JP5700624B2 - Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same - Google Patents

Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same Download PDF

Info

Publication number
JP5700624B2
JP5700624B2 JP2010139638A JP2010139638A JP5700624B2 JP 5700624 B2 JP5700624 B2 JP 5700624B2 JP 2010139638 A JP2010139638 A JP 2010139638A JP 2010139638 A JP2010139638 A JP 2010139638A JP 5700624 B2 JP5700624 B2 JP 5700624B2
Authority
JP
Japan
Prior art keywords
group
unsubstituted
catalyst
cross
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010139638A
Other languages
Japanese (ja)
Other versions
JP2012000593A (en
Inventor
康嗣 大洞
康嗣 大洞
英也 川崎
英也 川崎
恵 兵丹石
恵 兵丹石
寛子 山本
寛子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai University
Original Assignee
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai University filed Critical Kansai University
Priority to JP2010139638A priority Critical patent/JP5700624B2/en
Publication of JP2012000593A publication Critical patent/JP2012000593A/en
Application granted granted Critical
Publication of JP5700624B2 publication Critical patent/JP5700624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、遷移金属超微粒子からなるクロスカップリング用触媒およびそれを用いたクロスカップリング法に関する。具体的には、第8族から第11族遷移金属から選ばれる少なくとも1つの遷移金属および配位性有機溶媒を含有する遷移金属超微粒子を含むクロスカップリング用触媒、およびそれを用いた高触媒活性なクロスカップリング法に関する。   The present invention relates to a cross-coupling catalyst comprising ultrafine transition metal particles and a cross-coupling method using the same. Specifically, a cross-coupling catalyst comprising ultrafine transition metal particles containing at least one transition metal selected from Group 8 to Group 11 transition metals and a coordinating organic solvent, and a high catalyst using the same The present invention relates to an active cross-coupling method.

現在、プラスチック、医薬品、農薬等において、現代社会において大量の化学物質が消費されており、これらの物質を製造するために触媒を用いた新規製造法を開発することは、効率的な資源・エネルギーの利用並びに地球環境保全という観点から極めて重要である。   Currently, large amounts of chemical substances are consumed in modern society in plastics, pharmaceuticals, agricultural chemicals, etc., and developing new production methods using catalysts to produce these substances is an efficient resource and energy. It is extremely important from the viewpoint of utilization of the environment and global environmental conservation.

とりわけ、炭素−炭素結合生成を伴う異種分子間のクロスカップリング反応は最も重要な触媒反応プロセスとして種々の有機化合物の合成に用いられている。   In particular, the cross-coupling reaction between different kinds of molecules accompanied by carbon-carbon bond formation is used for the synthesis of various organic compounds as the most important catalytic reaction process.

しかしながら、触媒的クロスカップリング反応は学術的には著しい発展を遂げているとはいえ、触媒である貴金属を相当量用いる必要があるため、その多くは工業化には至っていないのが現状である。このため、希少金属資源の有効利用の観点からも、ごく微量の金属触媒を用いた長寿命且つ高活性な触媒反応プロセスの開発が強く望まれている。   However, although the catalytic cross-coupling reaction has made remarkable progress academically, it is necessary to use a considerable amount of a noble metal as a catalyst, and many of them have not yet been industrialized. For this reason, also from the viewpoint of effective utilization of rare metal resources, development of a long-life and high-activity catalytic reaction process using a very small amount of metal catalyst is strongly desired.

近年、金属単体の微粒子化(ナノ粒子化)によって金属の表面露出原子の割合を向上させることにより触媒活性を向上させようとする試みがなされている。しかしながら、通常それら金属粒子は溶液中で互いに凝集し、バルク化するため、触媒本来の活性が損なわれている。   In recent years, attempts have been made to improve the catalytic activity by increasing the ratio of the surface exposed atoms of the metal by making the metal simple particles (nanoparticles). However, since these metal particles usually aggregate with each other in a solution and are bulked, the original activity of the catalyst is impaired.

金属粒子のバルク化の防止によるナノサイズ化のための従来技術としては、配位子(例えば、ピンサー型リン配位子)による安定化(非特許文献1および2)、デンドリマー等の高分子化合物による保護(非特許文献3−5)、ポリマー担持(非特許文献6−10)、またはイオン性保護剤による保護(非特許文献11−12)等が報告されている。しかしながら、そのように従来の金属微粒子は、その合成の過程で配位子または保護剤を使用したり、あるいはポリマー等に担持する等の安定化が必要であった。   Conventional techniques for nano-sizing by preventing bulk formation of metal particles include stabilization by a ligand (for example, pincer-type phosphorus ligand) (Non-patent Documents 1 and 2), polymer compounds such as dendrimers (Non-Patent Documents 3-5), polymer support (Non-Patent Documents 6-10), or protection with an ionic protective agent (Non-Patent Documents 11-12) are reported. However, the conventional fine metal particles need to be stabilized, for example, using a ligand or a protective agent in the process of synthesis, or supporting them on a polymer or the like.

最近、金属塩化物等をジメチルホルムアミド(DMF)中で還元することにより、約2nm以下のナノサイズを有する金、白金、パラジウム等のナノ粒子蛍光体を簡便に且つ大量に合成することができることが報告されている(特許文献1、並びに非特許文献13−14を参照)。これらナノ粒子の製造は上述のような配位子または保護剤の使用、あるいはポリマー等への担持の必要がなく、また得られるナノ粒子は安定で粒子径が揃っている。更に、当該ナノ粒子は予想外に、別途の表面処理を施すことなく各種媒体への分散性が高く、媒体中で均一に分散して存在可能である。   Recently, by reducing metal chlorides and the like in dimethylformamide (DMF), it is possible to synthesize nanoparticle phosphors such as gold, platinum and palladium having nanosizes of about 2 nm or less easily and in large quantities. It has been reported (see Patent Literature 1 and Non-Patent Literature 13-14). The production of these nanoparticles does not require the use of a ligand or a protective agent as described above, or support on a polymer or the like, and the obtained nanoparticles are stable and have a uniform particle size. Furthermore, the nanoparticles are unexpectedly highly dispersible in various media without being subjected to a separate surface treatment, and can be uniformly dispersed in the media.

特願2009−154932Japanese Patent Application No. 2009-154932

K. TakenakaおよびY. Uozumi著, Adv. Synth. Catal., 2004, 346, 1693-1696By K. Takenaka and Y. Uozumi, Adv. Synth. Catal., 2004, 346, 1693-1696 C. RocaboyおよびJ.A. Gladyszら著, Organic Letters, 2002, Vol.4. No.12, 1993-1996C. Rocaboy and J.A. Gladysz et al., Organic Letters, 2002, Vol.4. No.12, 1993-1996 E.H. RahimおよびJ.B. Christensenら著, Nano Letters, 2001, Vol.1, No.9, 499-501E.H.Rahim and J.B.Christensen et al., Nano Letters, 2001, Vol.1, No.9, 499-501 K. YamamotoおよびA. Sonoiら著, Nature Chemistry, 1, 397-402 (2009)K. Yamamoto and A. Sonoi et al., Nature Chemistry, 1, 397-402 (2009) K.R. GopidasおよびM.A. Foxら著, Nano Letters, 2003, Vol.3, No.12, 1757-1760K.R.Gopidas and M.A.Fox et al., Nano Letters, 2003, Vol.3, No.12, 1757-1760 Z. ZhangおよびZ. Wang著, J. Org. Chem., 2006, 71, 7485-7487By Z. Zhang and Z. Wang, J. Org. Chem., 2006, 71, 7485-7487 T. MizugakiおよびK. Kanedaら著, Chemistry Letters., Vol. 38, No. 11 (2009), 1118-1119T. Mizugaki and K. Kaneda et al., Chemistry Letters., Vol. 38, No. 11 (2009), 1118-1119 G. WeiおよびM. Zhangら著, J. Phys. Chem. C 2008, Vol. 112, No. 29, 10827-10832G. Wei and M. Zhang et al., J. Phys. Chem. C 2008, Vol. 112, No. 29, 10827-10832 K. OkamotoおよびS. Kobayashiら著, J. Am. Chem. Soc., 2005, Vol. 127, No. 7, 2125-2135K. Okamoto and S. Kobayashi et al., J. Am. Chem. Soc., 2005, Vol. 127, No. 7, 2125-2135 Z. YinghuraiおよびR.A. Kemp.ら著, Adv. Synth. Catal., 2007, 349, 1917-1922By Z. Yinghurai and R.A. Kemp. Et al., Adv. Synth. Catal., 2007, 349, 1917-1922 Z. Zhang, Z. WangおよびM-M. Zhou著, J. Org. Chem., 2006, 71, 4339-4342By Z. Zhang, Z. Wang and M-M. Zhou, J. Org. Chem., 2006, 71, 4339-4342 G. ZhangおよびY. Kuangら著, Green Chem., 2009, 11, 1428-1432G. Zhang and Y. Kuang et al., Green Chem., 2009, 11, 1428-1432 H. Kawasakiら著, Chem. Commun 46, 3759 (2010)H. Kawasaki et al., Chem. Commun 46, 3759 (2010) H. Kawasakiら著, Langmuir 26, 5926 (2010)H. Kawasaki et al., Langmuir 26, 5926 (2010)

従来のパラジウム錯体をはじめとした触媒的クロスカップリング反応においては、以下にあげる問題点が挙げられ、工業化プロセスとしての観点からは多くの改善すべき課題が残っている。i)使用する触媒量が比較的多い(学術的には1〜5mol%の触媒量で行われている報告例が多い);ii)金属触媒の失活を防ぐため、リン化合物等からなる配位子を用い安定化させている;iii)金属触媒の凝集による触媒失活を防ぐため、保護剤で安定化、あるいはシリカ、有機ポリマー等に金属を担持させなければいけない。   In the conventional catalytic cross-coupling reaction including a palladium complex, there are the following problems, and many problems to be improved remain from the viewpoint of industrialization process. i) A relatively large amount of catalyst is used (in many reports, it is academically conducted with a catalyst amount of 1 to 5 mol%); ii) In order to prevent deactivation of the metal catalyst, a catalyst comprising a phosphorus compound or the like It is stabilized using a ligand; iii) In order to prevent catalyst deactivation due to aggregation of the metal catalyst, it must be stabilized with a protective agent, or a metal must be supported on silica, an organic polymer or the like.

本発明は、配位子、保護剤又はポリマー等の構成要素を含まない、遷移金属および配位性有機溶媒からなる遷移金属超微粒子を用いることによって、クロスカップリング反応において触媒上の金属表面を効率的且つ最大限に利用でき、従来の触媒に比べて触媒活性が飛躍的に向上したクロスカップリング反応用触媒、および当該触媒を用いたクロスカップリング反応を提供することを目的とする。   The present invention uses a transition metal ultrafine particle composed of a transition metal and a coordinating organic solvent, which does not contain a component such as a ligand, a protective agent, or a polymer, so that the metal surface on the catalyst is cross-linked. An object of the present invention is to provide a cross-coupling reaction catalyst that can be used efficiently and maximally and has a catalytic activity significantly improved as compared with conventional catalysts, and a cross-coupling reaction using the catalyst.

本発明者が鋭意研究した結果、特願2009−154932で得られたナノ粒子をクロスカップリング反応に用いたところ、本発明の遷移金属超微粒子触媒は配位子および保護剤を含まない金属種を用いることができることによって、クロスカップリング反応において触媒上の金属表面を効率的且つ最大限に利用でき、従来の反応系と比べて触媒活性を飛躍的に向上させることが可能となることを見出した。特に、反応基質としてハロアレーンと電子吸引性基を有するオレフィンとを用いる溝呂木−ヘック(Heck)反応、およびハロアレーンと有機ボロン酸とを用いる鈴木−宮浦反応を行ったところ、これらのクロスカップリング反応が良好な収率および高い触媒回転数で効率良く進行することを見出した。すなわち、本発明は以下の通りである。   As a result of intensive studies by the present inventors, when the nanoparticles obtained in Japanese Patent Application No. 2009-154932 were used for the cross-coupling reaction, the transition metal ultrafine particle catalyst of the present invention was a metal species that did not contain a ligand and a protective agent. It is found that the metal surface on the catalyst can be used efficiently and maximally in the cross-coupling reaction, and the catalytic activity can be dramatically improved as compared with the conventional reaction system. It was. In particular, the Mizorogi-Heck reaction using haloarenes and olefins having electron-withdrawing groups as reaction substrates, and the Suzuki-Miyaura reaction using haloarenes and organic boronic acids were performed. It has been found that the process proceeds efficiently with a good yield and a high catalyst rotation speed. That is, the present invention is as follows.

[1] 第8族から第11族遷移金属からなる群から選ばれる少なくとも1つの遷移金属および配位性有機溶媒を含有する遷移金属超微粒子を含む、クロスカップリング反応用触媒。 [1] A catalyst for cross-coupling reaction comprising transition metal ultrafine particles containing at least one transition metal selected from the group consisting of Group 8 to Group 11 transition metals and a coordinating organic solvent.

[2] 式:A−X
(式中、
Aは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、または無置換もしくは置換のアルケニル基であり;そして、
Xは、ハロゲン、メシレート基、トシレート基、トリフラート基、またはカルボン酸ハロゲン化物基である)
で示される化合物と、
式:B−Y
(式中、
Bは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、無置換もしくは置換のアルケニル基、または無置換もしくは置換のアルキニル基であり;
Yは、水素、アリール基、アルコキシカルボニル基、ニトロ基、ホルミル基、オキソ基、シアノ基、アミノ基、B(OR)、ZnX、AlR 、SnR 、MgX、またはSiR であり、ここで、XおよびXはハロゲンであり、そしてR、R、RおよびRは各々独立して水素またはアルキルである)
で示される化合物とを反応させることにより、
式:A−B
(式中、AおよびBは前掲する通りである)
で示される生成物を得るクロスカップリング反応用である、[1]記載のクロスカップリング反応用触媒。
[2] Formula: AX
(Where
A is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, or an unsubstituted or substituted alkenyl group; and
X is a halogen, a mesylate group, a tosylate group, a triflate group, or a carboxylic acid halide group)
A compound represented by
Formula: BY
(Where
B is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, an unsubstituted or substituted alkenyl group, or an unsubstituted or substituted alkynyl group;
Y is hydrogen, aryl group, alkoxycarbonyl group, nitro group, formyl group, oxo group, cyano group, amino group, B (OR 1 ) 2 , ZnX 1 , AlR 2 2 , SnR 3 3 , MgX 2 , or SiR 4 3, wherein, X 1 and X 2 is halogen and R 1, R 2, R 3 and R 4 are each independently hydrogen or alkyl)
By reacting with a compound represented by
Formula: AB
(In the formula, A and B are as described above.)
The catalyst for cross-coupling reactions according to [1], which is used for a cross-coupling reaction to obtain a product represented by

[3] 式:A−X
(式中、
Aは、無置換もしくは置換のアリール基または無置換もしくは置換のヘテロアリール基であり;そして、
Xは、ハロゲン、メシレート基、トシレート基、またはトリフラート基である)
で示される化合物と、
式:B−Y
(式中、
Bは、無置換もしくは置換のアルケニル基または無置換もしくは置換のアリール基であり;
Yは、アルコキシカルボニル基またはB(OR)であり、そしてRは水素である)
で示される化合物とを反応させることにより、
式:A−B
(式中、AおよびBは前掲する通りである)
で示される生成物を得るクロスカップリング反応用である、[1]または[2]のいずれか記載のクロスカップリング反応用触媒。
[3] Formula: AX
(Where
A is an unsubstituted or substituted aryl group or an unsubstituted or substituted heteroaryl group; and
X is a halogen, a mesylate group, a tosylate group, or a triflate group)
A compound represented by
Formula: BY
(Where
B is an unsubstituted or substituted alkenyl group or an unsubstituted or substituted aryl group;
Y is an alkoxycarbonyl group or B (OR 1 ) 2 and R 1 is hydrogen)
By reacting with a compound represented by
Formula: AB
(In the formula, A and B are as described above.)
The catalyst for a cross coupling reaction according to any one of [1] or [2], which is used for a cross coupling reaction to obtain a product represented by:

[4] 遷移金属が第10族遷移金属である、[1]乃至[3]のいずれか1項記載のクロスカップリング反応用触媒。 [4] The catalyst for cross-coupling reaction according to any one of [1] to [3], wherein the transition metal is a Group 10 transition metal.

[5] 遷移金属がパラジウムである、[1]乃至[4]のいずれか1項記載のクロスカップリング反応用触媒。 [5] The catalyst for cross coupling reaction according to any one of [1] to [4], wherein the transition metal is palladium.

[6] 配位性有機溶媒が、N,N−ジメチルホルムアミド(DMF)、N−メチルホルムアミド、N,N−ジメチルアセトアミド(DMA)、N−メチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン(DMI)、N−メチル−2−ピロリドン(NMP)、およびヘキサメチルホスホリックトリアミド(HMPA)からなる群から選ばれるアミド系溶媒である、[1]乃至[5]のいずれか1項記載のクロスカップリング反応用触媒。 [6] The coordinating organic solvent is N, N-dimethylformamide (DMF), N-methylformamide, N, N-dimethylacetamide (DMA), N-methylacetamide, 1,3-dimethyl-2-imidazolide. Any one of [1] to [5], which is an amide solvent selected from the group consisting of non- (DMI), N-methyl-2-pyrrolidone (NMP), and hexamethylphosphoric triamide (HMPA) The catalyst for cross-coupling reaction as described.

[7] 配位性有機溶媒がN,N−ジメチルホルムアミド(DMF)である、[1]乃至[6]のいずれか1項記載のクロスカップリング反応用触媒。 [7] The catalyst for cross coupling reaction according to any one of [1] to [6], wherein the coordinating organic solvent is N, N-dimethylformamide (DMF).

[8] 遷移金属超微粒子の平均粒子径が2nm以下である、[1]乃至[7]のいずれか1項記載のクロスカップリング反応用触媒。 [8] The catalyst for cross-coupling reaction according to any one of [1] to [7], wherein the transition metal ultrafine particles have an average particle size of 2 nm or less.

[9] 遷移金属超微粒子が蛍光体である、[1]乃至[8]のいずれか1項記載のクロスカップリング反応用触媒。 [9] The catalyst for cross-coupling reaction according to any one of [1] to [8], wherein the transition metal ultrafine particles are phosphors.

[10] ターンオーバー数(TON)が1.0×10以上を示す、[1]乃至[9]のいずれか1項記載のクロスカップリング反応用触媒。 [10] The catalyst for cross coupling reaction according to any one of [1] to [9], wherein the turnover number (TON) is 1.0 × 10 4 or more.

[11] 第8族から第11族遷移金属からなる群から選ばれる少なくとも1つの遷移金属の塩化物を配位性有機溶媒中で加熱還流することによって調製する、[1]乃至[10]のいずれか1項記載のクロスカップリング反応用触媒の製造法。 [11] Prepared by heating and refluxing at least one transition metal chloride selected from the group consisting of Group 8 to Group 11 transition metals in a coordinating organic solvent. The manufacturing method of the catalyst for cross coupling reactions of any one of Claims 1.

[12] マイクロ波を照射しながら前記加熱還流を行う、[11]記載の製造法。 [12] The production method according to [11], wherein the heating and refluxing is performed while irradiating microwaves.

[13] 前記加熱還流後の反応溶液を適宜溶媒留去し、次いで配位性有機溶媒で希釈して所望の濃度にまで調製する、[11]または[12]のいずれか記載の製造法。 [13] The production method according to any one of [11] and [12], wherein the reaction solution after the reflux with heating is appropriately evaporated, and then diluted with a coordinating organic solvent to prepare a desired concentration.

[14] DMF、NMPおよびTHFからなる群から選ばれる配位性有機溶媒を用いて希釈する、[13]記載の製造法。 [14] The production method according to [13], wherein dilution is performed using a coordinating organic solvent selected from the group consisting of DMF, NMP, and THF.

[15] 式:A−X
(式中、
Aは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、または無置換もしくは置換のアルケニル基であり;そして、
Xは、ハロゲン、メシレート基、トシレート基、トリフラート基、またはカルボン酸ハロゲン化物基である)
で示される化合物と、
式:B−Y
(式中、
Bは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、無置換もしくは置換のアルケニル基、または無置換もしくは置換のアルキニル基であり;
Yは、水素、アリール基、アルコキシカルボニル基、ニトロ基、ホルミル基、オキソ基、シアノ基、アミノ基、B(OR)、ZnX、AlR 、SnR 、MgX、またはSiR であり、ここで、XおよびXはハロゲンであり、そしてR、R、RおよびRは各々独立して水素またはアルキルである)
で示される化合物とを、第8族から第11族遷移金属からなる群から選ばれる少なくとも1つの遷移金属および配位性有機溶媒を含有する遷移金属超微粒子を含む触媒の存在下で反応させることにより、式:A−B
(式中、AおよびBは前掲する通りである)
で示される生成物を得ることを含む、クロスカップリング反応。
[15] Formula: AX
(Where
A is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, or an unsubstituted or substituted alkenyl group; and
X is a halogen, a mesylate group, a tosylate group, a triflate group, or a carboxylic acid halide group)
A compound represented by
Formula: BY
(Where
B is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, an unsubstituted or substituted alkenyl group, or an unsubstituted or substituted alkynyl group;
Y is hydrogen, aryl group, alkoxycarbonyl group, nitro group, formyl group, oxo group, cyano group, amino group, B (OR 1 ) 2 , ZnX 1 , AlR 2 2 , SnR 3 3 , MgX 2 , or SiR 4 3, wherein, X 1 and X 2 is halogen and R 1, R 2, R 3 and R 4 are each independently hydrogen or alkyl)
In the presence of a catalyst containing ultrafine transition metal particles containing at least one transition metal selected from the group consisting of Group 8 to Group 11 transition metals and a coordinating organic solvent. According to the formula: AB
(In the formula, A and B are as described above.)
A cross-coupling reaction comprising obtaining a product represented by

[16] 適宜塩基の存在下で行なう、[15]記載のクロスカップリング反応。 [16] The cross-coupling reaction according to [15], which is appropriately performed in the presence of a base.

[17] 反応溶媒が、配位性有機溶媒の単独または水との混合物である、[15]または[16]のいずれか記載のクロスカップリング反応。 [17] The cross-coupling reaction according to any one of [15] or [16], wherein the reaction solvent is a coordination organic solvent alone or a mixture with water.

[18] 触媒の使用量が、A−Xで示される化合物の配合量基準で10−1〜10−7モル%である、[15]乃至[17]のいずれか1項記載のクロスカップリング反応。 [18] The cross coupling according to any one of [15] to [17], wherein the amount of the catalyst used is 10 −1 to 10 −7 mol% based on the amount of the compound represented by AX. reaction.

本発明の遷移金属超微粒子は、触媒上の金属表面を効率的且つ最大限に利用でき、従来のクロスカップリング反応系と比べて触媒活性を飛躍的に向上させることができる。   The transition metal ultrafine particles of the present invention can efficiently and maximize the use of the metal surface on the catalyst, and can dramatically improve the catalytic activity as compared with the conventional cross-coupling reaction system.

パラジウム超微粒子(A)および白金超微粒子(B)の各TEM像を示す図である。It is a figure which shows each TEM image of a palladium ultrafine particle (A) and a platinum ultrafine particle (B).

以下に、本発明をさらに詳細に説明する。
(定義)
以下に、本明細書および特許請求の範囲中で使用する用語の定義を示す。特に断らなければ、本明細書中の基または用語について示す最初の定義を、個別にまたは別の基の一部として本明細書中の基または用語に適用する。
The present invention is described in further detail below.
(Definition)
The definitions of terms used in the present specification and claims are shown below. Unless otherwise indicated, the first definition given for a group or term herein applies to the group or term herein individually or as part of another group.

用語「第8族から第11族遷移金属からなる群から選ばれる少なくとも1つの遷移金属」とは、第8族遷移金属(例えば、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os))、第9族遷移金属(例えば、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir))、第10族遷移金属(例えば、ニッケル(Ni)、パラジウム(Pd)、白金(Pt))、および第11族遷移金属(例えば、銅(Cu)、銀(Ag)、金(Au))からなる群から選ばれる少なくとも1つの遷移金属を意味する。第10族遷移金属が好ましく、白金、パラジウムがより好ましく、パラジウムが特に好ましい。   The term “at least one transition metal selected from the group consisting of Group 8 to Group 11 transition metals” refers to Group 8 transition metals (eg, iron (Fe), ruthenium (Ru), osmium (Os)), Group 9 transition metals (eg, cobalt (Co), rhodium (Rh), iridium (Ir)), Group 10 transition metals (eg, nickel (Ni), palladium (Pd), platinum (Pt)), and It means at least one transition metal selected from the group consisting of group 11 transition metals (for example, copper (Cu), silver (Ag), gold (Au)). Group 10 transition metals are preferred, platinum and palladium are more preferred, and palladium is particularly preferred.

用語「配位性有機溶媒」とは、遷移金属と配位することが可能な有機溶媒を意味し、例えば、アミド系溶媒、アミン系溶媒、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、ニトリル系溶媒、ニトロ系溶媒、もしくはスルホキシド系溶媒、またはそれらの2種以上の混合溶媒を含む。具体的には例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)、1,3−ジメチル−2−イミダゾリジノン(DMI)、N−メチル−2−ピロリドン(NMP)等のカルボン酸アミド系、ヘキサメチルホスホリックトリアミド(HMPA)等のリン酸アミド系を含むアミド系溶媒;トリエチルアミン、ピリジン、エタノールアミン等のアミン系溶媒;イソプロパノール、プロピレングリコール等のアルコール系溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒;アセトン、2−ブタノン等のケトン系溶媒;酢酸エチル、酢酸メチル等のエステル系溶媒;アセトニトリル等のニトリル系溶媒;ニトロメタン等のニトロ系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を挙げられる。DMF、N−メチルホルムアミド、DMA、N−メチルアセトアミド、DMI、NMP、HMPAからなる群から選ばれるアミド系溶媒が好ましく、DMFが特に好ましい。   The term “coordinating organic solvent” means an organic solvent capable of coordinating with a transition metal, such as an amide solvent, an amine solvent, an alcohol solvent, an ether solvent, a ketone solvent, and an ester. A system solvent, a nitrile solvent, a nitro solvent, or a sulfoxide solvent, or a mixed solvent of two or more thereof. Specifically, for example, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2-imidazolidinone (DMI), N-methyl-2-pyrrolidone (NMP) ) Amide solvents including carboxylic acid amides such as hexamethylphosphoric triamide (HMPA); amine solvents such as triethylamine, pyridine and ethanolamine; alcohol solvents such as isopropanol and propylene glycol Ether solvents such as diethyl ether, diisopropyl ether, dioxane and tetrahydrofuran (THF); ketone solvents such as acetone and 2-butanone; ester solvents such as ethyl acetate and methyl acetate; nitrile solvents such as acetonitrile; nitromethane and the like Nitro solvents of dimethyl It includes a sulfoxide-based solvents such as sulfoxide. Amide solvents selected from the group consisting of DMF, N-methylformamide, DMA, N-methylacetamide, DMI, NMP, and HMPA are preferred, and DMF is particularly preferred.

用語「遷移金属超微粒子」とは、上記第8族から第11族遷移金属からなる群から選ばれる少なくとも1つの遷移金属および配位性有機溶媒を含有する溶媒保護化物であって、その平均粒子径がナノサイズの粒子を意味する。ここで、溶媒保護化物とは、それら配位性溶媒で保護された化合物を意味する。また、本願明細書中、「超微粒子」は「ナノ粒子」または「NCs」とも呼称される。   The term “transition metal ultrafine particles” is a solvent-protected product containing at least one transition metal selected from the group consisting of the above Group 8 to Group 11 transition metals and a coordinating organic solvent, and its average particle A particle having a diameter of nano size is meant. Here, the solvent-protected product means a compound protected with these coordinating solvents. In the present specification, “ultrafine particles” are also referred to as “nanoparticles” or “NCs”.

平均粒子径は0.5〜4nm程度であって、2nm以下が好ましく、1.5nm程度がより好ましい。かかる粒子径は、透過型電子顕微鏡(TEM)の像の解析により確認する。例えば、パラジウム超微粒子および白金超微粒子の各TEMの像を示す(図1)。図1より、パラジウム超微粒子および白金超微粒子はそれぞれ平均粒子径が約1.5nmである。また、特願2009−154932に記載する通りパラジウム、白金以外の遷移金属超微粒子についても蛍光特性を示すことから、平均粒子径は2nm以下である。また、かかる蛍光特性と2nm以下の平均粒子径との相関関係については、以下の多数の文献中に記載されている:
1. S. Empedocles, M. Baewndi著, Acc. Chem. Res, 1999, 32, 389-396.
2. M. A. El-Sayed著, Acc. Chem. Res, 2001, 34, 257-264.
3. S. Link, M. A. El-Sayed著, Int. Rev. Phys. Chem. 200, 19, 409-453.
4. S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, R. L.
Whetten著, J. Phys. Chem. B, 2002, 106, 3410-3415,
5. S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murrey, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetten著, Science, 1998, 280, 2098-2101.
The average particle size is about 0.5 to 4 nm, preferably 2 nm or less, and more preferably about 1.5 nm. The particle diameter is confirmed by analyzing a transmission electron microscope (TEM) image. For example, TEM images of palladium ultrafine particles and platinum ultrafine particles are shown (FIG. 1). From FIG. 1, the palladium ultrafine particles and the platinum ultrafine particles each have an average particle diameter of about 1.5 nm. In addition, as described in Japanese Patent Application No. 2009-154932, since transition metal ultrafine particles other than palladium and platinum also exhibit fluorescence characteristics, the average particle diameter is 2 nm or less. Also, the correlation between such fluorescence properties and an average particle size of 2 nm or less is described in a number of documents:
1. S. Empedocles, M. Baewndi, Acc. Chem. Res, 1999, 32, 389-396.
2. MA El-Sayed, Acc. Chem. Res, 2001, 34, 257-264.
3. S. Link, MA El-Sayed, Int. Rev. Phys. Chem. 200, 19, 409-453.
4. S. Link, A. Beeby, S. FitzGerald, MA El-Sayed, TG Schaaff, RL
Whetten, J. Phys. Chem. B, 2002, 106, 3410-3415,
5. S. Chen, RS Ingram, MJ Hostetler, JJ Pietron, RW Murrey, TG Schaaff, JT Khoury, MM Alvarez, RL Whetten, Science, 1998, 280, 2098-2101.

用語「クロスカップリング反応」とは、異なる2種の化合物の間で選択的に結合する反応を意味する。特に、本発明で意図するクロスカップリング反応とは、遷移金属化合物が触媒的に作用する、下式:

Figure 0005700624
で示される反応を意味する。具体的には、有機ハロゲン化物等と末端アルケン等との反応(溝呂木・ヘック反応)、有機ハロゲン化物等と有機亜鉛化合物との反応(根岸カップリング反応)、有機ハロゲン化物等と有機スズ化合物との反応(右田・小杉・スティルカップリング)、有機ハロゲン化物等と末端アルキン等との反応(薗頭カップリング)、有機ハロゲン化物等と有機ホウ素化合物との反応(鈴木・宮浦カップリング)、有機ハロゲン化物と有機アミン化合物との反応(ブッフバルト・ハートウィッグ反応)、有機ハロゲン化物等と有機マグネシウム化合物との反応(熊田・玉尾・コリューカップリング)、有機ハロゲン化物と有機ケイ素化合物との反応(檜山カップリング)等を意図する。特に、溝呂木・ヘック反応および鈴木・宮浦カップリングを意図する。 The term “cross-coupling reaction” means a reaction that selectively binds between two different compounds. In particular, the cross-coupling reaction contemplated by the present invention refers to the following formula where the transition metal compound acts catalytically:
Figure 0005700624
Means the reaction indicated by Specifically, reactions between organic halides and terminal alkenes (Mizorogi / Heck reaction), reactions between organic halides and organic zinc compounds (Negishi coupling reaction), organic halides and organic tin compounds, etc. Reaction (Migita, Kosugi, Stille coupling), reaction of organic halides with terminal alkynes (Soto coupling), reaction of organic halides with organic boron compounds (Suzuki / Miyaura coupling), organic Reactions between halides and organic amine compounds (Buchwald / Hartwig reaction), reactions between organic halides and organic magnesium compounds (Kumada / Tamao / Colleu coupling), reactions between organic halides and organosilicon compounds Intended for (Eizan coupling). In particular, the Mizorogi-Heck reaction and the Suzuki-Miyaura coupling are intended.

用語「式:A−Xで示される化合物」とは、上記クロスカップリング反応において求電子剤として作用する反応基質の一方を意味する。ここで、基Aは、少なくとも1つの炭素−炭素不飽和結合を有する基であり、具体的には、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、および無置換もしくは置換のアルケニル基を含む。無置換もしくは置換のアリール基または無置換もしくは置換のヘテロアリール基が好ましい。また、X基は有機化学分野において脱離基として知られる基を意味する。具体的には、ハロゲン(例えば、クロロ、ブロモ、ヨード)、メシレート基(OMs)、トシレート基(OTs)、またはカルボン酸ハロゲン化物基(例えば、カルボン酸臭化物(C(=O)Br、カルボン酸ヨウ化物(C(=O)I))を挙げられる。ハロゲンが好ましく、ブロモまたはヨードがより好ましく、ヨードが特に好ましい。   The term “compound represented by the formula: AX” means one of the reaction substrates that acts as an electrophile in the cross-coupling reaction. Here, the group A is a group having at least one carbon-carbon unsaturated bond, specifically, an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, and an unsubstituted or substituted group. Contains an alkenyl group. An unsubstituted or substituted aryl group or an unsubstituted or substituted heteroaryl group is preferred. The X group means a group known as a leaving group in the field of organic chemistry. Specifically, halogen (for example, chloro, bromo, iodo), mesylate group (OMs), tosylate group (OTs), or carboxylic acid halide group (for example, carboxylic acid bromide (C (= O) Br, carboxylic acid) Iodide (C (= O) I)), halogen is preferred, bromo or iodo is more preferred, and iodo is particularly preferred.

用語「式:B−Yで示される化合物」とは、上記クロスカップリング反応において求核剤として作用する反応基質の一方を意味する。ここで、基Bは、少なくとも1つの炭素−炭素不飽和結合を有する基であり、具体的には、無置換もしくは置換のアリール、無置換もしくは置換のヘテロアリール基、無置換もしくは置換のアルケニル基、および無置換もしくは置換のアルキニル基を含む。無置換もしくは置換のアルケニル基または無置換もしくは置換のアリール基が好ましい。また、Y基は、水素、アリール基、アルコキシカルボニル基、ニトロ基、ホルミル基、オキソ基、シアノ基、アミノ基、B(OR)、ZnX、AlR 、SnR 、MgX、またはSiR であり、ここで、XおよびXはハロゲン(クロロ、ブロモ、ヨードが好ましく、ブロモ、ヨードがより好ましい)であり、そしてR、R、RおよびRは各々独立して水素またはアルキル(炭素数が1〜6のアルキルが好ましく、メチル、エチル、t−ブチルがより好ましい)である。アルコキシカルボニル基(例えば、エトキシカルボニル)、またはB(OR)(Rは水素である)が好ましい。 The term “compound represented by the formula: BY” means one of the reaction substrates that acts as a nucleophile in the cross-coupling reaction. Here, the group B is a group having at least one carbon-carbon unsaturated bond, specifically, an unsubstituted or substituted aryl, an unsubstituted or substituted heteroaryl group, an unsubstituted or substituted alkenyl group. And unsubstituted or substituted alkynyl groups. An unsubstituted or substituted alkenyl group or an unsubstituted or substituted aryl group is preferred. Y group is hydrogen, aryl group, alkoxycarbonyl group, nitro group, formyl group, oxo group, cyano group, amino group, B (OR 1 ) 2 , ZnX 1 , AlR 2 2 , SnR 3 3 , MgX 2. Or SiR 4 3 where X 1 and X 2 are halogens (chloro, bromo, iodo are preferred, bromo, iodo are more preferred) and R 1 , R 2 , R 3 and R 4 are Each is independently hydrogen or alkyl (C1-C6 alkyl is preferable, and methyl, ethyl, and t-butyl are more preferable). An alkoxycarbonyl group (eg ethoxycarbonyl) or B (OR 1 ) 2 (R 1 is hydrogen) is preferred.

用語「無置換もしくは置換のアリール基」とは、適宜1〜5個の置換基を有する芳香族性炭素環式を意味する。縮合環様式で結合した多環式基(例えば、二環式基)をも本定義に含む。具体例としては、フェニル基、1−ナフチル基、2−ナフチル基等の単環式アリール基;フェナントリジニル基、6−クロマニル基、5−イソインドリル基等の二環式アリール基等が挙げられる。フェニル基、1−ナフチル基、2−ナフチル基が好ましい。   The term “unsubstituted or substituted aryl group” means an aromatic carbocyclic group having 1 to 5 substituents as appropriate. Also included in this definition are polycyclic groups (eg, bicyclic groups) linked in a fused ring fashion. Specific examples include monocyclic aryl groups such as phenyl group, 1-naphthyl group and 2-naphthyl group; bicyclic aryl groups such as phenanthridinyl group, 6-chromanyl group and 5-isoindolyl group. It is done. A phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.

ここで、置換基としては、かかるクロスカップリング反応の進行を妨げない基であればよく、有機化学分野において知られる電子供与性基(例えば、アミノ基、アルキル基、アルコキシ基)または電子吸引性基(例えば、ニトロ基、ホルミル基、オキソ基、シアノ基、アルコキシカルボニル基)のいずれであってもよいが、電子供与性基が好ましい。例えば、アルキル基(例えば、炭素数が1〜6個のアルキル基(例えば、メチル基、エチル基))、ハロゲン化アルキル基(例えば、トリフルオロメチル基)、ニトロ基、ホルミル基、オキソ基、アシル基(例えば、アセチル基、プロピオニル基、ブチリル基)、アミノ基(例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジフェニルアミノ基)、ヒドロキシ基、アルコキシ基(例えば、メトキシ基、エトキシ基)、カルボキシ基、シアノ基を含む。アルキル基、ハロゲン化アルキル基、アルコキシ基が好ましい。   Here, the substituent may be any group that does not hinder the progress of the cross-coupling reaction, and is known as an electron donating group (for example, amino group, alkyl group, alkoxy group) or electron withdrawing property known in the field of organic chemistry. Any of groups (for example, nitro group, formyl group, oxo group, cyano group, alkoxycarbonyl group) may be used, but an electron donating group is preferable. For example, an alkyl group (for example, an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group)), a halogenated alkyl group (for example, a trifluoromethyl group), a nitro group, a formyl group, an oxo group, Acyl group (eg, acetyl group, propionyl group, butyryl group), amino group (eg, N-methylamino group, N-ethylamino group, N, N-dimethylamino group, N, N-diphenylamino group), hydroxy Group, alkoxy group (for example, methoxy group, ethoxy group), carboxy group, and cyano group. Alkyl groups, halogenated alkyl groups, and alkoxy groups are preferred.

用語「無置換もしくは置換のヘテロアリール基」とは、適宜1〜5個の置換基を有する、少なくとも1つの環内に、窒素原子、酸素原子、または硫黄原子から選ばれる少なくとも1つのヘテロ原子を有する、芳香族性の環式基を意味する。縮合環様式で結合した多環式基(例えば、二環式基)をも本定義に含む。具体例としては、ピロリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソキサゾリル基、チアゾリル基、チアジアゾリル基、イソチアゾリル基、ピリジル基、フリル基、チエニル基、オキサジアゾリル基、2−オキサアゼピニル基、アゼピニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、トリアゾリル基などの単環式へテロアリール基;および、ベンゾチアゾリル基、ベンゾキサゾリル基、ベンゾチエニル基、ベンゾフリル基、キノリニル基、キノリニル−N−オキシド基、イソキノリニル基、ベンゾイミダゾリル基、ベンゾピラニル基、インドリジニル基、シンノリニル基、キノキサリニル基、インダゾリル基、ピロロピリジル基、フロピリジニル基(例えば、フロ[2,3−c]ピリジニル基、フロ[3,1−b]ピリジニル基、またはフロ[2,3−b]ピリジニル基)、ベンジイソチアゾリル基、ベンゾイソキサゾリル基、ベンゾジアジニル基、ベンゾチオピラニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ナフチリジニル基、フタラジニル基、プリニル基、ピリドピリジル基、キナゾリニル基、チエノフリル基、チエノピリジル基、チエノチエニル基などの二環式ヘテロアリール基等の二環式アリール基等が挙げられる。ピリジル基が好ましい。置換基としては、上記の「無置換もしくは置換のアリール基」において定義するのと同様に、かかるクロスカップリング反応の進行を妨げない基であればよく、具体例は上述の通りである。   The term “unsubstituted or substituted heteroaryl group” refers to at least one heteroatom selected from a nitrogen atom, an oxygen atom, or a sulfur atom in at least one ring having 1 to 5 substituents as appropriate. Means an aromatic cyclic group. Also included in this definition are polycyclic groups (eg, bicyclic groups) linked in a fused ring fashion. Specific examples include pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, pyridyl, furyl, thienyl, oxadiazolyl, 2-oxaazepinyl, azepinyl, pyrazinyl Group, pyrimidinyl group, pyridazinyl group, triazinyl group, triazolyl group and the like monocyclic heteroaryl group; and benzothiazolyl group, benzoxazolyl group, benzothienyl group, benzofuryl group, quinolinyl group, quinolinyl-N-oxide group, isoquinolinyl group, Benzoimidazolyl group, benzopyranyl group, indolizinyl group, cinnolinyl group, quinoxalinyl group, indazolyl group, pyrrolopyridyl group, furopyridinyl group (for example, furo [2,3-c] pyridinyl group, furo [ 3,1-b] pyridinyl group or furo [2,3-b] pyridinyl group), benzisothiazolyl group, benzisoxazolyl group, benzodiazinyl group, benzothiopyranyl group, benzotriazolyl group, And bicyclic aryl groups such as bicyclic heteroaryl groups such as benzopyrazolyl group, naphthyridinyl group, phthalazinyl group, purinyl group, pyridopyridyl group, quinazolinyl group, thienofuryl group, thienopyridyl group, and thienothienyl group. A pyridyl group is preferred. As defined in the above “unsubstituted or substituted aryl group”, the substituent may be any group that does not hinder the progress of the cross-coupling reaction, and specific examples are as described above.

用語「無置換もしくは置換のアルケニル基」とは、適宜1〜5個の置換基を有する、2〜12個の炭素原子および少なくとも1個の二重結合を有する、直鎖、分枝または環状の炭化水素基を意味する。具体例としては、エテニル基(ビニル基)、1−プロペニル基、1−ブテニル基、1−ペンテニル基、1,3−ジペンテニル基、シクロヘキセニル基等を挙げられる。エテニル基が好ましい。置換基としては、上記の「無置換もしくは置換のアリール基」において定義するのと同様に、かかるクロスカップリング反応の進行を妨げない基であればよく、具体例は上述の通りである。   The term “unsubstituted or substituted alkenyl group” means a straight, branched or cyclic group having 2 to 12 carbon atoms and at least one double bond, optionally having 1 to 5 substituents. A hydrocarbon group is meant. Specific examples include ethenyl group (vinyl group), 1-propenyl group, 1-butenyl group, 1-pentenyl group, 1,3-dipentenyl group, cyclohexenyl group and the like. An ethenyl group is preferred. As defined in the above “unsubstituted or substituted aryl group”, the substituent may be any group that does not hinder the progress of the cross-coupling reaction, and specific examples are as described above.

用語「無置換もしくは置換のアルキニル基」とは、適宜1〜3個の置換基を有する、2〜6個の炭素原子および1個の三重結合を有する、直鎖または分枝の炭化水素基を意味する。アセチレンの一端の炭素上の水素が水素以外の基で置換された末端アルキニル基が好ましい。具体例としては、1−プロピニル、1−ブチニル、3,3−ジメチル−1−ブチニル等を挙げられる。1−プロピニルが好ましい。置換基としては、上記の「無置換もしくは置換のアリール基」において定義するのと同様に、かかるクロスカップリング反応の進行を妨げない基であればよく、具体例は上述の通りである。   The term “unsubstituted or substituted alkynyl group” refers to a linear or branched hydrocarbon group having 2 to 6 carbon atoms and one triple bond, optionally having 1 to 3 substituents. means. A terminal alkynyl group in which hydrogen on carbon at one end of acetylene is substituted with a group other than hydrogen is preferable. Specific examples include 1-propynyl, 1-butynyl, 3,3-dimethyl-1-butynyl and the like. 1-propynyl is preferred. As defined in the above “unsubstituted or substituted aryl group”, the substituent may be any group that does not hinder the progress of the cross-coupling reaction, and specific examples are as described above.

用語「アルコキシカルボニル基」とは、炭素数が1〜12個、好ましくは炭素数が1〜8個、より好ましくは炭素数が1〜6個のアルキル基を含むアルコキシカルボニル基を意味する。具体例としては、メトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニル、ブトキシカルボニル(n−ブトキシカルボニル、イソ−ブトキシカルボニル、t−ブトキシカルボニル)、ペンチルオキシカルボニル、ヘキシルオキシカルボニル等を挙げられる。メトキシカルボニル、エトキシカルボニル、t−ブトキシカルボニルが好ましい。   The term “alkoxycarbonyl group” means an alkoxycarbonyl group containing an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms. Specific examples include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, butoxycarbonyl (n-butoxycarbonyl, iso-butoxycarbonyl, t-butoxycarbonyl), pentyloxycarbonyl, hexyloxycarbonyl and the like. Methoxycarbonyl, ethoxycarbonyl and t-butoxycarbonyl are preferred.

本発明の反応を以下に詳しく説明する。

Figure 0005700624
The reaction of the present invention is described in detail below.
Figure 0005700624

(触媒の調製)
本発明のクロスカップリング反応用触媒は上記反応式1に示す通りに調製する。具体的には、まず特願2009−154932中の記載と同様に、第8族−第11族遷移金属化合物の原料を配位性有機溶媒中で加熱還流することによって反応させ、反応溶液を得る。マイクロ波を照射しながら加熱還流することが好ましい。この反応は、空気雰囲気下で行うことができる。また、反応温度は、通常使用する配位性有機溶媒の沸点近くで行う。更に、反応時間は、使用する溶媒、反応温度などの反応条件に依存して変わり得るが、数時間〜数日間で完結し、通常約4時間〜約1日間で完結し、約6時間が好ましい。
(Preparation of catalyst)
The catalyst for cross-coupling reaction of the present invention is prepared as shown in the above reaction formula 1. Specifically, first, as described in Japanese Patent Application No. 2009-154932, the raw materials of Group 8 to Group 11 transition metal compounds are reacted by heating and refluxing in a coordinating organic solvent to obtain a reaction solution. . It is preferable to heat and reflux while irradiating with microwaves. This reaction can be carried out in an air atmosphere. Moreover, reaction temperature is performed near the boiling point of the coordinating organic solvent used normally. Furthermore, the reaction time may vary depending on the reaction conditions such as the solvent used and the reaction temperature, but it is completed in several hours to several days, usually about 4 hours to about 1 day, and preferably about 6 hours. .

第8族−第11族遷移金属化合物の原料としては、各遷移金属の無機化合物(例えば、塩化物、硫酸化物、硝酸化物)であってよく、具体的には、Pdの場合にはPdCl、[Pd(NH)]Clなど;Ptの場合にはHPtCl、[Pt(NH)]Cl等;Feの場合にはFeCl、Fe(SO)等;Auの場合には、HAuCl、Na[Au(CN)]等;Cuの場合には、CuCl、CuSO等;Agの場合には、AgNO、[Ag(NH)]NO等を挙げられる。塩化物が好ましい。これらは、市販されているか、または当該有機金属化学の分野において知られる方法、或いはこれらに準じた方法により製造することができる。 The raw material of the Group 8 to Group 11 transition metal compound may be an inorganic compound of each transition metal (for example, chloride, sulfate, or nitrate). Specifically, in the case of Pd, PdCl 2 , [Pd (NH 3 ) 4 ] Cl 2, etc .; in the case of Pt, H 2 PtCl 6 , [Pt (NH 3 ) 4 ] Cl 2, etc .; in the case of Fe, FeCl 3 , Fe 2 (SO 4 ) 3 In the case of Au, HAuCl 4 , Na [Au (CN) 4 ] etc .; in the case of Cu, CuCl 2 , CuSO 4 etc .; in the case of Ag, AgNO 3 , [Ag (NH 3 ) 2 ] NO 3 etc. are mentioned. Chloride is preferred. These are commercially available, or can be produced by a method known in the field of the organometallic chemistry or a method analogous thereto.

次に、得られた反応溶液を、配位性有機溶媒で希釈して所望の濃度へ調整して遷移金属超微粒子触媒を得ることができる。ここで、反応溶媒と希釈溶媒とが相違する場合には、反応溶媒を留去し、その後に希釈を行う。例えば、1mMの反応溶液を得て、これを希釈して10μM、100nM、10nM、1nMの濃度にまで調製することができる。   Next, the obtained reaction solution can be diluted with a coordinating organic solvent and adjusted to a desired concentration to obtain a transition metal ultrafine particle catalyst. Here, when the reaction solvent and the diluting solvent are different, the reaction solvent is distilled off, followed by dilution. For example, a 1 mM reaction solution can be obtained and diluted to a concentration of 10 μM, 100 nM, 10 nM, 1 nM.

(クロスカップリング反応)
クロスカップリング反応は、上記反応式2に示す通り一般に触媒的クロスカップリング反応として知られる手順に準じて行う。具体的には、式:A−Xで示される化合物(1)と、式:B−Yで示される化合物(2)とを、上記で得られた遷移金属超微粒子触媒の存在下で反応させる。ここで、クロスカップリング反応のタイプによっては、塩基の存在下で行う。塩基としては、有機塩基(例えば、トリエチルアミン、ピリジン)または無機塩基(例えば、水酸化物(例えば、水酸化ナトリウム))、炭酸塩(例えば、炭酸カリウム)、炭酸水素塩(例えば、炭酸水素ナトリウム))を挙げられる。
(Cross coupling reaction)
The cross coupling reaction is generally performed according to a procedure known as a catalytic cross coupling reaction as shown in the above reaction formula 2. Specifically, the compound (1) represented by the formula: AX and the compound (2) represented by the formula: BY are reacted in the presence of the transition metal ultrafine particle catalyst obtained above. . Here, depending on the type of the cross-coupling reaction, the reaction is performed in the presence of a base. Bases include organic bases (eg triethylamine, pyridine) or inorganic bases (eg hydroxides (eg sodium hydroxide)), carbonates (eg potassium carbonate), bicarbonates (eg sodium bicarbonate) ).

反応基質である、式:A−Xで示される化合物(1)と、式:B−Yで示される化合物(2)はいずれも市販されているか、または当該有機化学の分野において知られる方法、或いはこれらに準じた方法により製造することができる。   A compound (1) represented by the formula: AX and a compound (2) represented by the formula: BY, which are reaction substrates, are either commercially available or a method known in the field of organic chemistry, Or it can manufacture by the method according to these.

クロスカップリング反応の反応溶媒は、配位性有機溶媒の単独または水との混合物を使用することができる。水との混合物を使用する場合には、反応溶媒総量中の配位性有機溶媒の比率が5容量%以上、20容量%以上、好ましくは50容量%以上である。配位性反応溶媒としては、DMF、NMPおよびTHFが好ましく、特に溝呂木・ヘック反応の場合にはDMFが、鈴木・宮浦カップリングの場合にはNMPが好ましい。   As a reaction solvent for the cross-coupling reaction, a coordinating organic solvent alone or a mixture with water can be used. When a mixture with water is used, the ratio of the coordinating organic solvent in the total amount of the reaction solvent is 5% by volume or more, 20% by volume or more, preferably 50% by volume or more. As the coordinating reaction solvent, DMF, NMP and THF are preferable. Particularly, in the case of Mizorogi-Heck reaction, DMF is preferable, and in the case of Suzuki-Miyaura coupling, NMP is preferable.

反応基質である化合物(1)と化合物(2)の配合量比率は、化合物(2)の量が化合物(1)の配合量基準で等量または過剰量で使用する。例えば、化合物(2)を、1.0〜3.0当量、1.0〜2.0当量、好ましくは1.2〜1.5当量で使用する。   The compounding ratio of the compound (1) and the compound (2) as the reaction substrate is such that the amount of the compound (2) is equal or excessive based on the compounding amount of the compound (1). For example, the compound (2) is used in an amount of 1.0 to 3.0 equivalents, 1.0 to 2.0 equivalents, preferably 1.2 to 1.5 equivalents.

本発明の遷移金属超微粒子触媒の使用量は、反応基質である化合物(1)の配合量基準で10−1〜10−7モル%、10−2〜10−7モル%、好ましくは10−3〜10−7モル%で使用することができる。特に、溝呂木・ヘック反応の場合には10−5〜10−7モル%で、鈴木・宮浦カップリングの場合には10−3モル%で使用することができる。 The transition metal ultrafine particle catalyst of the present invention is used in an amount of 10 −1 to 10 −7 mol%, 10 −2 to 10 −7 mol%, preferably 10 − based on the amount of compound (1) as the reaction substrate. it can be used in three to 10-7 mol%. In particular, it can be used at 10 −5 to 10 −7 mol% in the case of Mizorogi-Heck reaction, and at 10 −3 mol% in the case of Suzuki-Miyaura coupling.

触媒活性は、触媒化学分野においてよく用いられる触媒回転数(TON)を用いて表すことができる。本発明の触媒は、10〜10の次数のTONを示す。例えば、鈴木・宮浦カップリングの場合には、10の次数、すなわち最大で万単位のTONを、溝呂木・ヘック反応の場合には10〜10の次数、すなわち最大で億単位のTONを示し得る。 Catalytic activity can be expressed using the catalyst rotational speed (TON) often used in the field of catalytic chemistry. The catalyst of the present invention exhibits a TON of the order of 10 4 to 10 8 . For example, in the case of the Suzuki-Miyaura coupling, an order of 10 4 , that is, a maximum of 10,000 units of TON, and in the case of the Mizorogi-Heck reaction, an order of 10 4 to 10 8 , that is, a maximum of 100 million units of TON. Can show.

本発明のカップリング反応は、低温(例えば、−70℃以下)から高温(例えば、100℃以上)で行なうことができ、通常室温〜使用する反応溶媒の沸点であり、80〜140が好ましく、100℃〜140℃がより好ましい。   The coupling reaction of the present invention can be performed at a low temperature (for example, −70 ° C. or lower) to a high temperature (for example, 100 ° C. or higher), and is usually from room temperature to the boiling point of the reaction solvent used, preferably 80 to 140, 100 degreeC-140 degreeC is more preferable.

本発明の反応は、不活性気体の雰囲気下で行なうことが好ましく、具体的には窒素、アルゴン、ヘリウムの雰囲気下で行なう。   The reaction of the present invention is preferably performed in an atmosphere of an inert gas, specifically, in an atmosphere of nitrogen, argon, or helium.

本発明の反応は、常圧から加圧容器(例えば、プレッシャーチューブなどの市販のステンレス加圧容器)中での加圧条件下で行なうことができ、通常常圧で行なう。   The reaction of the present invention can be carried out under normal pressure from a normal pressure in a pressure vessel (for example, a commercially available stainless steel pressure vessel such as a pressure tube), and is usually carried out at normal pressure.

本発明の反応時間は、使用する溶媒、反応温度などの反応条件に依存して変わり得るが、数時間〜数日間で完結し、通常3時間〜2日間で完結し、5時間〜15時間が好ましい。   The reaction time of the present invention may vary depending on the reaction conditions such as the solvent used and the reaction temperature, but it is completed in several hours to several days, usually 3 hours to 2 days, and 5 hours to 15 hours. preferable.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。遷移金属超微粒子およびクロスカップリング反応の生成物の確認は、各種分光学的分析の解析により行なった。具体的には、一次元および二次元のプロトンおよび炭素13核磁気共鳴スペクトル(H NMR、13C NMR、質量スペクトル(MS)、赤外線吸収スペクトル(IR)、蛍光スペクトル、透過型電子顕微鏡(TEM)の解析により行った。核磁気共鳴スペクトルには、テトラメチルシランを内部標準として用いた。反応収率は、シリカゲルガスクロマトグラフィー(GC)を用いて定量した。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. The transition metal ultrafine particles and the product of the cross-coupling reaction were confirmed by analysis of various spectroscopic analyses. Specifically, one- and two-dimensional proton and carbon 13 nuclear magnetic resonance spectra ( 1 H NMR, 13 C NMR, mass spectrum (MS), infrared absorption spectrum (IR), fluorescence spectrum, transmission electron microscope (TEM) In the nuclear magnetic resonance spectrum, tetramethylsilane was used as an internal standard, and the reaction yield was quantified using silica gel gas chromatography (GC).

実施例中に用いた以下の略号を説明する。
Meはメチル基を、Etはエチル基を、t−Buはt−ブチル基を、Cyをシクロヘキシル基を意味する。
The following abbreviations used in the examples will be described.
Me represents a methyl group, Et represents an ethyl group, t-Bu represents a t-butyl group, and Cy represents a cyclohexyl group.

[参考例]
[遷移金属超微粒子の合成]
1.パラジウム超微粒子の調製
本発明において使用する遷移金属超微粒子は、特願2009−154932の記載と同様に調製した。具体的には、三口フラスコに回転子を入れ、DMFで共洗いしたのちに、DMF (15 mL)を入れ、空気雰囲気下、140℃で6分間、三口フラスコを予備加熱した。その後、0.1 Mの塩化パラジウム水溶液を150 μL加え、140℃、6時間加熱環流し合成を行った。パラジウム超微粒子溶液は、1 mMの溶液 (1 mM Pd超微粒子(ナノ粒子)(NCs)/DMF)として得られ、紫外可視吸収スペクトル、蛍光スペクトル、TEMを用いて分析し、約1.5 nmの粒子の生成を確認した(図1(A))。
[Reference example]
[Synthesis of transition metal ultrafine particles]
1. Preparation of palladium ultrafine particles The transition metal ultrafine particles used in the present invention were prepared in the same manner as described in Japanese Patent Application No. 2009-154932. Specifically, a rotator was placed in a three-necked flask, washed with DMF, DMF (15 mL) was added, and the three-necked flask was preheated at 140 ° C. for 6 minutes in an air atmosphere. Thereafter, 150 μL of 0.1 M palladium chloride aqueous solution was added, and the mixture was heated to reflux at 140 ° C. for 6 hours for synthesis. The palladium ultrafine particle solution is obtained as a 1 mM solution (1 mM Pd ultrafine particles (nanoparticles) (NCs) / DMF) and analyzed using an ultraviolet-visible absorption spectrum, fluorescence spectrum, and TEM. Was confirmed (FIG. 1A).

2.白金超微粒子の調製
上記パラジウム超微粒子と同様に、調製した。具体的には、三口フラスコに回転子を入れ、DMFで共洗いしたのちに、DMF (15 mL)を入れ、空気雰囲気下、140℃で6分間、三口フラスコを予備加熱した。その後、0.1 Mの塩化白金酸水溶液を75 μL加え、140℃、6時間加熱環流し合成を行った。白金超微粒子溶液は、1 mMの溶液 (1 mM Pt NCs/DMF)として得られ、紫外可視吸収スペクトル、蛍光スペクトル、TEMを用いて分析し、約1.5 nmの粒子の生成を確認した(図1(B))。
2. Preparation of platinum ultrafine particles Prepared in the same manner as the above-mentioned palladium ultrafine particles. Specifically, a rotator was placed in a three-necked flask, washed with DMF, DMF (15 mL) was added, and the three-necked flask was preheated at 140 ° C. for 6 minutes in an air atmosphere. Thereafter, 75 μL of 0.1 M chloroplatinic acid aqueous solution was added, and synthesis was carried out by refluxing at 140 ° C. for 6 hours. The platinum ultrafine particle solution was obtained as a 1 mM solution (1 mM Pt NCs / DMF) and analyzed using an ultraviolet-visible absorption spectrum, a fluorescence spectrum, and TEM to confirm the generation of particles of about 1.5 nm (FIG. 1). (B)).

[実施例]
[触媒の調製]
生成したパラジウム超微粒子溶液(Pd NCs/DMF)の1 mM溶液をDMFで100倍に希釈し、10 μM Pd NCs/DMFの溶液を調製した。さらに、10 μMのPd NCs/DMFの溶液をDMFで100倍に希釈し、100 nMの溶液を調製した。同様な操作で、10 nM、1 nMのPd NCs/DMF溶液を調製し、反応に用いた。
[Example]
[Preparation of catalyst]
A 1 mM solution of the produced palladium ultrafine particle solution (Pd NCs / DMF) was diluted 100 times with DMF to prepare a 10 μM Pd NCs / DMF solution. Further, a 10 μM Pd NCs / DMF solution was diluted 100 times with DMF to prepare a 100 nM solution. In the same manner, 10 nM and 1 nM Pd NCs / DMF solutions were prepared and used for the reaction.

同様に、1 mMのPd NCs/DMF溶液のDMF (15 mL)をエバポレーターにより留去したのち、NMP (15 mL)を加え、再分散させた。得られた1 mM Pd NCs/NMP溶液をNMPで100倍に希釈し、10 μMのPd NCs/NMP溶液を調製した。同様の操作で、1 μM、100 nM、10 nM、1 nMのPd NCs/NMP溶液を調製した。   Similarly, DMF (15 mL) of a 1 mM Pd NCs / DMF solution was distilled off using an evaporator, and then NMP (15 mL) was added and redispersed. The obtained 1 mM Pd NCs / NMP solution was diluted 100 times with NMP to prepare a 10 μM Pd NCs / NMP solution. In the same manner, 1 μM, 100 nM, 10 nM, and 1 nM Pd NCs / NMP solutions were prepared.

更に、1 mMのPd NCs/DMF溶液のDMF (15 mL)をエバポレーターにより留去したのち、THF(15 mL)を加え、再分散させた。得られた1 mM Pd NCs/THF溶液をTHFで100倍に希釈し、10 μMのPd NCs/THF溶液を調製した。同様の操作で、1 μM、100 nM、10 nM、1 nMのPd NCs/THF溶液を調製した。   Further, DMF (15 mL) of 1 mM Pd NCs / DMF solution was distilled off with an evaporator, and then THF (15 mL) was added to redisperse. The obtained 1 mM Pd NCs / THF solution was diluted 100 times with THF to prepare a 10 μM Pd NCs / THF solution. In the same manner, 1 μM, 100 nM, 10 nM, and 1 nM Pd NCs / THF solutions were prepared.

[クロスカップリング反応]
(溝呂木・ヘック反応)
[Cross coupling reaction]
(Mizorogi / Heck reaction)

Figure 0005700624

プレッシャーチューブに回転子を入れ、アルゴン雰囲気のもと、上記[触媒の調製]で合成した1 mMのPd NCs/DMF (1 mL)を加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;定量的、触媒回転数;>1,000回。
Figure 0005700624

A rotor was placed in the pressure tube, and 1 mM Pd NCs / DMF (1 mL) synthesized in the above [Preparation of catalyst] was added under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg) and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck product yield; quantitative, catalyst rotation;> 1,000 times.

Figure 0005700624
まず、生成したパラジウムナノ粒子溶液(Pd NCs/DMF)の1 mM溶液を100 μL取り、DMF 10 mL中に加えて100倍に希釈し、10 μM Pd NCs/DMFの溶液を調製した。その10μM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;定量的、触媒回転数;>100,000回。
Figure 0005700624
First, 100 μL of a 1 mM solution of the produced palladium nanoparticle solution (Pd NCs / DMF) was taken, added to 10 mL of DMF, and diluted 100-fold to prepare a 10 μM Pd NCs / DMF solution. 1 mL of the 10 μM Pd NCs / DMF solution was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg) and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; quantitative, catalyst turnover;> 100,000 times.

Figure 0005700624
まず、上記[実施例2]で調製したパラジウムナノ粒子溶液(Pd NCs/DMF)の10 μM溶液を100 μL取り、DMF 10 mL中に加えて100倍に希釈し、100 nM Pd NCs/DMFの溶液を調製した。その100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;>99% 、触媒回転数;>10,000,000回。
Figure 0005700624
First, 100 μL of a 10 μM solution of the palladium nanoparticle solution (Pd NCs / DMF) prepared in [Example 2] above is taken, added to 10 mL of DMF, diluted 100 times, and 100 nM Pd NCs / DMF A solution was prepared. 1 mL of the 100 nM Pd NCs / DMF solution was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg) and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield;> 99%, catalyst rotation;> 10,000,000 times.

Figure 0005700624
1 mMのPd NCs/DMF溶液のDMF (15 mL)をエバポレーターにより留去したのち、NMP (15 mL)を加え、再分散させた。得られた1 mM Pd NCs/NMP溶液を100 μL取り、NMP 10 mLで100倍に希釈し、10 μMのPd NCs/NMP溶液を調製した。同様の操作で、10 μM Pd NCs/NMP溶液を100 μL取り、NMP 10 mLで100倍に希釈し、100 nMのPd NCs/NMP溶液を調製した。その100 nM Pd NCs/NMPの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてNMP (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;30% 、触媒回転数;3,040,000回。
Figure 0005700624
After distilling off DMF (15 mL) of 1 mM Pd NCs / DMF solution with an evaporator, NMP (15 mL) was added and redispersed. 100 μL of the obtained 1 mM Pd NCs / NMP solution was taken and diluted 100-fold with 10 mL of NMP to prepare a 10 μM Pd NCs / NMP solution. In the same manner, 100 μL of 10 μM Pd NCs / NMP solution was taken and diluted 100-fold with 10 mL of NMP to prepare a 100 nM Pd NCs / NMP solution. 1 mL of the 100 nM Pd NCs / NMP solution was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), and NMP (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield: 30%, catalyst rotation speed: 3,040,000 times.

Figure 0005700624
まず、[実施例3]で調製したパラジウムナノ粒子溶液(Pd NCs/DMF)の100 nM溶液を100 μL取り、DMF 10 mL中に加えて100倍に希釈し、1 nM Pd NCs/DMFの溶液を調製した。その1 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;60% 、触媒回転数;598,000,000回。
Figure 0005700624
First, 100 μL of a 100 nM palladium nanoparticle solution (Pd NCs / DMF) prepared in [Example 3] is taken, added to 10 mL of DMF, diluted 100-fold, and then a 1 nM Pd NCs / DMF solution. Was prepared. 1 mL of the 1 nM Pd NCs / DMF solution was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg) and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 60%, catalyst rotation speed: 598,000,000 times.

Figure 0005700624
プレッシャーチューブに回転子を入れ、アルゴン雰囲気のもと[触媒の調製]で合成した1 mMのPd NCs/DMF (1 mL)を加えた。その後、ブロモベンゼン (1 mmol, 157 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;23%、触媒回転数;231回。
Figure 0005700624
A rotor was placed in the pressure tube, and 1 mM Pd NCs / DMF (1 mL) synthesized in [Preparation of catalyst] was added under an argon atmosphere. Then, bromobenzene (1 mmol, 157 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 23%, catalyst rotation speed: 231 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、4-ヨードトルエン (1 mmol, 218 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;47% 、触媒回転数;4,740,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, 4-iodotoluene (1 mmol, 218 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added, and the reaction was carried out at 140 ° C for 15 hours. Went. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 47%, catalyst rotation speed: 4,740,000 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、4-ヨードベンゾトリフルオリド (1 mmol, 272 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;41% 、触媒回転数;4,090,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, 4-iodobenzotrifluoride (1 mmol, 272 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), DMF (1 mL) as a solvent was added, 140 ° C, 15 Time reaction was performed. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield: 41%, catalyst rotation speed: 4,090,000 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、4-ヨードアニソール (1 mmol, 234 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;20% 、触媒回転数;2,010,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, 4-iodoanisole (1 mmol, 234 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. Went. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 20%, catalyst rotation speed: 2,010,000 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、1-ヨードナフタレン (1 mmol, 254 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;68% 、触媒回転数;6,760,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, 1-iodonaphthalene (1 mmol, 254 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), DMF (1 mL) as a solvent was added, and the reaction was carried out at 140 ° C for 15 hours. Went. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 68%, catalyst rotation speed: 6,760,000 times.

Figure 0005700624
[実施例2]で調製した10 μM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、5-ヨード-2-フルアルデヒド (1 mmol, 222 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;14% 、触媒回転数;14,200回。
Figure 0005700624
1 mL of the 10 μM Pd NCs / DMF solution prepared in [Example 2] was added to a pressure tube containing a rotor under an argon atmosphere. Then, 5-iodo-2-furaldehyde (1 mmol, 222 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added, 140 ° C The reaction was performed for 15 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 14%, catalyst rotation speed: 14,200 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、2-ヨードチオフェン (1 mmol, 210 mg)、アクリル酸エチル (1.2 mmol, 120 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;11% 、触媒回転数;1,090,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, 2-iodothiophene (1 mmol, 210 mg), ethyl acrylate (1.2 mmol, 120 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. Went. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 11%, catalyst rotation speed: 1,090,000 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸シクロヘキシル (1.2 mmol, 185 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;27% 、触媒回転数;2,740,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), cyclohexyl acrylate (1.2 mmol, 185 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 27%, catalyst rotation speed: 2,740,000 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、アクリル酸-t-ブチル (1.2 mmol, 154 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;5% 、触媒回転数;530,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), acrylic acid-t-butyl (1.2 mmol, 154 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added, 140 ° C, 15 hours Reaction was performed. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield: 5%, catalyst rotation speed: 530,000 times.

Figure 0005700624
[実施例3]で調製した100 nM Pd NCs/DMFの溶液 1 mLをアルゴン雰囲気のもと回転子を入れたプレッシャーチューブに加えた。その後、ヨードベンゼン (1 mmol, 204 mg)、メチルビニルケトン (1.2 mmol, 84 mg)、トリエチルアミン (1 mmol, 101 mg)、溶媒としてDMF (1 mL)を加え、140℃、15時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。ヘック型生成物の収率;12% 、触媒回転数;1,240,000回。
Figure 0005700624
1 mL of a solution of 100 nM Pd NCs / DMF prepared in [Example 3] was added to a pressure tube containing a rotor under an argon atmosphere. Then, iodobenzene (1 mmol, 204 mg), methyl vinyl ketone (1.2 mmol, 84 mg), triethylamine (1 mmol, 101 mg), and DMF (1 mL) as a solvent were added and reacted at 140 ° C for 15 hours. It was. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Heck-type product yield; 12%, catalyst rotation speed: 1,240,000 times.

(鈴木-宮浦クロスカップリング反応) (Suzuki-Miyaura cross-coupling reaction)

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol,109 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、上記[触媒の調製]で調製した1 mMのPd NCs/DMF (1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 86%, 触媒回転数 (TON): 430回。
Figure 0005700624
After adding a rotor to a branched Schlenk and adding 4-iodotoluene (0.5 mmol, 109 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere 1 mM Pd NCs / DMF (1 mL) and H 2 O (1 mL) prepared in the above [Preparation of catalyst] were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 86%, catalyst rotation speed (TON): 430 times.

Figure 0005700624
まず、生成したパラジウムナノ粒子溶液(Pd NCs/DMF)の1 mM溶液を100 μL取り、DMF 10 mL中に加えて100倍に希釈し、10 μM Pd NCs/DMFの溶液を調製した。次に、枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol,109 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、10 μM Pd NCs/DMFの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 41%, 触媒回転数 (TON): 20,400回。
Figure 0005700624
First, 100 μL of a 1 mM solution of the produced palladium nanoparticle solution (Pd NCs / DMF) was taken, added to 10 mL of DMF, and diluted 100-fold to prepare a 10 μM Pd NCs / DMF solution. Next, put a rotator in the branched Schlenk and put 4-iodotoluene (0.5 mmol, 109 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. After the addition, a 10 μM Pd NCs / DMF solution (1 mL) and H 2 O (1 mL) were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 41%, catalyst rotation speed (TON): 20,400 times.

Figure 0005700624
まず、1 mMのPd NCs/DMF溶液のDMF (15 mL)をエバポレーターにより留去したのち、NMP (15 mL)を加え、再分散させた。得られた1 mM Pd NCs/NMP溶液を100 μL取り、NMP 10 mLで100倍に希釈し、10 μMのPd NCs/NMP溶液を調製した。次に、枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol, 109 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 82%, 触媒回転数 (TON): 40,600回。
Figure 0005700624
First, DMF (15 mL) of a 1 mM Pd NCs / DMF solution was distilled off using an evaporator, and then NMP (15 mL) was added and redispersed. 100 μL of the obtained 1 mM Pd NCs / NMP solution was taken and diluted 100-fold with 10 mL of NMP to prepare a 10 μM Pd NCs / NMP solution. Next, put a rotator in the branched Schlenk and put 4-iodotoluene (0.5 mmol, 109 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. After the addition, a 10 μM Pd NCs / NMP solution (1 mL) and H 2 O (1 mL) were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 82%, catalyst rotation speed (TON): 40,600 times.

Figure 0005700624
まず、1 mMのPd NCs/DMF溶液のDMF (15 mL)をエバポレーターにより留去したのち、THF (15 mL)を加え、再分散させた。得られた1 mM Pd NCs/THF溶液を100 μL取り、THF 10 mLで100倍に希釈し、10 μMのPd NCs/THF溶液を調製した。溶けなかった粒子は、フィルターによりろ過した。次に、枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol, 109 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、10 μM Pd NCs/THFの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 56%, 触媒回転数 (TON): 28,100回。
Figure 0005700624
First, DMF (15 mL) of a 1 mM Pd NCs / DMF solution was distilled off using an evaporator, and then THF (15 mL) was added and redispersed. 100 μL of the obtained 1 mM Pd NCs / THF solution was taken and diluted 100 times with 10 mL of THF to prepare a 10 μM Pd NCs / THF solution. Undissolved particles were filtered through a filter. Next, put a rotator in the branched Schlenk and put 4-iodotoluene (0.5 mmol, 109 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. After the addition, a 10 μM Pd NCs / THF solution (1 mL) and H 2 O (1 mL) were added, and the reaction was carried out at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 56%, catalyst rotation (TON): 28,100 times.

Figure 0005700624
まず、生成したパラジウムナノ粒子溶液(Pd NCs/DMF)の1 mM溶液を10 μL取り、DMF 10 mL中に加えて100倍に希釈し、1 μM Pd NCs/DMFの溶液を調製した。次に、枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol, 109 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、1 μM Pd NCs/DMFの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 11%, 触媒回転数 (TON): 53,500回。
Figure 0005700624
First, 10 μL of a 1 mM solution of the produced palladium nanoparticle solution (Pd NCs / DMF) was taken and added to 10 mL of DMF and diluted 100 times to prepare a 1 μM Pd NCs / DMF solution. Next, put a rotator in the branched Schlenk and put 4-iodotoluene (0.5 mmol, 109 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. After the addition, a solution of 1 μM Pd NCs / DMF (1 mL) and H 2 O (1 mL) were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 11%, catalyst rotation speed (TON): 53,500 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ブロモトルエン (0.5 mmol, 86 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 43%, 触媒回転数 (TON): 24,000回。
Figure 0005700624
After adding a rotor to a branched Schlenk and adding 4-bromotoluene (0.5 mmol, 86 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere A 10 μM Pd NCs / NMP solution (1 mL) and H 2 O (1 mL) prepared in [Example 18] were added, and the reaction was carried out at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 43%, catalyst rotation speed (TON): 24,000 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードアニソール (0.5 mmol, 117 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 98%, 触媒回転数 (TON): 49,200回。
Figure 0005700624
After adding a rotor to a Schlenk with branches and adding 4-iodoanisole (0.5 mmol, 117 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere A 10 μM Pd NCs / NMP solution (1 mL) and H 2 O (1 mL) prepared in [Example 18] were added, and the reaction was carried out at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 98%, catalyst rotation speed (TON): 49,200 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもとフェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、4-ヨードベンゾトリフルオリド (0.5 mmol, 136 mg)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 61%, 触媒回転数 (TON): 33,700回。
Figure 0005700624
10 μM Pd prepared in [Example 18] after putting a rotator in a branched Schlenk and adding phenylboronic acid (0.75 mmol, 91 mg) and potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. NCs / NMP solution (1 mL), 4-iodobenzotrifluoride (0.5 mmol, 136 mg), and H 2 O (1 mL) were added, and the reaction was carried out at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 61%, catalyst rotation speed (TON): 33,700 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもとフェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、4-ヨードナフタレン (0.5 mmol, 127 mg)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 98%, 触媒回転数 (TON): 50,400回。
Figure 0005700624
10 μM Pd prepared in [Example 18] after putting a rotator in a branched Schlenk and adding phenylboronic acid (0.75 mmol, 91 mg) and potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. NCs / NMP solution (1 mL), 4-iodonaphthalene (0.5 mmol, 127 mg), and H 2 O (1 mL) were added, and the reaction was carried out at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 98%, catalyst rotation speed (TON): 50,400 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもとフェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、2-ヨードチオフェン (0.5 mmol, 105 mg)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 63%, 触媒回転数 (TON): 33,700回。
Figure 0005700624
10 μM Pd prepared in [Example 18] after putting a rotator in a branched Schlenk and adding phenylboronic acid (0.75 mmol, 91 mg) and potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. NCs / NMP solution (1 mL), 2-iodothiophene (0.5 mmol, 105 mg), and H 2 O (1 mL) were added, and the reaction was carried out at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 63%, catalyst rotation speed (TON): 33,700 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと5-ヨード-2-フルアルデヒド (0.5 mmol, 111 mg)、フェニルボロン酸 (0.75 mmol, 91 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 54%, 触媒回転数 (TON):27,100回。
Figure 0005700624
Put a rotator in a branched Schlenk, and under an argon atmosphere, 5-iodo-2-furaldehyde (0.5 mmol, 111 mg), phenylboronic acid (0.75 mmol, 91 mg), potassium carbonate (0.5 mmol, 69 mg) Then, 10 μM Pd NCs / NMP solution (1 mL) and H 2 O (1 mL) prepared in [Example 18] were added and reacted at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 54%, catalyst rotation speed (TON): 27,100 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol,109 mg)、4-クロロフェニルボロン酸 (0.75 mmol, 117 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 37%, 触媒回転数 (TON): 18,700回。
Figure 0005700624
Put a rotator in a branch Schlenk and add 4-iodotoluene (0.5 mmol, 109 mg), 4-chlorophenylboronic acid (0.75 mmol, 117 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. Thereafter, a solution (1 mL) of 10 μM Pd NCs / NMP prepared in [Example 18] and H 2 O (1 mL) were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 37%, catalyst rotation speed (TON): 18,700 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol,109 mg)、m-ニトロフェニルボロン酸 (0.75 mmol, 125 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 27%, 触媒回転数 (TON): 13,200回。
Figure 0005700624
Put a rotator in a branched Schlenk and put 4-iodotoluene (0.5 mmol, 109 mg), m-nitrophenylboronic acid (0.75 mmol, 125 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. After the addition, a 10 μM Pd NCs / NMP solution (1 mL) and H 2 O (1 mL) prepared in [Example 18] were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 27%, catalyst rotation speed (TON): 13,200 times.

Figure 0005700624
枝付きシュレンクに回転子を入れ、アルゴン雰囲気のもと4-ヨードトルエン (0.5 mmol,109 mg)、p-メトキシフェニルボロン酸 (0.75 mmol, 114 mg)、炭酸カリウム (0.5 mmol, 69 mg)を加えた後に、[実施例18]で調製した10 μM Pd NCs/NMPの溶液(1 mL)、H2O (1 mL)を加え、100 ℃、5時間反応を行った。定量は、GCを用い、内部基準法(基準物質はトリデカンである)で行った。カップリング生成物の収率: 56%, 触媒回転数 (TON): 27,900回。
Figure 0005700624
Put a rotator in a branched Schlenk and put 4-iodotoluene (0.5 mmol, 109 mg), p-methoxyphenylboronic acid (0.75 mmol, 114 mg), potassium carbonate (0.5 mmol, 69 mg) under an argon atmosphere. After the addition, a 10 μM Pd NCs / NMP solution (1 mL) and H 2 O (1 mL) prepared in [Example 18] were added, and the reaction was performed at 100 ° C. for 5 hours. Quantification was performed by GC using an internal standard method (the standard substance is tridecane). Yield of coupling product: 56%, catalyst rotation speed (TON): 27,900 times.

本発明の遷移金属超微粒子は触媒的クロスカップリング反応において極めて高い触媒活性を有することにより、希少金属資源の非常に効率的な利用が実現することができ、またクロスカップリング反応の生成物は、医薬品の合成中間体等としても有用であり、工業的に利用価値が高い。   The ultrafine transition metal particles of the present invention have a very high catalytic activity in the catalytic cross-coupling reaction, so that a very efficient utilization of rare metal resources can be realized, and the product of the cross-coupling reaction is It is also useful as a synthetic intermediate for pharmaceuticals and has high industrial utility value.

Claims (10)

第8族から第10族の遷移金属からなる群から選ばれる少なくとも1つの遷移金属のハロゲン化物、硫酸化物、または硝酸化物を配位性有機溶媒中で加熱して得られる、第8族から第10族遷移金属からなる群から選ばれる少なくとも1つの遷移金属および配位性有機溶媒を含有配位子、保護剤又はポリマーを含めた構成要素を含まない、平均粒子径が2nm以下である遷移金属超微粒子を含むクロスカップリング反応用触媒。 A group 8 to a group 8 obtained by heating a halide, sulfate or nitrate of at least one transition metal selected from the group consisting of a group 8 to group 10 transition metal in a coordinating organic solvent . contains at least one transition metal and coordinating organic solvent selected from the group consisting of group 10 transition metal, ligands, not containing components including protective agent or polymer, average particle diameter is 2nm or less Catalyst for cross-coupling reaction containing ultrafine transition metal particles. 式:A−X
(式中、
Aは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、または無置換もしくは置換のアルケニル基であり;そして、
Xは、ハロゲン、メシレート基、トシレート基、トリフラート基、またはカルボン酸ハロゲン化物基である)
で示される化合物と、
式:B−Y
(式中、
Bは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、無置換もしくは置換のアルケニル基、または無置換もしくは置換のアルキニル基であり;
Yは、水素、アリール基、アルコキシカルボニル基、ニトロ基、ホルミル基、オキソ基、シアノ基、アミノ基、B(OR)、ZnX、AlR 、SnR 、MgX、またはSiR であり、ここで、XおよびXはハロゲンであり、そしてR、R、RおよびRは各々独立して水素またはアルキルである)
で示される化合物とを反応させることにより、
式:A−B
(式中、AおよびBは前掲する通りである)
で示される生成物を得るクロスカップリング反応用である、請求項1記載のクロスカップリング反応用触媒。
Formula: AX
(Where
A is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, or an unsubstituted or substituted alkenyl group; and
X is a halogen, a mesylate group, a tosylate group, a triflate group, or a carboxylic acid halide group)
A compound represented by
Formula: BY
(Where
B is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, an unsubstituted or substituted alkenyl group, or an unsubstituted or substituted alkynyl group;
Y is hydrogen, aryl group, alkoxycarbonyl group, nitro group, formyl group, oxo group, cyano group, amino group, B (OR 1 ) 2 , ZnX 1 , AlR 2 2 , SnR 3 3 , MgX 2 , or SiR 4 3, wherein, X 1 and X 2 is halogen and R 1, R 2, R 3 and R 4 are each independently hydrogen or alkyl)
By reacting with a compound represented by
Formula: AB
(In the formula, A and B are as described above.)
The catalyst for cross coupling reaction of Claim 1 which is an object for cross coupling reactions which obtains the product shown by these.
遷移金属がパラジウムである、請求項1または2のいずれか記載のクロスカップリング反応用触媒。 The catalyst for cross-coupling reaction according to claim 1 or 2 , wherein the transition metal is palladium. 配位性有機溶媒が、N,N−ジメチルホルムアミド(DMF)、N−メチルホルムアミド、N,N−ジメチルアセトアミド(DMA)、N−メチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン(DMI)、N−メチル−2−ピロリドン(NMP)、およびヘキサメチルホスホリックトリアミド(HMPA)からなる群から選ばれるアミド系溶媒である、請求項1乃至のいずれか1項記載のクロスカップリング反応用触媒。 The coordinating organic solvent is N, N-dimethylformamide (DMF), N-methylformamide, N, N-dimethylacetamide (DMA), N-methylacetamide, 1,3-dimethyl-2-imidazolidinone (DMI). ), N-methyl-2-pyrrolidone (NMP), and hexamethylphosphoric triamide (HMPA), an amide solvent selected from the group consisting of any one of claims 1 to 3 Catalyst for reaction. 第8族から第10族遷移金属からなる群から選ばれる少なくとも1つの遷移金属の塩化物を配位性有機溶媒中で加熱することによって調製する、請求項1乃至のいずれか1項記載のクロスカップリング反応用触媒の製造法。 Prepared by heating at least one chloride of a transition metal in coordinating organic solvent selected from the group consisting of Group 10 transition metal from Group 8, of any one of claims 1 to 4 A method for producing a catalyst for a cross-coupling reaction. マイクロ波を照射しながら前記加熱を行う、請求項記載の製造法。 The manufacturing method according to claim 5 , wherein the heating is performed while irradiating microwaves. 式:A−X
(式中、
Aは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、無置換もしくは置換のアルケニル基、または無置換もしくは置換のアルキニル基であり;そして、
Xは、ハロゲン、メシレート基、トシレート基、トリフラート基、またはカルボン酸ハロゲン化物基である)
で示される化合物と、
式:B−Y
(式中、
Bは、無置換もしくは置換のアリール基、無置換もしくは置換のヘテロアリール基、または無置換もしくは置換のアルケニル基であり;
Yは、水素、アリール基、アルコキシカルボニル基、ニトロ基、ホルミル基、オキソ基、シアノ基、アミノ基、B(OR)、ZnX、AlR 、SnR 、MgX、またはSiR であり、ここで、XおよびXはハロゲンであり、そしてR、R、RおよびRは各々独立して水素またはアルキルである)
で示される化合物とを、請求項1記載のクロスカップリング反応用触媒の存在下で反応させることにより、式:A−B
(式中、AおよびBは前掲する通りである)
で示される生成物を得ることを含む、クロスカップリング反応。
Formula: AX
(Where
A is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, an unsubstituted or substituted alkenyl group, or an unsubstituted or substituted alkynyl group; and
X is a halogen, a mesylate group, a tosylate group, a triflate group, or a carboxylic acid halide group)
A compound represented by
Formula: BY
(Where
B is an unsubstituted or substituted aryl group, an unsubstituted or substituted heteroaryl group, or an unsubstituted or substituted alkenyl group;
Y is hydrogen, aryl group, alkoxycarbonyl group, nitro group, formyl group, oxo group, cyano group, amino group, B (OR 1 ) 2 , ZnX 1 , AlR 2 2 , SnR 3 3 , MgX 2 , or SiR 4 3, wherein, X 1 and X 2 is halogen and R 1, R 2, R 3 and R 4 are each independently hydrogen or alkyl)
Is reacted with the compound represented by formula (A-B) in the presence of the catalyst for cross-coupling reaction according to claim 1.
(In the formula, A and B are as described above.)
A cross-coupling reaction comprising obtaining a product represented by
適宜塩基の存在下で行なう、請求項記載のクロスカップリング反応。 The cross-coupling reaction according to claim 7 , which is appropriately performed in the presence of a base. 反応溶媒が、配位性有機溶媒の単独または水との混合物である、請求項またはのいずれか記載のクロスカップリング反応。 The cross-coupling reaction according to claim 7 or 8 , wherein the reaction solvent is a coordinating organic solvent alone or a mixture with water. 触媒の使用量が、A−Xで示される化合物の配合量基準で10−1〜10−7モル%である、請求項乃至のいずれか1項記載のクロスカップリング反応。 The cross-coupling reaction according to any one of claims 7 to 9 , wherein the catalyst is used in an amount of 10 -1 to 10 -7 mol% based on the amount of the compound represented by AX.
JP2010139638A 2010-06-18 2010-06-18 Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same Active JP5700624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139638A JP5700624B2 (en) 2010-06-18 2010-06-18 Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139638A JP5700624B2 (en) 2010-06-18 2010-06-18 Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same

Publications (2)

Publication Number Publication Date
JP2012000593A JP2012000593A (en) 2012-01-05
JP5700624B2 true JP5700624B2 (en) 2015-04-15

Family

ID=45533218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139638A Active JP5700624B2 (en) 2010-06-18 2010-06-18 Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same

Country Status (1)

Country Link
JP (1) JP5700624B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459126B2 (en) * 2015-02-02 2019-01-30 国立研究開発法人産業技術総合研究所 Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound
JP6699003B2 (en) * 2015-11-16 2020-05-27 国立研究開発法人産業技術総合研究所 Method for producing allylsilane compound
WO2018131430A1 (en) 2017-01-13 2018-07-19 学校法人 関西大学 Method for producing organosilicon compound by hydrosilylation with metallic-element-containing nanoparticles
JP7392927B2 (en) * 2020-01-23 2023-12-06 学校法人 関西大学 Method for producing silicon-containing iron-platinum nanoparticle catalyst
JP7424563B2 (en) * 2020-02-03 2024-01-30 学校法人 関西大学 Method for producing organosilicon compounds using ruthenium nanoparticle catalysts
CN114989399B (en) * 2022-07-06 2023-08-01 中国科学院大学 Room temperature Suzuki cross-coupling polymerization method of conjugated polymer semiconductor material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821968A1 (en) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Production of transition metal colloid for use e.g. as coating, catalyst, fuel cell component and in ink jet printing, laser etching, information storage and cell labeling and cell separation
JP3005683B1 (en) * 1999-03-05 2000-01-31 大阪大学長 Method for producing ultrafine particles and ultrafine particles
US7214644B2 (en) * 2004-07-30 2007-05-08 Xerox Corporation Cross-coupling reactions

Also Published As

Publication number Publication date
JP2012000593A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5700624B2 (en) Cross coupling catalyst composed of ultrafine transition metal particles and cross coupling method using the same
Yu et al. Heck reactions catalyzed by ultrasmall and uniform Pd nanoparticles supported on polyaniline
Li et al. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes
Zheng et al. Monodisperse noble metal nanoparticles stabilized in SBA-15: Synthesis, characterization and application in microwave-assisted Suzuki–Miyaura coupling reaction
Li et al. Catalysis by gold nanoparticles: carbon-carbon coupling reactions
Lin et al. Sonogashira cross-coupling on the Au (1 1 1) and Au (1 0 0) facets of gold nanorod catalysts: Experimental and computational investigation
Liu et al. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters
Nagata et al. N, N-dimethylformamide-protected single-sized metal nanoparticles and their use as catalysts for organic transformations
Zhang et al. An Improved Copper‐Mediated Oxidative Trifluoromethylation of Terminal Alkynes
Yao et al. Synthesis of DMF-protected Au NPs with different size distributions and their catalytic performance in the Ullmann homocoupling of aryl iodides
JPWO2005094993A1 (en) Method for producing hydrogenation accelerator, hydrogenation catalyst and alkene compound
Shaikh et al. Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for suzuki coupling reaction
Rao et al. Influence of pendent alkyl chains on Heck and Sonogashira C–C coupling catalyzed with palladium (II) complexes of selenated Schiff bases having liquid crystalline properties
Vadivel et al. Rhodium (III) complexes derived from complexation of metal with azomethine linkage of chitosan biopolymer Schiff base ligand: Spectral, thermal, morphological and electrochemical studies
Ul Islam et al. Palladium–Poly (3‐aminoquinoline) Hollow‐Sphere Composite: Application in Sonogashira Coupling Reactions
Zhu et al. Copper-mediated fluoroalkylation reactions with [(phenylsulfonyl)-difluoromethyl] trimethylsilane: synthesis of PhSO2CF2-containing allenes and alkynes
Sadjadi et al. Pd (0) nanoparticles immobilized on multinitrogen functionalized halloysite for promoting Sonogashira reaction: studying the role of the number of surface nitrogens in catalytic performance
Zhang et al. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity
Kilic et al. The orthopalladation dinuclear [Pd (L1)(μ-OAc)] 2,[Pd (L2)(μ-OAc)] 2 and mononuclear [Pd (L3) 2] complexes with [N, C, O] or [N, O] containing ligands: Synthesis, spectral characterization, electrochemistry and catalytic properties
CN102781817B (en) The preparation method of metal nanobelt
CN104607195B (en) A kind of preparation method and application of the heterogeneous array of metal/zinc-oxide nano
Altoom Synthesis and characterization of novel fluoroterphenyls: self‐assembly of low‐molecular‐weight fluorescent organogel
Sobhani et al. A new nanomagnetic Pd-Co bimetallic alloy as catalyst in the Mizoroki–Heck and Buchwald–Hartwig amination reactions in aqueous media
Tristany et al. Palladium nanoparticles entrapped in heavily fluorinated compounds
Shah et al. Spectroscopic analysis of Au‐Cu alloy nanoparticles of various compositions synthesized by a chemical reduction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5700624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250