JP5727070B1 - Damping nail and damping structure using the same - Google Patents

Damping nail and damping structure using the same Download PDF

Info

Publication number
JP5727070B1
JP5727070B1 JP2014108618A JP2014108618A JP5727070B1 JP 5727070 B1 JP5727070 B1 JP 5727070B1 JP 2014108618 A JP2014108618 A JP 2014108618A JP 2014108618 A JP2014108618 A JP 2014108618A JP 5727070 B1 JP5727070 B1 JP 5727070B1
Authority
JP
Japan
Prior art keywords
nail
wood
vibration
damping
side wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014108618A
Other languages
Japanese (ja)
Other versions
JP2015224438A (en
Inventor
競人 吉田
競人 吉田
Original Assignee
競人 吉田
競人 吉田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 競人 吉田, 競人 吉田 filed Critical 競人 吉田
Priority to JP2014108618A priority Critical patent/JP5727070B1/en
Application granted granted Critical
Publication of JP5727070B1 publication Critical patent/JP5727070B1/en
Publication of JP2015224438A publication Critical patent/JP2015224438A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

【課題】木造構造物の制振性能を向上できる、制振釘およびこれを用いた制振構造を提供する。【解決手段】表側の木材から打ち込まれて貫通し裏側の木材に達して両木材をとめる釘において、表側の木材に位置する釘上部14と、裏側の木材に位置する釘下部18と、釘上部14と釘下部18との間にあって横断面積が釘上部14や釘下部18よりも小さい釘中央部16と、を有する。これにより、表側の木材と裏側の木材との間に働く振動の繰り返し荷重により釘中央部16が変形を繰り返すことで振動エネルギーを吸収する。この釘は、全体が板状の金属部材8によって形成され、上端が直角に屈曲して頭部10となり、釘中央部16は幅が小さくされ、または窓20が開けられて横断面積が小さくなっている。また、釘上部14、または釘下部18には木材との摩擦を大きくするための凹凸22が幅方向に形成される。【選択図】図1Disclosed is a vibration-damping nail and a vibration-damping structure using the same, which can improve the vibration-damping performance of a wooden structure. In a nail that is driven from a front side wood and penetrates and reaches the back side wood to stop both woods, a nail upper portion 14 located on the front side wood, a nail lower portion 18 located on the back side wood, and a nail upper portion 14 and the nail lower part 18, and the nail central part 16 having a smaller cross-sectional area than the nail upper part 14 and the nail lower part 18. As a result, the vibration energy is absorbed by the nail central portion 16 being repeatedly deformed by the repeated load of vibration acting between the front side wood and the back side wood. This nail is entirely formed by a plate-like metal member 8, and the upper end is bent at a right angle to become the head 10. The nail central portion 16 is reduced in width or the window 20 is opened to reduce the cross-sectional area. ing. Further, the nail upper part 14 or the nail lower part 18 is formed with unevenness 22 in the width direction for increasing the friction with the wood. [Selection] Figure 1

Description

この発明は、家などの木造構造物を構成する木材を互いにとめる釘を利用して、制振をを行う釘の形状、および、この制振釘を用いた制振構造に関する。   The present invention relates to a shape of a nail that performs vibration suppression using a nail that holds woods constituting a wooden structure such as a house, and a vibration control structure using the vibration nail.

木造構造物が地震などの水平力に抵抗する一般的な手段には、耐震工法に属する筋交いや合板による耐力壁がある。耐震工法よりもさらに耐震性能を向上させるには、免振工法や制振工法による手段があり、木造構造物においても、それらをさらに追加する必要がある。   Common means for resisting horizontal forces such as earthquakes by wooden structures include bracing and plywood bearing walls that belong to the seismic method. In order to improve the seismic performance further than the seismic construction method, there are means using the vibration isolation method and the vibration control method, and it is necessary to further add them to the wooden structure.

ところが、木造構造物で使用される、合板などの木材による耐力壁には、制振性能が少ない。その理由は、「正負繰り返し加力を行うと、2回目以降に対しては、(変形-荷重のグラフにおいて描かれる紡錘形のグラフが、荷重方向の厚みがなくなってつぶれてしまう)スリップ性状を示し、剛性とエネルギー吸収能力が劣化する。」(非特許文献1)からである。スリップ性状のグラフは、例として、図7(D)に示す。   However, bearing walls made of wood such as plywood used in wooden structures have little vibration damping performance. The reason for this is: “When applying positive and negative repetitions, for the second and subsequent times, the spindle-shaped graph drawn in the deformation-load graph loses its thickness in the load direction and collapses.” , Rigidity and energy absorption ability are deteriorated ”(Non-Patent Document 1). An example of the slip property graph is shown in FIG.

また、下記特許文献1には、建物の耐力壁として、面材に粘弾性を有する制振材が用いられる技術が開示される。   Patent Document 1 below discloses a technique in which a damping material having viscoelasticity as a face material is used as a bearing wall of a building.

木造構造物で使用される木材による耐力壁に制振性能が少ない理由は、上述したように、正負繰り返し荷重において、変形-荷重のグラフにおいて描かれる紡錘形のグラフ(例として図7(A)(B)参照)が、2回目以降に対しては、荷重方向の厚みがなくなってつぶれてしまうというスリップ性状(例として図7(D)参照)を示し、剛性とエネルギー吸収能力が劣化するからであるが、発明者の研究によれば、このような変形-荷重のグラフにおけるスリップ性状は、耐力壁のみならず、木材によって耐力壁を製作する際に用いられる釘とその木材の間においても、そもそも同様に、示される。そして、このような釘と木材の間において示されるスリップ性状が、ひいては、耐力壁のスリップ性状の原因となっていると考えられる。   The reason why the load-bearing wall made of wood used in the wooden structure has less damping performance is that, as described above, a spindle-shaped graph drawn in a deformation-load graph (for example, FIG. 7 (A) ( (See B)), but for the second and subsequent times, it shows a slip property (see FIG. 7D as an example) that the thickness in the load direction disappears and collapses, and the rigidity and energy absorption capacity deteriorate. However, according to the research of the inventor, the slip property in such a deformation-load graph is not only between the load bearing wall but also between the nail and the wood used when making the load bearing wall with wood. The same is true in the first place. And it is thought that the slip property shown between such a nail and wood eventually causes the slip property of the bearing wall.

特開2007−23550JP2007-23550

「建築耐震設計における保有耐力と変形性能(1990)」(日本建築学会)PP.220〜PP.221"Own strength and deformation performance in building seismic design (1990)" (Architectural Institute of Japan) PP.220-PP.221

そこで、この発明は、以上の問題点を解決するために、釘とその木材の間において変形-荷重のグラフのスリップ性状を抑制し、ひいては、耐力壁などにおいてのスリップ性状を抑制し、最終的には、木造構造物の制振性能を向上できる、制振釘およびこれを用いた制振構造を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention suppresses the slip property of the deformation-load graph between the nail and its wood, and consequently suppresses the slip property of the bearing wall and the like. An object of the present invention is to provide a vibration damping nail and a vibration damping structure using the same, which can improve the vibration damping performance of the wooden structure.

以上の課題を解決するために、第一発明は、表側の木材から打ち込まれて貫通し裏側の木材に達して前記両木材をとめる釘において、前記表側の木材に位置する釘上部と、前記裏側の木材に位置する釘下部と、前記釘上部と前記釘下部との間にあって横断面積が前記釘上部や前記釘下部よりも小さい釘中央部と、を有し、前記表側の木材と裏側の木材との間に働く振動の繰り返し荷重により前記釘中央部が変形を繰り返すことで振動エネルギーを吸収することを特徴とする制振釘である。   In order to solve the above-described problems, the first invention is a nail that is driven from a front side wood and penetrates and reaches the back side wood to stop the both woods, the nail upper portion positioned on the front side wood, and the back side A nail lower part located on the wood of the front and a nail central part between the upper part of the nail and the lower part of the nail and having a cross-sectional area smaller than that of the upper part of the nail or the lower part of the nail. The vibration damping nail is characterized in that vibration energy is absorbed by the deformation of the central portion of the nail due to repeated loads of vibration acting between them.

第2発明は、前記釘は、全体が板状の金属部材によって形成され、上端が直角に屈曲して頭部となり、この頭部に連続して前記釘上部、前記釘中央部、および前記釘下部が形成され、前記釘中央部は幅が小さくされ、または窓が開けられて横断面積が小さくなっており、前記釘上部、または前記釘下部には前記木材との摩擦を大きくするための凹凸が幅方向に形成され、前記振動の方向と前記幅方向とを直角にして釘を打ち込み振動エネルギーを吸収することを特徴とする制振釘である。   According to a second aspect of the present invention, the nail is formed of a plate-shaped metal member as a whole, and an upper end is bent at a right angle to become a head, and the upper portion of the nail, the central portion of the nail, and the nail are connected to the head. A lower portion is formed, the width of the central portion of the nail is reduced, or a window is opened to reduce a cross-sectional area, and the upper portion of the nail or the lower portion of the nail is uneven to increase friction with the wood. Is formed in the width direction, and the vibration direction is perpendicular to the width direction, and the nail is driven to absorb vibration energy.

第3発明は、第1発明または第2発明の制振釘を、木造構造物を構成する前記表側の木材と前記裏側の木材に使用し、前記表側の木材から打ち込み貫通させ前記裏側の木材に達して前記両木材をとめ、前記表側の木材と裏側の木材との間に働く振動の繰り返し荷重により前記釘中央部が変形を繰り返すことで振動エネルギーを吸収することを特徴とする木造構造物の制振構造である。   A third invention uses the damping nail of the first invention or the second invention in the front side wood and the back side wood constituting the wooden structure, and is driven through the front side wood to penetrate the back side wood. The wooden structure is characterized in that both the timbers are stopped and the vibration energy is absorbed by the deformation of the central part of the nail due to the repeated load of vibration acting between the front side wood and the back side wood. It is a vibration control structure.

第4発明は、前記表側の木材と前記裏側の木材との間には、スペーサが設けられ、これにより両前記木材の間に形成される隙間に、前記釘中央部が位置することを特徴とする木造構造物の制振構造である。   According to a fourth aspect of the present invention, a spacer is provided between the front side wood and the back side wood, whereby the nail central portion is located in a gap formed between the two woods. This is a vibration control structure for a wooden structure.

発明者の研究によれば、上述したように、正負繰り返し荷重での変形-荷重のグラフにおけるスリップ性状(例として図7(D)参照)が、釘と木材の間においても示され、そのために、釘に制振性能が少ないのであるが、その直接原因は、釘が木材にめり込むためである(例として図6(B)参照)。このめり込みが生じると、釘と木材の間に空間が生じてしまい、やがて釘は木材から抜けてしまう。この過程で、正負繰り返し荷重の振動エネルギーを吸収することができなくなってしまい、スリップ性状が生じ、制振性能が少ない。   According to the inventor's research, as described above, the slip property in the deformation-load graph (see FIG. 7 (D) as an example) under positive and negative repeated loads is also shown between the nail and the wood. The nail has less vibration damping performance, but the direct cause is that the nail sinks into the wood (see FIG. 6B as an example). When this indentation occurs, a space is created between the nail and the wood, and the nail eventually comes off the wood. In this process, it becomes impossible to absorb the vibration energy of the positive and negative repetitive loads, the slip property is generated, and the vibration damping performance is low.

ところが、第一、第二、第三、又は第四発明によれば、振動エネルギーは、制振釘の横断面積の小さい釘中央部を、変形することに使われ、釘上部と釘下部が木材にめり込むことには使われにくい。そして、繰り返し荷重により釘中央部の変形が繰り返えされることで振動エネルギーを吸収し、スリップ性状が抑制され、制振性能が向上する。また、制振釘に、木材をとめる従来の釘の働きをさせるとともに、振動エネルギーを吸収させる働きをさせることができるので、木材をとめるための部品点数を増やさずに、制振が行える。   However, according to the first, second, third, or fourth invention, the vibration energy is used to deform the central part of the nail with a small cross-sectional area of the damping nail, and the upper part of the nail and the lower part of the nail are made of wood. It is hard to be used for embedding. And by repeating a deformation | transformation of a nail center part by a repeated load, a vibration energy is absorbed, slip property is suppressed and damping performance improves. In addition, since the vibration-damping nail can function as a conventional nail that holds wood, and can absorb vibration energy, vibration damping can be performed without increasing the number of parts for holding the wood.

さらに、第二、第三、又は第四発明によれば、釘は、全体が板状の金属部材によって形成され、振動の方向と板状の幅方向とを直角にすることで、振動の際の木材に対する抵抗が大きくなり、木材へのめり込みを抑止できる。また、板状の上端が直角に屈曲して頭部となることで、振動の際の釘の首ふりを抑え、木材へのめり込みを抑止できる。また、釘上部または釘下部には、木材との摩擦を大きくするための凹凸が幅方向に形成され、釘が木材から抜けてしまうのを抑止できる。   Further, according to the second, third, or fourth invention, the nail is entirely formed of a plate-like metal member, and the vibration direction and the plate-like width direction are perpendicular to each other, The resistance to timber increases, and the penetration into the timber can be suppressed. In addition, since the plate-like upper end is bent at a right angle to become a head, it is possible to prevent the nail neck from shaking during vibration and to suppress the sinking into the wood. Moreover, unevenness for increasing friction with the wood is formed in the width direction in the upper part or the lower part of the nail, so that the nail can be prevented from coming off the wood.

さらに、第三、又は第四発明によれば、請求項1または請求項2の制振釘に、木造構造物を構成する二つの木材をとめる従来の釘の働きをさせるとともに、振動エネルギーを吸収させる働きをさせることができるので、木造構造物の部品点数を増やさずに、制振が行える。   Further, according to the third or fourth invention, the vibration-damping nail of claim 1 or claim 2 functions as a conventional nail that holds two timbers constituting a wooden structure and absorbs vibration energy. Therefore, vibration control can be performed without increasing the number of parts of the wooden structure.

さらに、第四発明によれば、二つの木材との間に、スペーサを設け、形成される隙間に、釘中央部が位置することにより、釘中央部の変形により、釘中央部が木材にめり込むことを防止し、より制振性能を向上できる。   Further, according to the fourth invention, a spacer is provided between two pieces of wood, and the nail central part is positioned in a gap to be formed, so that the nail central part is recessed into the wood by deformation of the nail central part. Can be prevented and the vibration control performance can be improved.

この発明の一実施形態にかかる制振釘を示す図で、(A)は正面図、(B)は側面図、(C)は平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the damping nail concerning one Embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a top view. 第三発明に関して、図1の制振釘を用いた実験とその結果の予測を示すもので、(A)は荷重を加える前の側面図、(B)は荷重を加えた後の側面図、(C)は実験結果の予測を示す変形-荷重のグラフである。Regarding the third invention, the experiment using the damping nail of FIG. 1 and the prediction of the result are shown, (A) is a side view before applying a load, (B) is a side view after applying a load, (C) is a deformation-load graph showing prediction of experimental results. 第四発明に関して、図1の制振釘を用いた実験とその結果の予測を示すもので、(A)は荷重を加える前の側面図、(B)は荷重を加えた後の側面図、(C)は実験結果の予測を示す変形-荷重のグラフである。Regarding the fourth invention, an experiment using the vibration-damping nail of FIG. 1 and prediction of the result are shown, (A) is a side view before applying a load, (B) is a side view after applying a load, (C) is a deformation-load graph showing prediction of experimental results. 図3(C)の予測を裏付ける実際の変形-荷重のグラフである。多数回の繰り返し荷重のグラフから抜き出した、3回の繰り返し荷重によるグラフである。FIG. 4 is a graph of actual deformation-load that supports the prediction of FIG. It is the graph by 3 times repeated load extracted from the graph of many times repeated load. 図4のグラフを、従来釘の図7(A)に示す変形-荷重のグラフに重ねて作った図である。FIG. 7 is a diagram created by superposing the graph of FIG. 4 on the deformation-load graph of the conventional nail shown in FIG. 従来釘を用いた実験とその結果の予測を示すもので、(A)は荷重を加える前の側面図、(B)は荷重を加えた後の側面図、(C)は実験結果の予測を示す変形-荷重のグラフである。The experiment using the conventional nail and the prediction of the result are shown. (A) is a side view before applying the load, (B) is a side view after applying the load, and (C) is the prediction of the experimental result. It is a graph of the deformation-load shown. 従来釘の図6(C)の予測を裏付ける実際の変形-荷重のグラフである。多数回の繰り返し荷重のグラフから抜き出した、3回分の繰り返し荷重によるグラフである。(A)は3回の繰り返し荷重のグラフを重ねて描いた図、(B)は3回のうち初期の繰り返し荷重のグラフだけを描いた図、(C)は3回のうち中期の繰り返し荷重のグラフだけを描いた図、(D)は3回のうち後期の繰り返し荷重のグラフだけを描いた図である。It is a graph of the actual deformation-load which supports the prediction of FIG. 6 (C) of the conventional nail. It is the graph by the repeated load for 3 times extracted from the graph of many repeated loads. (A) is a diagram depicting three repeated load graphs, (B) is a diagram depicting only the initial repeated load graph of three times, and (C) is a mid-term repeated load of three times. (D) is a diagram depicting only the graph of the late repeated load among the three times. この発明の他の実施形態にかかる制振釘を示す図で、(A)は正面図、(B)は(A)の平面図、(C)は(A)の左45度から見た側面図、(D)は(C)の平面図である。It is a figure which shows the damping nail concerning other embodiment of this invention, (A) is a front view, (B) is a top view of (A), (C) is the side view seen from 45 degree | times of the left of (A). FIG. 4D is a plan view of FIG.

この発明の実施形態を、図1〜図5に示す。   An embodiment of the present invention is shown in FIGS.

[制振釘]
図1、図2(A)に示すように、この実施形態にかかる制振釘2は、表側の木材4から打ち込まれて貫通し裏側の木材6に達して、両木材4,6をとめる釘である。
[Damping nails]
As shown in FIG. 1 and FIG. 2 (A), the vibration damping nail 2 according to this embodiment is driven from the front side wood 4 and penetrates to reach the back side wood 6 to stop the both woods 4 and 6. It is.

そして、図1に示すように、この釘2は、全体が細い板状の金属部材8によって形成される。この板状の上端は、直角に屈曲して頭部10となる。その際、上端の左右中央部(図1(A)(C)参照)には、下方に向かって切込み12が形成され、この切込み12の左右が、前後に直角に屈曲してT字状(図1(B)参照)の頭部10となる。   As shown in FIG. 1, the nail 2 is formed by a thin plate-like metal member 8 as a whole. The upper end of the plate shape is bent at a right angle to become the head 10. At that time, a notch 12 is formed in the lower left and right center portion (see FIGS. 1A and 1C) downward, and the left and right of the notch 12 are bent at right angles in the front-rear direction to form a T-shape ( The head 10 shown in FIG.

この頭部10に連続して釘上部14、釘中央部16、および釘下部18が形成される。すなわち、表側の木材4に位置する釘上部14と、裏側の木材6に位置する釘下部18と、釘上部14と釘下部18との間にあって横断面積が前記釘上部14や前記釘下部18よりも小さい釘中央部16である。   A continuous nail 14, a nail central 16, and a nail lower 18 are formed on the head 10. That is, the nail upper part 14 located on the front-side wood 4, the nail lower part 18 located on the back-side wood 6, and the cross-sectional area between the nail upper part 14 and the nail lower part 18 are larger than those of the nail upper part 14 and the nail lower part 18. Is also a small nail central portion 16.

釘中央部16は幅が小さくされ、幅方向中央に四角形の窓20が開けられて横断面積が小さくなっている。また、釘上部14、釘下部18には、木材との摩擦を大きくするための凹凸22が幅方向に形成されている。   The width of the nail central portion 16 is reduced, and a rectangular window 20 is opened at the center in the width direction to reduce the cross-sectional area. Further, the nail upper part 14 and the nail lower part 18 are formed with unevenness 22 in the width direction for increasing friction with the wood.

この制振釘2は、振動の方向と幅方向とを直角にして打ち込まれる(図2(A)参照)。そして、表側の木材4と裏側の木材6との間に働く振動の繰り返し荷重により、釘中央部16が変形を繰り返すことで、振動エネルギーを吸収する。すなわち、釘上部14や釘下部18に対する釘中央部16の横断面積の比は、繰り返し荷重により、釘上部14や釘下部18が木材に対してめり込みや抜けを生じる前に、釘中央部16が変形を起こすように、釘中央部16が小さく定められる。釘下部18の下端は、尖っており、木材への打ち込みが容易になっている。   The damping nail 2 is driven with the direction of vibration and the width direction at right angles (see FIG. 2A). The vibration energy is absorbed by the nail central portion 16 being repeatedly deformed by the repeated load of vibration acting between the front side wood 4 and the back side wood 6. That is, the ratio of the cross-sectional area of the nail central portion 16 to the nail upper portion 14 and the nail lower portion 18 is such that the nail central portion 16 is moved before the nail upper portion 14 and the nail lower portion 18 are sunk into or removed from the wood due to repeated loads. The nail central portion 16 is set small so as to cause deformation. The lower end of the nail lower part 18 is pointed and easy to drive into wood.

[制振構造]
以上のような制振釘2を、木造構造物を構成する表側の木材4と裏側の木材6をとめることに使用する。そして、表側の木材4から打ち込み貫通させ、裏側の木材6に達して、両木材4,6をとめ、表側の木材4と裏側の木材6との間に働く振動の繰り返し荷重により、釘中央部16が変形を繰り返すことで振動エネルギーを吸収する。
[Vibration control structure]
The damping nail 2 as described above is used to stop the front side wood 4 and the back side wood 6 constituting the wooden structure. Then, it is driven through and penetrated from the front side wood 4, reaches the back side wood 6, stops both the woods 4, 6, and repeats the vibration acting between the front side wood 4 and the back side wood 6, so that the center of the nail The vibration energy is absorbed by 16 repeating the deformation.

以上のような制振釘2を用いた木造構造物の構造において、表側の木材4と裏側の木材6との間に、スペーサを設けることは、有効である。すなわち、このスペーサにより両前記木材の間に形成される隙間に、釘中央部16を位置させることで、釘中央部16が木材にめり込むことを防止できる。   In the structure of the wooden structure using the damping nail 2 as described above, it is effective to provide a spacer between the front side wood 4 and the back side wood 6. That is, the nail center part 16 can be prevented from sinking into the wood by positioning the nail center part 16 in the gap formed between the woods by the spacer.

木造構造物を構成する表側の木材4と裏側の木材6の組合せとしては、例えば、柱と耐力壁、梁と耐力壁など、従来の釘が使用される木材の組合せが、採用できる。   As a combination of the front side wood 4 and the back side wood 6 constituting the wooden structure, for example, a combination of wood using conventional nails such as a column and a load bearing wall, a beam and a load bearing wall can be adopted.

[耐力壁]
木造構造物を構成する表側の木材4と裏側の木材6の組合せとして、木造構造物に用いられる耐力壁を構成する木材と木材が採用できる。すなわち、耐力壁を製作する際に用いられる木材と木材をとめる従来の釘の代わりに、上記制振釘2を使用することができる。
[Bearing wall]
As a combination of the front side wood 4 and the back side wood 6 constituting the wooden structure, wood and wood constituting the bearing wall used in the wooden structure can be adopted. That is, the above-described vibration-damping nail 2 can be used in place of the wood and the conventional nail that holds the wood used when the bearing wall is manufactured.

[木造構造物]
木造構造物としては、通常の木造家屋はもちろんのこと、木造の橋、大型木造彫刻で釘が使用されるもの等、色々のものが対象になる。
[Wooden structure]
As a wooden structure, not only a normal wooden house, but also various things such as a wooden bridge, a thing using nails in a large wooden sculpture, etc. are targeted.

「実施形態の効果」
(比較例としての従来釘)
発明者の研究によれば、上述したように、正負繰り返し荷重での変形-荷重のグラフにおけるスリップ性状が、従来の釘1と木材の間において示される。このことを、図6において説明する。すなわち、図6(A)のように従来の釘1が、表側の木材4である合板から打ち込まれて貫通し、裏側の木材6である柱に達して、両木材4,6をとめる。この状態で、正負繰り返し荷重がかかると、図6(B)のように釘1が木材4,6にめり込み、釘と木材の間に空間3が生じてしまう。
"Effect of the embodiment"
(Conventional nail as a comparative example)
According to the inventor's research, as described above, the slip property in the deformation-load graph under positive and negative repeated loads is shown between the conventional nail 1 and the wood. This is illustrated in FIG. That is, as shown in FIG. 6 (A), the conventional nail 1 is driven from a plywood which is a front side wood 4 and penetrates to reach a pillar which is a back side wood 6 and stops both the woods 4 and 6. In this state, when positive and negative repeated loads are applied, the nail 1 sinks into the woods 4 and 6 as shown in FIG. 6B, and a space 3 is created between the nails and the wood.

この過程を、図6(C)に示す変形-荷重の予測グラフで見てみる。X軸に相当する横軸が変形を示し、Y軸に相当する縦軸が荷重を示す。このようなグラフでは、正負繰り返し荷重では、一般に知られているように、閉じた紡錘形のループが描かれる。すなわち、正負繰り返し荷重の1回目に代表される初期の第一ループでは、横軸と縦軸が交わる(0、0)点から、正荷重の増加と減少に従い、点1、点2、点3、点4を通り、負荷重の増加と減少に従い、点4、点5、点6、点7、点8を通る。後期の第二ループでは、横軸と縦軸が交わる(0、0)点付近の点8から、正荷重の増加と減少に従い、点9、点10、点11、点12を通り、負荷重の増加と減少に従い、点12、点13、点14、点15を通り、点8付近に戻る。第一ループが描く紡錘形よりも第二ループが描く紡錘形は、荷重方向の厚みがなくなってつぶれてしまうことが予測される。これは、初期の荷重により、釘が木材にめり込むことなどにより、木材の抵抗が小さくなり、後期の荷重では変形のみが大きくなり、大きな荷重を受け止められないと予測されるからである。   This process can be seen in the deformation-load prediction graph shown in FIG. The horizontal axis corresponding to the X axis indicates deformation, and the vertical axis corresponding to the Y axis indicates the load. In such a graph, a closed spindle-shaped loop is drawn with positive and negative repeated loads, as is generally known. That is, in the initial first loop represented by the first cycle of positive and negative repeated loads, points 1, 2, and 3 according to increasing and decreasing positive loads from the point (0, 0) where the horizontal axis and vertical axis intersect. , Pass through point 4, and pass through point 4, point 5, point 6, point 7, and point 8 according to the increase and decrease in load weight. In the second loop of the second half, the load weight increases from point 8 near the (0, 0) point where the horizontal axis and vertical axis intersect, passing through points 9, 10, 11, and 12 as the positive load increases and decreases. As point increases and decreases, it passes through point 12, point 13, point 14, and point 15, and returns to the vicinity of point 8. It is expected that the spindle shape drawn by the second loop will be crushed due to the lack of thickness in the load direction rather than the spindle shape drawn by the first loop. This is because it is predicted that the resistance of the wood is reduced due to the nail sinking into the wood due to the initial load, and only the deformation is increased and the large load cannot be received at the later load.

図7に、図6(C)の予測グラフに対応する実際のグラフを示す。実際の地震を模した振動を再現する正負繰り返し荷重では、多数の、一部が重なりあった紡錘形のグラフが得られるが、そのうち、3回分の繰り返し荷重によるグラフである。同図(A)は時間順に得られる3回の繰り返し荷重のグラフを重ねたもの、同図(B)(C)(D)は3回のそれぞれのグラフだけを描いた図である。   FIG. 7 shows an actual graph corresponding to the prediction graph of FIG. With positive and negative repeated loads that reproduce vibrations that simulate actual earthquakes, a large number of partially overlapping spindle-shaped graphs are obtained, of which three are repeated. FIG. 6A is a graph in which three repeated load graphs obtained in time order are superimposed, and FIGS. 6B, 6C, and 6D are diagrams depicting only the respective three graphs.

予測される通り、同図(B)(C)(D)の順で、紡錘形のグラフが、荷重方向の厚みがなくなってつぶれてしまうスリップ性状を示す。このスリップ性状の状態が進行すると、やがて、釘の木材へのめり込みが大きくなり、釘と木材の間の空間が大きくなり、やがて釘は木材から抜けてしまう。   As expected, the spindle-shaped graph shows the slip property that collapses due to the loss of the thickness in the load direction in the order of (B), (C), and (D). As the state of the slip property progresses, the nail sinks into the wood eventually increases, the space between the nail and the wood increases, and the nail eventually comes off the wood.

(制振釘2)
図2に、この実施形態の図1の制振釘2を用いた実験とその結果の予測を示す。すなわち、図2(A)のように制振釘2が、表側の木材4である合板から打ち込まれて貫通し、裏側の木材6である柱に達して、両木材4,6をとめる。この状態で、正負繰り返し荷重がかかると、図2(B)のように釘中央部16の変形が繰り返えされるが、制振釘2が木材にめり込むことや、制振釘2と木材4,6の間に空間が生じてしまうことは抑止される。すなわち、制振釘2の変形は釘中央部16に限られ、釘上部14や釘下部18の変形や変位はほとんどない。
(Damping nails 2)
FIG. 2 shows an experiment using the damping nail 2 of FIG. 1 of this embodiment and prediction of the result. That is, as shown in FIG. 2 (A), the damping nail 2 is driven from the plywood which is the front side wood 4 and penetrates, reaches the pillar which is the back side wood 6 and stops both the woods 4 and 6. In this state, when a positive / negative repeated load is applied, the deformation of the nail central portion 16 is repeated as shown in FIG. 2B. However, the damping nail 2 is sunk into the wood, or the damping nail 2 and the wood 4 , 6 is prevented from generating a space. That is, the deformation of the vibration-damping nail 2 is limited to the nail central portion 16, and the nail upper portion 14 and the nail lower portion 18 are hardly deformed or displaced.

この過程を、図2(C)に示す変形-荷重の予測グラフで見てみる。正負繰り返し荷重の初期の第一ループでは、横軸と縦軸が交わる(0、0)点から、正荷重の増加と減少および負荷重の増加と減少に従い、点1、点2、点3、点4、点5、点2を通り、紡錘形のグラフを描く。また、この第一ループより変形が少ない第二ループでは、負荷重正荷重の増加と減少および負荷重の増加と減少に従い、点6、点7、点8、点9を通る。この第二ループの場合も、ほぼ、初期剛性と等しい剛性を示すエネルギー吸収の高い紡錘形のグラフを描く。全体として、変形方向および荷重方向にも十分な厚みを有する紡錘形のグラフが得られることが予測される。   This process can be seen in the deformation-load prediction graph shown in FIG. In the initial first loop of positive and negative cyclic loads, from the point (0, 0) where the horizontal axis and the vertical axis intersect, according to the increase and decrease of positive load and the increase and decrease of load weight, point 1, point 2, point 3, A spindle-shaped graph is drawn through points 4, 5 and 2. Further, in the second loop with less deformation than the first loop, the points 6, 7, 8, and 9 are passed according to the increase and decrease of the load load and the increase and decrease of the load load. Also in the case of this second loop, a spindle-shaped graph with high energy absorption showing a rigidity substantially equal to the initial rigidity is drawn. As a whole, it is predicted that a spindle-shaped graph having sufficient thickness in the deformation direction and the load direction can be obtained.

図4に、図2(C)の予測グラフに対応する実際のグラフを示す。実際の地震を模した振動を再現する正負繰り返し荷重から得られる、多数の、一部が重なりあった紡錘形のグラフのうち、繰り返し荷重の途中の3回分の繰り返し荷重によるグラフである。3回の繰り返し荷重のグラフを重ねたグラフである。   FIG. 4 shows an actual graph corresponding to the prediction graph of FIG. It is the graph by the repeated load for 3 times in the middle of the repeated load among the many spindle-shaped graphs obtained from the positive and negative repeated loads that reproduce the vibration simulating an actual earthquake. It is the graph which piled up the graph of 3 times repeated load.

予測される通り、図4では、紡錘形のグラフが、変形方向の厚みがややなくなってはいるものの、変形方向および荷重方向にも十分な厚みを有する紡錘形のグラフが得られている。   As expected, in FIG. 4, the spindle-shaped graph having a sufficient thickness in the deformation direction and the load direction is obtained although the thickness of the spindle-shaped graph is slightly reduced.

(比較)
このことを図5において確認する。すなわち、図4のグラフを、従来釘の図7(A)に示す変形-荷重のグラフに重ねて比較してみる。確認できるように、制振釘2は、従来釘に比べ、全体として、変形方向および荷重方向にも十分な厚みを有する紡錘形のグラフが得られており、吸収される振動エネルギーは、紡錘形のグラフが囲む面積で示させることから、大きな振動エネルギーを吸収できることがわかる。
(Comparison)
This is confirmed in FIG. That is, the graph of FIG. 4 is compared with the graph of the deformation-load shown in FIG. As can be seen, the vibration-damping nail 2 has a spindle-shaped graph having a sufficient thickness in the deformation direction and the load direction as a whole as compared with the conventional nail, and the vibration energy absorbed is the spindle-shaped graph. It can be seen that large vibration energy can be absorbed.

(得られる技術的効果)
以上のことから、この実施形態にかかる制振釘2によれば、以下の技術的な効果を得ることができる。
(Technical effects obtained)
From the above, according to the damping nail 2 according to this embodiment, the following technical effects can be obtained.

1)繰り返し荷重により釘中央部16の変形が繰り返えされることで、大きな振動エネルギーを吸収できる。よって、制振性能が向上する。 1) A large vibration energy can be absorbed by repeating deformation of the nail central portion 16 by repeated loading. Therefore, the vibration control performance is improved.

2)変形-荷重のグラフで、変形方向および荷重方向にも十分な厚みを有する紡錘形のグラフが得られ、よって紡錘形がつぶれるスリップ性状が抑制され、制振性能が向上する。 2) In the deformation-load graph, a spindle-shaped graph having a sufficient thickness in the deformation direction and the load direction is obtained, so that the slip property that collapses the spindle shape is suppressed, and the damping performance is improved.

3)振動エネルギーは、制振釘2の横断面積の小さい釘中央部16を、変形することに使われ、釘上部14と釘下部18が木材にめり込むことには使われにくい。よって、釘と木材の間に空間が生じにくく、制振釘2が木材から抜けてしまうことを防止できる。 3) The vibration energy is used to deform the nail central portion 16 having a small cross-sectional area of the damping nail 2, and is difficult to be used when the nail upper portion 14 and the nail lower portion 18 sink into the wood. Therefore, it is difficult to create a space between the nail and the wood, and the vibration-damping nail 2 can be prevented from falling out of the wood.

4)制振釘2は、全体が板状の金属部材8によって形成され、振動の方向と板状の幅方向とを直角にすることで、振動の際の木材に対する抵抗が大きくなり、従来の円柱状の釘などに比べ、木材へのめり込みを抑止できる。 4) The damping nail 2 is entirely formed by the plate-like metal member 8, and by making the direction of vibration and the plate-like width direction at right angles, resistance to wood during vibration increases, Compared to columnar nails, etc., it can suppress penetration into wood.

5)制振釘2は、板状の上端が直角に屈曲して頭部10となることで、振動の際に釘の首ふりが生じる際には、頭部10の左右端部が、木材表面に接触し、よって首ふりを抑え、木材へのめり込みを抑止できる。 5) The vibration-damping nail 2 has a plate-like upper end bent at a right angle to form the head 10, so that when the nail neck swings during vibration, the left and right ends of the head 10 are made of wood. It can contact the surface, so that the neck swing is suppressed and the sinking into the wood can be suppressed.

6)制振釘2の釘上部14または釘下部18には、木材との摩擦を大きくするための凹凸22が幅方向に形成され、木材に打ち込む際にはやや強い打ち込み力が必要になるものの、振動の際には、釘が木材から抜けてしまうのを抑止できる。もっとも、釘下部18の下端は、尖っており、木材への打ち込みが容易になっているので、それほど、強い打ち込み力は必要ではない。 6) The nail upper part 14 or the nail lower part 18 of the vibration damping nail 2 is formed with unevenness 22 for increasing friction with the wood in the width direction, and a slightly strong driving force is required when driving into the wood. During vibration, the nail can be prevented from coming off the wood. However, since the lower end of the nail lower part 18 is pointed and is easy to drive into wood, a very strong driving force is not necessary.

7)制振釘2は、木造構造物を構成する二つの木材をとめる従来の釘の働きをさせるとともに、振動エネルギーを吸収させる働きをさせることができるので、木造構造物の部品点数を増やさずに、制振が行える。 7) The vibration-damping nail 2 can act as a conventional nail that holds two timbers constituting a wooden structure and absorbs vibration energy, so it does not increase the number of parts of the wooden structure. In addition, vibration control can be performed.

8)制振釘2がとめる表側の木材4と裏側の木材6の組合せとして、木造構造物に用いられる耐力壁を構成する木材と木材が採用でき、したがって、耐力壁を製作する際に用いられる木材と木材をとめる従来の釘の代わりに、上記制振釘2を使用することができ、これにより、従来から存在する合板の耐震壁が制振壁となり、耐震性能の大幅な向上が可能となる。 8) As a combination of the front side wood 4 and the back side wood 6 which the damping nail 2 stops, the wood and the wood constituting the bearing wall used for the wooden structure can be adopted, and therefore used when producing the bearing wall. The above-mentioned vibration-damping nail 2 can be used in place of wood and the conventional nail that holds the wood, which makes the existing plywood earthquake-resistant wall a vibration-damping wall, which can greatly improve the earthquake-proof performance. Become.

9)釘や耐力壁は、木造構造物のきわめて一般的な構成要素であり、よって、この実施形態の制振釘2により、地震などの水平力により木造構造物に生じる振動エネルギーの吸収能力を向上し、木造構造物の耐震性を向上させる、安価で使い勝手の良好な釘を提供できる。 9) Nails and bearing walls are very common components of a wooden structure. Therefore, the damping nail 2 of this embodiment has a capacity to absorb vibration energy generated in a wooden structure by a horizontal force such as an earthquake. It is possible to provide an inexpensive and easy-to-use nail that improves and improves the earthquake resistance of wooden structures.

「他の実施形態」
(1)以上の実施形態では、表側の木材4と裏側の木材6は接触して重ねられるものであったが、他の実施形態では、図3に示すように、これら二つの木材4,6との間に、スペーサ24を設け、このスペーサ24によって二つの木材4,6の間に形成される隙間26に、釘中央部16が位置させることができる。これにより、釘中央部16の変形により、釘中央部16が木材にめり込むことを防止し、より制振性能を向上できる。
"Other embodiments"
(1) In the above embodiment, the front-side wood 4 and the back-side wood 6 are in contact with each other, but in other embodiments, as shown in FIG. A spacer 24 is provided between the nail central portion 16 and the nail central portion 16 can be positioned in a gap 26 formed between the two pieces of wood 4 and 6 by the spacer 24. Thereby, the deformation of the nail center portion 16 prevents the nail center portion 16 from sinking into the wood, and the vibration damping performance can be further improved.

図3に、このスペーサ24を用いた実施形態の制振釘2を用いた実験とその結果の予測を示す。すなわち、図3(A)のように制振釘2が、表側の木材4である合板から打ち込まれて、スペーサ24を貫通し、裏側の木材6である柱に達して、両木材をとめる。この状態で、正負繰り返し荷重がかかると、図3(B)のように釘中央部16の変形が繰り返えされるが、制振釘2が木材にめり込むことや、制振釘2と木材の間に空間が生じてしまうことはより抑止される。制振釘2の変形は釘中央部16に限られ、釘上部14や釘下部18の変形や変位はほとんどない。   FIG. 3 shows an experiment using the damping nail 2 of the embodiment using the spacer 24 and prediction of the result. That is, as shown in FIG. 3A, the damping nail 2 is driven from the plywood which is the front side wood 4, penetrates the spacer 24, reaches the pillar which is the back side wood 6, and stops both woods. In this state, when a positive / negative repeated load is applied, the deformation of the nail central portion 16 is repeated as shown in FIG. 3 (B), but the damping nail 2 is sunk into the wood or the damping nail 2 and the wood are The generation of a space between them is further suppressed. The deformation of the vibration-damping nail 2 is limited to the nail central portion 16, and there is almost no deformation or displacement of the nail upper portion 14 or the nail lower portion 18.

この過程を、図3(C)に示す変形-荷重の予測グラフで見てみる。正負繰り返し荷重により、横軸と縦軸が交わる(0、0)点から、正荷重の増加と減少および負荷重の増加と減少に従い、点1、点2、点3、点4、点5、点2を通り、紡錘形のグラフを描く。正負繰り返し荷重の初期と後期とであまり大きな違いはないことが期待される。これは前述の図2のように、制振釘2の釘中央部16の変形が、木材内部で生じ、その分、木材へのめり込みが生じる、ということが回避できるからである。そして、制振釘2の釘中央部16が十分な変形を繰り返すことができるので、十分な変形量が得られると同時に、その変形に必要な大きな荷重も得られるので、全体として、変形方向および荷重方向にも十分な厚みを有する紡錘形のグラフが得られることが予測される。また、このようにスペーサを用いることで、大変形に追従可能となる。   This process can be seen in the deformation-load prediction graph shown in FIG. From point (0, 0) where the horizontal axis and vertical axis intersect due to positive and negative repeated loads, point 1, point 2, point 3, point 4, point 5, according to increase and decrease of positive load and increase and decrease of load weight Draw a spindle-shaped graph through point 2. It is expected that there is not much difference between the early and late periods of positive and negative cyclic loads. This is because the deformation of the nail central portion 16 of the vibration-damping nail 2 can be prevented from occurring inside the wood as shown in FIG. And since the nail center part 16 of the damping nail 2 can repeat sufficient deformation | transformation, since sufficient deformation | transformation amount can be obtained simultaneously and the big load required for the deformation | transformation can also be obtained, It is predicted that a spindle-shaped graph having sufficient thickness in the load direction can be obtained. Moreover, it becomes possible to follow large deformation by using the spacer in this way.

(2)以上の実施形態では、制振釘2は平板な板状であり細い直線的な横断面を有する(図1(C)参照)ものであったが、他の実施形態では、例えば図8に示すように、直線的ではなく、90度に屈曲した横断面を有するものでもよい。   (2) In the above embodiment, the damping nail 2 has a flat plate shape and a thin linear cross section (see FIG. 1C), but in other embodiments, for example, FIG. As shown in FIG. 8, it may be not linear but have a cross section bent at 90 degrees.

すなわち、この図8の制振釘2は、全体が細い板状の金属部材8を加工して成形される。板状の上端中央から下端中央に向かって伸びる上下方向の第1屈曲線L1で左右を屈曲させる。これにより、細く90度に屈曲した断面積を有する。板状の上端は、上記第1屈曲線L1の延長線で切込み26を形成し、この切込み26の左右部分をそれぞれ三角形に切断し、残った三角形28を、この三角形28の底辺であり左右方向の第2屈曲線L2で、内側へ90度に屈曲させ、頭部10とする。   That is, the damping nail 2 of FIG. 8 is formed by processing a thin plate-like metal member 8 as a whole. The left and right sides are bent at a first bent line L1 in the up and down direction extending from the center of the plate shape toward the center of the lower end. Thereby, it has a cross-sectional area that is thin and bent at 90 degrees. The plate-like upper end is formed with a cut 26 by an extension of the first bent line L1, and the left and right portions of the cut 26 are cut into triangles, respectively, and the remaining triangle 28 is the bottom of the triangle 28 in the left-right direction. The second bent line L2 is bent inward at 90 degrees to form the head 10.

この頭部10に連続して釘上部14、釘中央部16、および釘下部18が形成される。釘中央部16は、図1と同様に、横断面積が前記釘上部14や前記釘下部18よりも小さい。また、釘上部14、釘下部18には、木材との摩擦を大きくするための凹凸22が幅方向に形成されている。   A continuous nail 14, a nail central 16, and a nail lower 18 are formed on the head 10. As in FIG. 1, the nail center portion 16 has a smaller cross-sectional area than the nail upper portion 14 and the nail lower portion 18. Further, the nail upper part 14 and the nail lower part 18 are formed with unevenness 22 in the width direction for increasing friction with the wood.

このようにして90度に屈曲した断面積を有することで、90度に異なった方向の振動エネルギーを吸収することができる(図8(C)参照)。   By having a cross-sectional area bent at 90 degrees in this way, vibration energy in directions different from 90 degrees can be absorbed (see FIG. 8C).

(3)以上の実施形態では、制振釘2は、細い板状、または横断面が90度に屈曲した細い板状であったが、他の実施形態では、全体が従来のように円柱状、四角柱、または三角柱などのものであっても構わない。変形を繰り返すことができる小断面積の釘中央部16が形成されていれば、本発明の効果を得ることができる。   (3) In the above embodiment, the damping nail 2 has a thin plate shape or a thin plate shape whose transverse section is bent by 90 degrees. However, in other embodiments, the whole is a cylindrical shape as in the past. A quadrangular prism or a triangular prism may be used. If the nail central part 16 having a small cross-sectional area that can be repeatedly deformed is formed, the effect of the present invention can be obtained.

(4)以上の実施形態では、釘中央部16の小断面積は、幅が小さくされ、または窓20が開けられて形成されるものであったが、他の実施形態では、他の形態により小断面積が得られれば、構わない。例えば、釘中央部16の肉厚を小さくすることもできる。   (4) In the above embodiment, the small cross-sectional area of the nail central portion 16 is formed by reducing the width or opening the window 20, but in other embodiments, according to other forms. If a small cross-sectional area is obtained, it does not matter. For example, the thickness of the nail central portion 16 can be reduced.

1…釘、2…制振釘、4…表側の木材、6…裏側の木材、8…金属部材、10…頭部、12…切込み、14…釘上部、16…釘中央部、18…釘下部、20…窓、22…凹凸、24…スペーサ、26…切込み、28…三角形、L1,L2・・屈曲線。   DESCRIPTION OF SYMBOLS 1 ... Nail, 2 ... Damping nail, 4 ... Front side wood, 6 ... Back side wood, 8 ... Metal member, 10 ... Head, 12 ... Incision, 14 ... Nail upper part, 16 ... Nail center part, 18 ... Nail Lower part, 20 ... window, 22 ... unevenness, 24 ... spacer, 26 ... notch, 28 ... triangle, L1, L2,.

Claims (4)

表側の木材から打ち込まれて貫通し裏側の木材に達して前記両木材をとめる釘において、前記表側の木材に位置する釘上部と、前記裏側の木材に位置する釘下部と、前記釘上部と前記釘下部との間にあって横断面積が前記釘上部や前記釘下部よりも小さい釘中央部と、を有し、前記表側の木材と裏側の木材との間に働く振動の繰り返し荷重により前記釘中央部が曲げによる変形を繰り返すことで振動エネルギーを吸収し、前記釘は、全体が板状の金属部材によって形成され、前記振動の方向と前記板状の面とを直角にして釘を打ち込むことを特徴とする制振釘。 In the nail that is driven from the front side wood and penetrates and reaches the back side wood and stops the both woods, the nail upper part located on the front side wood, the nail lower part located on the back side wood, the upper part of the nail and the A nail central portion between the nail lower portion and a cross-sectional area smaller than that of the nail upper portion or the nail lower portion, and the nail central portion due to repeated load of vibration acting between the front side wood and the back side wood. Absorbs vibration energy by repeating deformation due to bending , and the nail is entirely formed of a plate-like metal member, and the nail is driven with the direction of vibration and the plate-like surface being perpendicular to each other. Damping nails. 前記釘は、全体が板状の金属部材によって形成され、上端が直角に屈曲して頭部となり、この頭部に連続して前記釘上部、前記釘中央部、および前記釘下部が形成され、前記釘中央部は幅が小さくされ、または窓が開けられて横断面積が小さくなっており、前記釘上部、または前記釘下部には前記木材との摩擦を大きくするための凹凸が幅方向に形成され、前記振動の方向と前記幅方向とを直角にして釘を打ち込み振動エネルギーを吸収することを特徴とする請求項1に記載の制振釘。     The nail is entirely formed of a plate-like metal member, and the upper end is bent at a right angle to become a head, and the upper portion of the nail, the central portion of the nail, and the lower portion of the nail are formed continuously from the head. The central part of the nail has a small width or a window is opened to reduce the cross-sectional area, and unevenness for increasing friction with the wood is formed in the width direction in the upper part of the nail or the lower part of the nail. 2. The vibration-damping nail according to claim 1, wherein the vibration energy is absorbed by driving the nail so that the direction of the vibration and the width direction are perpendicular to each other. 請求項1または請求項2の制振釘を、木造構造物を構成する前記表側の木材と前記裏側の木材に使用し、前記表側の木材から打ち込み貫通させ前記裏側の木材に達して前記両木材をとめ、前記表側の木材と裏側の木材との間に働く振動の繰り返し荷重により前記釘中央部が変形を繰り返すことで振動エネルギーを吸収することを特徴とする木造構造物の制振構造。     3. The vibration-damping nail according to claim 1 or 2 is used for the front side wood and the back side wood constituting a wooden structure, and is driven through the front side wood to reach the back side wood to reach the both woods. The vibration damping structure for a wooden structure is characterized in that the vibration energy is absorbed by the deformation of the central portion of the nail by the repeated load of vibration acting between the front side wood and the back side wood. 前記表側の木材と前記裏側の木材との間には、スペーサが設けられ、これにより両前記木材の間に形成される隙間に、前記釘中央部が位置することを特徴とする請求項3に記載の木造構造物の制振構造。

The spacer is provided between the front-side wood and the back-side wood, and thereby the nail central portion is located in a gap formed between the two woods. Damping structure of the wooden structure described.

JP2014108618A 2014-05-26 2014-05-26 Damping nail and damping structure using the same Active JP5727070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108618A JP5727070B1 (en) 2014-05-26 2014-05-26 Damping nail and damping structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108618A JP5727070B1 (en) 2014-05-26 2014-05-26 Damping nail and damping structure using the same

Publications (2)

Publication Number Publication Date
JP5727070B1 true JP5727070B1 (en) 2015-06-03
JP2015224438A JP2015224438A (en) 2015-12-14

Family

ID=53437865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108618A Active JP5727070B1 (en) 2014-05-26 2014-05-26 Damping nail and damping structure using the same

Country Status (1)

Country Link
JP (1) JP5727070B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515073A (en) * 1999-11-29 2003-04-22 イブニング・スター・インベストメンツ・エル・エル・シー Metal perforated fastener
JP2010100995A (en) * 2008-10-21 2010-05-06 Misawa Homes Co Ltd Method for manufacturing furring strip with thermal insulating material
JP2010117015A (en) * 2008-11-14 2010-05-27 Daiken Corp Fixture and wall structure using the same
JP2011226175A (en) * 2010-04-21 2011-11-10 Ogura Kenho Joint hardware

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515073A (en) * 1999-11-29 2003-04-22 イブニング・スター・インベストメンツ・エル・エル・シー Metal perforated fastener
JP2010100995A (en) * 2008-10-21 2010-05-06 Misawa Homes Co Ltd Method for manufacturing furring strip with thermal insulating material
JP2010117015A (en) * 2008-11-14 2010-05-27 Daiken Corp Fixture and wall structure using the same
JP2011226175A (en) * 2010-04-21 2011-11-10 Ogura Kenho Joint hardware

Also Published As

Publication number Publication date
JP2015224438A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
Calugaru et al. Response of tall cantilever wall buildings to strong pulse type seismic excitation
JP6973997B2 (en) Wall structure
JP2009275473A (en) Seismic response control device
JP2007046235A (en) Vibration control panel and building
JP2011144621A (en) Earthquake-resisting board wall structure of wooden building
JP5727070B1 (en) Damping nail and damping structure using the same
JP5834376B1 (en) Construction method of wooden ramen structure
Worku Soil-structure interaction provisions-a potential tool to consider for economical seismic design of buildings?
JP6210760B2 (en) Foundation structure and design method of foundation structure
JP2008150936A (en) Earthquake-damping grid body
Goel Influence of Masonry Infill Walls on Seismic Performance of RC Framed Structures-A Comparison of AAC and Conventional Brick Infill
Kusuma Seismic Analysis of a High-rise RC Framed Structure with Irregularities
Chaitra et al. Study on performance of regular and vertically irregular structure with dampers, shear wall and infill wall
JP5877114B2 (en) Strength panel and building, structure and machine using the same
TWM334866U (en) Bidirectional energy dissipation device
JP5933806B2 (en) Joint structure of column and horizontal member in wooden frame
CN203613857U (en) Antiseismic real estate building
JP6095017B2 (en) Method for reinforcing horizontal vibration control of traditional wooden buildings
JP7010486B2 (en) Bearing wall and horizontal structure
Bhattacharjee et al. STUDY THE BEHAVIOUR OF HIGH-RISE BUILDINGS AT DIFFERENT POSITIONS OF SHEAR WALLS SUBJECTED TO SEISMIC LOADING 7
JP2015101850A (en) Framework wall structure, building, and framework wall building construction
JP2018003534A (en) Bearing wall and construction method thereof
Kalsait et al. Design of Earthquake Resistant Multistoried Building on A Sloping Ground
JP2003193561A (en) Aseismic wooden building and aseismic reinforcement method
Yamaguchi et al. Seismic performance of wooden shear walls on dynamic condition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5727070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250