JP5710527B2 - 燃料電池スタックおよび燃料電池システム - Google Patents

燃料電池スタックおよび燃料電池システム Download PDF

Info

Publication number
JP5710527B2
JP5710527B2 JP2012057404A JP2012057404A JP5710527B2 JP 5710527 B2 JP5710527 B2 JP 5710527B2 JP 2012057404 A JP2012057404 A JP 2012057404A JP 2012057404 A JP2012057404 A JP 2012057404A JP 5710527 B2 JP5710527 B2 JP 5710527B2
Authority
JP
Japan
Prior art keywords
fuel
electrode
oxidant
inlet
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012057404A
Other languages
English (en)
Other versions
JP2013191433A (ja
Inventor
雄史 松野
雄史 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2012057404A priority Critical patent/JP5710527B2/ja
Publication of JP2013191433A publication Critical patent/JP2013191433A/ja
Application granted granted Critical
Publication of JP5710527B2 publication Critical patent/JP5710527B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

実施形態は、燃料電池スタックおよび燃料電池システムに関する。
一般に、家庭用の燃料電池システムは、燃料電池セルを数十枚積層した燃料電池スタックを有している。燃料電池スタックは、水素含有ガス等の燃料ガスと、空気等の酸化剤ガスと、冷却水とを分離して流すために、セパレータと呼ばれる板を有している。セパレータには金属もしくはカーボンが用いられ、稠密なものもあれば多孔質のものもある。セパレータには冷却水を流す流路が設けてあり、燃料電池の発電に伴う廃熱を回収する。冷却水は熱容量が大きく、冷却水の温度は電解質膜の温度に大きく影響する。
電極に挟まれている電解質としては、固体高分子電解質膜が主流である。この電解質膜として、現在最も多く利用されているのが、パーフルオロスルホン酸型イオン交換膜である。
燃料電池は電解質膜が十分に水分を保持している状態で発電することが望ましく、電解質膜が乾燥すると、発電による電池電圧の低下が大きくなり、燃料電池システムの効率を低下させることが知られている。さらに、電解質膜が乾燥すると、電解質膜の化学的劣化を加速し、電解質膜の破断が生じる。電解質膜は孔があいてしまうと、酸素と水素が交じり合ってしまい、燃料電池の電圧が著しく低下し、燃料電池システムの運転継続が困難になる。そのため、加湿器を燃料電池システムに備え、加湿器により燃料ガスおよび酸化剤ガス(以下、「反応ガス」と称す。)を加湿してから燃料電池に供給することが、一般的である。
特開2006−49197号公報
しかしながら、加湿器は高価であり、また、加湿器の運転制御するための電力も必要となる。燃料電池システム全体のコストおよび効率の点から考えると、加湿器を燃料電池システムから除去することが望ましい。
一方、加湿器を燃料電池システムに備えないと、供給される反応ガスが低加湿になりやすく、反応ガス入口での電解質が乾燥しやすくなる。燃料極では水は生成されず、燃料極側から酸化剤極にプロトンH+が電解質膜を通って移動する際に、燃料極から水を一緒に引きずって持っていってしまうため、燃料極の水分は酸化剤極に比べて少ない。そのため、特に、燃料極入口の電解質膜の乾燥が顕著になる。
発明が解決しようとする課題は、コストを抑えつつ電解質膜の乾燥を抑制することができる燃料電池スタックおよびそれを含む燃料電池システムを提供することにある。
実施形態によれば、燃料電池スタックは、固体高分子電解質膜と、前記固体高分子電解質膜の一方の面に配置された燃料極と、前記固体高分子電解質膜の前記燃料極とは反対側の面に配置された酸化剤極と、前記燃料極に燃料ガスを供給する燃料極流路が形成された燃料極セパレータと、前記酸化剤極に酸化剤ガスを供給する酸化剤極流路が形成された酸化剤極セパレータと、前記燃料極セパレータもしくは前記酸化剤極セパレータの少なくとも一方の背面に水が通過する水流路とを備えたセルを積層した燃料電池スタックにおいて、前記水流路の入口は、鉛直方向において前記水流路の出口よりも低い位置に配置され、前記燃料極流路の入口、前記酸化剤極流路の入口および前記酸化剤極流路の出口は、セパレータ面上の領域のうち、前記水流路の上流側半分に相当する領域内に配置され、前記燃料極流路の入口は、前記酸化剤極流路の入口よりも前記酸化剤極流路の出口に近い位置に配置されており、前記酸化剤極セパレータ内の一部の酸化剤極流路を流れる酸化剤ガスを受け、当該酸化剤ガスをターンさせて前記酸化剤極セパレータ内の残りの酸化剤極流路に戻す酸化剤極ターン部マニホールドを更に具備する
第1および第2の実施形態に共通する燃料電池システムの概略構成を示す模式図。 図1中に示される燃料電池スタックの概略構成を示す断面図。 図2中に示される燃料電池セルの概略構成を示す斜視図。 第1の実施形態に係る燃料電池スタックに各種マニホールドを設けた状態における各種流体の流路パターンを示す概念図。 各種流体の流路パターンと共に温度分布を示す概念図。 冷却水の流れを逆にした場合の温度分布を示す概念図。 第2の実施形態に係る燃料電池スタックの概略構成を示す斜視図。 同実施形態に係る燃料電池スタックに各種マニホールドを設けた状態における各種流体の流路パターンを示す概念図。
以下、実施の形態について、図面を参照して説明する。
(第1の実施形態)
図1〜図6を参照して、第1の実施形態について説明する。
図1は、第1の実施形態に係る燃料電池システムの概略構成を示す模式図である。なお、図1の構成は、後述する第2の実施形態にも適用される。
本実施形態に係る燃料電池システムは、例えば、家庭用の燃料電池システムであり、燃料電池セルを数十枚積層した燃料電池スタック1と、燃料電池スタック1の燃料極へ燃料ガス(水素含有ガス)を供給する燃料ガス供給装置2と、燃料電池スタック1の酸化剤極へ酸化剤ガス(酸素含有ガス、空気)を供給する酸化剤供給装置3と、燃料電池スタック1の水流路へ冷却水を循環させる水循環装置4を備える。燃料ガスおよび酸化剤ガスは、無加湿で常温のまま燃料電池スタック1に供給される。
図2は、図1中に示される燃料電池スタック1の概略構成を示す断面図である。
燃料電池スタック1は、固体高分子電解質膜11と、この電解質膜11の一方の面に配置された燃料極12と、電解質膜11の燃料極12とは反対側の面に配置された酸化剤極13と、燃料極12に燃料ガスを供給する燃料極流路16が形成された燃料極セパレータ14と、酸化剤極13に酸化剤ガスを供給する酸化剤極流路17が形成された酸化剤極セパレータ15と、燃料極セパレータ14もしくは酸化剤極セパレータ15の少なくとも一方の背面に水が通過する水流路18とを備えた燃料電池セル19を、1層もしくは2層以上に積層して成るものである。
図2の例では、複数の燃料電池セル19が積層され、水流路18は、隣接するセルの間、具体的には燃料極セパレータ14もしくは酸化剤極セパレータ15の背面に設けられ、水流路18を流れる冷却水が燃料極セパレータ14および酸化剤極セパレータ15の双方を加湿するように構成されている。燃料極セパレータ14および酸化剤極セパレータ15は多孔質であり、加湿に必要な液水をポーラス内部に含み、電解質膜11を加湿することができる。また、水流路18は、後述するように蛇行形状(サーペンタイン状)を成している。この水流路18には、燃料ガスや酸化剤ガスよりも低い圧力の水が水循環装置4により供給されるようになっている。
図3は、図2中に示される燃料電池セル19の概略構成を示す斜視図である。
図3に示されるように、燃料電池セル19の周囲には、燃料極流路16の入口である燃料極流路入口21、酸化剤極流路17の入口である酸化剤極流路入口22、燃料極流路16の出口である燃料極流路出口23、酸化剤極流路17の出口である酸化剤極流路出口24、水流路18の入口である水流路入口25、および、水流路18の出口である水流路出口26が備えられる。
図4は、本実施形態に係る燃料電池スタック1に各種マニホールドを設けた状態における各種流体の流路パターンを示す概念図である。また、図5は、各種流体の流路パターンと共に温度分布を示す概念図である。
図4,図5中の符号Gが付された矢印は、重力の方向(鉛直方向)を示している。また、図5中の下線が付された温度表示は、それぞれの箇所における燃料極セパレータ14の温度を示し、下線が付されていない温度表示は、セパレータ流路の外側に位置するマニホールドもしくは配管内の温度を示している。
燃料電池セル19が積層された燃料電池スタック1には、図4に示されるように、酸化剤極入口マニホールド31、酸化剤極ターン部マニホールド32、酸化剤極出口マニホールド33、燃料極入口マニホールド34、燃料極ターン部マニホールド35、燃料極出口マニホールド36、冷却水入口マニホールド37、および冷却水出口マニホールド38が備えられる。
ここで、燃料極流路入口21、酸化剤極流路入口22、酸化剤極流路出口24、および水流路入口25は、セパレータ面上の領域のうち、冷却水F0が流れる蛇行形状(サーペンタイン状)の水流路18の上流側半分に相当する領域内に配置されている。特に、燃料極流路入口21は、酸化剤極流路入口22よりも酸化剤極流路出口24に近い位置に配置されている。また、燃料極流路入口21および酸化剤極流路入口22は、水流路入口25に比較的近い位置に配置されている。水流路入口25は、鉛直方向において水流路出口26よりも低い位置に配置され、水循環装置4により、水流路18を流れる冷却水F0が下降することなく流れるように構成されている。
酸化剤極入口マニホールド31は、酸化剤供給装置3から送られてくる酸化剤ガスF1を、各セルの酸化剤極流路入口22を通じて酸化剤極セパレータ15内の酸化剤極流路17(図2)へ供給する。
酸化剤極ターン部マニホールド32は、各セルの酸化剤極セパレータ15内の一部の酸化剤極流路17(図2)を流れる酸化剤ガスF1を受け、当該酸化剤ガスをターンさせて、各セルの酸化剤極セパレータ15内の残りの酸化剤極流路17に戻す。
酸化剤極出口マニホールド33は、各セルの酸化剤極セパレータ15内の酸化剤極流路17(図2)から酸化剤極流路出口24を通じて排出される酸化剤ガスF1を受け、配管を通じて送り出す。
燃料極入口マニホールド34は、燃料ガス供給装置2から送られてくる燃料ガスF2を、各セルの燃料極流路入口21を通じて燃料極セパレータ14内の燃料極流路16(図2)へ供給する。
燃料極ターン部マニホールド35は、各セルの燃料極セパレータ14内の一部の燃料極流路16(図2)を流れる燃料ガスF2を受け、当該燃料ガスF2をターンさせて、各セルの燃料極セパレータ14内の残りの燃料極流路16(図2)に戻す。
燃料極出口マニホールド36は、各セルの燃料極セパレータ14内の燃料極流路16(図2)から燃料極流路出口23を通じて排出される燃料ガスF2を受け、配管を通じて送り出す。
冷却水入口マニホールド37は、水循環装置4から送られてくる冷却水F0を、各セル間の水流路入口25を通じて蛇行形状の水流路18へ供給する。
冷却水出口マニホールド38は、各セル間の水流路18から水流路出口26を通じて排出される冷却水F0を受け、配管を通じて水循環装置4へ戻す。
なお、上述した各種のマニホールドは、セパレータ14,15と同一の部材により一体として構成されていてもよいし、セパレータ14,15とは別個の部材として構成されていてもよい。
このような構成において、酸化剤ガスF1は、酸化剤極入口マニホールド31から各セルの酸化剤極流路入口22を通じて酸化剤極セパレータ15内の一部の酸化剤極流路17(図2)を鉛直方向(重力とは逆の方向)に流れ、電極を通過し、電極上の流路よりも流路断面積が大きな酸化剤極ターン部マニホールド32に流入し、折り返して(180度ターンして)、再び、各セルの酸化剤極セパレータ15内の残りの酸化剤極流路17(図2)を鉛直方向(重力の方向)に流れ、電極を通過し、酸化剤極流路出口24から酸化剤極出口マニホールド33へ流入し、外部へ出る。
一方、燃料ガスF2は、燃料極入口マニホールド34から各セルの燃料極流路入口21を通じて燃料極セパレータ14内の一部の燃料極流路16(図2)を水平方向に流れ、電極を通過し、電極上の流路よりも流路断面積が大きな燃料極ターン部マニホールド35に流入し、折り返して(180度ターンして)、再び、各セルの燃料極セパレータ14内の残りの燃料極流路16(図2)を水平方向に流れ、電極を通過し、燃料極流路出口23から燃料極出口マニホールド36へ流入し、外部へ出る。
また、冷却水F0は、冷却水入口マニホールド37から水流路入口25を通じて、水流路18を蛇行状に流れて上昇し、水流路出口26から冷却水出口マニホールド38へ流入する。
本実施形態では、上述のように各種流体の流路パターンを構成することにより、図5に示されるような温度分布が得られる。
すなわち、セパレータ面上の領域のうち、冷却水F0が流れる蛇行形状の水流路18の上流側半分(図5中の破線の部分)に相当する領域は比較的低温であり、下流へ向かうにつれて温度が上昇し、高温になる。特に、各反応ガスが入る燃料極流路入口21および酸化剤極流路入口22は、水流路入口25に比較的近い位置に配置されているため、これら燃料極流路入口21および酸化剤極流路入口22近傍から温度が低いセル温度分布が形成される。
本実施形態では、冷却水F0が低い位置から高い位置へ向けて蛇行状に流れるように構成されているため、水流路18内に気泡が生じて冷却水が不均一に流れることを防ぎつつ、各セルから発生する熱を無駄なく効率的に回収することを可能としている。
もし、冷却水F0を高い位置から低い位置へ向けて流すと、水流路18内に気泡が生じて冷却水が不均一に流れ、各セルから発生する熱を効率よく回収することができず、各セルの温度が上昇してしまう。この場合、図6に示されるような温度分布となる。水流路出口26’の温度は、水流路入口25’の温度に対して高くなっておらず、冷却水F0の温度は最終的には上昇していないことがわかる。
更に、本実施形態では、酸化剤極流路入口22から入った酸化剤ガスは冷却水F0により冷却され、特に冷却水F0が入ってくる水流路入口25に近い酸化剤極流路出口24近傍で温度が低下し、酸化剤ガスに含まれる水蒸気が凝縮するため、酸化剤極流路出口24近傍では湿潤な酸化剤ガスが形成される。燃料極流路入口21は酸化剤極流路出口24に近い位置に配置されているため、燃料極流路入口21近傍の乾燥しやすい電解質膜が、酸化剤極流路出口24近傍を流れる湿潤な酸化剤ガスにより加湿され、乾燥が抑制される。
また、本実施形態では、酸化剤極流路入口22は、水流路入口25に比較的近い位置に設けられているため、酸化剤極流路入口22付近のセル温度は低く、水分が凝縮しやすく、その付近の電解質膜も加湿され、乾燥が抑制される。
また、本実施形態では、燃料極セパレータ14および酸化剤極セパレータ15が多孔質であり、また、燃料ガスや酸化剤ガスよりも低い圧力の水が水循環装置4から水流路18へ供給されるため、多孔質のセパレータが、余剰な液水(例えば、酸化剤極流路出口24付近で余剰となった液水など)を吸い取り、フラッディングを抑制することが可能となり、更に、低加湿な電解質膜の部分を、多孔質のセパレータが接している箇所から加湿することが可能となる。
また、本実施形態では、温度が低い水流路入口25付近に、各反応ガスが入る燃料極流路入口21および酸化剤極流路入口22が設けられており、電解質膜の温度が比較的低い箇所からセル内へ低加湿ガスを供給することができ、電解質膜からの水の蒸発を防ぎ、電解質膜の乾燥を防ぐことができる。すなわち、電解質膜の温度が低い箇所では水の蒸気圧や蒸気量は小さく、燃料ガスや空気などの反応ガスの水の蒸気圧が電解質膜の水の蒸気圧と同じもしくはそれよりも高ければ、電解質膜からの水の蒸発は無く、電解質膜の乾燥を防ぐことができる。
また、本実施形態では、燃料ガスや酸化剤ガスが、燃料極セパレータ14内や酸化剤極セパレータ15内の流路(電極上の流路など)でターンするのではなく、燃料極入口マニホールド34や酸化剤極ターン部マニホールド32でターンするように構成されているため、液水により反応ガスの流路が閉塞されて反応ガスが電極をバイパスして流れてしまうようなことがなく、フラッディングを防ぐことができる。更に、各マニホールドに溜まる液水を、多孔質のセパレータが、流路以外の部分から吸収するため、より一層効果的にフラッディングを防ぐことができる。
第1の実施形態によれば、低加湿運転時の電解質膜の乾燥を防ぐことが可能となり、結果として、燃料電池システムの効率低下を抑制し、高耐久化を実現する燃料電池システムを提供することができる。
(第2の実施形態)
前述の図1〜図6を参照するとともに、図7および図8を参照して、第2の実施形態について説明する。以下では、第1の実施形態と共通する部分の説明を省略し、第1の実施形態と異なる部分を中心に説明する。
図7は、第2の実施形態に係る燃料電池スタックの概略構成を示す斜視図である。また、図8は、同実施形態に係る燃料電池スタックに各種マニホールドを設けた状態における各種流体の流路パターンを示す概念図である。
第2の実施形態に係る燃料電池スタック1では、複数の燃料電池セル19の共通する部分、例えば、複数の燃料極セパレータ14および酸化剤極セパレータ15のそれぞれの上部中央付近に、樋の役割をするセパレータ切欠き部39が設けられる。この場合の燃料極セパレータ14および酸化剤極セパレータ15は、少なくともセパレータ切欠き部39に相当する部分が稠密であり、これ以外の部分は多孔質であってもよい。セパレータ切欠き部39は、1本だけでなく、複数本が一定の間隔で配列されていてもよい。また、同実施形態に係る燃料電池スタック1は、複数の燃料電池セル19と共に積層される導電性多孔質体40を両脇に備えている。
セパレータ切欠き部39は、酸化剤極ターン部マニホールド32で回収される液水を集め、両端部に位置する導電性多孔質体40へ導く。例えば、セパレータ切欠き部39は、中央部から両端部にかけて、液水が下降して流れるように傾斜している。導電性多孔質体40は、酸化剤極ターン部マニホールド32で回収されてセパレータ切欠き部39により集められた液水を吸収して燃料極流路入口21側の燃料極入口マニホールド34側へ浸み出させることができる。
また、燃料極流路入口21へ燃料ガスを導く燃料極入口配管41には、内壁部42が備えられる。内壁部42は、多孔質体であり、導電性多孔質体40から浸み出て燃料極入口マニホールド34に溜る液水を吸収することができる。内壁部42の内径の下端は、鉛直方向において燃料極流路入口21の内径の下端よりも低い位置に配置されている。
なお、導電性多孔質体40は、酸化剤極入口31、酸化剤極出口33、水流路入口37、水流路出口38に面している部分がシールされており、液水が導電性多孔質体40から燃料極流路入口21側の燃料極入口マニホールド34以外の部分に浸み出ていかないように構成されている。
このような構成において、酸化剤極ターン部32で排出される液水は、セパレータ切欠き部39に溜まって両端部へ流れ、導電性多孔質体40に吸収される。導電性多孔質体40に吸収された液水は、重力の方向に導電性多孔質体40を伝って下降し、燃料極入口マニホールド34側へ浸み出る。燃料極入口マニホールド34に浸み出た液水は、多孔質体である内壁部42に吸収される。内壁部42に蓄えられた液水は、乾いた燃料ガスが供給されると、蒸発して、燃料ガスを加湿する。
本実施形態では、セパレータ切欠き部39および導電性多孔質体40が設けられているため、酸化剤極ターン部32で過剰な液水を取り除くことができ、酸化剤極流路出口24等でのフラッディングを防ぐことができる。
また、本実施形態では、酸化剤極ターン部32で排出された過剰な液水は、セパレータ切欠き部39および導電性多孔質体40を通じて、燃料極入口マニホールド34へと移動し、多孔質体である内壁部42に吸収され、乾いた燃料ガスが供給されると、内壁部42に蓄えられた液水が蒸発して燃料ガスを加湿するため、燃料極入口21の電解質膜の乾燥を防ぐことができる。
また、本実施形態では、内壁部42の流路方向の寸法を長くとることにより、加湿能力を高めることができ、電解質膜の乾燥を防ぐ効果を高めることができる。
また、本実施形態では、内壁部42の内径の下端が鉛直方向において燃料極流路入口21の内径の下端よりも低い位置に配置されているため、余剰な液水が燃料極流路入口21に入ることを防ぐことができる。
第2の実施形態によれば、低加湿運転時の電解質膜の乾燥を防ぐ効果をより一層向上させることが可能となる。
以上詳述したように、各実施形態によれば、コストを抑えつつ電解質膜の乾燥を抑制することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…燃料電池スタック、2…燃料ガス供給装置、3…酸化剤供給装置、4…水循環装置、11…固体高分子電解質膜、12…燃料極、13…酸化剤極、14…燃料極セパレータ、15…酸化剤極セパレータ、16…燃料極流路、17…酸化剤極流路、18…水流路、19、燃料電池セル、21…燃料極流路入口、22…酸化剤極流路入口、23…燃料極流路出口、24…酸化剤極流路出口、25…水流路入口、26…水流路出口、31…酸化剤極入口マニホールド、32…酸化剤極ターン部マニホールド、33…酸化剤極出口マニホールド、34…燃料極入口マニホールド、35…燃料極ターン部マニホールド、36…燃料極出口マニホールド、37…冷却水入口マニホールド、38…冷却水出口マニホールド、39…セパレータ切欠き部、40…導電性多孔質体、41…燃料極入口配管、42…内壁部。

Claims (9)

  1. 固体高分子電解質膜と、前記固体高分子電解質膜の一方の面に配置された燃料極と、前記固体高分子電解質膜の前記燃料極とは反対側の面に配置された酸化剤極と、前記燃料極に燃料ガスを供給する燃料極流路が形成された燃料極セパレータと、前記酸化剤極に酸化剤ガスを供給する酸化剤極流路が形成された酸化剤極セパレータと、前記燃料極セパレータもしくは前記酸化剤極セパレータの少なくとも一方の背面に水が通過する水流路とを備えたセルを積層した燃料電池スタックにおいて、
    前記水流路の入口は、鉛直方向において前記水流路の出口よりも低い位置に配置され、
    前記燃料極流路の入口、前記酸化剤極流路の入口および前記酸化剤極流路の出口は、セパレータ面上の領域のうち、前記水流路の上流側半分に相当する領域内に配置され、
    前記燃料極流路の入口は、前記酸化剤極流路の入口よりも前記酸化剤極流路の出口に近い位置に配置されており、
    前記酸化剤極セパレータ内の一部の酸化剤極流路を流れる酸化剤ガスを受け、当該酸化剤ガスをターンさせて前記酸化剤極セパレータ内の残りの酸化剤極流路に戻す酸化剤極ターン部マニホールドを更に具備することを特徴とする燃料電池スタック。
  2. 前記燃料極セパレータおよび前記酸化剤極セパレータの少なくとも一部が多孔質であり、前記水流路には、前記燃料ガスおよび前記酸化剤ガスよりも低い圧力の水が供給されることを特徴とする請求項1に記載の燃料電池スタック。
  3. 前記酸化剤極ターン部マニホールドは、鉛直方向において前記燃料極流路の入口もしくは前記酸化剤極流路の入口の少なくとも一方よりも高い位置に配置されることを特徴とする請求項1又は2に記載の燃料電池スタック。
  4. 前記燃料極セパレータ内の一部の燃料極流路を流れる燃料ガスを受け、当該燃料ガスをターンさせて前記燃料極セパレータ内の残りの燃料極流路に戻す燃料極ターン部マニホールドを更に具備することを特徴とする請求項1乃至のいずれか1項に記載の燃料電池スタック。
  5. 前記セルと共に積層される導電性多孔質体を更に具備し、
    前記導電性多孔質体は、前記酸化剤極ターン部マニホールドで回収される液水を吸収して前記燃料極流路の入口側へ伝えることを特徴とする請求項に記載の燃料電池スタック。
  6. 前記酸化剤極ターン部マニホールドで回収される液水を集めて前記導電性多孔質体へ導く構造を有することを特徴とする請求項に記載の燃料電池スタック。
  7. 前記燃料極流路の入口へ燃料ガスを導く燃料極入口配管を更に具備し、
    前記燃料極入口配管の内壁部は、前記導電性多孔質体から浸み出る液水を吸収する多孔質体から成ることを特徴とする請求項又はに記載の燃料電池スタック。
  8. 前記燃料極入口配管の内壁部の内径の下端は、鉛直方向において前記燃料極流路の入口の内径の下端よりも低い位置に配置されていることを特徴とする請求項に記載の燃料電池スタック。
  9. 請求項1乃至のいずれか1項に記載の燃料電池スタックと、
    前記燃料極に燃料ガスを供給する燃料ガス供給装置と、
    前記酸化剤極に酸化剤ガスを供給する酸化剤供給装置と、
    前記水流路に水を循環させる水循環装置と
    を具備することを特徴とする燃料電池システム。
JP2012057404A 2012-03-14 2012-03-14 燃料電池スタックおよび燃料電池システム Active JP5710527B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057404A JP5710527B2 (ja) 2012-03-14 2012-03-14 燃料電池スタックおよび燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057404A JP5710527B2 (ja) 2012-03-14 2012-03-14 燃料電池スタックおよび燃料電池システム

Publications (2)

Publication Number Publication Date
JP2013191433A JP2013191433A (ja) 2013-09-26
JP5710527B2 true JP5710527B2 (ja) 2015-04-30

Family

ID=49391474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057404A Active JP5710527B2 (ja) 2012-03-14 2012-03-14 燃料電池スタックおよび燃料電池システム

Country Status (1)

Country Link
JP (1) JP5710527B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910923B2 (ja) * 2017-11-07 2021-07-28 株式会社東芝 燃料電池スタック
JP6930937B2 (ja) * 2018-03-15 2021-09-01 株式会社東芝 燃料電池、および燃料電池システム
DE112020004227T5 (de) * 2019-09-05 2022-05-19 Kabushiki Kaisha Toshiba Brennstoffzellenstapel und Verfahren zum Betrieb eines Brennstoffzellenstapels
JP7391800B2 (ja) * 2020-08-28 2023-12-05 株式会社東芝 固体高分子形燃料電池スタック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
JP2914898B2 (ja) * 1995-09-26 1999-07-05 株式会社東芝 固体高分子型燃料電池システム
JP3551810B2 (ja) * 1998-06-26 2004-08-11 トヨタ自動車株式会社 燃料電池用ガスセパレータおよび燃料電池並びに燃料電池におけるガスの流通方法
AU4007100A (en) * 1999-03-12 2000-09-28 International Fuel Cells, Llc Water management system for fuel cell
JP2010073626A (ja) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd 燃料電池用セパレータ及び燃料電池スタック
JP2010129484A (ja) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
JP2013191433A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4456188B2 (ja) 燃料電池スタック
JP5710527B2 (ja) 燃料電池スタックおよび燃料電池システム
US7744070B2 (en) External gas humidifier for fuel cell
JP2008103241A (ja) 燃料電池
JP2012134067A (ja) 燃料電池システム
JP2010129482A (ja) 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム
US7871732B2 (en) Single reactant gas flow field plate PEM fuel cell
JP2006156288A (ja) 燃料電池及び燃料電池の製造方法
JP5480082B2 (ja) 燃料電池
JP5474318B2 (ja) 燃料電池スタック
JP2007087742A (ja) 固体高分子形燃料電池
US9455455B2 (en) Evaporatively cooled fuel cells with water passageways enhanced by wicks
JP4177291B2 (ja) 燃料電池システム
JP7114511B2 (ja) 燃料電池および燃料電池用シール材
JP2007115620A (ja) 高分子電解質形燃料電池用セパレータおよび高分子電解質形燃料電池
JP2008146897A (ja) 燃料電池用セパレータおよび燃料電池
JP2013157315A (ja) 燃料電池
JP3981476B2 (ja) 燃料電池スタック
JP5243328B2 (ja) 燃料電池スタック
JP2010015805A (ja) 燃料電池
JP2008027804A (ja) 燃料電池
JP2008186696A (ja) 燃料電池
JP2023096724A (ja) 燃料電池
JP2007205678A (ja) 加湿装置
JP2012022865A (ja) 燃料電池スタック

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350