JP5720714B2 - 厚鋼板の製造方法および製造設備 - Google Patents

厚鋼板の製造方法および製造設備 Download PDF

Info

Publication number
JP5720714B2
JP5720714B2 JP2013065341A JP2013065341A JP5720714B2 JP 5720714 B2 JP5720714 B2 JP 5720714B2 JP 2013065341 A JP2013065341 A JP 2013065341A JP 2013065341 A JP2013065341 A JP 2013065341A JP 5720714 B2 JP5720714 B2 JP 5720714B2
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
cooling
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013065341A
Other languages
English (en)
Other versions
JP2014188543A (ja
JP2014188543A5 (ja
Inventor
雄太 田村
雄太 田村
安達 健二
健二 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013065341A priority Critical patent/JP5720714B2/ja
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2014/001613 priority patent/WO2014156085A1/ja
Priority to CN201480018326.5A priority patent/CN105073293B/zh
Priority to EP14773154.1A priority patent/EP2979769B1/en
Priority to KR1020157025725A priority patent/KR101691020B1/ko
Priority to TW103111428A priority patent/TWI569898B/zh
Publication of JP2014188543A publication Critical patent/JP2014188543A/ja
Publication of JP2014188543A5 publication Critical patent/JP2014188543A5/ja
Application granted granted Critical
Publication of JP5720714B2 publication Critical patent/JP5720714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0071Levelling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、厚鋼板の製造方法および製造設備に関するものである。
熱間圧延によって厚鋼板を製造するプロセスでは、冷却制御の適用が拡大している。例えば、図1に示すように、加熱炉1で厚鋼板(図示しない。)を再加熱した後、デスケーリング装置2において厚鋼板がデスケーリングされる。そして、厚鋼板は圧延機3によって圧延されてから、形状矯正装置4によって矯正された後、加速冷却装置5において水冷または空冷による制御冷却が行われる。なお、図中の矢印は厚鋼板の進行方向である。
厚鋼板を加速冷却装置で水冷する場合、図2のように厚鋼板表面のスケールが厚くなるほど冷却時間が短くなるため、冷却速度が大きくなることが知られている。しかしながら、スケール厚みにばらつきがあると冷却速度が不均一になるため、強度や硬度などの材質がばらつくという問題がある。
また、スケール厚が不均一である場合、上述したように冷却速度が不均一になる。このような場合、厚鋼板幅方向における加速冷却停止時の厚鋼板表面温度(以下、「冷却停止温度」と称する。)の分布は、例えば図3のようにばらつくことが知られており、このように厚鋼板の冷却停止温度がばらつくため、均一な材質を得られないという問題がある。具体例を示すと、厚鋼板幅方向にスケール厚が40μmと20μmの箇所が混在する場合、板厚25mmの厚鋼板を800℃から目標温度500℃まで冷却する時の冷却停止温度は、40μmの箇所で460℃、20μmの箇所で500℃となる。40μmの箇所では、冷却停止温度が目標温度から40℃下回ってしまい、その結果、均一な材質を得ることができない。
そこで、特許文献1では、スケール厚みを制御して冷却速度の均一化を行い、冷却停止温度の均一化を達成する方法が開示されている。特許文献1では、圧延中に圧延機の前後に備えられたデスケーリング装置を用いて、厚鋼板の尾端が先端に比べて冷却停止温度が低くなる場合に、尾端側のデスケーリングの噴射水量を先端側の噴射水量より多くなるように制御し、厚鋼板の長手方向でスケール除去率、残存厚を制御することにより、制御冷却時の鋼板表面の熱伝達係数を変化させて、厚鋼板の長手方向の冷却停止温度の均一化を行っている。
特開平6−330155号公報
従来の技術では、冷却水量や搬送速度を調整することで冷却停止温度の均一化を図ってきた。しかし、この方法では、スケール厚のばらつきによって冷却速度がばらつくため、冷却速度の均一化のみならず、冷却停止温度の均一化も難しい。
また、特許文献1の方法では、オンラインでスケール除去率や残存厚を制御できなければ熱伝達係数も制御できないため、高精度の冷却速度の均一化を実現することができない。また、スケール除去率を変化させる場合、スケール残存箇所と剥離箇所で冷却停止温度が異なるため、材質にばらつきが出る。
本発明は、上記の問題を解決し、材質ばらつきの少ない高品質の厚鋼板を確保することができる厚鋼板の製造方法および製造設備を提供することを目的とする。
本発明は、前記の従来の問題点を解決するためになされたものであって、その要旨は下記のとおりである。
[1]熱間圧延工程、形状矯正工程および加速冷却工程の順序で厚鋼板を製造する方法において、前記形状矯正工程と前記加速冷却工程との間に、厚鋼板表面温度をAr変態点未満に空冷することにより、あるいは、厚鋼板の上下面に冷却水を水量密度0.3〜2.2m/m minで供給して水冷することにより、厚鋼板表面を変態させる温度調整工程、および、前記温度調整工程の後でかつ前記加速冷却工程の前に厚鋼板の表面にエネルギー密度が0.05J/mm以上の高圧水を噴射するデスケーリング工程を有することを特徴とする厚鋼板の製造方法。
[2]前記デスケーリング工程において、前記高圧水の噴射圧力を10MPa以上とすることを特徴とする[1]に記載の厚鋼板の製造方法。
[3]熱間圧延装置、形状矯正装置、温度調整装置、デスケーリング装置および加速冷却装置をこの順序で搬送方向上流側から配置し、前記温度調整装置では、厚鋼板表面温度をAr変態点未満に空冷し、あるいは、厚鋼板の上下面に冷却水を水量密度0.3〜2.2m/m minで供給することにより水冷し、厚鋼板表面を変態させるとともに、前記デスケーリング装置では、厚鋼板の表面にエネルギー密度が0.05J/mm以上の高圧水を噴射することを特徴とする厚鋼板の製造設備。
[4]前記デスケーリング装置において、前記高圧水の噴射圧力を10MPa以上とすることを特徴とする[3]に記載の厚鋼板の製造設備。
本発明によれば、形状矯正工程と加速冷却工程との間に、厚鋼板表面温度をAr変態点未満に下げて厚鋼板表面を変態させる温度調整工程、および、温度調整工程の後に厚鋼板の表面にエネルギー密度が0.05J/mm以上の高圧水を噴射するデスケーリング工程を有することにより、冷却速度および冷却停止温度の均一化を図ることができる。その結果、材質ばらつきの少ない高品質の厚鋼板の製造が可能となる。
従来の厚鋼板の製造設備を示す概略図である。 加速冷却時における、スケール厚みと、冷却時間と、厚鋼板表面温度との関係を示す図である。 加速冷却後の、厚鋼板の幅方向位置と冷却停止温度との関係を示す図である。 本発明の一実施形態である厚鋼板の製造設備を示す概略図である。 厚鋼板表面の変態の有無と、高圧水のエネルギー密度と、スケール剥離率との関係を示す図である。 圧延終了後の厚鋼板表面の温度と、スケールが破壊されるために必要な噴射圧力との関係を示す図である。 温度調整工程からデスケーリング工程開始前の厚鋼板表面の温度差を定義する図である。 厚鋼板表面の温度降下量と冷却停止温度のばらつきとの関係を示す図である。 本発明の一実施形態に係る冷却装置の側面図である。 本発明の一実施形態に係る他の冷却装置の側面図である。 本発明の一実施形態に係る隔壁のノズル配置例を説明する図である。 隔壁上の冷却排水の流れを説明する図である。 隔壁上の冷却排水の他の流れを説明する図である。 従来例の厚鋼板幅方向温度分布を説明する図である。 加速冷却装置における冷却水の流れを説明する図である。 加速冷却装置における隔壁上の冷却排水との非干渉を説明する図である。
以下、本発明を実施するための形態を、図面を参照して本発明を説明する。
図4は、本発明の一実施形態である、厚鋼板の製造設備を示す概略図である。図4において、矢印は厚鋼板の搬送方向である。厚鋼板の搬送方向上流側から、加熱炉1、デスケーリング装置2、圧延機3、形状矯正装置4、温度調整装置6、デスケーリング装置7、加速冷却装置5の順に配置されている。図4において、加熱炉1で厚鋼板(図示しない。)を再加熱した後、デスケーリング装置2において一次スケール除去のために厚鋼板がデスケーリングされる。そして、厚鋼板は圧延機3によって熱間圧延され、形状矯正装置4によって矯正された後、温度調整装置6で厚鋼板表面温度を下げた後、さらにデスケーリング装置7においてスケールを完全除去するデスケーリングが行われる。そして、加速冷却装置5において水冷または空冷による制御冷却が行われる。
本発明では、形状矯正装置4と加速冷却装置5との間に、温度調整装置6およびデスケーリング装置7が配置される。そして、温度調整装置6において、厚鋼板表面温度をAr変態点未満に下げて厚鋼板表面を変態させる。その後、デスケーリング装置7においてエネルギー密度が0.05J/mm以上の高圧水を厚鋼板に噴射するデスケーリングを行うことを特徴とする。
温度調整装置6は、形状矯正装置4とデスケーリング装置7との間に配置される。温度調整装置6での温度調整工程において、厚鋼板表面温度をAr変態点未満に下げて厚鋼板表面を変態させることにより、その後のデスケーリング工程において、スケールを除去し易くする。
温度調整工程で、厚鋼板表面温度をAr変態点未満に下げて厚鋼板表面を変態させることにより、地鉄の変態が起こりスケールと地鉄との界面にずれが生じてスケールの密着力が低下する。これは、次のような機構によるものと考えられる。厚鋼板の表面がAr変態点未満に冷却されると、地鉄がオーステナイトからフェライトへ変態する。このときに地鉄が膨張するため、スケールと地鉄との界面に力がかかり、界面にクラックが生じる。その結果、スケールの密着力が低下すると考えられる。したがって、厚鋼板表面温度をAr変態点未満に下げて厚鋼板表面を変態させることにより、デスケーリング装置7でのデスケーリング工程の際、スケール除去が容易となる。なお、Ar変態点は、下記式(*)により算出することができる。
Ar=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo…(*)
ただし、元素記号は各元素の鋼中含有量(mass%)を示す。
次に、厚鋼板表面温度をAr変態点未満に下げて厚鋼板表面を変態させた厚鋼板は、デスケーリング装置7において、スケール除去するデスケーリングを行う。このとき、エネルギー密度が0.05J/mm以上の高圧水(本発明では、5MPa以上を高圧水とする。)を厚鋼板に噴射することにより、スケールを完全に除去することができる。このデスケーリング工程において、スケールを完全に除去することにより、その後の加熱冷却装置5での加速冷却工程において、冷却制御が可能となる。その結果、高精度の冷却速度の均一化および冷却停止温度の均一化を図ることができる。なお、高圧水は厚鋼板全長にわたって噴射すればよい。
本発明者らは、ある鋼種について、デスケーリング工程前の厚鋼板表面の変態の有無の影響について、高圧水のエネルギー密度とスケール剥離率(スケールが剥離した面積と厚鋼板面積の割合)との関係を調べたところ、図5に示すような知見を得た。図5から、エネルギー密度が大きいとスケール剥離率が大きくなること、そして、厚鋼板表面を変態させることにより、エネルギー密度が小さくてもスケール剥離が可能となることがわかった。また、図5から、変態後にデスケーリングを行う場合、エネルギー密度が0.05J/mmより小さい場合、スケール剥離率が低いことから、厚鋼板の一部にスケールが残存し、冷却停止温度がばらついて材質が不均一となるといえる。したがって、高圧水のエネルギー密度は0.05J/mm以上とする。好ましくは、0.10J/mm以上である。なお、高圧水を供給するポンプの消費エネルギーの観点から、高圧水のエネルギー密度は0.60J/mm以下が好ましい。
本発明では、デスケーリング工程において、噴射圧力10MPa以上の高圧水を噴射することが好ましい。噴射圧力を10MPa以上にすることにより、スケールを完全に除去できる。したがって、加速冷却工程における冷却速度および冷却停止温度の均一化を実現できる。スケールを破壊するためには、高圧水の液滴が厚鋼板に衝突するときの圧力が、スケールの硬度を超える必要がある。本発明者らは、圧延終了後の厚鋼板表面の温度と、スケールが破壊されるために必要な高圧水の噴射圧力との関係について調べたところ、図6の知見を得た。本発明のように、制御冷却が必要な厚鋼板を製造する場合、圧延終了後の厚鋼板表面の温度は、高くても900℃前後であることが一般的である。したがって、本発明において、スケールを破壊するために、高圧水の噴射圧力を10MPa以上にすることが好ましい。
ここで、厚鋼板に噴射される冷却水のエネルギー密度E(J/mm)とは、デスケーリングによってスケールを除去する能力の指標であり、次の(1)式のように定義される。
E=Q/(d×W)×ρv/2×t…(1)
ただし、Q:デスケーリング水の噴射流量[m/s]、d:フラットノズルのスプレー噴射厚み[mm]、W:フラットノズルのスプレー噴射幅[mm]、流体密度ρ[kg/m]、厚鋼板衝突時の流体速度v[m/s]、衝突時間t[s](t=d/1000/V、搬送速度V[m/s])である。
しかしながら、厚鋼板衝突時の流体速度vの測定は必ずしも容易ではないため、(1)式で定義されるエネルギー密度Eを厳密に求めようとすると、多大な労力を要する。
そこで、本発明者らは、さらに検討を加えた結果、厚鋼板に噴射される冷却水のエネルギー密度E(J/mm)の簡便な定義として、水量密度×噴射圧力×衝突時間を採用すればよいことを見出した。ここで、水量密度(m/m min)は、「冷却水の噴射流量÷冷却水衝突面積」で計算される値である。噴射圧力(MPa)は、冷却水の吐出圧力で定義される。衝突時間(s)は、「冷却水の衝突厚み÷厚鋼板の搬送速度」で計算される値である。なお、この簡便な定義で算出される本発明の高圧水のエネルギー密度とスケール剥離率との関係も、図5と同様である。
温度調整工程において、空冷または水冷により、厚鋼板表面温度をAr変態点未満に下げる。なお、空冷する場合、厚鋼板を搬送するテーブルローラー上で適宜Ar変態点未満まで空冷すればよい。
本発明では、温度調整工程において、水冷を実施する場合には、厚鋼板の上下面に冷却水を水量密度0.3〜2.2m/m minで供給する。水量密度が0.3m/m minより小さいと、厚鋼板表面温度をAr変態点未満に下げることができず、厚鋼板表面を変態させることができない。その結果、厚鋼板にスケールが残存し、その後の加速冷却工程で冷却制御しても、冷却停止温度がばらついて材質が不均一となる。また、水量密度が2.2m/m minより大きいと、後述する温度調整工程における温度降下量ΔTが200℃を超えてしまい、冷却停止温度がばらついて材質が不均一となる。
温度調整装置6において厚鋼板表面を変態させる場合、厚鋼板にスケールが付着した状態で厚鋼板表面を冷却することになる。本発明者らは、温度調整装置6における冷却での温度降下量が大きい場合、スケールの付着状況が冷却停止温度の均一化に影響し、冷却停止温度のばらつき(加速冷却工程後の目標とする鋼板表面温度と、加速冷却後の実際の鋼板表面温度との差)が大きくなってしまうという知見を得た。ここで、温度調整装置6における厚鋼板表面の温度降下量ΔTを、図7に示すように、冷却開始時の厚鋼板表面温度から厚鋼板表面の最低到達温度の差として定義する。
本発明者らは、圧延機での圧延終了後の表面温度が800℃、板厚25mmの厚鋼板を用いて、温度調整工程、デスケーリング工程および加速冷却工程の順で厚鋼板を製造した。ここで、デスケーリング時の鋼板表面が変態前でも変態後でもスケールを全面的に除去できる条件として、デスケーリング時のエネルギー密度は0.2J/mmとした。なお、加速冷却工程では厚鋼板表面温度が500℃となるように冷却した。その結果、温度調整工程の温度降下量ΔTと冷却停止温度のばらつきとの関係は、図8のようになることがわかった。図8から、均一な材質を得るためには、冷却停止温度のばらつきは25℃以下、温度調整工程の温度降下量ΔTは200℃以下にすることが好ましい。
本発明の加速冷却装置5については、図9に示すように、厚鋼板10の上面に冷却水を供給する上ヘッダ11と、該上ヘッダ11から懸垂した棒状冷却水を噴射する冷却水噴射ノズル13と、厚鋼板10と上ヘッダ11との間に設置される隔壁15とを備えるとともに、隔壁15には、冷却水噴射ノズル13の下端部を内挿する給水口16と、厚鋼板10の上面に供給された冷却水を隔壁15上へ排水する排水口17とが、多数設けられていることが好ましい。
具体的には、上面冷却設備は、厚鋼板10の上面に冷却水を供給する上ヘッダ11と、該上ヘッダ11から懸垂した冷却水噴射ノズル13と、上ヘッダ11と厚鋼板10との間に厚鋼板幅方向に亘り水平に設置され多数の貫通孔(給水口16と排水口17)を有する隔壁15とを備えている。そして、冷却水噴射ノズル13は棒状の冷却水を噴射する円管ノズル13からなり、その先端が前記隔壁15に設けられた貫通孔(給水口16)に内挿されて隔壁15の下端部より上方になるように設置されている。なお、冷却水噴射ノズル13は、上ヘッダ11内の底部の異物を吸い込んで詰まるのを防止するため、その上端が上ヘッダ11の内部に突出するように、上ヘッダ11内に貫入させることが好ましい。
ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が6m/s以上、好ましくは8m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。
冷却水噴射ノズル13の先端が貫通孔に内挿されて隔壁15の下端部より上方になるように設置されているのは、仮に先端が上方に反った厚鋼板が進入してきた場合でも隔壁15によって冷却水噴射ノズル13が損傷するのを防止するためである。それによって冷却水噴射ノズル13が良好な状態で長期間に亘って冷却を行うことができるので、設備補修等を行うことなく、厚鋼板の温度むらの発生を防止することができる。
また、円管ノズル13の先端が貫通孔に内挿されているので、図16に示すように、隔壁15の上面を流れる点線矢印の排出水19の幅方向流れと干渉することがない。したがって、冷却水噴射ノズル13から噴射された冷却水は、幅方向位置によらず等しく厚鋼板上面へ達することができ、幅方向に均一な冷却を行うことができる。
隔壁15の一例を示すと、図11に示すように隔壁15には直径10mmの貫通孔が厚鋼板幅方向に80mm、搬送方向に80mmのピッチで碁盤の目状に多数開けられている。そして、給水口16には外径8mm、内径3mm、長さ140mmの冷却水噴射ノズル13が挿入されている。冷却水噴射ノズル13は千鳥格子状に配列され、冷却水噴射ノズル13が通っていない貫通孔は冷却水の排水口17となっている。このように、本発明の加速冷却装置の隔壁15に設けられた多数の貫通孔は、ほぼ同数の給水口16と排水口17とから成り立っており、それぞれに役割、機能を分担している。
このとき、排水口17の総断面積は、冷却水噴射ノズル13の円管ノズル13の内径の総断面積よりも十分広く、円管ノズル13の内径の総断面積の11倍程度が確保されており、図9に示すように厚鋼板上面に供給された冷却水は、厚鋼板表面と隔壁15との間に充満し、排水口17を通して、隔壁15の上方に導かれ、速やかに排出される。図12は隔壁上の厚鋼板幅方向端部付近の冷却排水の流れを説明する正面図であるが、排水口17の排水方向が冷却水噴射方向と逆の上向きになっており、隔壁15の上方へ抜けた冷却排水は、厚鋼板幅方向外側へ向きを変え、上ヘッダ11と隔壁15との間の排水流路を流れて排水される。
一方、図13に示す例は、排水口17を厚鋼板幅方向に傾斜させて排水方向が厚鋼板幅方向外側に向くように幅方向外側へ向けた斜め方向としたものである。このようにすることで、隔壁15上の排出水19の厚鋼板幅方向流れが円滑になり、排水が促進されるので好ましい。
ここで、図14に示すように排水口と給水口が同一の貫通孔に設置されていると、冷却水は、厚鋼板に衝突した後、隔壁15の上方に抜けにくくなって、厚鋼板10と隔壁15の間を厚鋼板幅方向端部へ向かって流れるようになる。そうすると厚鋼板10と隔壁15の間の冷却排水の流量は、板幅方向の端部に近づく程多くなるので、噴射冷却水18が滞留水膜を貫通して厚鋼板に到達する力が板幅方向端部ほど阻害されることとなる。
薄板の場合には板幅が高々2m程度であるのでその影響は限定的であるが、特に板幅が3m以上の厚板の場合には、その影響は無視できない。従って、厚鋼板幅方向端部の冷却が弱くなり、この場合の厚鋼板幅方向の温度分布は、不均一な温度分布となる。
これに対して、本発明の加速冷却装置5は、図15に示すように給水口16と排水口17は別個に設けられており、給水と排水を役割分担しているので、冷却排水は隔壁15の排水口17を通過して隔壁15の上方に円滑に流れて行くようになる。従って、冷却後の排水が速やかに厚鋼板上面から排除されるので、後続で供給される冷却水は、容易に滞留水膜を貫通することができ、十分な冷却能力を得ることができる。この場合の厚鋼板幅方向の温度分布は、均一な温度分布となり、幅方向に均一な温度分布を得ることができる。
ちなみに、排水口17の総断面積は、円管ノズル13の内径の総断面積の1.5倍以上であれば、冷却水の排出が速やかに行われる。このことは、例えば、隔壁15には円管ノズル13の外径よりも大きい穴を開け、排水口の数を給水口の数と同じか、それ以上にすれば実現できる。
排水口17の総断面積が円管ノズル13の内径の総断面積の1.5倍より小さいと、排水口の流動抵抗が大きくなり、滞留水が排水されにくくなる結果、滞留水膜を貫通して厚鋼板表面に到達できる冷却水量が大幅に減り、冷却能が低下するので好ましくない。より好ましくは4倍以上である。一方排水口が多過ぎたり、排水口の断面径が大きくなりすぎると、隔壁15の剛性が小さくなって、厚鋼板が衝突したときに損傷し易くなる。従って、排水口の総断面積と円管ノズル13の内径の総断面積の比は1.5から20の範囲が好適である。
また、隔壁15の給水口16に内挿した円管ノズル13の外周面と給水口16の内面との隙間は3mm以下とすることが望ましい。この隙間が大きいと、円管ノズル13から噴射される冷却水の随伴流の影響により、隔壁15の上面へ排出された冷却排水が給水口16の円管ノズル13の外周面との隙間に引き込まれ、再び厚鋼板上に供給されることとなるので、冷却効率が悪くなる。これを防止するには、円管ノズル13の外径を給水口16の大きさとほぼ同じにすることがより好ましいが、工作精度や取り付け誤差を考慮し、実質的に影響が少ない3mmまでの隙間は許容する。より望ましくは2mm以下とする。
さらに、冷却水が滞留水膜を貫通して厚鋼板に到達できるようにするためには、円管ノズル13の内径、長さ、冷却水の噴射速度やノズル距離も最適にする必要がある。
即ち、ノズル内径は3〜8mmが好適である。3mmより小さいとノズルから噴射する水の束が細くなり勢いが弱くなる。一方ノズル径が8mmを超えると流速が遅くなり、滞留水膜を貫通する力が弱くなるからである。
円管ノズル13の長さは120〜240mmが好適である。ここでいう円管ノズル13の長さとは、ヘッダ内部へある程度貫入したノズル上端の流入口から、隔壁の給水口に内挿したノズルの下端までの長さを意味する。円管ノズル13が120mmより短いと、ヘッダ下面と隔壁上面との距離が短くなりすぎる(例えば、ヘッダ厚み20mm、ヘッダ内へのノズル上端の突出量20mm、隔壁へのノズル下端の挿入量10mmとすると、70mm未満となる)ため、隔壁より上側の排水スペースが小さくなり、冷却排水が円滑に排出できなくなる。一方、240mmより長いと円管ノズル13の圧力損失が大きくなり、滞留水膜を貫通する力が弱くなるからである。
ノズルからの冷却水の噴射速度は、6m/s以上、好ましくは8m/s以上が必要である。6m/s未満では、滞留水膜を冷却水が貫通する力が極端に弱くなるからである。8m/s以上であれば、より大きな冷却能力を確保できるので好ましい。また、上面冷却の冷却水噴射ノズル13の下端から厚鋼板10の表面までの距離は、30〜120mmとするのが良い。30mm未満では、厚鋼板10が隔壁15に衝突する頻度が極端に多くなり設備保全が難しくなる。120mm超えでは、冷却水が滞留水膜を貫通する力が極端に弱くなるからである。
厚鋼板上面の冷却では、冷却水が厚鋼板長手方向に拡がらないように、上ヘッダ11の前後に水切ロール20を設置するのが良い。これにより、冷却ゾーン長が一定となり、温度制御が容易になる。ここで水切ロール20により厚鋼板搬送方向の冷却水の流れは堰き止められるので冷却排水は厚鋼板幅方向外側に流れるようになるが、水切ロール20の近傍は冷却水が滞留し易い。
そこで図10に示すように、厚鋼板幅方向に並んだ円管ノズル13の列のうち、厚鋼板搬送方向の最上流側列の冷却水噴射ノズルは、厚鋼板搬送方向の上流方向へ15〜60度傾け、厚鋼板搬送方向の最下流側列の冷却水噴射ノズルは、厚鋼板搬送方向の下流方向へ15〜60度傾けることが好ましい。こうすることにより、水切ロール20に近い位置にも冷却水を供給することができ、水切ロール20近傍に冷却水が滞留することがなく、冷却効率が上がるので好適である。
上ヘッダ11下面と隔壁15上面の距離は、ヘッダ下面と隔壁上面に囲まれた空間内での厚鋼板幅方向流路断面積が冷却水噴射ノズル内径の総断面積の1.5倍以上となるように設けられ、例えば100mm程度以上である。この厚鋼板幅方向流路断面積が冷却水噴射ノズル内径の総断面積の1.5倍以上ないと、隔壁に設けられた排水口17から隔壁15上面へ排出された冷却排水が円滑に厚鋼板幅方向に排出できないからである。
本発明の加速冷却装置において、最も効果を発揮する水量密度の範囲は、1.5m/m・min以上である。水量密度がこれよりも低い場合には滞留水膜がそれほど厚くならず、棒状冷却水を自由落下させて厚鋼板を冷却する公知の技術を適用しても、幅方向の温度むらはそれほど大きくならない場合もある。一方、水量密度が4.0m/m・minよりも高い場合でも、本発明の技術を用いることは有効であるが、設備コストが高くなるなど実用化の上での問題があるので、1.5〜4.0m/m・minが最も実用的な水量密度である。
本発明の冷却技術を適用するのは、冷却ヘッダの前後に水切りロールを配する場合が特に効果的であるが、水切りロールがない場合にも適用することは可能である。例えば、ヘッダが長手方向に比較的長く(2〜4m程度ある場合)、そのヘッダの前後でパージ用の水スプレーを噴射して、非水冷ゾーンへの水漏れを防止する冷却設備に適用することも可能である。
なお、本発明において、厚鋼板下面側の冷却装置については、特に限定されるものではない。図9、10に示す実施形態では、上面側の冷却装置と同様の円管ノズル14を備えた冷却下ヘッダ12の例を示したが、厚鋼板下面側の冷却では、噴射された冷却水は厚鋼板に衝突した後に自然落下するので、上面側冷却のような冷却排水を厚鋼板幅方向に排出する隔壁15はなくてよい。また、膜状冷却水や噴霧状のスプレー冷却水などを供給する公知の技術を用いてもよい。
なお、本発明の加熱炉1およびデスケーリング装置2については、特に制限されず、従来の装置を用いることができる。デスケーリング装置2については、本発明のデスケーリング装置7と同様の構成である必要はない。
以下、本発明の実施例を説明する。以下の説明で、鋼板温度はいずれも鋼板表面の温度である。
図4に示すような厚鋼板の製造設備を用いて、本発明の厚鋼板を製造した。加熱炉1でスラブを再加熱した後、デスケーリング装置2において一次スケールを除去し、圧延機3で熱間圧延し、形状矯正装置4で形状矯正した。形状矯正後、温度調整装置6で厚鋼板表面の温度を調整後、デスケーリング装置7でデスケーリングを行った。デスケーリング装置7は、噴射距離(デスケーリング装置7の噴射ノズルと厚鋼板の表面距離)が130mm、ノズル噴射角度が32°、ノズル迎え角が15°とした。デスケーリング装置7でのデスケーリング後、加速冷却装置5で500℃まで冷却した。ここで、温度調整工程および温度調整後のデスケーリング工程については、表1に示す条件で行った。なお、温度調整装置5の冷却長は1mとした。また、用いた厚鋼板のAr変態点は780℃であった。圧延機3での圧延終了後の板厚は25mm、厚鋼板温度は830℃であった。温度調整工程の温度降下量ΔTは、温度調整工程で水冷を採用した場合についてのみ測定した。これは、空冷で温度調整を実施した場合、温度降下の過大に起因する問題が生じないからである。
得られた厚鋼板について、材質ばらつきの少ない厚鋼板を得るために、図8の関係に基づき、冷却停止温度のばらつきが25℃以内の厚鋼板を合格とした。
製造条件および結果を表1に示す。
Figure 0005720714
発明例1では、圧延終了後、温度調整装置6において空冷により、厚鋼板表面温度を770℃まで下げた。その後、デスケーリング装置7において、エネルギー密度0.08J/mm、噴射圧力15MPa、ノズル1本あたりの噴射流量が40L/min(=6.7×10−4/s)で、高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。厚鋼板表面がオーステナイトからフェライトに変態した後にデスケーリングを行ったので、スケールを完全に除去でき、温度むらは10℃となった。
発明例2では、圧延終了後、温度調整装置6において、厚鋼板の上下面に水量密度1.0m/m minで冷却水を供給し厚鋼板表面温度を750℃まで下げた。その後、デスケーリング装置7において、エネルギー密度0.08J/mmで高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。温度調整装置6において水冷するための水量密度が1.0m/m minであったため、デスケーリング時の厚鋼板温度は750℃となり、厚鋼板表面がオーステナイトからフェライトに変態した後にデスケーリングを行うことができた。温度調整工程の温度降下量ΔTも80℃であったため、温度むらは19℃となった。
発明例3では、圧延終了後、空冷により、厚鋼板表面温度を770℃まで下げた。その後、デスケーリング装置7において、噴射圧力15MPa、ノズル1本あたりの噴射流量が40L/min(=6.7×10−4/s)、エネルギー密度0.13J/mmで、高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。厚鋼板表面がオーステナイトからフェライトに変態した後にデスケーリングを行った。このため、スケールを完全に除去でき、温度むらは10℃となった。
発明例4では、圧延終了後、温度調整装置6において厚鋼板表面温度を770℃まで下げた。その後、デスケーリング装置7において、エネルギー密度0.13J/mm、噴射圧力8MPaで、高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置で冷却して製造した。噴射圧力が8MPaであり、本発明で好ましいとする範囲外の値であったので、スケールを破壊できずにわずかに残存したと考えられ、温度むらが23℃となった。発明例4の噴射圧力は、本発明の好ましい範囲内である発明例3の場合に比べて大きくなったものの、そのほかは本発明で必須とされる条件を満足していたので、目標とする25℃以内は達成された。
比較例1では、圧延終了後、温度調整装置6において空冷により厚鋼板表面温度を770℃まで下げた。その後、デスケーリング装置7において、エネルギー密度0.04J/mm、噴射圧力12MPaで、高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。エネルギー密度が0.04J/mmであることから、厚鋼板の一部にスケールが残存したと考えられ、温度むらが36℃となった。また、室温まで冷却した比較例1の厚鋼板の表面を目視で観察したところ、表面の色調にムラが確認されたので、温度ムラの原因が、厚鋼板の一部にスケールが残存していたものであることに起因するものと推定される。
比較例2では、圧延終了後、温度調整装置6において厚鋼板表面の温度を下げず、厚鋼板表面温度800℃の厚鋼板を、デスケーリング装置7において、エネルギー密度0.08J/mm、噴射圧力15MPaで、高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。エネルギー密度は本発明の範囲内であったが、厚鋼板表面が変態していない状態でデスケーリングを行ったため、厚鋼板の一部にスケールが残存したと考えられ、温度むらが40℃となった。また、室温まで冷却した比較例2の厚鋼板の表面を目視で観察したところ、表面の色調にムラが確認されたので、温度ムラの原因が、厚鋼板の一部にスケールが残存していたものであることに起因するものと推定される。
比較例3では、圧延終了後、温度調整装置6において、厚鋼板の上下面に水量密度0.2m/m minで冷却水を供給した。その後、デスケーリング装置7において、エネルギー密度0.08J/mmで高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。水量密度が0.2m/m minと小さいため、厚鋼板温度は785℃までしか下がらず、厚鋼板表面が変態していない状態でデスケーリングを行った。このため、厚鋼板の一部にスケールが残存したと考えられ、温度むらが41℃となった。室温まで冷却した比較例3の厚鋼板の表面を目視で観察したところ、表面の色調にムラが確認されので、温度ムラの原因が、厚鋼板の一部にスケールが残存していたものであることに起因するものと推定される。
比較例4では、圧延終了後、温度調整装置6において、厚鋼板の上下面に水量密度2.4m/m minで冷却水を供給した。その後、デスケーリング装置7において、エネルギー密度0.08J/mmで高圧水を厚鋼板全長にわたり噴射した後、加速冷却装置5で冷却して製造した。水量密度が2.4m/m minと大きいため、デスケーリング前冷却時のΔTが220℃となり、温度むらが27℃となった。室温まで冷却した比較例4の厚鋼板の表面を目視で観察したところ、表面の色調にムラが確認されので、温度ムラの原因が、厚鋼板の一部にスケールが残存していたものであることに起因するものと推定される。
1 加熱炉
2 デスケーリング装置
3 圧延機
4 形状矯正装置
5 加速冷却装置
6 温度調整装置
7 デスケーリング装置
10 厚鋼板
11 上ヘッダ
12 下ヘッダ
13 上冷却水噴射ノズル(円管ノズル)
14 下冷却水噴射ノズル(円管ノズル)
15 隔壁
16 給水口
17 排水口
18 噴射冷却水
19 排出水
20 水切ロール
21 水切ロール

Claims (4)

  1. 熱間圧延工程、形状矯正工程および加速冷却工程の順序で厚鋼板を製造する方法において、前記形状矯正工程と前記加速冷却工程との間に、厚鋼板表面温度をAr変態点未満に空冷することにより、あるいは、厚鋼板の上下面に冷却水を水量密度0.3〜2.2m/m minで供給して水冷することにより、厚鋼板表面を変態させる温度調整工程、および、前記温度調整工程の後でかつ前記加速冷却工程の前に厚鋼板の表面にエネルギー密度が0.05J/mm以上の高圧水を噴射するデスケーリング工程を有することを特徴とする厚鋼板の製造方法。
  2. 前記デスケーリング工程において、前記高圧水の噴射圧力を10MPa以上とすることを特徴とする請求項1に記載の厚鋼板の製造方法。
  3. 熱間圧延装置、形状矯正装置、温度調整装置、デスケーリング装置および加速冷却装置をこの順序で搬送方向上流側から配置し、前記温度調整装置では、厚鋼板表面温度をAr変態点未満に空冷し、あるいは、厚鋼板の上下面に冷却水を水量密度0.3〜2.2m/m minで供給することにより水冷し、厚鋼板表面を変態させるとともに、前記デスケーリング装置では、厚鋼板の表面にエネルギー密度が0.05J/mm以上の高圧水を噴射することを特徴とする厚鋼板の製造設備。
  4. 前記デスケーリング装置において、前記高圧水の噴射圧力を10MPa以上とすることを特徴とする請求項3に記載の厚鋼板の製造設備。
JP2013065341A 2013-03-27 2013-03-27 厚鋼板の製造方法および製造設備 Active JP5720714B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013065341A JP5720714B2 (ja) 2013-03-27 2013-03-27 厚鋼板の製造方法および製造設備
CN201480018326.5A CN105073293B (zh) 2013-03-27 2014-03-20 厚钢板的制造方法及制造设备
EP14773154.1A EP2979769B1 (en) 2013-03-27 2014-03-20 Thick steel plate manufacturing method and manufacturing device
KR1020157025725A KR101691020B1 (ko) 2013-03-27 2014-03-20 후강판의 제조 방법 및 제조 설비
PCT/JP2014/001613 WO2014156085A1 (ja) 2013-03-27 2014-03-20 厚鋼板の製造方法および製造設備
TW103111428A TWI569898B (zh) 2013-03-27 2014-03-27 Manufacture method and manufacturing equipment of thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065341A JP5720714B2 (ja) 2013-03-27 2013-03-27 厚鋼板の製造方法および製造設備

Publications (3)

Publication Number Publication Date
JP2014188543A JP2014188543A (ja) 2014-10-06
JP2014188543A5 JP2014188543A5 (ja) 2014-11-27
JP5720714B2 true JP5720714B2 (ja) 2015-05-20

Family

ID=51623099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065341A Active JP5720714B2 (ja) 2013-03-27 2013-03-27 厚鋼板の製造方法および製造設備

Country Status (6)

Country Link
EP (1) EP2979769B1 (ja)
JP (1) JP5720714B2 (ja)
KR (1) KR101691020B1 (ja)
CN (1) CN105073293B (ja)
TW (1) TWI569898B (ja)
WO (1) WO2014156085A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6518948B2 (ja) * 2016-03-31 2019-05-29 Jfeスチール株式会社 鋼板の製造方法および製造設備
KR101940872B1 (ko) * 2016-12-21 2019-01-21 주식회사 포스코 유정관용 열연강판, 이를 이용한 강관 및 이들의 제조방법
CN112007963B (zh) * 2019-05-31 2022-08-12 宝山钢铁股份有限公司 带钢表面动态可调整除鳞压力控制方法和***
FR3112297B1 (fr) * 2020-07-07 2024-02-09 Constellium Neuf Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
JP2023528070A (ja) * 2020-06-04 2023-07-03 コンステリウム ヌフ-ブリザック リバース熱間圧延機上での冷却方法および設備

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330155A (ja) 1993-05-26 1994-11-29 Kawasaki Steel Corp 厚鋼板の冷却方法
US6068887A (en) * 1997-11-26 2000-05-30 Kawasaki Steel Corporation Process for producing plated steel sheet
JP2001300627A (ja) * 2000-04-18 2001-10-30 Nippon Steel Corp 厚鋼板冷却方法
KR100496607B1 (ko) * 2000-12-27 2005-06-22 주식회사 포스코 열연코일의 제조방법 및 그 장치
JP2003220401A (ja) * 2000-12-28 2003-08-05 Jfe Steel Kk 熱間圧延方法および熱間圧延ライン
KR101142620B1 (ko) * 2007-03-27 2012-05-03 신닛뽄세이테쯔 카부시키카이샤 박리의 발생이 없어 표면 성상 및 버링성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2010008090A1 (ja) * 2008-07-16 2010-01-21 Jfeスチール株式会社 熱鋼板の冷却設備および冷却方法
CN101456034B (zh) * 2009-01-06 2011-02-16 北京科技大学 一种生产x80级抗大变形管线钢中厚板的方法
JP5614040B2 (ja) * 2009-03-25 2014-10-29 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法
AT507663B1 (de) * 2009-04-09 2010-07-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum aufbereiten von warmwalzgut
JP5440203B2 (ja) * 2010-01-22 2014-03-12 Jfeスチール株式会社 高炭素熱延鋼板の製造方法

Also Published As

Publication number Publication date
JP2014188543A (ja) 2014-10-06
KR101691020B1 (ko) 2016-12-29
TWI569898B (zh) 2017-02-11
EP2979769A1 (en) 2016-02-03
EP2979769B1 (en) 2018-08-15
EP2979769A4 (en) 2016-03-02
WO2014156085A1 (ja) 2014-10-02
KR20150122186A (ko) 2015-10-30
CN105073293A (zh) 2015-11-18
TW201446353A (zh) 2014-12-16
CN105073293B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5614040B2 (ja) 厚鋼板の製造設備及び製造方法
JP5720714B2 (ja) 厚鋼板の製造方法および製造設備
JP2011167759A (ja) 熱延鋼板の冷却装置
JP4774887B2 (ja) 鋼板の冷却設備および製造方法
WO2007026906A1 (ja) 鋼板の冷却設備および冷却方法
WO2007026905A1 (ja) 鋼板の熱間圧延設備および熱間圧延方法
KR101219195B1 (ko) 후강판의 제조 장치
JP5515483B2 (ja) 厚鋼板の冷却設備および冷却方法
JP5962849B2 (ja) 厚鋼板の製造設備および製造方法
JP2010247227A (ja) 厚鋼板の製造設備及び製造方法
JP4876781B2 (ja) 鋼板の冷却設備および冷却方法
JP6264464B2 (ja) 厚鋼板の製造設備および製造方法
JP5387093B2 (ja) 熱鋼板の冷却設備
JP6108041B2 (ja) 厚鋼板の製造方法
JP4888124B2 (ja) 鋼材の冷却装置および冷却方法
JP2007203370A (ja) 鋼板の冷却設備および冷却方法
JP5246075B2 (ja) 熱鋼板の冷却設備および冷却方法
JP5347781B2 (ja) 熱鋼板の冷却設備および冷却方法
JP5228720B2 (ja) 厚鋼板の冷却設備

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250