JP5708219B2 - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP5708219B2
JP5708219B2 JP2011106232A JP2011106232A JP5708219B2 JP 5708219 B2 JP5708219 B2 JP 5708219B2 JP 2011106232 A JP2011106232 A JP 2011106232A JP 2011106232 A JP2011106232 A JP 2011106232A JP 5708219 B2 JP5708219 B2 JP 5708219B2
Authority
JP
Japan
Prior art keywords
current
plate
cell
electrode
current measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106232A
Other languages
Japanese (ja)
Other versions
JP2012238460A (en
Inventor
伊豆原 英嗣
英嗣 伊豆原
信也 坂口
信也 坂口
稔 岡宮
稔 岡宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2011106232A priority Critical patent/JP5708219B2/en
Publication of JP2012238460A publication Critical patent/JP2012238460A/en
Application granted granted Critical
Publication of JP5708219B2 publication Critical patent/JP5708219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電気エネルギを出力する複数のセルが積層配置されて構成される燃料電池の電流を測定する電流検出装置に関する。   The present invention relates to a current detection apparatus that measures the current of a fuel cell configured by stacking a plurality of cells that output electrical energy.

従来、電気エネルギを出力する複数のセルを積層配置して構成された燃料電池に適用され、当該燃料電池のセルの局所部位を流れる電流を測定する電流測定装置が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a current measuring device that is applied to a fuel cell configured by stacking a plurality of cells that output electric energy and measures a current flowing through a local portion of the cell of the fuel cell is known (for example, a patent) Reference 1).

特許文献1に記載の電流測定装置は、電流を測定するための電流測定部を、同一の隣合うセル間に複数個配置し、電流測定部に流れる電流を測定することで、隣合うセル間を流れる電流分布を測定する構成としている。   In the current measuring device described in Patent Document 1, a plurality of current measuring units for measuring a current are arranged between the same adjacent cells, and the current flowing through the current measuring unit is measured, so that adjacent cells are measured. The distribution of current flowing through is measured.

特開2007−280643号公報JP 2007-280643 A

ところで、特許文献1に記載の電流測定装置は、隣合うセル間に配置された複数の電流測定部は、それぞれ電気的に絶縁されているものの、電流測定部に対向するセルの面内は、各電流測定部に対応して分割されていない。   By the way, in the current measuring device described in Patent Document 1, the plurality of current measuring units arranged between adjacent cells are electrically insulated, but the in-plane of the cell facing the current measuring unit is There is no division corresponding to each current measurement unit.

このため、隣合うセル間を流れる電流は、隣合うセルのうち、一方のセルから他方のセルへとセルの積層方向に流れる際に、セルの面方向(セルの積層方向に直交する方向)に流れ、精度よく局所電流を検出することができないことがある。   Therefore, when the current flowing between adjacent cells flows in the cell stacking direction from one cell to the other of the adjacent cells, the cell surface direction (direction orthogonal to the cell stacking direction) The local current may not be detected accurately.

例えば、図11に示すように、隣合うセル300のうち、電流流れ下流側のセル300bの一部に電流の流れを阻害する阻害部位(内部抵抗が高い部位)が存する場合、隣合うセル300間を流れる電流が、電流流れ下流側のセル300bにおける阻害部位を迂回して電流流れ上流側のセル300aの面方向に流れることがある。なお、図11は、隣合うセル間に配置された各電流測定部の電流の流れを示す説明図である。   For example, as shown in FIG. 11, when there is an inhibition site (site with high internal resistance) that inhibits the flow of current in a part of the cell 300 b on the downstream side of the current flow among the adjacent cells 300, the adjacent cell 300. The current flowing therethrough may flow in the surface direction of the cell 300a on the upstream side of the current flow, bypassing the inhibition site in the cell 300b on the downstream side of the current flow. In addition, FIG. 11 is explanatory drawing which shows the flow of the electric current of each electric current measurement part arrange | positioned between adjacent cells.

このように、隣合うセル300間においてセルの面方向に電流が流れると、複数の電流測定部310a〜310dのうち、一部の電流測定部310cには、対応する局所部位を流れる局所電流に加えて、他の電流測定部310dに流れるはずの電流が流れ込み、精度よく局所電流を検出することができないことがある。   As described above, when a current flows in the cell surface direction between the adjacent cells 300, some of the current measurement units 310a to 310d have a local current flowing through the corresponding local region. In addition, a current that should flow through the other current measurement unit 310d flows in, and the local current may not be detected accurately.

本発明は上記点に鑑みて、燃料電池のセルの局所部位を流れる電流の測定精度の向上を図ることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to improve the measurement accuracy of a current flowing through a local portion of a fuel cell.

上記目的を達成するため、請求項1に記載の発明では、酸素を主成分とする酸化剤ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを出力する複数のセル(10a)を積層配置して構成された燃料電池(10)に適用され、複数のセル(10a)のうち、隣合うセル(10a)間における複数の局所部位を流れる電流を測定する電流測定装置であって、隣合うセル(10a)間に配置された板状部材(100a)と、板状部材(100a)における複数の局所部位に対応する部位に設けられ、隣合うセル(10a)のうち電流流れ上流側のセルと電気的に接触する複数の電流測定部(101)と、複数の電流測定部(101)を流れる電流を検出する電流検出手段(103、51)と、板状部材(100a)のうち複数の電流測定部(101)の電流流れ下流側に設けられ、電流測定部(101)と隣合うセル(10a)のうち電流流れ下流側のセルとを電気的に接続する導電部(102)と、を備え、複数の電流測定部(101)は、互いに絶縁された状態で板状部材(100a)に設けられ、
電流測定部(101)は、電流流れ上流側のセルに電気的に接触する第1電極(111)、および板状部材(100a)の板面方向に沿って配置され、予め定めた抵抗値を有する板状の抵抗体(121)を有し、
第1電極(111)は、抵抗体(121)のうち板状部材(100a)の板面方向の一端側を電流流れ上流側のセルと電気的に接触させるものであり、
導電部(102)は、抵抗体(121)のうち板状部材(100a)の板面方向の他端側を電流流れ下流側のセルと電気的に接続するものであり、
電流検出手段(103、51)は、第1電極(111)と導電部(102)との電位差、および抵抗体(121)の抵抗値に基づいて、第1電極(111)と導電部(102)との間を流れる電流を検出するようになっており、
導電部(102)は、複数の電流測定部(101)のうち、少なくとも隣合う電流測定部の抵抗体に跨るように板状部材(100a)に設けられ
電流測定部(101)における抵抗体(121)には、板状部材(100a)の板面方向の一端側から板状部材(100a)の板面方向の他端側に向かって電流が流れ、この電流が、導電部(102)では電流流れ下流側のセルにおける阻害部位(X)を迂回するように流れることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of cells that output electrical energy by electrochemically reacting an oxidant gas containing oxygen as a main component and a fuel gas containing hydrogen as a main component ( 10a) is a current measuring device that is applied to a fuel cell (10) configured by stacking and measuring current flowing through a plurality of local parts between adjacent cells (10a) among a plurality of cells (10a). The plate-like member (100a) disposed between the adjacent cells (10a) and the plate-like member (100a) provided at a portion corresponding to a plurality of local portions, and the current of the adjacent cells (10a) A plurality of current measuring units (101) that are in electrical contact with the cells on the upstream side of the flow, current detection means (103, 51) for detecting currents flowing through the plurality of current measuring units (101), and a plate-like member (100a) multiple of the) Provided current flows downstream of the current measurement portion (101), a conductive portion for electrically connecting the current flow downstream side of the cell of the current measuring unit (101) and adjacent cells (10a) and (102) The plurality of current measuring units (101) are provided on the plate-like member (100a) in a state of being insulated from each other,
The current measuring unit (101) is arranged along the plate surface direction of the first electrode (111) and the plate-like member (100a) that are in electrical contact with the cell upstream of the current flow, and has a predetermined resistance value. Having a plate-like resistor (121) having,
The first electrode (111) is for electrically contacting one end side of the plate member (100a) in the plate surface direction of the resistor (121) with a cell on the current flow upstream side,
The conductive portion (102) is for electrically connecting the other end side of the plate-like member (100a) in the plate surface direction of the resistor (121) with a cell on the downstream side of the current flow.
Based on the potential difference between the first electrode (111) and the conductive portion (102) and the resistance value of the resistor (121), the current detection means (103, 51) is connected to the first electrode (111) and the conductive portion (102). ) To detect the current flowing between
The conductive portion (102) is provided on the plate-like member (100a) so as to straddle at least the resistor of the adjacent current measurement portion among the plurality of current measurement portions (101) .
A current flows from one end side in the plate surface direction of the plate member (100a) to the other end side in the plate surface direction of the plate member (100a) in the resistor (121) in the current measuring unit (101), This current flows in the conductive portion (102) so as to bypass the inhibition site (X) in the cell on the downstream side of the current flow .

これによると、電流流れ下流側のセル(10a)の一部に電流の流れを阻害する阻害部位が存する場合であっても、導電部(102)を介して当該阻害部位を迂回するように電流を流すことができる。これにより、各電流測定部(101)に他の電流測定部(101)に流れるはずの電流が回り込んでしまうことを抑制することができるので、燃料電池(10)のセル(10a)の局所部位を流れる電流の測定精度を向上させることができる。   According to this, even when there is an inhibition site that inhibits the flow of current in a part of the cell (10a) on the downstream side of the current flow, the current is bypassed via the conductive portion (102). Can flow. Thereby, since it can suppress that the electric current which should flow into another electric current measurement part (101) to each electric current measurement part (101) can be suppressed, local of the cell (10a) of a fuel cell (10) can be suppressed. The measurement accuracy of the current flowing through the part can be improved.

また、請求項に記載の発明では、隣合うセル間に配置された板状部材(100a)と、板状部材(100a)における複数の局所部位に対応する部位に設けられ、隣合うセル(10a)のうち電流流れ上流側のセルと電気的に接触する複数の第1電流測定部(101)と、板状部材(100a)における複数の局所部位に対応する部位に設けられ、隣合うセル(10a)のうち電流流れ下流側のセルと電気的に接触する複数の第2電流測定部(201)と、複数の第1電流測定部(101)を流れる電流を検出する第1電流検出手段(103、51)と、複数の第2電流測定部(201)を流れる電流を検出する第2電流検出手段(203、51)と、板状部材(100a)に設けられ、第1電流測定部(101)と第2電流測定部(201)とを電気的に接続する導電部(102)と、を備え、複数の第1電流測定部(101)は、互いに絶縁された状態で板状部材(100a)に設けられ、複数の第2電流測定部(201)は、互いに絶縁された状態で板状部材(100a)に設けられ、導電部(102)は、複数の第1電流測定部(101)のうち、少なくとも隣合う第1電流測定部に跨るように板状部材(100a)に配置されると共に、複数の第2電流測定部(201)のうち、少なくとも隣合う第2電流測定部に跨るように板状部材(100a)に設けられていることを特徴とする。 Moreover, in invention of Claim 2 , it is provided in the site | part corresponding to the some local site | part in the plate-shaped member (100a) arrange | positioned between adjacent cells, and plate-shaped member (100a), and an adjacent cell ( 10a), a plurality of first current measurement units (101) that are in electrical contact with cells on the upstream side of the current flow , and adjacent cells that are provided at sites corresponding to a plurality of local sites in the plate-like member (100a). A plurality of second current measurement units (201) in electrical contact with cells on the downstream side of the current flow in (10a), and first current detection means for detecting currents flowing through the plurality of first current measurement units (101) (103, 51), second current detection means (203, 51) for detecting a current flowing through the plurality of second current measurement units (201), and a plate-like member (100a), the first current measurement unit (101) and the second current measuring unit (20 And a plurality of first current measurement units (101) are provided on the plate-like member (100a) in a state of being insulated from each other, and a plurality of second current measurement units (101) are electrically connected to each other. The current measurement unit (201) is provided on the plate-like member (100a) in a state of being insulated from each other, and the conductive unit (102) is a first current that is at least adjacent among the plurality of first current measurement units (101). The plate-like member (100a) is arranged on the plate-like member (100a) so as to straddle the measurement part, and at least the second current measurement part adjacent to the second current measurement part (201). It is provided.

これによれば、請求項1に記載の発明と同様に、電流流れ下流側のセル(10a)の一部に電流の流れを阻害する阻害部位が存する場合であっても、導電部(102)を介して当該阻害部位を迂回するように電流を流すことができる。従って、燃料電池(10)のセル(10a)の局所部位を流れる電流の測定精度を向上させることができる。   According to this, similarly to the first aspect of the invention, even when there is an inhibition site that inhibits the flow of current in a part of the cell (10a) on the downstream side of the current flow, the conductive portion (102). A current can be passed to bypass the inhibition site. Therefore, the measurement accuracy of the current flowing through the local portion of the cell (10a) of the fuel cell (10) can be improved.

さらに、第1電流測定部(101)に加えて第2電流測定部(201)を設けているので、第1電流測定部(101)にて隣合うセル(10a)のうち電流流れ上流側のセルを流れる電流を検出すると共に、第2電流測定部(201)にて電流流れ下流側のセルを流れる電流を検出することができる。すなわち、隣合うセル(10a)の双方のセルを流れる電流を検出することが可能となる。 Further, since the second current measurement unit (201) is provided in addition to the first current measurement unit (101), the first current measurement unit (101) is adjacent to the cell (10a) on the upstream side of the current flow . While detecting the current flowing through the cell, the second current measuring unit (201) can detect the current flowing through the cell on the downstream side . That is, it is possible to detect the current flowing through both cells of the adjacent cell (10a).

また、請求項に記載の発明のように、請求項に記載の電流測定装置において、第1電流測定部(101)を、電流流れ上流側のセルに電気的に接触する第1電極(111)、および第1電極(111)と導電部(102)とを電気的に接続すると共に予め定めた抵抗値を有する第1抵抗体(121)を含む構成とし、第2電流測定部(201)を、電流流れ下流側のセルに電気的に接触する第2電極(231)、および第2電極(231)と導電部(102)とを電気的に接続すると共に予め定めた抵抗値を有する第2抵抗体(221)を含む構成とし、第1電流検出手段(103、51)にて、第1電極(111)と導電部(102)との電位差、および第1抵抗体(121)の抵抗値に基づいて、第1電極(111)と導電部(102)との間を流れる電流を検出し、第2電流検出手段(203、51)にて第2電極(231)と導電部(102)との電位差、および第2抵抗体(221)の抵抗値に基づいて、第2電極(231)と導電部(102)との間を流れる電流を検出する構成とすることが好ましい。 It is preferable as defined in claim 3, in the current measuring device according to claim 2, the first current measuring section (101), a first electrode in electrical contact with a cell current flows upstream ( 111), and the first electrode (111) and the conductive portion (102) are electrically connected and include a first resistor (121) having a predetermined resistance value, and the second current measuring portion (201) ) Is electrically connected to the second electrode (231) in contact with the cell downstream of the current flow , and the second electrode (231) and the conductive portion (102), and has a predetermined resistance value. The first resistor (121) includes a second resistor (221), and the first current detector (103, 51) has a potential difference between the first electrode (111) and the conductive portion (102) and the first resistor (121). Based on the resistance value, the first electrode (111) and the conductive portion (10 ) And a potential difference between the second electrode (231) and the conductive portion (102) and a resistance value of the second resistor (221) by the second current detection means (203, 51). Based on the above, it is preferable that the current flowing between the second electrode (231) and the conductive portion (102) is detected.

また、請求項に記載の発明では、請求項1ないしのいずれか1つに記載の電流測定装置において、導電部(102)は、セル(10a)における板状部材(100a)に対向する部位の抵抗値よりも低い導電性部材で構成されていることを特徴とする。 According to a fourth aspect of the present invention, in the current measuring device according to any one of the first to third aspects, the conductive portion (102) faces the plate-like member (100a) in the cell (10a). It is characterized by comprising a conductive member lower than the resistance value of the part.

これによれば、セル(10a)の面内よりも導電部(102)に電流が流れ易くなるので、各電流測定部(101)に、セル(10a)の面内を介して他の電流測定部(101)に流れるはずの電流が回り込んでしまうことを効果的に抑制することができる。   According to this, since it becomes easier for the current to flow through the conductive portion (102) than in the plane of the cell (10a), each current measuring portion (101) can receive another current measurement through the plane of the cell (10a). It is possible to effectively suppress the current that should flow through the portion (101) from flowing around.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態に係る燃料電池システムの全体構成図である。1 is an overall configuration diagram of a fuel cell system according to a first embodiment. 第1実施形態に係る燃料電池の斜視図である。1 is a perspective view of a fuel cell according to a first embodiment. 第1実施形態に係る電流測定部集合板の分解斜視図である。It is a disassembled perspective view of the current measurement part assembly board which concerns on 1st Embodiment. 第1実施形態に係る電流測定部集合板の部分断面図である。It is a fragmentary sectional view of the current measurement part assembly board concerning a 1st embodiment. 第1実施形態に係る電流測定部における電流の流れを示す説明図である。It is explanatory drawing which shows the flow of the electric current in the electric current measurement part which concerns on 1st Embodiment. 第1実施形態に係る燃料電池の発電状態が正常である場合の電流測定部集合板における電流の流れを示す説明図である。It is explanatory drawing which shows the flow of the electric current in the electric current measurement part assembly board in case the electric power generation state of the fuel cell which concerns on 1st Embodiment is normal. 第1実施形態に係る燃料電池の発電状態が異常となる場合の電流測定部集合板における電流の流れを示す説明図である。It is explanatory drawing which shows the flow of the electric current in the electric current measurement part assembly board when the electric power generation state of the fuel cell which concerns on 1st Embodiment becomes abnormal. 第2実施形態に係る電流測定部集合板の分解斜視図である。It is a disassembled perspective view of the current measurement part assembly board which concerns on 2nd Embodiment. 第2実施形態に係る電流測定部集合板の部分断面図である。It is a fragmentary sectional view of the current measurement part assembly board concerning a 2nd embodiment. 第2実施形態に係る電流測定部集合板における電流の流れを示す説明図である。It is explanatory drawing which shows the flow of the electric current in the electric current measurement part assembly board which concerns on 2nd Embodiment. 従来の隣合うセル間に配置された各電流測定部の電流の流れを示す説明図である。It is explanatory drawing which shows the flow of the electric current of each current measurement part arrange | positioned between the conventional adjacent cells.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本発明の第1実施形態について図1〜図7に基づいて説明する。図1は、本実施形態の電流測定装置100を適用した燃料電池システムの全体構成図である。この燃料電池システムは、電気自動車の一種である、いわゆる燃料電池車両に適用されており、車両走行用電動モータ等の電気負荷に電力を供給するものである。
(First embodiment)
1st Embodiment of this invention is described based on FIGS. FIG. 1 is an overall configuration diagram of a fuel cell system to which a current measuring device 100 of the present embodiment is applied. This fuel cell system is applied to a so-called fuel cell vehicle, which is a kind of electric vehicle, and supplies electric power to an electric load such as an electric motor for vehicle travel.

まず、燃料電池システムは、図1に示すように、水素と酸素との電気化学反応を利用して電力を発生する燃料電池10を備えている。燃料電池10は、図示しない車両走行用電動モータや2次電池といった電気負荷に供給される電気エネルギを出力するもので、本実施形態では、固体高分子電解質型燃料電池を採用している。   First, as shown in FIG. 1, the fuel cell system includes a fuel cell 10 that generates electric power using an electrochemical reaction between hydrogen and oxygen. The fuel cell 10 outputs electric energy supplied to an electric load such as a vehicle driving electric motor or a secondary battery (not shown). In the present embodiment, a solid polymer electrolyte fuel cell is employed.

より具体的には、燃料電池10は、基本単位となる燃料電池セル10a(以下、単にセル10aと記載する。)が複数個、電気的に直列に接続されるように積層配置されたものである。そして、各セル10aは、固体高分子からなる電解質膜(図示略)の両側面に一対の電極(図示略)が配置された膜電極接合体(MEA:Membrane Electrode Assembly)と、この膜電極接合体を狭持する一対のセパレータ(図示略)で構成されている。   More specifically, the fuel cell 10 is formed by stacking a plurality of fuel cell cells 10a (hereinafter simply referred to as cells 10a) as basic units so as to be electrically connected in series. is there. Each cell 10a includes a membrane electrode assembly (MEA) in which a pair of electrodes (not shown) are arranged on both sides of an electrolyte membrane (not shown) made of a solid polymer, and the membrane electrode joint. It consists of a pair of separators (not shown) that hold the body.

一対のセパレータ(図示略)は、カーボン材や導電性金属よりなる板状プレートからなり、負極(アノード電極)側と対向する面に水素が流れる水素流路(図示略)が形成され、正極(カソード電極)側と対向する面に空気が流れる空気流路(図示略)が形成されている。   The pair of separators (not shown) is made of a plate-like plate made of a carbon material or a conductive metal, and a hydrogen flow path (not shown) through which hydrogen flows is formed on a surface facing the negative electrode (anode electrode) side. An air flow path (not shown) through which air flows is formed on the surface facing the cathode electrode side.

各セル10aでは、以下に示すように、水素と酸素とを電気化学反応させて、電気エネルギを出力する。   In each cell 10a, as shown below, hydrogen and oxygen are electrochemically reacted to output electric energy.

(負極側)H→2H+2e
(正極側)2H+1/2O+2e→H
さらに、燃料電池10から出力される電気エネルギは、燃料電池10全体として出力される電圧を検出する電圧センサ11、および、燃料電池10全体として出力される電流を検出する電流センサ12によって計測される。なお、電圧センサ11および電流センサ12の検出信号は、後述する制御装置50に入力されている。
(Negative electrode side) H 2 → 2H + + 2e
(Positive electrode side) 2H + + 1 / 2O 2 + 2e → H 2 O
Furthermore, the electrical energy output from the fuel cell 10 is measured by a voltage sensor 11 that detects a voltage output as the entire fuel cell 10 and a current sensor 12 that detects a current output as the entire fuel cell 10. . The detection signals of the voltage sensor 11 and the current sensor 12 are input to the control device 50 described later.

また、燃料電池10の空気極(正極)側には、酸素を主成分とする酸化剤ガスである空気を燃料電池10に供給するための空気供給配管20a、並びに、燃料電池10にて電気化学反応を終えた余剰空気および空気極で生成された生成水を燃料電池10から外気へ排出するための空気排出配管20bが接続されている。   Further, on the air electrode (positive electrode) side of the fuel cell 10, an air supply pipe 20 a for supplying air, which is an oxidant gas mainly composed of oxygen, to the fuel cell 10, and electrochemical in the fuel cell 10. An air discharge pipe 20b for discharging the surplus air after the reaction and the generated water generated at the air electrode from the fuel cell 10 to the outside air is connected.

空気供給配管20aの最上流部には、大気中から吸入した空気を燃料電池10に圧送するための空気ポンプ21が設けられ、空気排出配管20bには、燃料電池10内の空気の圧力を調整するための空気調圧弁23が設けられている。なお、本実施形態では、空気ポンプ21および空気調圧弁23によって、所定の流量および圧力の空気を燃料電池10に供給する酸化剤ガス側のガス供給手段が構成される。   An air pump 21 is provided at the most upstream portion of the air supply pipe 20a to pump air sucked from the atmosphere to the fuel cell 10, and an air discharge pipe 20b adjusts the pressure of the air in the fuel cell 10. An air pressure regulating valve 23 is provided. In the present embodiment, the air pump 21 and the air pressure regulating valve 23 constitute gas supply means on the oxidant gas side that supplies air of a predetermined flow rate and pressure to the fuel cell 10.

さらに、空気供給配管20aおよび空気排出配管20bには、空気調圧弁23から流出した空気の有する湿度(水蒸気)を空気ポンプ21から圧送された空気へ移動させるための加湿器22が設けられている。この加湿器22は、複数本の中空糸にて構成されており、燃料電池10へ供給される空気を加湿する機能を果たす。   Further, the air supply pipe 20 a and the air discharge pipe 20 b are provided with a humidifier 22 for moving the humidity (water vapor) of the air flowing out from the air pressure regulating valve 23 to the air pumped from the air pump 21. . The humidifier 22 is composed of a plurality of hollow fibers and functions to humidify the air supplied to the fuel cell 10.

燃料電池10の水素極(負極)側には、水素を主成分とする燃料ガス(水素)を燃料電池10に供給するための水素供給配管30a、水素極側に溜まった生成水を微量な水素とともに燃料電池10から外気へ排出するための水素排出配管30bが接続されている。さらに、水素供給配管30aおよび水素排出配管30bは、水素循環配管30cを介して接続されている。   On the hydrogen electrode (negative electrode) side of the fuel cell 10, a hydrogen supply pipe 30 a for supplying a fuel gas (hydrogen) containing hydrogen as a main component to the fuel cell 10, and a small amount of generated water accumulated on the hydrogen electrode side In addition, a hydrogen discharge pipe 30b for discharging the fuel cell 10 to the outside air is connected. Furthermore, the hydrogen supply pipe 30a and the hydrogen discharge pipe 30b are connected via a hydrogen circulation pipe 30c.

水素供給配管30aの最上流部には、高圧水素が充填された高圧水素タンク31が設けられ、水素供給配管30aにおける高圧水素タンク31と燃料電池10との間には、燃料電池10に供給される水素の圧力を調整する水素調圧弁32が設けられている。なお、本実施形態では、この水素調圧弁32によって、所定の圧力の水素を燃料電池10に供給する燃料ガス側のガス供給手段が構成される。   A high-pressure hydrogen tank 31 filled with high-pressure hydrogen is provided at the most upstream portion of the hydrogen supply pipe 30a, and is supplied to the fuel cell 10 between the high-pressure hydrogen tank 31 and the fuel cell 10 in the hydrogen supply pipe 30a. A hydrogen pressure regulating valve 32 for adjusting the pressure of hydrogen is provided. In the present embodiment, the hydrogen pressure regulating valve 32 constitutes a gas supply means on the fuel gas side that supplies hydrogen at a predetermined pressure to the fuel cell 10.

水素排出配管30bには、生成水を微量な水素とともに外気へ排出するために所定の時間間隔で開閉する電磁弁34が設けられている。なお、上述の電気化学反応では、水素極側において生成水は発生しないものの、水素極側には、酸素極側から各セル10aの電解質膜を透過した生成水が溜まるおそれがある。このため、本実施形態では、水素排出配管30bおよび電磁弁34を設けている。   The hydrogen discharge pipe 30b is provided with an electromagnetic valve 34 that opens and closes at predetermined time intervals in order to discharge the produced water together with a small amount of hydrogen to the outside air. In the above-described electrochemical reaction, generated water is not generated on the hydrogen electrode side, but generated water that has permeated the electrolyte membrane of each cell 10a from the oxygen electrode side may accumulate on the hydrogen electrode side. For this reason, in this embodiment, the hydrogen discharge piping 30b and the solenoid valve 34 are provided.

水素循環配管30cは、水素供給配管30aの水素調圧弁32下流側と水素排出配管30bの電磁弁34上流側とを接続するように設けられており、これにより、燃料電池10から流出した未反応の水素を、燃料電池10に循環させて再供給している。さらに、水素循環配管30cには、燃料電池10内に水素を循環させるための水素ポンプ33が配置されている。 The hydrogen circulation pipe 30c is provided so as to connect the downstream side of the hydrogen pressure regulating valve 32 of the hydrogen supply pipe 30a and the upstream side of the electromagnetic valve 34 of the hydrogen discharge pipe 30b. Is recirculated to the fuel cell 10 and re-supplied. Further, a hydrogen pump 33 for circulating hydrogen in the fuel cell 10 is disposed in the hydrogen circulation pipe 30c.

ところで、燃料電池10は発電効率確保のために運転中一定温度(例えば80℃程度)に維持する必要がある。このため、燃料電池10には、燃料電池10を冷却するための冷却水回路40が接続されている。この冷却水回路40には、燃料電池10に冷却水(熱媒体)を循環させるウォータポンプ41、電動ファン42を備えたラジエータ(放熱器)43が設けられている。   By the way, the fuel cell 10 needs to be maintained at a constant temperature (for example, about 80 ° C.) during operation to ensure power generation efficiency. Therefore, a cooling water circuit 40 for cooling the fuel cell 10 is connected to the fuel cell 10. The coolant circuit 40 is provided with a water pump 41 that circulates coolant (heat medium) in the fuel cell 10 and a radiator 43 that includes an electric fan 42.

さらに、冷却水回路40には、冷却水を、ラジエータ43を迂回するように流すバイパス流路44が設けられている。冷却水回路40とバイパス流路44との合流点には、バイパス流路44に流れる冷却水流量を調整するための流路切替弁45が設けられている。この流路切替弁45の弁開度が調整されることによって、冷却水回路40の冷却能力が調整される。   Further, the cooling water circuit 40 is provided with a bypass flow path 44 through which the cooling water flows so as to bypass the radiator 43. A flow path switching valve 45 for adjusting the flow rate of the cooling water flowing through the bypass flow path 44 is provided at the junction of the cooling water circuit 40 and the bypass flow path 44. The cooling capacity of the cooling water circuit 40 is adjusted by adjusting the valve opening degree of the flow path switching valve 45.

また、冷却水回路40の燃料電池10の出口側付近には、燃料電池10から流出した冷却水の温度を検出する温度検出手段としての温度センサ46が設けられている。この温度センサ46により冷却水温度を検出することで、燃料電池10の温度を間接的に検出することができる。なお、この温度センサ46の検出信号も、制御装置50に入力される。   A temperature sensor 46 is provided near the outlet side of the fuel cell 10 in the cooling water circuit 40 as temperature detecting means for detecting the temperature of the cooling water flowing out from the fuel cell 10. By detecting the cooling water temperature by the temperature sensor 46, the temperature of the fuel cell 10 can be indirectly detected. The detection signal of the temperature sensor 46 is also input to the control device 50.

制御装置50は、入力信号に基づいて、燃料電池システムを構成する各種電気式アクチュエータの作動を制御するもので、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路にて構成されている。   The control device 50 controls the operation of various electric actuators constituting the fuel cell system on the basis of input signals, and is composed of a well-known microcomputer comprising a CPU, ROM, RAM, etc. and its peripheral circuits. Yes.

具体的には、制御装置50の入力側には、上述の電圧センサ11、電流センサ12および温度センサ46の検出信号等の他に、後述する電流測定装置100の電流検出回路51から出力される電流信号が入力される。   Specifically, on the input side of the control device 50, in addition to the detection signals of the voltage sensor 11, the current sensor 12, and the temperature sensor 46 described above, the current is output from a current detection circuit 51 of the current measurement device 100 described later. A current signal is input.

一方、出力側には、上述の空気ポンプ21、空気調圧弁23、水素調圧弁32、水素ポンプ33、電磁弁34、ウォータポンプ41、流路切替弁45等の各種電気式アクチュエータが接続されている。   On the other hand, on the output side, various electric actuators such as the air pump 21, the air pressure regulating valve 23, the hydrogen pressure regulating valve 32, the hydrogen pump 33, the electromagnetic valve 34, the water pump 41, and the flow path switching valve 45 are connected. Yes.

次に、本実施形態の電流測定装置100の詳細について説明する。本実施形態では、電流測定装置100にて、隣合うセル10aのうち、電流流れ上流側のセル10aを流れる電流を検出する例について説明する。   Next, details of the current measuring apparatus 100 of the present embodiment will be described. In the present embodiment, an example will be described in which the current measuring device 100 detects a current flowing through the cell 10a on the upstream side of the current flow among the adjacent cells 10a.

本実施形態の電流測定装置100は、電流測定部集合板(板状部材)100a、電流測定用電圧センサ103、および電流測定部集合板100aに設けられた複数の電流測定部101の各配置箇所に対応する部位の電流を検出して制御装置50へ出力する電流検出回路51を備えて構成されている。なお、本実施形態では、電流測定用電圧センサ103および電流検出回路51が電流検出手段を構成している。   The current measurement apparatus 100 according to the present embodiment includes a current measurement unit assembly plate (plate-like member) 100a, a current measurement voltage sensor 103, and a plurality of current measurement units 101 provided on the current measurement unit assembly plate 100a. Is provided with a current detection circuit 51 that detects the current of the part corresponding to the above and outputs it to the control device 50. In the present embodiment, the current measuring voltage sensor 103 and the current detection circuit 51 constitute current detection means.

まず、図2、図3により、本実施形態の電流測定部集合板100aについて説明する。電流測定部集合板100aは、複数の電流測定部101および導電部102が板状部材として一体的に構成されたものである。なお、図2は、燃料電池10の外観斜視図であり、図3は、電流測定部集合板100aの分解図である。また、図2に示すように、電流測定部集合板100aは、複数枚設けられており、それぞれ隣合うセル間に配置されている。   First, the current measurement unit assembly plate 100a of the present embodiment will be described with reference to FIGS. The current measurement unit aggregate plate 100a is configured such that a plurality of current measurement units 101 and a conductive unit 102 are integrally configured as a plate-like member. 2 is an external perspective view of the fuel cell 10, and FIG. 3 is an exploded view of the current measurement unit assembly plate 100a. In addition, as shown in FIG. 2, a plurality of current measurement unit assembly plates 100 a are provided, and are arranged between adjacent cells.

さらに、図3に示すように、電流測定部集合板100aは、配線パターンが形成(プリント)された第1プリント基板110、第2プリント基板130、および第3プリント基板120の3枚のプリント基板を有している。   Furthermore, as shown in FIG. 3, the current measurement unit assembly board 100 a includes three printed circuit boards including a first printed circuit board 110, a second printed circuit board 130, and a third printed circuit board 120 on which a wiring pattern is formed (printed). have.

電流測定部集合板100aのうち、第1〜第3プリント基板110〜130は、絶縁性接着剤を介在させた状態で、ホットプレスによって一体化された積層基板として構成されている。なお、第1〜第3プリント基板110〜130としては、一般的なガラスエポキシ基板を採用できる。   Of the current measuring unit assembly plate 100a, the first to third printed boards 110 to 130 are configured as a laminated board integrated by hot pressing with an insulating adhesive interposed therebetween. In addition, as a 1st-3rd printed circuit board 110-130, a general glass epoxy board | substrate is employable.

また、電流測定部集合板100aのうち、第1〜第3プリント基板110〜130を積層した積層基板には、対向する2辺(図3では、左右両辺)の付近に、それぞれ積層基板の表裏を貫通する貫通穴が3つ形成されている。これらの貫通穴は、セル10aを積層した際に、空気、水素および冷却水を流通させるためのマニホールドとして機能する。   In addition, among the current measurement unit assembly plate 100a, the laminated substrate in which the first to third printed boards 110 to 130 are laminated, the front and back of the laminated substrate are respectively located in the vicinity of two opposing sides (both left and right sides in FIG. 3). Three through-holes are formed to pass through. These through holes function as a manifold for circulating air, hydrogen, and cooling water when the cells 10a are stacked.

さらに、第1、第プリント基板110、10における両側のマニホールドの間には、複数の電流測定部101が、互いに絶縁された状態で直交する二方向にマトリックス状(格子状)に配置されている。より具体的には、本実施形態の電流測定部101は、図3に示すように、紙面上下方向に6個、紙面左右方向に7個のマトリックス状に配置されている。 Further, first, between the both sides of the manifold in the third printed circuit board 110, 2 0, a plurality of current measuring unit 101, arranged in a matrix (lattice shape) in two directions perpendicular with each other while being insulated from each other Has been. More specifically, as shown in FIG. 3, the current measuring units 101 of this embodiment are arranged in a matrix of six in the vertical direction on the paper and seven in the horizontal direction on the paper.

つまり、本実施形態では、電流測定部101が、同一の隣合うセル10a間に複数配置されている。これにより、複数個の電流測定部101が電流測定部集合板100aにおける片側面(本実施形態では電流流れ上流側のセル10aに対向する側の面)の全体に渡って配置されることになるので、本実施形態の電流測定装置100では、隣合うセル10aのうち、一方のセル(電流流れ上流側のセル)10aの面内における電流密度分布を測定することができる。   That is, in the present embodiment, a plurality of current measuring units 101 are arranged between the same adjacent cells 10a. As a result, the plurality of current measurement units 101 are arranged over the entire one side surface (in this embodiment, the surface facing the cell 10a on the upstream side of the current flow) of the current measurement unit assembly plate 100a. Therefore, in the current measuring apparatus 100 of the present embodiment, it is possible to measure the current density distribution in the plane of one cell (cell on the upstream side of the current flow) 10a among the adjacent cells 10a.

本実施形態の電流測定部101は、隣合うセル10aのうち一方のセル(電流流れ上流側のセル)10aに電気的に接触する第1電極111、および第1電極111と後述する導電部102とを電気的に接続するとともに予め定めた電気抵抗値を有する板状の抵抗体121を有して構成されている。   The current measuring unit 101 according to the present embodiment includes a first electrode 111 that is in electrical contact with one cell (cell on the upstream side of the current flow) 10a among adjacent cells 10a, and a first electrode 111 and a conductive unit 102 that will be described later. And a plate-like resistor 121 having a predetermined electric resistance value.

具体的には、第1電極111は、第1プリント基板110における電流流れ上流側のセル10aに対向する面(図3の紙面手前側)に配置され、抵抗体121は、第3プリント基板120のうち第1プリント基板110に対向する側(図3の紙面手前側)の面に配置されている。   Specifically, the first electrode 111 is disposed on a surface (front side of the paper in FIG. 3) facing the cell 10 a on the upstream side of the current flow in the first printed circuit board 110, and the resistor 121 is configured by the third printed circuit board 120. Among these, it is arranged on the surface facing the first printed circuit board 110 (the front side in FIG. 3).

一方、第3プリント基板120のうち抵抗体121が形成されている側と反対側(図3の紙面奥側)の面には、電流測定用配線122が設けられている。さらに、第3プリント基板120の1辺には、電流測定用配線122が接続された信号取り出し用のコネクタ123が設けられている。なお、図3では、電流測定用配線122を破線で囲まれた斜線で示している。また、これらの第1電極111、抵抗体121および電流測定用配線122は、金属箔(具体的には銅箔)にて、第1第3プリント基板110、120に配線パターンとして形成されている。 On the other hand, a current measurement wiring 122 is provided on the surface of the third printed circuit board 120 opposite to the side on which the resistor 121 is formed (the back side in FIG. 3). Further, on one side of the third printed circuit board 120, a signal extracting connector 123 to which a current measuring wiring 122 is connected is provided. In FIG. 3, the current measurement wiring 122 is indicated by diagonal lines surrounded by a broken line. Further, the first electrode 111, the resistor 121, and the current measurement wiring 122 are formed as a wiring pattern on the first and third printed circuit boards 110 and 120 with a metal foil (specifically, a copper foil). Yes.

導電部102は、板状の導電性部材(金属板)で構成され、電流測定部101の抵抗体121と電流流れ下流側のセル10aとを電気的に接続するものである。   The electroconductive part 102 is comprised with a plate-shaped electroconductive member (metal plate), and electrically connects the resistor 121 of the electric current measurement part 101 and the cell 10a on the current flow downstream side.

本実施形態の導電部102は、複数の電流測定部101の各抵抗体121に跨るように設けられている。これにより、複数の電流測定部101の抵抗体121同士は、互いに導電部102を介して電気的に接続されている。   The conductive portion 102 of the present embodiment is provided so as to straddle each resistor 121 of the plurality of current measuring portions 101. Thereby, the resistors 121 of the plurality of current measuring units 101 are electrically connected to each other via the conductive unit 102.

また、本実施形態の導電部102は、セル10aにおける電流測定部集合板100aに対向する部位よりも電流が流れ易いように、導電部102の抵抗値が、セル10aにおける電流測定部集合板100aに対向する部位の抵抗値よりも小さい導電性部材で構成されている。   In addition, in the conductive portion 102 of the present embodiment, the resistance value of the conductive portion 102 is such that the current measurement portion collective plate 100a in the cell 10a has a resistance value so that current flows more easily than the portion of the cell 10a facing the current measureable portion collective plate 100a. It is comprised with the electroconductive member smaller than the resistance value of the site | part which opposes.

より詳しくは、セル10aにおける電流測定部集合板100aに対向する部位は、セル10aにおける水素流路または空気流路が形成されたセパレータであり、導電部102の抵抗値は、セパレータにおける面方向(セル10aの積層方向に直交する方向)の抵抗値よりも小さい導電性部材で構成されている。なお、導電部102は、その抵抗値がセパレータにおける面方向の抵抗値の1/4以下となる導電性部材で構成することが好ましい。   More specifically, the portion of the cell 10a that faces the current measurement unit assembly plate 100a is a separator in which a hydrogen channel or an air channel in the cell 10a is formed, and the resistance value of the conductive unit 102 is determined by the surface direction ( It is comprised with the electroconductive member smaller than the resistance value of the direction orthogonal to the lamination direction of the cell 10a. In addition, it is preferable to comprise the electroconductive part 102 with the electroconductive member from which the resistance value becomes 1/4 or less of the resistance value of the surface direction in a separator.

具体的には、導電部102は第2プリント基板130における電流流れ下流側のセル10aに対向する面(図3の紙面奥側)の全域に配置されている。すなわち、導電部102をセル10aの積層方向から見たときに、導電部102と各電流測定部101とが重合するように配置されている。 Specifically, the conductive portion 102 is disposed over the entire surface facing the cells 10a of the current flow downstream side of the second printed circuit board 130 (rear side of the plane of FIG. 3). That is, when the conductive portion 102 is viewed from the stacking direction of the cells 10a, the conductive portion 102 and each current measuring portion 101 are arranged to overlap.

次に、図4、図5により、電流測定部101および導電部102の具体的積層態様、並びに、電流測定部集合板100aにおける電流測定部101と導電部102の電気的接続態様を説明する。なお、図4は、本実施形態に係る電流測定部集合板100aの部分断面図であり、図5は、本実施形態に係る電流測定部101における電流の流れを示す説明図である。   Next, with reference to FIG. 4 and FIG. 5, a specific lamination mode of the current measurement unit 101 and the conductive unit 102 and an electrical connection mode of the current measurement unit 101 and the conductive unit 102 in the current measurement unit assembly plate 100a will be described. FIG. 4 is a partial cross-sectional view of the current measurement unit assembly plate 100a according to the present embodiment, and FIG. 5 is an explanatory diagram showing a current flow in the current measurement unit 101 according to the present embodiment.

図4に示すように、第1プリント基板110と第3プリント基板120の間と、第3プリント基板120と第2プリント基板130の間には、電気絶縁性を有する絶縁性接着剤112、124が配置されている。また、第1〜第3プリント基板110〜130には、複数の丸孔形状の第1、第2スルーホール101a、101bが設けられている。   As shown in FIG. 4, insulating adhesives 112 and 124 having electrical insulation are provided between the first printed circuit board 110 and the third printed circuit board 120 and between the third printed circuit board 120 and the second printed circuit board 130. Is arranged. The first to third printed boards 110 to 130 are provided with a plurality of first and second through holes 101a and 101b having a round hole shape.

この第1、第2スルーホール101a、101bの内周面には、第1電極111等と同様の金属箔から構成される導電体が形成されている。そして、第1スルーホール101aを介して、第1電極111、抵抗体121および電流測定用配線122が電気的に接続され、第2スルーホール101bを介して、抵抗体121、電流測定用配線122、および導電部102が電気的に接続されている。   A conductor made of a metal foil similar to that of the first electrode 111 and the like is formed on the inner peripheral surfaces of the first and second through holes 101a and 101b. Then, the first electrode 111, the resistor 121, and the current measurement wiring 122 are electrically connected through the first through hole 101a, and the resistor 121, the current measurement wiring 122 are connected through the second through hole 101b. , And the conductive portion 102 are electrically connected.

また、第1電極111は抵抗体121の一端側に接続され、導電部102は抵抗体121の他端側に接続されている。このため、抵抗体121では、図5に示すように、抵抗体121の一端側から他端側へ電流が流れる。   The first electrode 111 is connected to one end side of the resistor 121, and the conductive portion 102 is connected to the other end side of the resistor 121. For this reason, in the resistor 121, as shown in FIG. 5, a current flows from one end side of the resistor 121 to the other end side.

また、第1、第2スルーホール101a、101bは、それぞれ電流測定用配線122および外部配線を介して、電流測定用電圧センサ103に接続されている。電流測定用電圧センサ103は、第1電極111と同電位となる第1スルーホール101aと導電部102と同電位となる第2スルーホール101bとの2点間の電位差を検出して、検出信号を電流検出回路51に出力する電位差検出手段である。   The first and second through holes 101a and 101b are connected to the current measurement voltage sensor 103 via the current measurement wiring 122 and the external wiring, respectively. The voltage sensor 103 for current measurement detects a potential difference between two points of the first through hole 101a having the same potential as the first electrode 111 and the second through hole 101b having the same potential as the conductive portion 102, and detects a detection signal. Is a potential difference detection means for outputting to the current detection circuit 51.

ここで、導電部102には、第1スルーホール101aとの導通を遮断する絶縁用穴部102aが形成されている。これにより、第1スルーホール101aを流れる電流が直接導電部102に流れないようになっている。   Here, the conductive portion 102 is formed with an insulating hole portion 102a that blocks conduction with the first through hole 101a. As a result, the current flowing through the first through hole 101a does not flow directly into the conductive portion 102.

次に、上述のように構成される電流測定装置100による電流測定方法について図6、図7に基づいて説明する。図6は、セル10aにて正常に発電が行われている場合(燃料電池10の発電状態が正常である場合)の電流測定部集合板100aにおける電流の流れを示す説明図であり、図7は、セル10aにて正常に発電が行われていない場合(燃料電池10の発電状態が異常となる場合)の電流測定部集合板100aにおける電流の流れを示す説明図である。なお、以下では、説明の便宜のため、図6および図7に示す3つの電流測定部101を左側から順に電流測定部A、電流測定部B、電流測定部Cとする。   Next, a current measuring method by the current measuring apparatus 100 configured as described above will be described with reference to FIGS. FIG. 6 is an explanatory diagram showing the flow of current in the current measuring unit assembly plate 100a when power generation is normally performed in the cell 10a (when the power generation state of the fuel cell 10 is normal). These are explanatory drawings which show the flow of the electric current in the electric current measurement part assembly board 100a when electric power generation is not normally performed in the cell 10a (when the electric power generation state of the fuel cell 10 becomes abnormal). In the following, for convenience of explanation, the three current measurement units 101 shown in FIGS. 6 and 7 are referred to as a current measurement unit A, a current measurement unit B, and a current measurement unit C in order from the left side.

燃料電池10に水素および空気が供給されることで、燃料電池10の発電が開始される。燃料電池10の発電状態が正常である場合には、電流測定装置100の各電流測定部A〜Cでは、図6で示すように、電流流れ方向上流側のセル10a(図中上方側のセル)から第1電極111の板面→第1電極111→第1スルーホール101a→抵抗体121→第2スルーホール101b→導電部102の順に流れる。そして、導電部102に流れた電流は、電流流れ下流側のセル10a(図中下方側のセル)に流れる。   By supplying hydrogen and air to the fuel cell 10, power generation of the fuel cell 10 is started. When the power generation state of the fuel cell 10 is normal, each of the current measuring units A to C of the current measuring device 100 has a cell 10a on the upstream side in the current flow direction as shown in FIG. ) Through the plate surface of the first electrode 111 → the first electrode 111 → the first through hole 101a → the resistor 121 → the second through hole 101b → the conductive portion 102. The current flowing in the conductive portion 102 flows to the cell 10a (the cell on the lower side in the figure) on the downstream side of the current flow.

この際、電流測定用電圧センサ103で抵抗体121の一端側および他端側の電位差を測定する。そして、電流検出回路51では、電流測定用電圧センサ103による検出電位差を、記憶回路51aに記憶された値(抵抗体121の抵抗値)で除する演算処理を行うことで、抵抗体121に流れた電流値を算出する。これにより、隣合うセル10aのうち、電流流れ上流側のセル10aの面内における電流測定装置100の各電流測定部101に対応する部位(局所部位)の電流値を測定することができ、制御装置50では、電流流れ上流側のセル10aの面内における電流分布を測定することができる。 At this time, the potential difference between the one end side and the other end side of the resistor 121 is measured by the current measuring voltage sensor 103. Then, the current detection circuit 51 flows into the resistor 121 by performing arithmetic processing to divide the detected potential difference by the current measurement voltage sensor 103 by the value (resistance value of the resistor 121) stored in the storage circuit 51a. The calculated current value is calculated. Thereby, the electric current value of the site | part (local site | part) corresponding to each electric current measurement part 101 of the electric current measurement apparatus 100 in the surface of the cell 10a of an electric current flow upstream among adjacent cells 10a can be measured, and control is carried out. In the apparatus 50, the current distribution in the plane of the cell 10a on the upstream side of the current flow can be measured.

ここで、電流流れ下流側のセル10aの電解質膜の一部が乾燥すること等によって、電流流れ下流側のセル10aの一部に電流の流れを阻害する部位(阻害部位X)が存する場合(燃料電池10の発電状態が異常となる場合)がある(図7、図11参照)。   Here, when a portion (inhibition site X) that inhibits the flow of current exists in a part of the cell 10a on the downstream side of the current flow due to drying of a part of the electrolyte membrane of the cell 10a on the downstream side of the current flow (for example) There is a case where the power generation state of the fuel cell 10 becomes abnormal) (see FIGS. 7 and 11).

この場合、電流測定装置100の各電流測定部A〜Cでは、図7で示すように、電流流れ方向上流側のセル10a(図中上方側のセル)から第1電極111の板面→第1電極111→第1スルーホール101a→抵抗体121→第2スルーホール101b→導電部102の順に流れる。そして、導電部102に流れる電流は、電流流れ下流側のセル10a(図中下方側のセル)に流れる。   In this case, in each of the current measuring units A to C of the current measuring device 100, as shown in FIG. 7, the plate surface of the first electrode 111 from the upstream cell 10a (the upper cell in the figure) to the first electrode It flows in the order of 1 electrode 111 → first through hole 101a → resistor 121 → second through hole 101b → conductive portion 102. And the electric current which flows into the electroconductive part 102 flows into the cell 10a (lower cell in a figure) of an electric current flow downstream.

この際、導電部102における電流測定部Cに対向する部位では、電流流れ下流側のセル10aにおける阻害部位Xを迂回するように電流が流れる。これにより、各電流測定部A〜Cには、他の電流測定部に流れるはずの電流が流れ込むことなく、電流流れ上流側のセル10aの局所部位からの電流が流れる。 At this time, in the part of the conductive part 102 facing the current measurement part C, current flows so as to bypass the inhibition part X in the cell 10a on the downstream side of the current flow. Thereby, the current from the local part of the cell 10a on the upstream side of the current flow flows through each of the current measuring units A to C without flowing the current that should flow to the other current measuring units.

以上説明した本実施形態の電流測定装置100では、各電流測定部101と電流流れ下流側のセル10aとの間に各電流測定部101に跨るように導電部102を配置する構成としているので、電流流れ下流側のセル10aの一部に電流の流れを阻害する阻害部位が存する場合であっても、電流測定部101の電流流れ下流側の導電部102を介して当該阻害部位を迂回するように電流が流れる。   In the current measuring apparatus 100 of the present embodiment described above, since the conductive portion 102 is arranged so as to straddle each current measuring portion 101 between each current measuring portion 101 and the cell 10a on the downstream side of the current flow, Even in the case where an inhibition site that inhibits the flow of current exists in a part of the cell 10a on the downstream side of the current flow, the inhibition site is bypassed through the conductive portion 102 on the downstream side of the current flow of the current measurement unit 101. Current flows through

これにより、各電流測定部101に他の電流測定部101に流れるはずの電流が回り込んでしまうことを抑制することができるので、燃料電池10のセル10aの局所部位を流れる電流の測定精度を向上させることができる。   As a result, it is possible to suppress the current that should flow to the other current measuring units 101 from flowing to each current measuring unit 101, and thus the measurement accuracy of the current flowing through the local portion of the cell 10a of the fuel cell 10 can be improved. Can be improved.

また、本実施形態では、導電部102をセル10aにおける電流測定部集合板(板状部材)100aに対向する部位の抵抗値よりも低い導電性部材で構成しているので、セル10aの面内よりも導電部102に電流が流れ易くなる。このため、各電流測定部101に、セル10aの面内を介して他の電流測定部101に流れるはずの電流が回り込んでしまうことを効果的に抑制することができる。   In the present embodiment, since the conductive portion 102 is formed of a conductive member having a resistance value lower than the resistance value of the portion of the cell 10a that faces the current measuring portion assembly plate (plate member) 100a, the in-plane of the cell 10a. It becomes easier for the current to flow through the conductive portion 102. For this reason, it is possible to effectively prevent each current measuring unit 101 from flowing into the current that should flow to the other current measuring unit 101 through the surface of the cell 10a.

また、第1電極111、抵抗体121、電流測定用配線122、および導電部102を第1〜第3プリント基板110〜130に形成し、第1〜第3プリント基板110〜130を積層基板としているので、電流測定部集合板100aの積層方向の厚み寸法を低減でき、電流測定装置100全体としての小型化を図ることができる。   Further, the first electrode 111, the resistor 121, the current measurement wiring 122, and the conductive portion 102 are formed on the first to third printed boards 110 to 130, and the first to third printed boards 110 to 130 are used as the laminated boards. Therefore, the thickness dimension of the current measurement unit assembly plate 100a in the stacking direction can be reduced, and the current measurement apparatus 100 as a whole can be reduced in size.

(第2実施形態)
次に、本発明の第2実施形態について図8〜図10に基づいて説明する。図8は、本実施形態に係る電流測定部集合板100aの分解斜視図であり、図9は本実施形態に係る電流測定部集合板100aの部分断面図である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is an exploded perspective view of the current measurement unit assembly plate 100a according to this embodiment, and FIG. 9 is a partial cross-sectional view of the current measurement unit assembly plate 100a according to this embodiment.

上述の第1実施形態の電流測定装置100では、隣合うセル10aの一方のセル(電流流れ上流側のセル)における局所部位を流れる電流を測定する構成としているが、本実施形態では、隣合うセル10aの双方の局所部位を流れる局所電流を測定する構成としている。なお、以下の実施形態では、第1実施形態と同等または均等な構成については、その説明を省略、あるいは簡略化して説明する。   In the current measuring apparatus 100 of the first embodiment described above, the current flowing through the local portion in one cell (cell upstream of the current flow) of the adjacent cells 10a is measured. The local current flowing through both local parts of the cell 10a is measured. In the following embodiments, descriptions of the same or equivalent configurations as in the first embodiment will be omitted or simplified.

本実施形態の電流測定装置100は、電流測定部集合板100a、第1電流測定用電圧センサ103、第2電流測定用電圧センサ203、および電流測定部集合板100aに設けられた各電流測定部101、201の各配置箇所に対応する部位の電流を検出して制御装置50へ出力する電流検出回路51を備えて構成されている。なお、本実施形態では、第1電流測定用電圧センサ103および電流検出回路51が第1電流検出手段を構成し、第2電流測定用電圧センサ203および電流検出回路51が第2電流検出手段を構成している。   The current measurement device 100 according to the present embodiment includes a current measurement unit assembly plate 100a, a first current measurement voltage sensor 103, a second current measurement voltage sensor 203, and each current measurement unit provided in the current measurement unit assembly plate 100a. 101 and 201 are provided with a current detection circuit 51 that detects a current of a portion corresponding to each arrangement location and outputs the current to the control device 50. In the present embodiment, the first current measurement voltage sensor 103 and the current detection circuit 51 constitute a first current detection means, and the second current measurement voltage sensor 203 and the current detection circuit 51 constitute a second current detection means. It is composed.

本実施形態の電流測定部集合板100aは、隣合うセル10aのうち電流流れ上流側のセル(一方のセル)と電気的に接触する複数の第1電流測定部101、電流流れ下流側のセル(他方のセル)と電気的に接触する複数の第2電流測定部201、第1電流測定部101と前記第2電流測定部201とを電気的に接続する導電部102が一体に構成されている。   The current measurement unit assembly plate 100a of the present embodiment includes a plurality of first current measurement units 101 that are in electrical contact with a cell (one cell) on the upstream side of the current flow among the adjacent cells 10a, and cells on the downstream side of the current flow. A plurality of second current measurement units 201 that are in electrical contact with (the other cell), and a conductive unit 102 that electrically connects the first current measurement unit 101 and the second current measurement unit 201 are integrally configured. Yes.

具体的には、図8に示すように、電流測定部集合板100aは、配線パターンが形成(プリント)された第1〜第6プリント基板110〜230の6枚のプリント基板を有している。なお、各プリント基板110〜230は、絶縁性接着剤を介在させた状態で、ホットプレスによって一体化された積層基板として構成されている。   Specifically, as illustrated in FIG. 8, the current measurement unit assembly board 100 a includes six printed circuit boards, which are first to sixth printed circuit boards 110 to 230 on which wiring patterns are formed (printed). . Each of the printed boards 110 to 230 is configured as a laminated board integrated by hot pressing with an insulating adhesive interposed.

第1、第2プリント基板110、130には、複数の第1電流測定部101が、互いに絶縁された状態で配置され、第5、第6プリント基板220、230には、複数の第2電流測定部201が、互いに絶縁された状態で配置されている。   A plurality of first current measuring units 101 are disposed on the first and second printed circuit boards 110 and 130 in a state of being insulated from each other, and a plurality of second currents are disposed on the fifth and sixth printed circuit boards 220 and 230. The measurement parts 201 are arranged in a state of being insulated from each other.

つまり、本実施形態では、複数の第1電流測定部101が電流測定部集合板100aにおける電流流れ上流側のセル10aに対向する側の面の全体に渡って配置され、複数の第2電流測定部201が電流測定部集合板100aにおける電流流れ下流側のセル10aに対向する側の面の全体に渡って配置されることになる。このため、本実施形態の電流測定装置100では、隣合うセル10aの双方のセル10aの面内における電流密度分布を測定することができる。   In other words, in the present embodiment, the plurality of first current measurement units 101 are arranged over the entire surface of the current measurement unit assembly plate 100a facing the cell 10a on the upstream side of the current flow, and the plurality of second current measurement units are arranged. The part 201 is arranged over the entire surface of the current measuring part assembly plate 100a facing the cell 10a on the downstream side of the current flow. For this reason, in the current measuring apparatus 100 of this embodiment, the current density distribution in the surface of both the cells 10a of the adjacent cells 10a can be measured.

本実施形態の第1電流測定部101は、第1実施形態で説明した電流測定部と同様に構成され、第2電流測定部201は、第1電流測定部101と基本的構成は同様であり、以下のように構成される。   The first current measurement unit 101 of the present embodiment is configured in the same manner as the current measurement unit described in the first embodiment, and the second current measurement unit 201 has the same basic configuration as the first current measurement unit 101. The configuration is as follows.

本実施形態の第2電流測定部201は、電流流れ下流側のセル10aに電気的に接触する第2電極231、および第2電極231と導電部102とを電気的に接続する予め定めた電気抵抗値を有する第2抵抗体221を有して構成されている。   The second current measurement unit 201 of the present embodiment has a second electrode 231 that is in electrical contact with the cell 10a on the downstream side of the current flow, and a predetermined electricity that electrically connects the second electrode 231 and the conductive unit 102. A second resistor 221 having a resistance value is included.

具体的には、第2電極231は、第6プリント基板230における電流流れ下流側のセル10aに対向する面に配置され、第2抵抗体221は、第5プリント基板220のうち第6プリント基板230に対向する側の面に配置されている。なお、第5プリント基板220のうち第2抵抗体221が形成されている側と反対側の面には、電流測定用配線222が設けられている。さらに、第5プリント基板220の1辺には、電流測定用配線222が接続された信号取り出し用のコネクタ223が設けられている。   Specifically, the second electrode 231 is disposed on the surface of the sixth printed circuit board 230 that faces the cell 10a on the downstream side of the current flow, and the second resistor 221 is the sixth printed circuit board of the fifth printed circuit board 220. 230 is disposed on the surface opposite to 230. Note that a current measurement wiring 222 is provided on the surface of the fifth printed circuit board 220 opposite to the side on which the second resistor 221 is formed. Further, a signal extraction connector 223 to which a current measurement wiring 222 is connected is provided on one side of the fifth printed circuit board 220.

導電部102は、第1電流測定部101と第2電流測定部201とを電気的に接続するように、第1電流測定部101と第2電流測定部201との間に配置されている。本実施形態の導電部102は、複数の第1電流測定部101の各第1抵抗体121に跨るように設けられ、複数の第2電流測定部201の各第2抵抗体221に跨るように設けられている。これにより、複数の第1電流測定部101の第1抵抗体121同士が互いに導電部102を介して電気的に接続され、複数の第2電流測定部201の第2抵抗体221同士が互いに導電部102を介して電気的に接続されている。   The conductive unit 102 is disposed between the first current measurement unit 101 and the second current measurement unit 201 so as to electrically connect the first current measurement unit 101 and the second current measurement unit 201. The conductive part 102 of the present embodiment is provided so as to straddle each first resistor 121 of the plurality of first current measuring parts 101 and straddle each second resistor 221 of the plurality of second current measuring parts 201. Is provided. Thereby, the first resistors 121 of the plurality of first current measurement units 101 are electrically connected to each other via the conductive unit 102, and the second resistors 221 of the plurality of second current measurement units 201 are electrically connected to each other. It is electrically connected via the unit 102.

具体的には、導電部102は、導電部102は、第2プリント基板130と第4プリント基板210との間に配置されている。つまり、本実施形態の導電部102は、第1電流測定部101と第2電流測定部201とで狭持されるように配置されている。なお、本実施形態の導電部102は、導電部102をセル10aの積層方向から見たときに、導電部102と第1、第2電流測定部101、201とが重合するように配置されている。   Specifically, the conductive portion 102 is disposed between the second printed board 130 and the fourth printed board 210. That is, the conductive part 102 of the present embodiment is disposed so as to be sandwiched between the first current measurement part 101 and the second current measurement part 201. The conductive portion 102 of the present embodiment is arranged so that the conductive portion 102 and the first and second current measuring portions 101 and 201 overlap when the conductive portion 102 is viewed from the stacking direction of the cells 10a. Yes.

次に、図9により、電流測定部101および導電部102の具体的積層態様、並びに、電流測定部集合板100aにおける電流測定部101と導電部102の電気的接続態様を説明する。   Next, referring to FIG. 9, a specific stacking mode of the current measurement unit 101 and the conductive unit 102 and an electrical connection mode of the current measurement unit 101 and the conductive unit 102 in the current measurement unit assembly plate 100 a will be described.

図9に示すように、第4プリント基板210と第5プリント基板220の間と、第5プリント基板220と第6プリント基板230の間には、電気絶縁性を有する絶縁性接着剤212、224が配置されている。   As shown in FIG. 9, insulating adhesives 212 and 224 having electrical insulation are provided between the fourth printed circuit board 210 and the fifth printed circuit board 220 and between the fifth printed circuit board 220 and the sixth printed circuit board 230. Is arranged.

また、第1〜第6プリント基板110〜230には、第1、第2スルーホール101a、101bが設けられている。そして、第2スルーホール101bを介して、導電部102、第2抵抗体221、および第2電流測定用配線222が電気的に接続され、第1スルーホール101aを介して、第2抵抗体221、第2電流測定用配線222、および第2電極231が電気的に接続されている。   The first to sixth printed circuit boards 110 to 230 are provided with first and second through holes 101a and 101b. Then, the conductive portion 102, the second resistor 221 and the second current measurement wiring 222 are electrically connected through the second through hole 101b, and the second resistor 221 is connected through the first through hole 101a. The second current measurement wiring 222 and the second electrode 231 are electrically connected.

また、導電部102は、第2抵抗体221の一端側に接続され、第2電極231は第2抵抗体221の他端側に接続されている。このため、第2抵抗体221では、第2抵抗体221の一端側から他端側へ電流が流れる。   The conductive portion 102 is connected to one end side of the second resistor 221, and the second electrode 231 is connected to the other end side of the second resistor 221. For this reason, in the second resistor 221, a current flows from one end side of the second resistor 221 to the other end side.

また、第1、第2スルーホール101a、101bは、それぞれ第1、第2電流測定用配線122、222および外部配線を介して、第1、第2電流測定用電圧センサ103、203に接続されている。   The first and second through holes 101a and 101b are connected to the first and second current measuring voltage sensors 103 and 203 through the first and second current measuring wirings 122 and 222 and the external wiring, respectively. ing.

この第1電流測定用電圧センサ103は、第1電極111と同電位となる第1スルーホール101aと、導電部102と同電位となる第2スルーホール101bとの2点間の電位差を検出して、検出信号を電流検出回路51に出力する第1電位差検出手段である。   The first current measuring voltage sensor 103 detects a potential difference between two points of the first through hole 101a having the same potential as the first electrode 111 and the second through hole 101b having the same potential as the conductive portion 102. The first potential difference detecting means for outputting the detection signal to the current detection circuit 51.

また、第2電流測定用電圧センサ203は、導電部102と同電位となる第2スルーホール101bと、第2電極231と同電位となる第1スルーホール101aとの2点間の電位差を検出して、検出信号を電流検出回路51に出力する第2電位差検出手段である。   Further, the second current measuring voltage sensor 203 detects a potential difference between two points of the second through hole 101b having the same potential as the conductive portion 102 and the first through hole 101a having the same potential as the second electrode 231. Thus, the second potential difference detecting means outputs a detection signal to the current detection circuit 51.

次に、上述のように構成される本実施形態の電流測定装置100による電流測定方法について図10に基づいて説明する。図10は、燃料電池10の発電状態が異常となる場合の電流測定部集合板100aを流れる電流を説明する説明図である。   Next, a current measuring method by the current measuring apparatus 100 of the present embodiment configured as described above will be described with reference to FIG. FIG. 10 is an explanatory diagram for explaining the current flowing through the current measurement unit assembly plate 100a when the power generation state of the fuel cell 10 becomes abnormal.

燃料電池10に水素および空気が供給されることで、燃料電池10の発電が開始されと、電流測定装置100の電流測定部集合板100aでは、図10に示すように、電流流れ方向上流側のセル10aから第1電極111の板面→第1電極111→第1スルーホール101a→第1抵抗体121→第2スルーホール101b→導電部102の順に流れる。   When power generation of the fuel cell 10 is started by supplying hydrogen and air to the fuel cell 10, the current measurement unit assembly plate 100a of the current measurement device 100 has an upstream side in the current flow direction as shown in FIG. The cell 10a flows in the order of the plate surface of the first electrode 111 → the first electrode 111 → the first through hole 101a → the first resistor 121 → the second through hole 101b → the conductive portion 102.

この際、導電部102における電流流れ下流側のセル10aの阻害部位Xに対向する部位では、電流流れ下流側のセル10aにおける阻害部位を迂回するように電流が流れる。これにより、各第1電流測定部101には、他の電流測定部101に流れるはずの電流が流れ込むことなく、電流流れ上流側のセル10aの局所部位に対応する局所電流が流れる。   At this time, in a portion of the conductive portion 102 that faces the inhibition portion X of the cell 10a on the downstream side of the current flow, a current flows so as to bypass the inhibition portion of the cell 10a on the downstream side of the current flow. Thereby, the local current corresponding to the local part of the cell 10a on the upstream side of the current flow flows through each first current measurement unit 101 without flowing the current that should flow through the other current measurement units 101.

また、導電部102に流れた電流は、第2スルーホール101b→第2抵抗体221→第1スルーホール101a→第2電極231の板面の順に流れる。そして、第2電極231の板面に流れた電流は、電流流れ下流側のセル10a(図中下方側のセル)に流れる。   The current flowing through the conductive portion 102 flows in the order of the second through hole 101b → the second resistor 221 → the first through hole 101a → the plate surface of the second electrode 231. And the electric current which flowed on the plate | board surface of the 2nd electrode 231 flows into the cell 10a (cell of the lower side in a figure) of an electric current flow downstream.

この際、各第2電流測定部201のうち、電流流れ下流側のセル10aの阻害部位Xに対向する第2電流測定部201には、導電部102にて電流流れ下流側のセル10aにおける阻害部位を迂回していない電流が流れる。これにより、各第2電流測定部201には、実際に電流流れ下流側のセル10aに流れる局所電流が流れる。   At this time, among the second current measurement units 201, the second current measurement unit 201 facing the inhibition portion X of the cell 10 a on the downstream side of the current flow has an inhibition in the cell 10 a on the downstream side of the current flow by the conductive unit 102. A current that does not bypass the part flows. As a result, a local current that actually flows through the cell 10a on the downstream side flows through each second current measuring unit 201.

第1電流測定用電圧センサ103では、第1抵抗体121の一端側および他端側の電位差を測定し、第2電流測定用電圧センサ203では、第2抵抗体221の一端側および他端側の電位差を測定する。そして、電流検出回路51では、第1電流測定用電圧センサ103による検出電位差を、記憶回路51aに記憶された第1抵抗体121の抵抗値で除する演算処理を行うことで、第1抵抗体121に流れた電流値を算出する。さらに、電流検出回路51では、第2電流測定用電圧センサ203による検出電位差を、記憶回路51aに記憶された第2抵抗体221の抵抗値で除する演算処理を行うことで、第2抵抗体221に流れた各電流値を算出する。   The first current measuring voltage sensor 103 measures a potential difference between one end side and the other end side of the first resistor 121, and the second current measuring voltage sensor 203 measures one end side and the other end side of the second resistor 221. Measure the potential difference. In the current detection circuit 51, the first resistor is obtained by performing a calculation process of dividing the detected potential difference by the first current measurement voltage sensor 103 by the resistance value of the first resistor 121 stored in the storage circuit 51a. The value of the current flowing through 121 is calculated. Further, in the current detection circuit 51, the second resistor is obtained by performing a calculation process of dividing the potential difference detected by the second current measurement voltage sensor 203 by the resistance value of the second resistor 221 stored in the storage circuit 51a. Each current value flowing to 221 is calculated.

これにより、隣合うセル10aの双方のセル10aの面内における第1、第2電流測定部101、201に対応する部位(局所部位)の電流値を測定することができ、制御装置50では、電流流れ上流側のセル10aの面内における電流分布を測定することができる。   Thereby, the electric current value of the site | part (local site | part) corresponding to the 1st, 2nd electric current measurement part 101, 201 in the surface of both the cells 10a of the adjacent cell 10a can be measured, In the control apparatus 50, The current distribution in the plane of the cell 10a on the upstream side of the current flow can be measured.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, Unless it deviates from the range described in each claim, it is not limited to the wording of each claim, and those skilled in the art Improvements based on the knowledge that a person skilled in the art normally has can be added as appropriate to the extent that they can be easily replaced. For example, various modifications are possible as follows.

(1)上述の第1実施形態では、電流測定装置100にて隣合うセル10aのうち、電流流れ上流側のセルの局所部位を流れる電流を測定する例について説明したが、これに限定されない。例えば、電流測定装置100にて隣合うセル10aのうち、電流流れ下流側のセルの局所部位を流れる電流を測定してもよい。この場合、第1電極111を電流流れ下流側のセル10aと電気的に接触するように配置し、導電部102を電流流れ上流側のセル10aと電気的に接触するように配置すればよい。   (1) In the above-described first embodiment, the example in which the current flowing through the local portion of the cell on the upstream side of the current flow among the cells 10a adjacent to each other in the current measuring device 100 has been described, but the present invention is not limited to this. For example, among the cells 10a adjacent to each other in the current measuring device 100, the current flowing through the local portion of the cell on the downstream side of the current flow may be measured. In this case, the first electrode 111 may be disposed so as to be in electrical contact with the cell 10a on the downstream side of the current flow, and the conductive portion 102 may be disposed so as to be in electrical contact with the cell 10a on the upstream side of the current flow.

(2)上述の各実施形態では、導電部102を各電流測定部101、201に跨るように配置する構成について説明したが、これに限定されず、少なくとも隣合う電流測定部101、201に跨るように配置すればよい。   (2) In each of the above-described embodiments, the configuration in which the conductive unit 102 is disposed so as to straddle the current measuring units 101 and 201 has been described. However, the configuration is not limited thereto, and at least straddles the adjacent current measuring units 101 and 201. May be arranged as follows.

(3)上述の各実施形態では、導電部102を板状の導電性部材で構成する例について説明したが、導電部102は板状の導電性部材に限らず、例えば、薄膜状の導電性部材で構成してもよい。   (3) In each of the above-described embodiments, the example in which the conductive portion 102 is configured by a plate-like conductive member has been described. However, the conductive portion 102 is not limited to a plate-like conductive member, and for example, a thin-film conductive member. You may comprise with a member.

(4)上述の各実施形態では、電流測定装置100にセル10aの面内の全体に対応して42個の電流測定部101を設ける例を説明したが、これに限定されず、電流測定部101は、少なくとも2つ以上設けられていればよい。   (4) In each of the above-described embodiments, the example in which the current measuring device 100 is provided with 42 current measuring units 101 corresponding to the entire in-plane of the cell 10a has been described. It is sufficient that at least two 101 are provided.

(5)上述の各実施形態では、本発明の電流測定装置100を燃料電池車両の燃料電池システムに適用する例について説明したが、これに限定されず、車両以外の移動体(船舶、電車等)や据置式の燃料電池システムに適用してもよい。   (5) In each of the above-described embodiments, the example in which the current measuring device 100 of the present invention is applied to a fuel cell system of a fuel cell vehicle has been described. However, the present invention is not limited to this, and a moving body other than a vehicle (ship, train, etc. ) Or a stationary fuel cell system.

10 燃料電池
10 セル
100 電流測定装置
100a 電流測定部集合板(板状部材)
101 電流測定部、第1電流測定部
102 導電部
103 電流測定用電圧センサ、第1電流測定用電圧センサ(電流検出手段、第1電流検出手段)
111 第1電極
121 抵抗体、第1抵抗体
201 第2電流測定部
203 第2電流測定用電圧センサ(第2電流検出手段)
221 第2抵抗体
231 第2電極
51 電流検出回路(電流検出手段、第1電流検出手段、第2電流検出手段)
DESCRIPTION OF SYMBOLS 10 Fuel cell 10 Cell 100 Current measuring apparatus 100a Current measuring part assembly board (plate-shaped member)
DESCRIPTION OF SYMBOLS 101 Current measurement part, 1st current measurement part 102 Conductive part 103 Voltage sensor for current measurement, Voltage sensor for 1st current measurement (Current detection means, 1st current detection means)
111 1st electrode 121 Resistor, 1st resistor 201 2nd current measurement part 203 Voltage sensor for 2nd current measurement (2nd current detection means)
221 Second resistor 231 Second electrode 51 Current detection circuit (current detection means, first current detection means, second current detection means)

Claims (4)

酸素を主成分とする酸化剤ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを出力する複数のセル(10a)を積層配置して構成された燃料電池(10)に適用され、前記複数のセル(10a)のうち、隣合うセル(10a)間における複数の局所部位を流れる電流を測定する電流測定装置であって、
前記隣合うセル(10a)間に配置された板状部材(100a)と、
前記板状部材(100a)における前記複数の局所部位に対応する部位に設けられ、前記隣合うセル(10a)のうち電流流れ上流側のセルと電気的に接触する複数の電流測定部(101)と、
前記複数の電流測定部(101)を流れる電流を検出する電流検出手段(103、51)と、
前記板状部材(100a)のうち前記複数の電流測定部(101)の電流流れ下流側に設けられ、前記電流測定部(101)と前記隣合うセル(10a)のうち電流流れ下流側のセルとを電気的に接続する導電部(102)と、を備え、
前記複数の電流測定部(101)は、互いに絶縁された状態で前記板状部材(100a)に設けられ、
前記電流測定部(101)は、前記電流流れ上流側のセルに電気的に接触する第1電極(111)、および前記板状部材(100a)の板面方向に沿って配置され、予め定めた抵抗値を有する板状の抵抗体(121)を有し、
前記第1電極(111)は、前記抵抗体(121)のうち前記板状部材(100a)の板面方向の一端側を前記電流流れ上流側のセルと電気的に接触させるものであり、
前記導電部(102)は、前記抵抗体(121)のうち前記板状部材(100a)の板面方向の他端側を前記電流流れ下流側のセルと電気的に接続するものであり、
前記電流検出手段(103、51)は、前記第1電極(111)と前記導電部(102)との電位差、および前記抵抗体(121)の抵抗値に基づいて、前記第1電極(111)と前記導電部(102)との間を流れる電流を検出するようになっており、
前記導電部(102)は、前記複数の電流測定部(101)のうち、少なくとも隣合う電流測定部の抵抗体に跨るように前記板状部材(100a)に設けられ
前記電流測定部(101)における前記抵抗体(121)には、前記板状部材(100a)の板面方向の一端側から前記板状部材(100a)の板面方向の他端側に向かって電流が流れ、この電流が、前記導電部(102)では前記電流流れ下流側のセルにおける阻害部位(X)を迂回するように流れることを特徴とする電流測定装置。
A fuel cell (10) configured by stacking a plurality of cells (10a) for outputting electric energy by electrochemical reaction of an oxidant gas mainly containing oxygen and a fuel gas mainly containing hydrogen Applied to the current measuring device for measuring current flowing through a plurality of local parts between adjacent cells (10a) among the plurality of cells (10a),
A plate-like member (100a) disposed between the adjacent cells (10a);
A plurality of current measuring units (101) provided in a part corresponding to the plurality of local parts in the plate member (100a) and in electrical contact with a cell on the upstream side of the current flow among the adjacent cells (10a). When,
Current detection means (103, 51) for detecting a current flowing through the plurality of current measurement units (101);
A cell on the downstream side of the current flow of the plurality of current measurement units (101) in the plate-like member (100a) , and a cell on the downstream side of the current flow among the cells (10a) adjacent to the current measurement unit (101). A conductive portion (102) electrically connecting the
The plurality of current measurement units (101) are provided on the plate-like member (100a) in a state of being insulated from each other,
The current measuring unit (101) is disposed along a plate surface direction of the first electrode (111) and the plate-like member (100a) that are in electrical contact with the cell on the upstream side of the current flow, and is predetermined. It has a plate-like resistor (121) having a resistance value,
The first electrode (111) electrically contacts one end side of the plate member (100a) in the plate surface direction of the resistor (121) with the cell on the current flow upstream side,
The conductive portion (102) electrically connects the other end side of the plate-like member (100a) in the plate surface direction of the resistor (121) with the cell on the downstream side of the current flow.
The current detection means (103, 51) includes the first electrode (111) based on a potential difference between the first electrode (111) and the conductive portion (102) and a resistance value of the resistor (121). And a current flowing between the conductive portion (102) and the conductive portion (102),
The conductive part (102) is provided on the plate-like member (100a) so as to straddle at least the resistor of the adjacent current measurement part among the plurality of current measurement parts (101) .
The resistor (121) in the current measuring unit (101) is moved from one end side in the plate surface direction of the plate member (100a) toward the other end side in the plate surface direction of the plate member (100a). An electric current flows, and this electric current flows so as to bypass the inhibition site (X) in the cell on the downstream side of the electric current flow in the conductive part (102) .
酸素を主成分とする酸化剤ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを出力する複数のセル(10a)を積層配置して構成された燃料電池(10)に適用され、前記複数のセル(10a)のうち、隣合うセル(10a)間における複数の局所部位を流れる電流を測定する電流測定装置であって、
前記隣合うセル(10a)間に配置された板状部材(100a)と、
前記板状部材(100a)における前記複数の局所部位に対応する部位に設けられ、前記隣合うセル(10a)のうち電流流れ上流側のセルと電気的に接触する複数の第1電流測定部(101)と、
前記板状部材(100a)における前記複数の局所部位に対応する部位に設けられ、前記隣合うセル(10a)のうち電流流れ下流側のセルと電気的に接触する複数の第2電流測定部(201)と、
前記複数の第1電流測定部(101)を流れる電流を検出する第1電流検出手段(103、51)と、
前記複数の第2電流測定部(201)を流れる電流を検出する第2電流検出手段(203、51)と、
前記板状部材(100a)に設けられ、前記第1電流測定部(101)と前記第2電流測定部(201)とを電気的に接続する導電部(102)と、を備え、
前記複数の第1電流測定部(101)は、互いに絶縁された状態で前記板状部材(100a)に設けられ、
前記複数の第2電流測定部(201)は、互いに絶縁された状態で前記板状部材(100a)に設けられ、
前記導電部(102)は、前記複数の第1電流測定部(101)のうち、少なくとも隣合う第1電流測定部に跨るように前記板状部材(100a)に配置されると共に、前記複数の第2電流測定部(201)のうち、少なくとも隣合う第2電流測定部に跨るように前記板状部材(100a)に設けられていることを特徴とする電流測定装置。
A fuel cell (10) configured by stacking a plurality of cells (10a) for outputting electric energy by electrochemical reaction of an oxidant gas mainly containing oxygen and a fuel gas mainly containing hydrogen Applied to the current measuring device for measuring current flowing through a plurality of local parts between adjacent cells (10a) among the plurality of cells (10a),
A plate-like member (100a) disposed between the adjacent cells (10a);
A plurality of first current measuring units (provided at portions corresponding to the plurality of local portions in the plate-like member (100a)) and in electrical contact with the cells on the upstream side of the current flow among the adjacent cells (10a) ( 101)
A plurality of second current measurement units (provided at portions corresponding to the plurality of local portions in the plate-like member (100a)) and in electrical contact with cells on the downstream side of the current flow among the adjacent cells (10a) ( 201),
First current detection means (103, 51) for detecting a current flowing through the plurality of first current measurement units (101);
Second current detection means (203, 51) for detecting a current flowing through the plurality of second current measurement units (201);
A conductive portion (102) provided on the plate-like member (100a) and electrically connecting the first current measuring portion (101) and the second current measuring portion (201);
The plurality of first current measurement units (101) are provided on the plate-like member (100a) in a state of being insulated from each other,
The plurality of second current measurement units (201) are provided on the plate-like member (100a) in a state of being insulated from each other,
The conductive portion (102) is disposed on the plate-like member (100a) so as to straddle at least the adjacent first current measurement portion among the plurality of first current measurement portions (101). The current measuring device is provided on the plate-like member (100a) so as to straddle at least the second current measuring unit adjacent to the second current measuring unit (201).
前記第1電流測定部(101)は、前記電流流れ上流側のセルに電気的に接触する第1電極(111)、および前記第1電極(111)と前記導電部(102)とを電気的に接続すると共に予め定めた抵抗値を有する第1抵抗体(121)を有し、
前記第2電流測定部(201)は、前記電流流れ下流側のセルに電気的に接触する第2電極(231)、および前記第2電極(231)と前記導電部(102)とを電気的に接続すると共に予め定めた抵抗値を有する第2抵抗体(221)を有し、
前記第1電流検出手段(103、51)は、前記第1電極(111)と前記導電部(102)との電位差、および前記第1抵抗体(121)の抵抗値に基づいて、前記第1電極(111)と前記導電部(102)との間を流れる電流を検出し、
前記第2電流検出手段(203、51)は、前記第2電極(231)と前記導電部(102)との電位差、および前記第2抵抗体(221)の抵抗値に基づいて、前記第2電極(231)と前記導電部(102)との間を流れる電流を検出することを特徴とする請求項に記載の電流測定装置。
The first current measurement unit (101) electrically connects the first electrode (111) in electrical contact with the cell on the upstream side of the current flow, and electrically connects the first electrode (111) and the conductive unit (102). And having a first resistor (121) having a predetermined resistance value,
The second current measurement unit (201) electrically connects the second electrode (231) in electrical contact with the cell on the downstream side of the current flow, and electrically connects the second electrode (231) and the conductive unit (102). And a second resistor (221) having a predetermined resistance value.
The first current detection means (103, 51) is configured based on a potential difference between the first electrode (111) and the conductive portion (102) and a resistance value of the first resistor (121). Detecting a current flowing between the electrode (111) and the conductive portion (102);
The second current detection means (203, 51) is configured to detect the second current based on a potential difference between the second electrode (231) and the conductive portion (102) and a resistance value of the second resistor (221). The current measuring device according to claim 2 , wherein a current flowing between the electrode (231) and the conductive portion (102) is detected.
前記導電部(102)は、前記セル(10a)における前記板状部材(100a)に対向する部位の抵抗値よりも低い導電性部材で構成されていることを特徴とする請求項1ないしのいずれか1つに記載の電流測定装置。 The said conductive part (102) is comprised with the electroconductive member lower than the resistance value of the site | part facing the said plate-shaped member (100a) in the said cell (10a), The Claim 1 thru | or 3 characterized by the above-mentioned. The current measuring device according to any one of the above.
JP2011106232A 2011-05-11 2011-05-11 Current measuring device Active JP5708219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106232A JP5708219B2 (en) 2011-05-11 2011-05-11 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106232A JP5708219B2 (en) 2011-05-11 2011-05-11 Current measuring device

Publications (2)

Publication Number Publication Date
JP2012238460A JP2012238460A (en) 2012-12-06
JP5708219B2 true JP5708219B2 (en) 2015-04-30

Family

ID=47461198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106232A Active JP5708219B2 (en) 2011-05-11 2011-05-11 Current measuring device

Country Status (1)

Country Link
JP (1) JP5708219B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214454A (en) * 2012-04-03 2013-10-17 Denso Corp Local current measuring device
JP6167800B2 (en) * 2013-09-25 2017-07-26 株式会社Soken Current measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828053B2 (en) * 2002-07-26 2004-12-07 General Motors Corporation In-situ resistive current and temperature distribution circuit for a fuel cell
JP2006196261A (en) * 2005-01-12 2006-07-27 Denso Corp Current measuring device of fuel cell
JP4817962B2 (en) * 2006-05-18 2011-11-16 エスペック株式会社 Fuel cell current distribution measuring device, stacked fuel cell current distribution measuring device, and fuel cell current distribution measuring method
JP2009081117A (en) * 2007-09-27 2009-04-16 Nissan Motor Co Ltd Current density distribution sensor, manufacturing method thereof, and fuel cell system
JP5157485B2 (en) * 2008-01-30 2013-03-06 トヨタ自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2012238460A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5146225B2 (en) Current measuring device
JP5186986B2 (en) Fuel cell impedance measurement device
JP5396823B2 (en) Current measuring device
JP4967421B2 (en) Current measuring device
JP5488162B2 (en) Current distribution measuring device, abnormality handling method thereof, and fuel cell system
JP5494436B2 (en) Current measuring device
JP6167800B2 (en) Current measuring device
JP5206258B2 (en) Current measuring device
JP5708219B2 (en) Current measuring device
JP5555976B2 (en) Current measuring device
JP5987639B2 (en) Current measuring device
JP5206272B2 (en) Resistance measurement device
JP5488163B2 (en) Current measuring device
JP2009129847A (en) Fuel cell system
JP6459873B2 (en) Current measuring device
JP5760948B2 (en) Current measuring device
JP2009016157A (en) Current measurement device
JP6120078B2 (en) Current measuring device
JP5664435B2 (en) Current measuring device
JP5076953B2 (en) CURRENT MEASURING DEVICE, FUEL CELL MANUFACTURING METHOD, AND FUEL CELL SYSTEM
JP5141286B2 (en) Fuel cell system
JP6405763B2 (en) Current measuring device
JP2012134076A (en) Impedance measuring instrument for fuel cell
JP5655707B2 (en) Impedance measuring device
JP6070478B2 (en) Current measuring device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5708219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250