material, the vapor deposition material particle clusters of these materials are partially ionized and applied to a substrate to which negative electrons are applied. A cluster ion beam method in which the film is accelerated and moved toward the film, or a hot cathode method can also be used. By applying such a cluster ion beam method, the vapor deposition particles can obtain a large kinetic energy, and can form a dense film with high adhesion strength. As for the thickness of the organic layer, each layer can be formed to have a thickness of 1 to 500 nm and a total of 100 to 1000 nm.

ここで、正孔注入層材料、中間層材料、正孔輸送層材料を用いて、成膜中又は成膜後に、これらの材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱する。成膜中に加熱する方法としては、加熱装置を備えた成膜装置を用い、成膜装置内全体をガラス転移温度以上の温度に加熱しても、また、透光性基板を加熱してもよい。加熱温度は、各材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下であればよいが、300℃以下であることが好ましく、より好ましくは250℃以下である。 Here, using a hole injection layer material, an intermediate layer material, or a hole transport layer material, during or after film formation, a temperature equal to or higher than the glass transition temperature of these materials and below the temperature at which these materials react. Heat to. As a method of heating during film formation, a film forming apparatus equipped with a heating device is used. Even if the entire film forming apparatus is heated to a temperature equal to or higher than the glass transition temperature, or a light-transmitting substrate is heated. Good. Although heating temperature should just be below the temperature which is more than the glass transition temperature of each material and the reaction of these materials generate | occur | produces , it is preferable that it is 300 degrees C or less, More preferably, it is 250 degrees C or less.

成膜後に加熱する場合は、各材料の成膜毎に、成膜直後に行ってもよく、また、正孔注入層材料、中間層材料、正孔輸送層材料を順次成膜後、積層体を加熱してもよい。積層体を加熱する方法は、製造効率の点から、好ましい。成膜後に加熱する場合は、成膜装置内で加熱することもできるが、成膜装置から取り出し、別途の加熱装置により行うことが、製造効率上好ましい。加熱温度は、正孔注入層材料、正孔輸送層材料のいずれか高いガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱すればよいが、300℃以下であることが好ましく、例えば70〜250℃を挙げることができる。 When heating after film formation, each material may be heated immediately after film formation. In addition, a hole injection layer material, an intermediate layer material, and a hole transport layer material are sequentially formed, and then a laminate. May be heated. The method of heating the laminate is preferable from the viewpoint of production efficiency. When heating is performed after film formation, heating can be performed in the film formation apparatus, but taking out from the film formation apparatus and using a separate heating apparatus is preferable in terms of manufacturing efficiency. The heating temperature may be heated to a temperature not lower than the glass transition temperature, which is higher of the hole injection layer material or the hole transport layer material, at which the reaction of these materials occurs , but is preferably 300 ° C. or lower. For example, 70-250 degreeC can be mentioned.

上記正孔注入層材料、中間層材料、正孔輸送層材料の成膜を、これらの材料を真空蒸着により成膜し、成膜中にこれらの各材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱して行う場合を、図1を参照して、具体的に示す。透光性基板1上に形成した透光性電極層2上に、正孔注入層材料を成膜すると、異物F上に正孔注入層材料膜30bが蒸着され、その周囲の透光性電極層上に、正孔注入層材料膜30aが異物上の正孔注入層材料膜30bと分断されて蒸着される。これらの膜は蒸着直後に分断部分30cへ流動し、異物を包囲した連続した正孔注入層材料膜30に形成される(図1(a))。その後、正孔注入層材料膜30上に蒸着された中間層材料は、流動しつつ異物を包囲した中間層材料膜30dに形成され(図1(b))、更に、中間層材料膜30d上に蒸着された正孔輸送層材料は、流動し異物を包囲した正孔輸送層材料膜30eに形成される(図1(c))。 The hole injection layer material, the intermediate layer material, and the hole transport layer material are formed by depositing these materials by vacuum deposition, and during the film formation, these materials are heated above the glass transition temperature . The case of heating to a temperature below the temperature at which the reaction occurs is specifically described with reference to FIG. When a hole injection layer material is deposited on the translucent electrode layer 2 formed on the translucent substrate 1, a hole injection layer material film 30b is deposited on the foreign material F, and the surrounding translucent electrode On the layer, the hole injection layer material film 30a is separated from the hole injection layer material film 30b on the foreign material and deposited. These films flow to the divided portion 30c immediately after vapor deposition, and are formed into a continuous hole injection layer material film 30 surrounding the foreign matter (FIG. 1A). Thereafter, the intermediate layer material deposited on the hole injection layer material film 30 is formed into an intermediate layer material film 30d that surrounds the foreign matter while flowing (FIG. 1B), and further on the intermediate layer material film 30d. The hole transport layer material deposited on is formed into a hole transport layer material film 30e that flows and surrounds the foreign matter (FIG. 1C).

また、正孔注入層材料、中間層材料、正孔輸送層材料を真空蒸着により成膜した後、これらの材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱した場合を、図2を参照して示す。透光性電極層2上に正孔注入層材料を成膜すると、異物F上に正孔注入層材料膜31bが蒸着され、その周囲の透光性電極層上に、正孔注入層材料膜31aが異物上の正孔注入層材料膜31bと分断されて蒸着される(図2(a))。その後、中間層材料、正孔輸送層材料を蒸着すると、異物上の正孔注入層材料膜31b上に、中間層材料膜32b、正孔輸送層材料膜33bが蒸着され、透光性電極層上の正孔注入層材料膜31a上に、中間層材料膜32a、正孔輸送層材料膜33aが蒸着される(図2(b))。その後、これらの材料のガラス転移温度のうち高いガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱すると、異物Fにより、分断された部分31cにこれらの材料が流動して一体化され、異物Fを包囲した連続した正孔注入層材料膜31、中間層材料膜32、正孔輸送層材料膜33に形成される(図2(c))。 In addition, when a hole injection layer material, an intermediate layer material, or a hole transport layer material is formed by vacuum deposition, and then heated to a temperature not lower than the glass transition temperature of these materials and below the temperature at which these materials react. Is shown with reference to FIG. When the hole injection layer material is formed on the translucent electrode layer 2, the hole injection layer material film 31b is deposited on the foreign matter F, and the hole injection layer material film is formed on the surrounding translucent electrode layer. 31a is separated from the hole injection layer material film 31b on the foreign material and deposited (FIG. 2A). Thereafter, when the intermediate layer material and the hole transport layer material are vapor-deposited, the intermediate layer material film 32b and the hole transport layer material film 33b are vapor-deposited on the hole injection layer material film 31b on the foreign matter, thereby translucent electrode layer. An intermediate layer material film 32a and a hole transport layer material film 33a are deposited on the hole injection layer material film 31a (FIG. 2B). Thereafter, when the material is heated to a temperature not lower than the glass transition temperature higher than the glass transition temperature of these materials and not higher than the temperature at which the reaction of these materials occurs , these materials flow into the divided portion 31c due to the foreign matter F and are integrated. And formed into a continuous hole injection layer material film 31, an intermediate layer material film 32, and a hole transport layer material film 33 surrounding the foreign substance F (FIG. 2C).

有機層上に1対の電極層の他方の電極層を形成する。有機層上に設ける他方の電極層は上記透光性電極層と共に1対の電極層を構成するものであり、透光性を問われるものでない。透光性電極層が上記透光性電極材料で形成される場合、例えば、アルミニウム、銀等の金属薄膜の遮光性の陰極として形成することが、有機層の発光を透光性電極層側へ反射し、発光面からの放出光量の減少を抑制できることから、好ましい。電極層は、真空蒸着法やスパッタ法等により形成することができる。電極層を形成する際、透光性基板を冷却する。金属を蒸着して電極層を形成する際、例えば、アルミニウムを用いた場合、蒸着源の温度が1300℃以上になることもあり、配線抵抗を下げるために厚膜化したり、連続成形を行った場合、透光性基板の温度が150℃以上に達することもある。これにより蒸着金属が有機層表面から内部へ局所的に浸透することにより、短絡の発生を促すこともある。また、アルミニウム等を用いてスパッタ法により電極層を形成する場合、スパッタ材料粒子は真空蒸着法より大きな運動エネルギーをもって有機層を成膜した透光性基板に到達するため、微視的に見れば、有機層内部に局所的に浸透し、やはり短絡の原因となる。これらを抑制するため透光性基板の冷却温度は、0〜25℃とする。これにより、蒸着粒子やスパッタ粒子によるマイグレーション等やその結果生じる短絡を抑制することができる。電極層の厚さは、配線抵抗による電圧降下を考慮すると厚い方が好ましく、例えば、50〜300nmとすることができる。 The other electrode layer of the pair of electrode layers is formed on the organic layer. The other electrode layer provided on the organic layer constitutes a pair of electrode layers together with the translucent electrode layer, and is not required to be translucent. When the translucent electrode layer is formed of the above translucent electrode material, for example, it can be formed as a light-shielding cathode of a metal thin film such as aluminum or silver, so that the organic layer emits light toward the translucent electrode layer. It is preferable because it can reflect and suppress a decrease in the amount of light emitted from the light emitting surface. The electrode layer can be formed by a vacuum deposition method, a sputtering method, or the like. When forming the electrode layer, cool the light-transmitting substrate. When an electrode layer is formed by vapor deposition of metal, for example, when aluminum is used, the temperature of the vapor deposition source may be 1300 ° C. or higher, so that the film thickness is increased or continuous molding is performed in order to reduce wiring resistance. In some cases, the temperature of the translucent substrate may reach 150 ° C. or higher. As a result, the vapor-deposited metal locally penetrates from the surface of the organic layer to the inside, which may promote the occurrence of a short circuit. In addition, when an electrode layer is formed by sputtering using aluminum or the like, the sputtered material particles reach the translucent substrate on which the organic layer is formed with a larger kinetic energy than the vacuum evaporation method. , It penetrates locally into the organic layer and still causes a short circuit. Cooling temperature of the transparent substrate to suppress these shall be 0 to 25 ° C.. Thereby, the migration by vapor deposition particle | grains or sputter | spatter particle | grains, etc., and the short circuit which arises as a result can be suppressed. The thickness of the electrode layer is preferably thick considering the voltage drop due to the wiring resistance, and can be set to, for example, 50 to 300 nm.

このような有機EL素子の製造方法により製造される有機EL素子としては、一例として、図3に示す有機EL素子を挙げることができる。図3に示す有機EL素子は、透光性基板1上に透光性電極層2、正孔注入層31、中間層32、正孔輸送層33、中間層34、発光層35、ブロッキング層36、電子輸送層37、電子注入層38、電極層4が積層された積層体からなる。   As an example of the organic EL element manufactured by such a method of manufacturing an organic EL element, the organic EL element shown in FIG. 3 can be given. The organic EL element shown in FIG. 3 has a light-transmitting electrode layer 2, a hole injection layer 31, an intermediate layer 32, a hole transport layer 33, an intermediate layer 34, a light emitting layer 35, and a blocking layer 36 on the light transmitting substrate 1. , An electron transport layer 37, an electron injection layer 38, and an electrode layer 4 are stacked.

記方法により製造された有機EL素子を有する有機EL照明装置の一例として、図4に示すものを挙げることができる。図4に示す有機EL照明装置は、透光性基板1、透光性電極層2を含む有機EL素子10を備え、透光性電極層及び電極層(図示せず)の一部を外部に延設させて、透光性基板1と共に内部を気密に保持する封止部材11がシール部材12を介して透光性基板に接続されることにより、有機層を含む有機EL素子が気密空間14に配置される。気密空間には、窒素ガス等が適宜充填され、封止部材11に固定されるゲッター材15が、気密空間に存在する酸素、水等を除去し、有機EL素子の酸化を抑制する。気密空間外部に延設される透光性電極層及び電極層に配線部材(図示せず)を接続する。配線部材は、接続部の抵抗の上昇を抑制するために、電極の一端の幅の全体に亘る幅を有するものを用いることができる。配線部材として、銅ポリイミド等のフィルムを適用することができる。銅ポリイミドは導電性を有し低抵抗であり、可撓性を有することから、精密な位置決めせずに接続することができるため好ましい。更に、配線部材の他端を、点灯回路、点灯回路の制御回路等を設けた基板の接続端子に接続し、透光性電極層及び電極層に外部電源の供給を可能とする。 As an example of the organic EL lighting device having an organic EL device manufactured by the above Symbol methods include those shown in FIG. The organic EL lighting device shown in FIG. 4 includes an organic EL element 10 including a translucent substrate 1 and a translucent electrode layer 2, and a part of the translucent electrode layer and an electrode layer (not shown) are exposed to the outside. An organic EL element including an organic layer is sealed in an airtight space 14 by extending a sealing member 11 that holds the inside airtightly together with the light transmitting substrate 1 and is connected to the light transmitting substrate via a seal member 12. Placed in. The airtight space is appropriately filled with nitrogen gas or the like, and the getter material 15 fixed to the sealing member 11 removes oxygen, water, etc. existing in the airtight space, and suppresses oxidation of the organic EL element. A wiring member (not shown) is connected to the translucent electrode layer and the electrode layer extending outside the hermetic space. A wiring member having a width over the entire width of one end of the electrode can be used in order to suppress an increase in resistance of the connection portion. A film such as copper polyimide can be applied as the wiring member. Copper polyimide is preferable because it has electrical conductivity, low resistance, and flexibility, so that it can be connected without precise positioning. Further, the other end of the wiring member is connected to a connection terminal of a substrate provided with a lighting circuit, a control circuit for the lighting circuit, and the like, so that external power can be supplied to the translucent electrode layer and the electrode layer.

このような有機EL照明装置は、異物の存在による欠陥部が低減され、被覆性や耐電圧性に優れ、正孔注入層、正孔輸送層の密着性が高い有機EL素子を備えることから、短絡の発生が顕著に抑制され、長寿命化を図ることができる。   Such an organic EL lighting device includes an organic EL element that has reduced defects due to the presence of foreign matter, has excellent coverage and voltage resistance, and has high adhesion to a hole injection layer and a hole transport layer. Generation | occurrence | production of a short circuit is suppressed notably and lifetime improvement can be aimed at.

本発明の有機EL素子の製造方法を、更に詳述する。   The method for producing the organic EL device of the present invention will be described in further detail.

透光性基板であるガラス基板上に、スパッタ装置(アネルバ社製)により、ITOの透光性電極膜を厚さ300nmに成膜し、透光性電極層を形成した。その後、真空蒸着装置(アネルバ社製)によりm−MTDATAの正孔注入層材料を用いて成膜レート2.0オングストローム/秒で蒸着を行い、厚さ50nmの正孔注入層を成膜し、正孔注入層材料とN,N´−ジフェニル−N−N−ビス(1−ナフチル)-1,1´−ビフェニル−4,4´−ジアミン(α−NPD)の正孔輸送層材料を含有する中間層材料を、正孔注入層材料の含有量が漸次減量するようにm−MTDTAの成膜レートを2.0オングストローム/秒から0.1オングストローム/秒へ変化させ、α−NPDの成膜レートを0.1オングストローム/秒から2.0オングストローム/秒へ変化させて蒸着を行い、厚さ20nmの中間層を成膜し、引き続き成膜レート2.0オングストローム/秒で正孔輸送層材料により蒸着を行い、厚さ45nmの正孔輸送層を成膜した。このとき、基板の温度を150℃に加熱した。その後、Alq3+クマリン化合物(C545)、DPVBi、Alq3+DCM等を、白色光を得られるように選択した発光層材料を、ホスト又は単層は2.0オングストローム/秒の成膜レートで、ゲスト(ドーパント)は0.05〜0.2オングストローム/秒の成膜レートで蒸着し、厚さ35nmの発光層を成膜した。更に、OXD−7等の電子輸送層材料を用いて、成膜レート1.0オングルストローム/秒で蒸着を行い、厚さ45nmの電子輸送層を成膜した。次に、LiFを用いて成膜レート0.1オングストローム/秒で蒸着を行い、厚さ1nmの電子注入層を形成した。更に、アルミニウムを用いて、成膜レート5.0オングストローム/秒で蒸着を行い、厚さ100nmの電極層を成膜し、有機EL素子を調製した。   An ITO light-transmitting electrode film having a thickness of 300 nm was formed on a glass substrate, which is a light-transmitting substrate, by a sputtering apparatus (manufactured by Anelva) to form a light-transmitting electrode layer. Then, vapor deposition was performed at a film formation rate of 2.0 angstrom / second using a hole injection layer material of m-MTDATA by a vacuum vapor deposition apparatus (manufactured by Anelva) to form a hole injection layer having a thickness of 50 nm, Contains a hole injection layer material and a hole transport layer material of N, N′-diphenyl-NN—bis (1-naphthyl) -1,1′-biphenyl-4,4′-diamine (α-NPD) The film formation rate of m-MTDTA is changed from 2.0 angstrom / second to 0.1 angstrom / second so that the content of the hole injection layer material is gradually reduced. Vapor deposition was performed by changing the film rate from 0.1 angstrom / second to 2.0 angstrom / second, forming an intermediate layer with a thickness of 20 nm, and subsequently a hole transport layer at a film formation rate of 2.0 angstrom / second. Vapor deposition by material Performed, thereby forming a hole transport layer having a thickness of 45 nm. At this time, the temperature of the substrate was heated to 150 ° C. Thereafter, a light emitting layer material selected from Alq3 + coumarin compound (C545), DPVBi, Alq3 + DCM, etc. so as to obtain white light, and a host (single layer) with a film formation rate of 2.0 angstroms / second, a guest (dopant) Was deposited at a film formation rate of 0.05 to 0.2 angstrom / second to form a 35 nm thick light emitting layer. Further, using an electron transport layer material such as OXD-7, vapor deposition was performed at a film formation rate of 1.0 angstrom / second to form a 45 nm thick electron transport layer. Next, vapor deposition was performed using LiF at a deposition rate of 0.1 angstrom / second to form an electron injection layer having a thickness of 1 nm. Furthermore, vapor deposition was performed using aluminum at a film formation rate of 5.0 angstrom / second to form an electrode layer having a thickness of 100 nm to prepare an organic EL device.

得られた有機EL素子に、順バイアス及び逆バイアスを印加し、整流特性を検査したところ、整流比は10E6〜10E8であり、良好な整流性を有していた。   When the forward bias and the reverse bias were applied to the obtained organic EL element and the rectification characteristics were inspected, the rectification ratio was 10E6 to 10E8 and had a good rectification property.

得られた有機EL素子の透光性電極層と電極層の接続端部に、銅箔を積層したポリイミドフィルムからなる配線部材をそれぞれ熱圧着して接続し、他端を、点灯回路、点灯回路の制御回路等を設けた基板の接続端子に接続し、有機EL照明装置を得た。   A wiring member made of a polyimide film laminated with a copper foil is connected to the connection end portion of the translucent electrode layer and the electrode layer of the obtained organic EL element by thermocompression bonding, and the other end is connected to a lighting circuit and a lighting circuit. The organic EL lighting device was obtained by connecting to the connection terminal of the substrate provided with the control circuit.

得られた有機EL照明装置は、−15Vの逆バイアス印加時においても整流特性が素子間で安定し、短絡やリークの発生がみられない製品の歩留まりは95%以上であった。更に、有機EL照明装置を60℃湿度90%RHの高温高湿環境下に1000時間放置後、定電流を供給し駆動しても、短絡が生じないものは、90%であった。   The obtained organic EL lighting device had stable rectification characteristics between elements even when a reverse bias of -15 V was applied, and the yield of products in which no short circuit or leakage was observed was 95% or more. Further, 90% of the organic EL lighting devices were not short-circuited even after being driven by supplying a constant current after being left in a high temperature and high humidity environment of 60 ° C. and 90% RH for 1000 hours.

1 透光性基板
2 透光性電極層
30、31 正孔注入層
30d、32 中間層
30e、33 正孔輸送層
4 電極層
10 有機EL素子
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Translucent electrode layer 30, 31 Hole injection layer 30d, 32 Intermediate | middle layer 30e, 33 Hole transport layer 4 Electrode layer 10 Organic EL element

Claims (3)

透光性基板上に設けられる透光性電極層を含む1対の電極層と、該1対の電極層に挟持され、正孔注入層、正孔輸送層、発光層及び電子輸送層とを有する有機層とを有する有機エレクトロルミネッセンス素子の製造方法であって、透光性基板上に形成した透光性電極層上に、正孔注入層材料、該正孔注入層材料及び正孔輸送層材料、該正孔輸送層材料とを順次成膜し、これらの材料の成膜中又は成膜後、これらの材料のガラス転移温度以上でこれらの材料の反応が生じる温度以下の温度に加熱して、正孔注入層と、正孔輸送層と、これらの層間に介在する中間層とを形成し、有機層形成後、電極層材料を成膜中、透光性基板を0〜25℃に冷却することを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A pair of electrode layers including a translucent electrode layer provided on a translucent substrate, and a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer sandwiched between the pair of electrode layers. A method for producing an organic electroluminescence device having an organic layer having a hole injection layer material, a hole injection layer material, and a hole transport layer on a transparent electrode layer formed on a transparent substrate The material and the hole transport layer material are sequentially formed, and heated during or after the formation of these materials to a temperature not lower than the temperature at which the reaction of these materials occurs above the glass transition temperature of these materials. Then, a hole injection layer, a hole transport layer, and an intermediate layer interposed between these layers are formed , and after forming the organic layer, the electrode layer material is being formed, and the translucent substrate is kept at 0 to 25 ° C. The manufacturing method of the organic electroluminescent element characterized by cooling . 正孔注入層材料及び正孔輸送層材料をプラズマアシスト蒸着法により成膜することを特徴とする請求項1記載の有機エレクトロルミネッセンス素子の製造方法。 2. The method of manufacturing an organic electroluminescence device according to claim 1, wherein the hole injection layer material and the hole transport layer material are formed by a plasma assisted deposition method. 正孔注入層材料及び正孔輸送層材料をイオンビームアシスト蒸着法により成膜することを特徴とする請求項記載の有機エレクトロルミネッセンス素子の製造方法。 Hole injection layer material and a manufacturing method of an organic electroluminescent device according to claim 1, wherein the hole transport layer material, characterized in that is formed by ion beam assisted deposition.
JP2010192550A 2010-08-30 2010-08-30 Method for manufacturing organic electroluminescence element Active JP5729749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192550A JP5729749B2 (en) 2010-08-30 2010-08-30 Method for manufacturing organic electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192550A JP5729749B2 (en) 2010-08-30 2010-08-30 Method for manufacturing organic electroluminescence element

Publications (2)

Publication Number Publication Date
JP2012049085A JP2012049085A (en) 2012-03-08
JP5729749B2 true JP5729749B2 (en) 2015-06-03

Family

ID=45903700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192550A Active JP5729749B2 (en) 2010-08-30 2010-08-30 Method for manufacturing organic electroluminescence element

Country Status (1)

Country Link
JP (1) JP5729749B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204811A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device
JP2019204810A (en) * 2018-05-21 2019-11-28 パイオニア株式会社 Light-emitting device and method of manufacturing light-emitting device
CN111009618A (en) * 2019-12-18 2020-04-14 固安翌光科技有限公司 Organic electroluminescent device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW545080B (en) * 2000-12-28 2003-08-01 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
JP2005005149A (en) * 2003-06-12 2005-01-06 Tohoku Pioneer Corp Organic el element and its manufacturing method
JP4258345B2 (en) * 2003-10-20 2009-04-30 セイコーエプソン株式会社 Vapor deposition apparatus, organic electroluminescence panel, and vapor deposition method
US7090930B2 (en) * 2003-12-05 2006-08-15 Eastman Kodak Company Organic element for electroluminescent devices
JP2006244917A (en) * 2005-03-04 2006-09-14 Pioneer Electronic Corp Manufacturing method for material to be coated with coating solution
WO2007026586A1 (en) * 2005-08-31 2007-03-08 Pioneer Corporation Organic thin-film semiconductor device and method for manufacturing same
JP2008010299A (en) * 2006-06-29 2008-01-17 Toppan Printing Co Ltd Sealing film of inorganic el element
JP2008235327A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Organic electroluminescent device and manufacturing method therefor, and electronic equipment
JP2008251626A (en) * 2007-03-29 2008-10-16 Kyocera Corp Organic electroluminescence element, manufacturing process of organic electroluminescence element and organic electroluminescence display
JP2009246127A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescent element and method for production thereof
JP2010147180A (en) * 2008-12-17 2010-07-01 Sumitomo Chemical Co Ltd Method of manufacturing organic electroluminescence element

Also Published As

Publication number Publication date
JP2012049085A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
US6469437B1 (en) Highly transparent organic light emitting device employing a non-metallic cathode
US6420031B1 (en) Highly transparent non-metallic cathodes
US8482017B2 (en) Organic light emitting diode device
JP6060361B2 (en) Organic light emitting device
JP2006156390A (en) Organic electroluminescent element and its manufacturing method
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2004014511A (en) Organic light-emitting diode device
WO2012086758A1 (en) Organic electroluminescent element and organic electroluminescent lighting device
JP6340616B2 (en) Organic EL element and organic EL display panel
JP6815294B2 (en) Organic EL element and organic EL panel
JP2009224399A (en) Organic el device
JP5729749B2 (en) Method for manufacturing organic electroluminescence element
JP5791129B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
JP2000243574A (en) Organic el element
TW201123970A (en) Organic electroluminescent devices and process for production of same
JPWO2011039830A1 (en) Organic EL device
JP5277319B2 (en) Organic EL device and manufacturing method thereof
JP2011040437A (en) Organic electroluminescence element
JP4945408B2 (en) Method and apparatus for manufacturing organic electroluminescence
JP5732735B2 (en) Light emitting device
JP6665856B2 (en) Method for manufacturing organic electroluminescence device
US11462707B2 (en) Display panel utilizing self-luminous elements and method of manufacturing same
JP5574421B2 (en) Method for manufacturing organic electroluminescent lighting device
WO2015152148A1 (en) Organic electroluminescent element
JP2000348865A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5729749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250