JP5698076B2 - Carbon material oxidation depletion test apparatus and test method - Google Patents

Carbon material oxidation depletion test apparatus and test method Download PDF

Info

Publication number
JP5698076B2
JP5698076B2 JP2011136726A JP2011136726A JP5698076B2 JP 5698076 B2 JP5698076 B2 JP 5698076B2 JP 2011136726 A JP2011136726 A JP 2011136726A JP 2011136726 A JP2011136726 A JP 2011136726A JP 5698076 B2 JP5698076 B2 JP 5698076B2
Authority
JP
Japan
Prior art keywords
test
oxidation
temperature
gas
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011136726A
Other languages
Japanese (ja)
Other versions
JP2013003056A5 (en
JP2013003056A (en
Inventor
浩昭 小倉
浩昭 小倉
峰宏 上山
峰宏 上山
國本 英治
英治 國本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2011136726A priority Critical patent/JP5698076B2/en
Publication of JP2013003056A publication Critical patent/JP2013003056A/en
Publication of JP2013003056A5 publication Critical patent/JP2013003056A5/ja
Application granted granted Critical
Publication of JP5698076B2 publication Critical patent/JP5698076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭素材料の高温時における酸化消耗性について評価するための試験装置及び試験方法に関する。   The present invention relates to a test apparatus and a test method for evaluating oxidation wear resistance of a carbon material at a high temperature.

炭素材料は、例えば半導体製造用炉内部材、金属連続鋳造用ダイス、軸受、パッキンなど、様々な分野で部材、部品として用いられるが、酸素と接触することで酸化され、重量減少が起こることが知られている。特に、400℃を超える高温になると酸化消耗の度合が大きくなることから、部材、部品として用いる際には材質による消耗度合を予め正確に把握し、取り替え時期の予測等を把握しておくことが不可欠である。   For example, carbon materials are used as members and parts in various fields, such as in-furnace members for semiconductor manufacturing, dies for metal continuous casting, bearings, packings, etc., but may be oxidized and contacted with oxygen to cause weight loss. Are known. In particular, the degree of oxidation consumption increases when the temperature exceeds 400 ° C., so when using it as a member or part, it is necessary to accurately grasp the degree of consumption due to the material in advance and to know the prediction of the replacement time. It is essential.

その消耗度合を測定する方法として、現状ASTM規格の、C1179に酸化消耗の評価試験が開示されている(下記非特許文献1参照)。この試験方法は、マッフル炉を用いて371〜677℃の内任意の温度を設定し、加熱した炉の中に予め重量測定した試料を100時間静置し、100時間経過後に急いでデシケータに移動させ、少なくとも30分冷却した後に重量測定して試験前の重量と比較することで重量減少の度合いを確認し、酸化消耗性の評価を行うというものである。尚、下限温度が37℃と比較的高温に設定されているのは、この温度以下で炭素材料の酸化消耗はほとんど問題となるレベルに無いためである。 As a method for measuring the degree of consumption, an evaluation test for oxidation consumption is disclosed in C1179 of the current ASTM standard (see Non-Patent Document 1 below). This test method uses a muffle furnace to set an arbitrary temperature within a range of 371 to 677 ° C., and a pre-weighed sample is allowed to stand in a heated furnace for 100 hours, and then quickly moves to a desiccator after 100 hours. Then, after cooling for at least 30 minutes, the weight is measured and compared with the weight before the test, the degree of weight reduction is confirmed, and the oxidation consumability is evaluated. The reason why the lower limit temperature is set to a relatively high temperature of 37 1 ° C. is that the oxidation consumption of the carbon material is not at a level causing a problem below this temperature.

ASTM Designation:C1179-91(Reapproved 2010)“Standard Test Method for Oxidation Mass Loss of Manufactured Carbon and Graphite Material in Air”ASTM Designation: C1179-91 (Reapproved 2010) “Standard Test Method for Oxidation Mass Loss of Manufactured Carbon and Graphite Material in Air”

しかしながら、非特許文献1に示されているような従来の酸化消耗試験方法では、マッフル炉内の試料周辺の酸素が消費された後は酸化消耗が進まなくなり、また、試料周辺における空気の流れにより酸化消耗が著しく変化する恐れがあり、試験結果にバラツキが大きく安定性に欠ける。更に、100時間もの試験時間が必要となるため、評価結果を得るまでに長時間を要するものであった。   However, in the conventional oxidation depletion test method as shown in Non-Patent Document 1, after the oxygen around the sample in the muffle furnace is consumed, the oxidation depletion does not progress, and the flow of air around the sample causes Oxidation consumption may change remarkably, and test results vary widely and lack stability. Furthermore, since a test time of 100 hours is required, it takes a long time to obtain an evaluation result.

本発明は、試験結果の安定性が高く、且つ短時間での評価が可能である炭素材料の酸化消耗性試験装置及び酸化消耗性試験方法を提供することを目的としている。   It is an object of the present invention to provide a carbon material oxidation depletion test apparatus and an oxidation depletion test method that have high test result stability and can be evaluated in a short time.

本発明に係る炭素材料の酸化消耗性試験装置は、貫通穴が形成されたヒーターと、上記貫通穴を挿通し、上記ヒーターからの熱によって加熱される気密性チューブと、流量を制御しつつ上記気密性チューブ内に気体を供給する気体供給手段とを有し、上記気密性チューブの一端には上記気体供給手段と連結された気体供給口が設けられる一方、上記気密性チューブの他端には気体排出口が設けられ、且つ、上記気密性チューブにおける上記貫通穴を挿通する領域のうち、気体供給口側の不均熱領域と気体排出口側の不均熱領域とを除く均熱領域には試料載置部が配置可能となっていることを特徴とする。   A carbon material oxidation consumability test apparatus according to the present invention includes a heater in which a through hole is formed, an airtight tube that is inserted through the through hole and is heated by heat from the heater, and the flow rate is controlled as described above. Gas supply means for supplying gas into the airtight tube, and one end of the airtight tube is provided with a gas supply port connected to the gas supply means, while the other end of the airtight tube is provided Of the region where the gas discharge port is provided and the through hole in the airtight tube is inserted, the heat equalization region excluding the non-uniform heat region on the gas supply port side and the non-uniform heat region on the gas discharge port side. Is characterized in that the sample mounting portion can be arranged.

上記構成であれば、気体として空気を用いた際、気体供給手段から気体供給口を通じて導入された空気により、気密性チューブ内に連続的に空気を供給することが可能となる一方、炭素材料の酸化消耗により酸素が消費された空気は気体排出口から排出される。したがって、新たな酸素が円滑に供給されるので、試料周辺の酸素が消費された後に酸化消耗が進まなくなる、といった不都合が発生するのを抑制できる。また、装置内の空気の流れを一定量に制御すれば、試料に供給される空気の量も一定となるので、試料の酸化消耗が安定化し、安定した試験結果を得ることができる。更に、連続的に空気を供給すれば、従来技術に比べて、試料の酸化消耗が促進されるので、短時間での評価を行うことも可能となる。   With the above configuration, when air is used as the gas, air can be continuously supplied into the airtight tube by the air introduced from the gas supply means through the gas supply port. Air in which oxygen is consumed due to oxidative exhaustion is discharged from the gas outlet. Therefore, since new oxygen is smoothly supplied, it is possible to suppress the occurrence of inconvenience that the consumption of oxidation does not proceed after the oxygen around the sample is consumed. Further, if the flow of air in the apparatus is controlled to a constant amount, the amount of air supplied to the sample is also constant, so that the oxidation consumption of the sample is stabilized and a stable test result can be obtained. Furthermore, if air is supplied continuously, the oxidation consumption of the sample is promoted as compared with the prior art, so that the evaluation can be performed in a short time.

上記ヒーターは円柱状を成し、このヒーターの中央部における軸方向に上記貫通穴が形成されていることが望ましい。
このような形状であれば、気密性チューブの全ての部位に略同量の熱を供給することができるので、均熱領域における温度を、より安定化させることができる。
It is desirable that the heater has a cylindrical shape, and the through hole is formed in the axial direction at the center of the heater.
With such a shape, since substantially the same amount of heat can be supplied to all the portions of the airtight tube, the temperature in the soaking region can be further stabilized.

また、本発明に係る炭素材料の酸化消耗性試験方法は、気密性チューブと、この気密性チューブを加熱するヒーターとにより、気密性チューブ内に均熱領域を形成し、該均熱領域に試験用の試料を静置すると共に、上記ヒーターによる熱によって上記均熱領域が試験温度に達した後、流量を制御しつつ気密性チューブ内に空気を連続的に供給することを特徴とする。   In addition, the method for testing the oxidative wear resistance of the carbon material according to the present invention includes forming a soaking area in the airtight tube by using the airtight tube and a heater for heating the airtight tube, and testing the heat soaking area. The sample is left still, and after the soaking area reaches the test temperature by the heat from the heater, air is continuously supplied into the airtight tube while controlling the flow rate.

上記方法であれば、気密性チューブ内(密閉された空間内)の均熱領域に試験用の試料を静置することにより、一定の試験温度での酸化消耗試験を実施することができる。また、流量を制御しつつ気密性チューブ内に空気を連続的に供給することで、試験用の試料が安定して酸化消耗するので、試験用の試料の酸化消耗が安定化すると共に、試験用の試料の酸化消耗が促進されるので、短時間で評価を行うことができる。   If it is the said method, the oxidation consumption test at fixed test temperature can be implemented by leaving the test sample in the soaking | uniform-heating area | region in the airtight tube (in the sealed space). In addition, by continuously supplying air into the airtight tube while controlling the flow rate, the test sample is stably oxidized and consumed, so that the oxidation and consumption of the test sample is stabilized and the test sample is used. Since the oxidation consumption of the sample is promoted, the evaluation can be performed in a short time.

上記均熱領域が試験温度に達する前には、流量を制御しつつ上記気密性チューブ内に不活性ガスを連続的に供給することが望ましい。
温度が上昇している段階での酸化消耗を防止することによって、試験の信頼性を向上させるためである。
Before the soaking area reaches the test temperature, it is desirable to continuously supply the inert gas into the hermetic tube while controlling the flow rate.
This is to improve the reliability of the test by preventing oxidation consumption at the stage where the temperature is rising.

上記均熱領域には、試験用の試料の他に標準試料が静置されていることが望ましい。
均熱領域に試験用の試料の他に標準試料が静置されていれば、信頼性の高い標準試料の酸化消耗評価により、実施された試験条件が適切であったかの評価を同時に行うことができるからである。
In addition to the test sample, it is desirable that a standard sample be allowed to stand in the soaking area.
If a standard sample is allowed to stand in addition to the test sample in the soaking area, it is possible to simultaneously evaluate whether or not the performed test conditions were appropriate by highly reliable oxidation consumption evaluation of the standard sample. Because.

上記均熱領域の温度を700℃以上の温度に上昇させることができることが望ましい。
均熱領域の温度を700℃以上の温度に上昇させることができれば、酸化消耗度合の小さい高純度品やコーティング品において、酸化消耗度合を高めて、適切な比較評価を行うことができるからである。
It is desirable that the temperature of the soaking area can be raised to a temperature of 700 ° C. or higher.
This is because, if the temperature of the soaking area can be raised to a temperature of 700 ° C. or higher, it is possible to increase the degree of oxidation consumption in a high-purity product or coating product with a low degree of oxidation consumption and perform appropriate comparative evaluation. .

本発明に係る炭素材料の酸化消耗性試験装置によれば、気体として空気を用いた際、気体供給手段から気体供給口を通じて導入された空気により、気密性チューブ内に連続的に空気を供給することが可能となる一方、炭素材料の酸化消耗により酸素が消費された空気は気体排出口から排出される。したがって、新たな酸素が円滑に供給されるので、試料周辺の酸素が消費された後に酸化消耗が進まなくなる、といった不都合が発生するのを抑制できる。また、装置内の空気の流れを一定量に制御すれば、試料に供給される空気の量も一定となるので、試料の酸化消耗が安定化し、安定した試験結果を得ることができる。更に、連続的に空気を供給すれば、従来技術に比べて、試料の酸化消耗が促進されるので、短時間での評価を行うことも可能となるといった優れた効果を奏する。   According to the oxidation consumability test apparatus for carbon material according to the present invention, when air is used as the gas, the air is continuously supplied into the airtight tube by the air introduced from the gas supply means through the gas supply port. On the other hand, the air in which oxygen is consumed due to the oxidative consumption of the carbon material is discharged from the gas outlet. Therefore, since new oxygen is smoothly supplied, it is possible to suppress the occurrence of inconvenience that the consumption of oxidation does not proceed after the oxygen around the sample is consumed. Further, if the flow of air in the apparatus is controlled to a constant amount, the amount of air supplied to the sample is also constant, so that the oxidation consumption of the sample is stabilized and a stable test result can be obtained. Furthermore, if air is supplied continuously, the oxidation consumption of the sample is promoted as compared with the prior art, so that it is possible to perform an evaluation in a short time.

また、本発明に係る炭素材料の酸化消耗性試験方法によれば、気密性チューブ内(密閉された空間内)の均熱領域に試験用の試料を静置することにより、一定の試験温度での酸化消耗試験を実施することができる。また、流量を制御しつつ気密性チューブ内に空気を連続的に供給することで、試験用の試料が安定して酸化消耗するので、試験用の試料の酸化消耗が安定化すると共に、試験用の試料の酸化消耗が促進されるので、短時間で評価を行うことができるといった優れた効果を奏する。   Moreover, according to the oxidation wear resistance test method for a carbon material according to the present invention, the test sample is allowed to stand at a constant test temperature by allowing the test sample to stand in a soaking area in an airtight tube (in a sealed space). It is possible to carry out an oxidation consumption test. In addition, by continuously supplying air into the airtight tube while controlling the flow rate, the test sample is stably oxidized and consumed, so that the oxidation and consumption of the test sample is stabilized and the test sample is used. Since the oxidation consumption of the sample is promoted, an excellent effect is obtained that the evaluation can be performed in a short time.

本発明に係る炭素材料の酸化消耗性試験装置の一例を示す一部断面斜視図である。It is a partial cross section perspective view which shows an example of the oxidation consumption test apparatus of the carbon material which concerns on this invention. 試料載置部の一例を示す平面図である。It is a top view which shows an example of a sample mounting part.

図1は、本発明に係る炭素材料の酸化消耗性試験装置の一形態を示す図である。尚、本図は、気密性チューブ1内を見え易くするよう、ヒーター2の前側を図示していない図(ヒーター2を半断面形式で示した図)である。
酸化消耗性装置10は、石英ガラスを用いて形成された気密性チューブ1と、気密性チューブ1の両端付近を除く略全体を覆うヒーター2と、気密性チューブ1の一端に設けられた気体供給口3と、気密性チューブ1の他端に設けられた気体排出口4と、気体供給口から流量を制御しつつ気密チューブ1内に気体を供給する気体供給手段5とを有する。そして、上記気密性チューブ1内には試料載置部6が静置されている。尚、1000℃以上の高温における試験を行う際、気密性チューブ1には石英ガラスに替えてアルミナ管などの更に耐熱性の高い材質のものを用いるのが好ましい。
FIG. 1 is a diagram showing an embodiment of a carbon material oxidation depletion test apparatus according to the present invention. In addition, this figure is the figure which does not show the front side of the heater 2 so that the inside of the airtight tube 1 can be easily seen (the figure showing the heater 2 in a half cross-sectional format).
The oxidation consumable apparatus 10 includes an airtight tube 1 made of quartz glass, a heater 2 that covers substantially the entire area except for both ends of the airtight tube 1, and a gas supply provided at one end of the airtight tube 1. It has a port 3, a gas discharge port 4 provided at the other end of the airtight tube 1, and a gas supply means 5 for supplying gas into the airtight tube 1 while controlling the flow rate from the gas supply port. And the sample mounting part 6 is left still in the said airtight tube 1. FIG. When performing a test at a high temperature of 1000 ° C. or higher, it is preferable to use a material with higher heat resistance such as an alumina tube for the airtight tube 1 instead of quartz glass.

上記気密性チューブ1は外部の気体が内部に入り込まないよう、十分な密閉性を備える一方、気密性チューブ1内の空間には上記気体供給口3を通じて、流量が制御された気体が上記気体供給装置(気体供給手段)5から供給される構造となっている。したがって、気密性チューブ1内に静置された試料載置部6の試料が、気体供給装置5から供給された気体以外の気体と接触するのを確実に防止できる。尚、気体供給装置5から導入された気体は、その供給圧力により気体排気口4から順次排出され、気密性チューブ1内の空間に気体が滞留することなく、試料載置部6には連続的に気体が供給可能となっている。   The airtight tube 1 has sufficient hermeticity so that an external gas does not enter the inside, while a gas whose flow rate is controlled is supplied to the space in the airtight tube 1 through the gas supply port 3. It is structured to be supplied from a device (gas supply means) 5. Therefore, it is possible to reliably prevent the sample of the sample placement unit 6 that is placed in the airtight tube 1 from coming into contact with a gas other than the gas supplied from the gas supply device 5. Note that the gas introduced from the gas supply device 5 is sequentially discharged from the gas exhaust port 4 by the supply pressure, and the gas is not retained in the space in the airtight tube 1, and continuously in the sample placement unit 6. Gas can be supplied to

上記ヒーター2としては、抵抗加熱式のトンネル炉が用いられている。該ヒーター2は円柱状の形状であって、長さL1=1200、直径L2=250となっている。また、該ヒーター2の中心には、上記気密性チューブ1が挿通可能な貫通穴8が形成されている。そして、上記気体供給装置5から供給される気体の流量と、ヒーター2による加熱温度を適宜設定することで、気体供給装置5から供給された気体はヒーター2により試料載置部6付近に到達するまでに所定温度に達する。また、試料載置部6がヒーター2により直接加熱されることで、試料載置部6付近は所定の温度まで昇温されて、長さL3=200の均熱領域7を形成することができる。   As the heater 2, a resistance heating type tunnel furnace is used. The heater 2 has a cylindrical shape, and has a length L1 = 1200 and a diameter L2 = 250. A through-hole 8 through which the airtight tube 1 can be inserted is formed at the center of the heater 2. Then, by appropriately setting the flow rate of the gas supplied from the gas supply device 5 and the heating temperature by the heater 2, the gas supplied from the gas supply device 5 reaches the vicinity of the sample placement unit 6 by the heater 2. By the time it reaches a certain temperature. Further, by directly heating the sample mounting portion 6 by the heater 2, the temperature in the vicinity of the sample mounting portion 6 is raised to a predetermined temperature, and a soaking region 7 having a length L3 = 200 can be formed. .

尚、均熱領域7の両端には、気体供給口3側の不均熱領域9a(長さL4=500)と気体排出口4側の不均熱領域9b(長さL5=500)とがそれぞれ位置している。尚、均熱領域7と、不均熱領域9a、9bの長さは、均熱領域7を550℃に設定した場合の長さであり、これより高温となるように均熱領域7の温度設定した場合には、均熱領域7の長さは小さくなる一方、これより低温となるように均熱領域7の温度設定した場合には、均熱領域7の長さは大きくなる。また、このように気体供給口3側と気体排出口4側とに不均熱領域9a、9bが形成されるのは、これら不均熱領域9a、9bに存在する気密性チューブ1は、ヒーター2の端部2a、2bと近い部位に位置しているため、外気と触れるからである。更に、均熱領域7の設定温度が同一である場合には、ヒーター2の長さL1を大きくしても、不均熱領域9a、9bの長さL4、L5は余り変化しないと考えられる。よって、ヒーター2の長さL1を大きくすれば、均熱領域7の長さL3を大きくすることが可能である。加えて、ヒーター2の直径L2を大きくすれば、ヒーター2の熱量が大きくなるので、均熱領域7が、より高温にとなるように設定することが可能である。   At both ends of the soaking area 7, there are an inhomogeneous heating area 9a (length L4 = 500) on the gas supply port 3 side and an inhomogeneous heating area 9b (length L5 = 500) on the gas outlet 4 side. Each is located. The lengths of the soaking area 7 and the non-soaking areas 9a and 9b are the lengths when the soaking area 7 is set to 550 ° C., and the temperature of the soaking area 7 is set to be higher than this. When the temperature is set, the length of the soaking area 7 is reduced. On the other hand, when the temperature of the soaking area 7 is set to be lower than this, the length of the soaking area 7 is increased. Further, the non-uniform heat regions 9a and 9b are formed on the gas supply port 3 side and the gas discharge port 4 side in this way, because the airtight tube 1 existing in these non-uniform heat regions 9a and 9b is a heater. It is because it is located in the site | part close | similar to 2 edge part 2a, 2b, and touches external air. Furthermore, when the set temperature of the soaking area 7 is the same, even if the length L1 of the heater 2 is increased, it is considered that the lengths L4 and L5 of the non-uniform heating areas 9a and 9b do not change much. Therefore, if the length L1 of the heater 2 is increased, the length L3 of the soaking area 7 can be increased. In addition, if the diameter L2 of the heater 2 is increased, the amount of heat of the heater 2 increases, so that the soaking area 7 can be set to a higher temperature.

図2は、上記試料載置部6の一例を示す平面図である。該試料載置部6は、トレイ61上に試料固定用爪64が固定される構造であって、所定サイズ(例えば、12.5mm×20mm×32mm)に調整された試験用の試料62を試料固定用爪64間にはめ込むことで、トレイ61上に試験用の試料62を固定することができる。また、試験用の試料62と隣接した位置には、標準試料(本試験によるデータ採取の実績が多く、酸化消耗率の平均及びバラツキの傾向が十分に把握されている炭素材料、又は斯かる炭素材料で試験の対象となる炭素材料と近似する酸化消耗率であると予想される炭素材料)63を固定しておくのが望ましい。該標準試料63は試験用の試料62と同一条件となるよう(空気等に晒される量が同一となるよう)、空気の流れに対して試験用の試料62と平行になるように固定しておくのが好ましい。   FIG. 2 is a plan view showing an example of the sample placement unit 6. The sample mounting unit 6 has a structure in which a sample fixing claw 64 is fixed on a tray 61, and a test sample 62 adjusted to a predetermined size (for example, 12.5 mm × 20 mm × 32 mm) is sampled. By fitting between the fixing claws 64, the test sample 62 can be fixed on the tray 61. Further, a standard sample (a carbon material that has a lot of data collection results in this test and has a well-known tendency of average and variation in oxidation consumption rate) It is desirable to fix the carbon material 63, which is expected to have an oxidation consumption rate similar to that of the carbon material to be tested. The standard sample 63 is fixed so as to be parallel to the test sample 62 with respect to the air flow so that the test sample 62 has the same conditions as the test sample 62 (the same amount of exposure to air or the like). It is preferable to leave.

ここで、一定流量の気体が供給可能であるならば、上記気体供給装置5としては、通常の気体ポンプなどを用いることができる。供給する気体として空気を用いる場合には、通常、酸素濃度のバラツキは殆どないと考えられるが、何らかの原因でバラツキが生じることを想定して酸素濃度のモニタリング手段を設けておくことが好ましい。また、空気中の水分が供給される空気の昇温度合等、僅かながら試験結果に影響を及ぼす恐れもあるので、供給される気体の湿度を一定に保つ湿度調整手段(例えば加湿器、乾燥機など)を設けておいても良い。尚、空気中の湿度は40〜60%程度に保持しておくのが好ましい。   Here, if a gas with a constant flow rate can be supplied, a normal gas pump or the like can be used as the gas supply device 5. When air is used as the gas to be supplied, it is generally considered that there is almost no variation in oxygen concentration, but it is preferable to provide a monitoring means for oxygen concentration on the assumption that variation occurs for some reason. In addition, since there is a possibility of slightly affecting the test results, such as the temperature rise of the air to which moisture in the air is supplied, humidity adjusting means (for example, a humidifier, a dryer) that keeps the humidity of the supplied gas constant. Etc.) may be provided. In addition, it is preferable to maintain the humidity in the air at about 40 to 60%.

酸化消耗性試験を行うに際して、気密性チューブ1内には昇温段階から空気を導入しても良いが、より試験の安定性を高めるためには、以下のような方法にて行うのが好適である。先ず、気体供給装置5により窒素ガス、希ガス等の炭素との反応が生じない不活性ガスを導入しつつ昇温を行い、均熱領域7が所定温度に到達した時点から導入する気体を空気に切り替える。そして、空気に切り替えた時点から試験時間として時間計測を開始し、所定時間に到達した時点で、導入するガスを空気から再び不活性ガスに切り替える。その後、不活性ガスを流通させつつ均熱領域7を冷却させ、均熱領域7の温度が炭素材料の酸化消耗にほとんど影響しない温度(例えば、200℃以下)まで低下した時点で、気密性チューブ1内から試験用の試料62を取り出し、デシケータ等に保管して試験後における重量を測定する。   When performing the oxidation depletion test, air may be introduced into the hermetic tube 1 from the temperature rising stage, but in order to further improve the stability of the test, the following method is preferable. It is. First, the gas supply device 5 is heated while introducing an inert gas that does not react with carbon such as nitrogen gas or rare gas, and the gas introduced from the time when the soaking area 7 reaches a predetermined temperature is air. Switch to. And time measurement is started as test time from the time of switching to air, and when it reaches the predetermined time, the gas to be introduced is switched from air to an inert gas again. Thereafter, the soaking region 7 is cooled while circulating an inert gas, and when the temperature of the soaking region 7 is lowered to a temperature (for example, 200 ° C. or less) that hardly affects the oxidation consumption of the carbon material, the hermetic tube A test sample 62 is taken out from 1 and stored in a desiccator or the like, and the weight after the test is measured.

上記均熱領域7は適宜の温度に設定可能であるが、例えば500〜600℃、700〜800℃、1000〜1500℃の三段階程度に設定することもできる。500〜600℃は炉内部材など炭素材料が使用される状況において想定される温度であり、標準的な温度条件として好適である。700〜800℃は、炭素材料にはかなり厳しい条件ではあるが、金属不純物が100ppm以下の高純度品は酸化消耗性が低く、500〜600℃では有意差が生じない恐れがあることから、耐酸化消耗性の比較的高い試料の評価に好適である。1000〜1500℃は極めて酸化消耗が大きくなるが、SiCコーティング品などの優位性を示すために好適な評価となる。したがって、本発明に係る酸化消耗性試験による700℃以上における酸化消耗性の評価では、従来技術が想定していなかった比較評価の適切な評価を、短時間で行うことができる利点が生じる。   The soaking region 7 can be set to an appropriate temperature, but can be set to, for example, about three stages of 500 to 600 ° C, 700 to 800 ° C, and 1000 to 1500 ° C. 500-600 degreeC is the temperature assumed in the condition where carbon materials, such as a member in a furnace, are used, and it is suitable as standard temperature conditions. 700-800 ° C is a fairly severe condition for carbon materials, but high-purity products with metal impurities of 100 ppm or less have low oxidative wear resistance, and there is a risk that no significant difference will occur at 500-600 ° C. It is suitable for the evaluation of a sample having a relatively high wear resistance. 1000 to 1500 ° C. is extremely oxidative consumption, but is suitable for showing superiority of SiC coated products. Therefore, in the evaluation of oxidation depletion at 700 ° C. or higher by the oxidation depletion test according to the present invention, there is an advantage that appropriate evaluation of comparative evaluation that has not been assumed in the prior art can be performed in a short time.

酸化消耗試験における試験時間は、特に限定されず適宜の時間を設定して良いが、設定温度において酸化消耗度合が過度でなく、且つ、酸化消耗性に有意差が生じる程度となるよう(具体的には、試験前の重量に対する試験後の酸化消耗による減量が5〜50重量%程度となるよう)、設定温度に応じて規定しておくのが好ましい。   The test time in the oxidation depletion test is not particularly limited and may be set as appropriate. However, the degree of oxidation depletion is not excessive at the set temperature, and there is a significant difference in oxidation depletion (specifically Is preferably specified in accordance with the set temperature so that the weight loss due to oxidation consumption after the test with respect to the weight before the test is about 5 to 50% by weight).

上述の酸化消耗試験装置を用いて、炭素材料の酸化消耗試験を行った
具体的には、図1に示した酸化消耗試験装置において、気密性チューブには容積157cmの石英ガラス管を用い、均熱領域における設定温度は550℃、700℃、1200℃とし、試験時間は各々24時間、2.5時間、1時間とした。
Specifically, the oxidation consumption test of the carbon material was performed using the above oxidation consumption test apparatus. Specifically, in the oxidation consumption test apparatus shown in FIG. 1, a quartz glass tube having a volume of 157 cm 3 was used as the airtight tube. The set temperatures in the soaking area were 550 ° C., 700 ° C., and 1200 ° C., and the test times were 24 hours, 2.5 hours, and 1 hour, respectively.

試験は、先ず、試料載置部に予め重量を測定しておいた試験用の試料と標準試料とを試料固定用爪にて固定して、気密性チューブの均熱領域として想定される箇所に静置されるよう挿入し、両端に気体供給口、気体排出口を確保しつつ、気密性チューブを密閉した。次に、気密性チューブをトンネル炉内の貫通穴に挿入し、トンネル炉のスイッチを入れて温度を上昇させた。均熱領域の温度は、試料載置部裏面に取り付けた熱電対により測定した。所定温度への昇温まで、流通させる不活性ガスは窒素ガスとし、4L/minの流量で気密性チューブ内を流通させつつ、均熱領域が所定温度±2℃に安定するようトンネル炉での加熱を調整した。   In the test, first, a test sample and a standard sample whose weights have been measured in advance on the sample mounting part are fixed with a nail for fixing the sample, and the test sample is placed at a place assumed as a soaking area of the airtight tube. It inserted so that it might stand still, and the airtight tube was sealed, ensuring a gas supply port and a gas discharge port at both ends. Next, an airtight tube was inserted into the through hole in the tunnel furnace, and the temperature was raised by switching on the tunnel furnace. The temperature in the soaking area was measured by a thermocouple attached to the back surface of the sample mounting portion. Until the temperature rises to a predetermined temperature, the inert gas to be circulated is nitrogen gas. Heating was adjusted.

所定温度における安定状態になった後、空気(Air)を4L/minの流量で所定の試験時間の間、気密性チューブ内を流通させた。所定の試験時間後、トンネル炉の電源を切り、流通させる気体を窒素ガスに切り替えて4L/minの流量で気密性チューブ内を流通させて冷却させた。均熱領域の温度が200℃となった時点で気密性チューブから試料載置部を取り出し、デシケータ内に静置して室温まで冷却した。その後、試料の重量測定を行い、下記(1)式を用いて酸化消耗率を算出し、更に、(2)式を用いてバラツキを算出した。それらの結果を下記表1に示す。   After reaching a stable state at a predetermined temperature, air (Air) was circulated through the hermetic tube at a flow rate of 4 L / min for a predetermined test time. After a predetermined test time, the tunnel furnace was turned off, the gas to be circulated was switched to nitrogen gas, and circulated through the hermetic tube at a flow rate of 4 L / min to be cooled. When the temperature in the soaking area reached 200 ° C., the sample mounting portion was taken out from the airtight tube, and left in a desiccator to cool to room temperature. Thereafter, the weight of the sample was measured, the oxidation consumption rate was calculated using the following formula (1), and the variation was calculated using the formula (2). The results are shown in Table 1 below.

尚、試料としては、等方性黒鉛(東洋炭素株式会社製等方性黒鉛IG−11)を用いた。また、試料数は各10個とした。   In addition, isotropic graphite (isotropic graphite IG-11 manufactured by Toyo Tanso Co., Ltd.) was used as a sample. The number of samples was 10 each.

酸化消耗率=
〔(試験前の試料重量−試験後の試料重量)/試験前の試料重量〕×100(%)・・・(1)
Oxidation consumption rate =
[(Sample weight before test−Sample weight after test) / Sample weight before test] × 100 (%) (1)

バラツキ=〔(最大値−最小値〕/最大値〕×100(%)・・・(2)   Variation = [(maximum value−minimum value) / maximum value] × 100 (%) (2)

Figure 0005698076
Figure 0005698076

上記試験において、酸化消耗率は適度であり(酸化消耗が多くなり過ぎたり、少なくなり過ぎたりせず)、且つ、有意差がある程度把握できるような数値となっていることが認められる。また、各料間の最小と最大の値のバラツキは最大でも15%程度であることから、安定した試験結果が得られていることが認められる。 In the above test, it is recognized that the oxidation consumption rate is moderate (the oxidation consumption does not increase or decrease too much), and that the significant difference can be grasped to some extent. The variation of the minimum and maximum values between the specimen since it is about 15% at maximum, it is recognized that stable test results are obtained.

本発明は、炭素材料の酸化消耗性試験を実施する際に用いられる。   The present invention is used when performing an oxidation depletion test of a carbon material.

1 気密性チューブ
2 ヒーター
3 気体供給口
4 気体排出口
5 気体供給装置(気体供給手段)
6 試料載置部
62 試験用の試料
63 標準試料
7 均熱領域
8 貫通穴
9a 不均熱領域
9b 不均熱領域
10 酸化消耗性試験装置
DESCRIPTION OF SYMBOLS 1 Airtight tube 2 Heater 3 Gas supply port 4 Gas discharge port 5 Gas supply apparatus (gas supply means)
6 Sample Placement 62 Test Sample 63 Standard Sample 7 Soaking Area 8 Through Hole 9a Non-uniform Heating Area 9b Non-uniform Heating Area 10 Oxidation Consumability Test Device

Claims (9)

貫通穴が形成されたヒーターと、
上記貫通穴を挿通し、上記ヒーターからの熱によって加熱される気密性チューブと、
流量を制御しつつ上記気密性チューブ内に気体を供給する気体供給手段と、
を有し、
上記気密性チューブの一端には上記気体供給手段と連結された気体供給口が設けられる一方、上記気密性チューブの他端には気体排出口が設けられ、且つ、上記気密性チューブにおける上記貫通穴を挿通する領域のうち、気体供給口側の不均熱領域と気体排出口側の不均熱領域とを除く均熱領域には試料載置部が配置可能となっていることを特徴とする炭素材料の酸化消耗性試験装置。
A heater with a through hole;
An airtight tube that is inserted through the through hole and heated by heat from the heater;
Gas supply means for supplying gas into the airtight tube while controlling the flow rate;
Have
One end of the airtight tube is provided with a gas supply port connected to the gas supply means, while the other end of the airtight tube is provided with a gas discharge port, and the through hole in the airtight tube The sample mounting portion can be arranged in a soaking area excluding an inhomogeneous heating area on the gas supply port side and an inhomogeneous heating area on the gas outlet side. Equipment for oxidative consumption of carbon materials.
上記ヒーターは円柱状を成し、このヒーターの中央部における軸方向に上記貫通穴が形成されている、請求項1に記載の酸化消耗性試験装置。   The oxidation consumable test apparatus according to claim 1, wherein the heater has a cylindrical shape, and the through hole is formed in an axial direction in a central portion of the heater. 上記気体供給手段には、供給される気体の湿度を一定に保つ湿度調整手段が設けられている、請求項1又は2に記載の酸化消耗性試験装置。  The oxidation consumable test apparatus according to claim 1 or 2, wherein the gas supply means is provided with a humidity adjusting means for keeping the humidity of the supplied gas constant. 気密性チューブと、この気密性チューブを加熱するヒーターとにより、気密性チューブ内に均熱領域を形成し、該均熱領域に試験用の試料を静置すると共に、上記ヒーターによる熱によって上記均熱領域が試験温度に達した後、流量を制御しつつ気密性チューブ内に空気を連続的に供給することを特徴とする炭素材料の酸化消耗性試験方法。  A soaking area is formed in the hermetic tube by the hermetic tube and a heater for heating the hermetic tube, and a test sample is allowed to stand in the soaking area, and the soaking is performed by the heat from the heater. A method for testing oxidation consumability of a carbon material, wherein air is continuously supplied into an airtight tube while controlling a flow rate after the heat region reaches a test temperature. 上記空気は、流量の他に湿度を制御しつつ上記気密性チューブ内に連続的に供給する、請求項4に記載の炭素材料の酸化消耗性試験方法。  The method for testing the oxidative consumption of a carbon material according to claim 4, wherein the air is continuously supplied into the airtight tube while controlling the humidity in addition to the flow rate. 上記均熱領域の温度を700℃以上の温度に上昇させることができる、請求項4又は5に記載の炭素材料の酸化消耗性試験方法。 The method for testing the oxidative wear resistance of a carbon material according to claim 4 or 5 , wherein the temperature in the soaking area can be raised to a temperature of 700 ° C or higher. 上記均熱領域の温度を550℃とし、上記連続的な空気の供給を24時間行った後の減少重量から酸化消耗率を算出する、請求項4又は5に記載の炭素材料の酸化消耗性試験方法。 The oxidation consumption test of the carbon material according to claim 4 or 5 , wherein the temperature of the soaking area is set to 550 ° C, and the oxidation consumption rate is calculated from the reduced weight after the continuous air supply for 24 hours. Method. 上記均熱領域の温度を700℃とし、上記連続的な空気の供給を2.5時間行った後の減少重量から酸化消耗率を算出する、請求項4又は5に記載の炭素材料の酸化消耗性試験方法。 The oxidation consumption rate of the carbon material according to claim 4 or 5 , wherein a temperature of the soaking region is set to 700 ° C, and an oxidation consumption rate is calculated from a reduced weight after the continuous air supply is performed for 2.5 hours. Sex test method. 上記均熱領域の温度を1200℃とし、上記連続的な空気の供給を1時間行った後の減少重量から酸化消耗率を算出する、請求項4又は5に記載の炭素材料の酸化消耗性試験方法。 The oxidation consumption test of the carbon material according to claim 4 or 5 , wherein the temperature of the soaking area is set to 1200 ° C, and the oxidation consumption rate is calculated from the reduced weight after the continuous air supply for 1 hour. Method.
JP2011136726A 2011-06-20 2011-06-20 Carbon material oxidation depletion test apparatus and test method Active JP5698076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136726A JP5698076B2 (en) 2011-06-20 2011-06-20 Carbon material oxidation depletion test apparatus and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136726A JP5698076B2 (en) 2011-06-20 2011-06-20 Carbon material oxidation depletion test apparatus and test method

Publications (3)

Publication Number Publication Date
JP2013003056A JP2013003056A (en) 2013-01-07
JP2013003056A5 JP2013003056A5 (en) 2014-03-13
JP5698076B2 true JP5698076B2 (en) 2015-04-08

Family

ID=47671758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136726A Active JP5698076B2 (en) 2011-06-20 2011-06-20 Carbon material oxidation depletion test apparatus and test method

Country Status (1)

Country Link
JP (1) JP5698076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374663A (en) * 2013-08-15 2015-02-25 中国石油天然气股份有限公司 Maximum cracking degree determination method of coking raw material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588864Y2 (en) * 1993-06-28 1999-01-20 株式会社エー・アンド・デイ Heating device for moisture meter
JP3113998B2 (en) * 1993-07-22 2000-12-04 住友化学工業株式会社 Thermal analyzer
JP3666851B2 (en) * 2000-08-25 2005-06-29 株式会社リガク Thermal analysis apparatus, thermal analysis measurement method, and gas flow unit
JP5033851B2 (en) * 2009-08-20 2012-09-26 フロンティア・ラボ株式会社 Heating device

Also Published As

Publication number Publication date
JP2013003056A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP3697418B2 (en) Heated electrode refrigerant detector using one or more control loops
JP2007205691A (en) Graphite heating furnace
JP5698076B2 (en) Carbon material oxidation depletion test apparatus and test method
JP2017219370A (en) Environment test device and environment test method
JP2015183907A (en) Heat treat furnace
CN206223572U (en) A kind of molybdenum and molybdenum alloy tube, the tensile testing device of bar
JP2007131936A (en) Burnout method for vacuum carburizing furnace
US20150322539A1 (en) Method for adjusting furnace atmosphere in continuous annealing furnace (as amended)
ES2281345T3 (en) FUSION CONTAINERS PROVIDED WITH A REFRIGERATED MASS ELECTRODE.
CN110158003A (en) A kind of solid-solution and aging heat treatment method of satellite conducting slip ring brush contact
JP4539895B2 (en) Mounting method of heater mainly composed of MoSi2
JP2013003056A5 (en)
JP2001031473A (en) Graphite heater
JP7293984B2 (en) thermal analyzer
JP3646125B2 (en) High-temperature property testing equipment for electric furnace raw materials for alloy iron production
Bao et al. Production of SiO gas in the silicon process
JP5429585B2 (en) Glass base material manufacturing method and manufacturing apparatus
KR100805372B1 (en) Method for Surface Treatment of Concavo-convex Tube
JP2011134992A (en) Temperature control device, and vacuum processing device including the same
JP7163901B2 (en) Mass measuring device and mass measuring method
JP7070319B2 (en) AE wave measurement method and measuring device
JP6896009B2 (en) Heat treatment method and heat treatment equipment for porous glass base material
Berka et al. Testing of ceramics for production of heating elements for usage in High Temperature Helium Loop
JP4103997B2 (en) Temperature raising / lowering unit and temperature raising / lowering device using this unit
Kim et al. A nickel freezing-point cell for thermocouple calibration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5698076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250