JP5695711B2 - Rotary motor - Google Patents

Rotary motor Download PDF

Info

Publication number
JP5695711B2
JP5695711B2 JP2013172091A JP2013172091A JP5695711B2 JP 5695711 B2 JP5695711 B2 JP 5695711B2 JP 2013172091 A JP2013172091 A JP 2013172091A JP 2013172091 A JP2013172091 A JP 2013172091A JP 5695711 B2 JP5695711 B2 JP 5695711B2
Authority
JP
Japan
Prior art keywords
magnetic pole
row
pole piece
speed
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013172091A
Other languages
Japanese (ja)
Other versions
JP2014003897A (en
Inventor
聡 杉田
聡 杉田
康司 三澤
康司 三澤
玉▲棋▼ 唐
玉▲棋▼ 唐
茂徳 宮入
茂徳 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2013172091A priority Critical patent/JP5695711B2/en
Publication of JP2014003897A publication Critical patent/JP2014003897A/en
Application granted granted Critical
Publication of JP5695711B2 publication Critical patent/JP5695711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Continuous Casting (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、高速移動磁場を利用した回転型モータに関するものである。 The present invention relates to a rotary motor using a high-speed moving magnetic field.

特許第3452709号公報(特許文献1)には、連続鋳造で使用する移動磁界を発生するための移動磁界(磁場)発生装置が開示されている。   Japanese Patent No. 3452709 (Patent Document 1) discloses a moving magnetic field (magnetic field) generator for generating a moving magnetic field used in continuous casting.

特許第3452709号公報Japanese Patent No. 3452709

従来の移動磁場発生装置では、移動磁界の移動速度を高速にすることができなかった
発明の他の目的は、高速の移動磁場を利用した回転型モータを提供することにある。
In the conventional moving magnetic field generator, the moving speed of the moving magnetic field cannot be increased .
Another object of the present invention is to provide a rotary motor using a moving magnetic field of a high-speed.

本発明の移動磁場発生装置は、N極とS極とが列をなして交互に並ぶように第1のピッチで配置された複数個の磁石からなる磁石列と、前記磁石列との間に間隔を開け、前記磁石列を間に挟み、前記磁石列に沿って延び且つ相互間に所定の位相差をもって配置された第1及び第2の磁極片列とを備えている。第1の磁極片列は、磁石列の少なくとも隣り合う二つの磁石と対向する長さを有する複数の第1の磁極片が第2のピッチで列をなすように配置されて構成されている。第2の磁極片列は、磁石列の少なくとも隣り合う二つの磁石と対向する長さを有する複数の第2の磁極片が第2のピッチで列をなすように配置されて構成されている。そして第1及び第2の磁極片列並びに磁石列の一方が他方に対して所定の相対移動速度で移動したときに、磁石列中の連続するn個(nはN以下の自然数)の磁石から出た磁束が、n個の磁石と対向する第1の磁極片列中の第1の磁極片と、n個の磁石と対向する第2の磁極片列中の第2の磁極片を順に通る合成磁束を形成することにより、所定の相対移動速度よりも速い速度で移動する高速移動磁場を形成するように、第1及び第2のピッチ並びに位相差が定められている。相対移動速度とは、第1及び第2の磁極片列並びに磁石列の一方が移動する場合、他方が移動する場合、また両者が移動する場合における、第1及び第2の磁極片列並びに磁石列の一方が他方に対して移動する速度を意味する。   A moving magnetic field generator according to the present invention includes a magnet row composed of a plurality of magnets arranged at a first pitch so that N poles and S poles are alternately arranged in a row, and between the magnet rows. There are provided first and second magnetic pole piece rows that are spaced apart from each other, sandwich the magnet row therebetween, extend along the magnet row, and are arranged with a predetermined phase difference therebetween. The first magnetic pole piece array is configured such that a plurality of first magnetic pole pieces having a length facing at least two adjacent magnets in the magnet array are arranged in a second pitch. The second magnetic pole piece row is configured by arranging a plurality of second magnetic pole pieces having a length facing at least two adjacent magnets in the magnet row so as to form a row at a second pitch. Then, when one of the first and second magnetic pole piece rows and the magnet row moves at a predetermined relative moving speed with respect to the other, the n consecutive magnets (n is a natural number equal to or less than N) in the magnet row The emitted magnetic flux sequentially passes through the first magnetic pole piece in the first magnetic pole piece array facing the n magnets and the second magnetic pole piece in the second magnetic pole piece array facing the n magnets. By forming the composite magnetic flux, the first and second pitches and the phase difference are determined so as to form a high-speed moving magnetic field that moves at a speed higher than a predetermined relative movement speed. The relative moving speed is the first and second magnetic pole piece arrays and magnets when one of the first and second magnetic pole piece arrays and the magnet array moves, when the other moves, or when both move. It means the speed at which one of the rows moves relative to the other.

本発明の移動磁場発生装置によれば、合成磁束が相対移動速度よりも速い速度で移動することにより高速移動磁場を簡単に形成することができる。   According to the moving magnetic field generator of the present invention, a high-speed moving magnetic field can be easily formed by moving the combined magnetic flux at a speed faster than the relative moving speed.

具体的には、1ユニットの基準移動長さをLと定めたときに、基準移動長さ当りの磁石列の複数の磁石の数を2Nとする。ここで基準移動長さとは、回転型の移動磁場発生装置であれば回転する回転部材が機械角で360度回転したときの回転部材の移動長さであり、リニア型の移動磁場発生装置であれば回転型の移動磁場発生装置の回転部材が機械角で360度回転したときの回転部材の移動長さに相当するリニア移動部材の移動長さである。そして磁石列の第1のピッチτpが、τp=L/(2・N)となり、基準移動長さ当りの第1及び第2の磁極片列中のそれぞれの磁極片の数Mが、
M=N+a,aは0を除く整数(a=・・・−3,−2,−1,1,2,3,・・・)
となり、磁極片の第2のピッチτsが、τs=L/Mとなる場合に、
合成磁極ピッチτtは τt=L/|(2・a)|となり、
磁極片移動速度をvs、磁石列移動速度をvmとすると、
合成磁極移動速度vtはvt=(M/a)・vs−(N/a)・vmとなる。
Specifically, when the reference movement length of one unit is set to L, the number of magnets in the magnet array per reference movement length is 2N. Here, the reference moving length is the moving length of the rotating member when the rotating rotating member rotates 360 degrees in mechanical angle in the case of a rotating moving magnetic field generator, and may be a linear moving magnetic field generator. For example, the moving length of the linear moving member corresponds to the moving length of the rotating member when the rotating member of the rotary type moving magnetic field generator rotates 360 degrees in mechanical angle. The first pitch τp of the magnet rows is τp = L / (2 · N), and the number M of the respective magnetic pole pieces in the first and second magnetic pole piece rows per reference moving length is
M = N + a, a is an integer other than 0 (a =... -3, -2, -1, 1, 2, 3,...)
When the second pitch τs of the pole pieces is τs = L / M,
The composite magnetic pole pitch τt becomes τt = L / | (2 · a) |
If the pole piece moving speed is vs and the magnet row moving speed is vm,
The combined magnetic pole moving speed vt is vt = (M / a) · vs− (N / a) · vm.

なお合成磁極ピッチτtとは、磁極片列が速度vsで移動すると、合成磁極の移動速度vtはvsの(M/a)倍となり、磁石列が速度−vmで移動すると、合成磁極の移動速度vtはvmの(N/a)倍となる。磁極片列と磁石列のうち、どちらか一方が移動しても高速で移動する磁場が得られ、それぞれ移動した場合にはさらに高速で移動する磁場を得ることができる。   Note that the composite magnetic pole pitch τt means that when the magnetic pole piece array moves at speed vs, the composite magnetic pole movement speed vt becomes (M / a) times vs, and when the magnet array moves at speed −vm, the composite magnetic pole movement speed vt. vt is (N / a) times vm. A magnetic field that moves at high speed can be obtained even if either one of the magnetic pole piece array or the magnet array moves.

なお磁石列、第1及び第2の磁極片列が、それぞれリニアな形状を有していてもよく、また磁石列、第1及び第2の磁極片列が、それぞれ同心の環状形状を有してもよい。   The magnet row, the first and second magnetic pole piece rows may each have a linear shape, and the magnet row, the first and second magnetic pole piece rows each have a concentric annular shape. May be.

本発明の移動磁場発生装置の第1及び第2の磁極片列の少なくとも一方と対向するように、N極とS極とが列をなして交互に並ぶように所定のピッチで配置された複数個の磁石からなる可動磁石列を有する移動手段を設けると、リニア型または回転型の磁気伝達増減速機が得られる。   A plurality of N poles and S poles arranged at a predetermined pitch so as to be alternately arranged in a row so as to face at least one of the first and second magnetic pole piece rows of the moving magnetic field generator of the present invention. When a moving means having a movable magnet array composed of individual magnets is provided, a linear or rotary magnetic transmission speed increasing / decreasing device can be obtained.

た第1及び第2の磁極片列の少なくとも一方と対向するように、複数の磁極を構成する複数のコイルが所定のピッチで配置された磁極列を設けるとリニアモータ、回転型モータ及び回転型またはリニア型の発電機となる電気機器を構成することができる。従来の回転型モータは銅損を減らすために巻線の線径を増やすと、スロット面積が大きく必要になり磁気抵抗が増し、最大推力が飽和してしまう課題があった。これに対して本発明の移動磁場発生装置を利用した回転型モータの場合には、巻線の巻数や線径を増やしても、磁気抵抗はほとんど変らずに巻線の占績を増加させることができ、サイズあたりの定格推力密度および最大推力を大きくでき、省エネに寄与できる高効率の回転型モータを提供することができる。また従来の発電機では、高効率領域即ち高速域での動作をさせるために、増速ギヤを用いて、発電機を高速で回転させるようにしていた。しかし、ギヤの寿命や破損がコスト面やメンテナンスの課題となっていた。また、ギヤが複雑で発電機を小型化できない問題もあった。これに対して本発明の移動磁場発生装置を用いた発電機は、ロータの回転速度に比べ、磁気的回転数が高いために、低速でも高電圧の誘起電圧を生じ、ロータの回転速度が低くても、高効率の発電が可能となり、ギヤを不要とすることができ、メンテナンスや小型化、高効率化に貢献できる。また本発明の移動磁場発生装置を利用して直線状に展開したリニア型発電機も構成できる。 To at least one facing of the first and second magnetic pole piece arrays were or, a linear motor when the plurality of coils constituting a plurality of magnetic poles provided arranged magnetic pole row at a predetermined pitch, a rotary motor and rotary An electric device to be a type or linear type generator can be configured. In the conventional rotary motor, when the wire diameter of the winding is increased in order to reduce the copper loss, a large slot area is required, the magnetic resistance is increased, and the maximum thrust is saturated. On the other hand, in the case of a rotary motor using the moving magnetic field generator of the present invention, even if the number of windings and the wire diameter are increased, the magnetic resistance hardly changes, and the winding fortune is increased. Therefore, it is possible to provide a high-efficiency rotary motor that can increase the rated thrust density and maximum thrust per size and contribute to energy saving. Further, in the conventional generator, in order to operate in a high efficiency region, that is, a high speed region, the generator is rotated at a high speed by using a speed increasing gear. However, the life and breakage of the gears have been a problem of cost and maintenance. There is also a problem that the gears are complicated and the generator cannot be reduced in size. On the other hand, since the generator using the moving magnetic field generator of the present invention has a higher magnetic rotational speed than the rotational speed of the rotor, a high voltage induced voltage is generated even at a low speed, and the rotational speed of the rotor is low. However, high-efficiency power generation is possible, gears are unnecessary, and this contributes to maintenance, downsizing, and high efficiency. Also, a linear generator developed linearly using the moving magnetic field generator of the present invention can be configured.

また回転型の移動磁場発生装置の第1及び第2の磁極片列の少なくとも一方と対向するように、1以上のホール素子を配置すれば、ホール素子の出力により回転角度を検出することができる磁気エンコーダが得られる。   Further, if one or more Hall elements are arranged so as to face at least one of the first and second magnetic pole piece arrays of the rotating type moving magnetic field generator, the rotation angle can be detected by the output of the Hall elements. A magnetic encoder is obtained.

さらに回転型の移動磁場発生装置の磁石列を有する第1の回転構造体と第1及び第2の磁極片列を有する第2の回転構造体とを、それぞれ独立して回転できるように構成し、第1及び第2の回転構造体の内側に回転磁場を発生する複数の励磁巻線を備えたモータ固定子を配置すれば、第1の回転構造体と第2の回転構造体とが反対方向に回転する二重反転モータが得られる。   Further, the first rotating structure having the magnet rows and the second rotating structure having the first and second magnetic pole piece rows of the rotary type moving magnetic field generator are configured to be able to rotate independently of each other. If a motor stator having a plurality of excitation windings for generating a rotating magnetic field is arranged inside the first and second rotating structures, the first rotating structure and the second rotating structure are opposite to each other. A counter rotating motor rotating in the direction is obtained.

そして二重反転モータの第1の回転構造体に第1のインペラを取り付け、第2の回転構造体に第2のインペラを取り付ければ、第1のインペラと第2のインペラとが反対方向に回転する二重反転ファンが得られる。   If the first impeller is attached to the first rotating structure of the counter rotating motor and the second impeller is attached to the second rotating structure, the first impeller and the second impeller rotate in opposite directions. A counter rotating fan is obtained.

また回転型の移動磁場発生装置の磁石列を有する第1の回転構造体と第1及び第2の磁極片列を有する第2の回転構造体とを、それぞれ独立して回転できるように構成し、第1及び第2の回転構造体の内側に複数の発電用巻線を設け、第1の回転構造体に第1のインペラを取り付け、第2の回転構造体に第1のインペラとは逆方向に回る第2のインペラを取り付けると二重反転風力発電機が得られる。   In addition, the first rotating structure having the magnet row and the second rotating structure having the first and second magnetic pole piece rows of the rotating type moving magnetic field generator are configured to be able to rotate independently of each other. A plurality of power generation windings are provided inside the first and second rotating structures, a first impeller is attached to the first rotating structure, and the second rotating structure is opposite to the first impeller. When a second impeller rotating in the direction is attached, a counter rotating wind power generator is obtained.

さらに回転型の移動磁場発生装置の磁石列を有する第1の構造体と第1及び第2の磁極片列を有する第2の構造体の一方を発電電動機の回転軸に固定し、第1の構造体と第2の構造体の中心部にN極とS極とが列をなして交互に並ぶように所定のピッチで配置された複数個の磁石からなる磁石列を備えたロータを配置し、ロータにフライホイールを固定すれば、フライホイールの回転でエネルギーを蓄積し、発電電動機からフライホイールに蓄積されたエネルギーを電力として出力することができるフライホイール電力貯蔵装置を得ることができる。   Further, one of the first structure having the magnet row and the second structure having the first and second magnetic pole piece rows of the rotary type moving magnetic field generator is fixed to the rotating shaft of the generator motor, and the first A rotor having a magnet row composed of a plurality of magnets arranged at a predetermined pitch so that N poles and S poles are alternately arranged in rows in the center of the structure and the second structure is arranged. If the flywheel is fixed to the rotor, it is possible to obtain a flywheel power storage device capable of accumulating energy by rotating the flywheel and outputting the energy accumulated in the flywheel from the generator motor as electric power.

(A)乃至(C)は、本発明を回転型の移動磁場発生装置に適用した場合の構成と発生する合成磁束の流れ示しており、(D)乃至(F)は、(A)乃至(C)の合成磁束により形成される合成磁極を模式的に示した図である。(A) to (C) show the configuration when the present invention is applied to a rotating type moving magnetic field generator and the flow of the generated magnetic flux. (D) to (F) are (A) to (F). It is the figure which showed typically the synthetic | combination magnetic pole formed with the synthetic | combination magnetic flux of C). 支持構造を概略的に示す図である。It is a figure which shows a support structure schematically. リニア型の磁気伝達増減速機の概略構造を示す図である。It is a figure which shows schematic structure of a linear type | mold magnetic transmission increase / decrease device. (A)乃至(C)は、図3の実施の形態の動作を説明するために用いる図である。(A) thru | or (C) is a figure used in order to demonstrate operation | movement of embodiment of FIG. リニア型の磁気伝達増減速機の概略構造を示す図である。It is a figure which shows schematic structure of a linear type | mold magnetic transmission increase / decrease device. (A)乃至(C)は、図5の実施の形態の動作を説明するために用いる図である。(A) thru | or (C) is a figure used in order to demonstrate operation | movement of embodiment of FIG. (A)及び(B)は、回転型の磁気伝達増減速機の概略構造を示す図である。(A) And (B) is a figure which shows schematic structure of a rotary type | mold magnetic transmission speed reducer. リニアモータの構造を示す図であるIt is a figure which shows the structure of a linear motor. (A)及び(B)は、回転型モータの構造を示す図である。(A) And (B) is a figure which shows the structure of a rotary motor. (A)及び(B)は、回転型モータの構造を示す断面図である。(A) And (B) is sectional drawing which shows the structure of a rotary motor. (A)及び(B)は、単相発電機の概略構造をそれぞれ示す図である。(A) And (B) is a figure which shows the schematic structure of a single phase generator, respectively. 高精度磁気エンコーダの構成を示す図である。It is a figure which shows the structure of a high precision magnetic encoder. (A)及び(B)は、2つのホール素子の出力波形を示す図である。(A) And (B) is a figure which shows the output waveform of two Hall elements. 4つのホール素子の配置パターンの一例を示す図である。It is a figure which shows an example of the arrangement pattern of four Hall elements. 二重反転モータの構造の概略を示す図である。It is a figure which shows the outline of the structure of a counter rotating motor. (A)及び(B)は、図15の二重反転モータの励磁コイルを2相にした二重反転モータを利用した二重反転ファンの構成を示す断面図と半部断面図である。(A) And (B) is sectional drawing and half sectional drawing which show the structure of the counter rotating fan using the counter rotating motor which made the excitation coil of the counter rotating motor of FIG. 15 two phases. (A)及び(B)は、二重反転風力発電機の一部断面にした正面図及び側面図である。(A) And (B) is the front view and side view which made the partial inversion wind generator a partial cross section. 回転型の移動磁場発生装置を増速磁気カップリングとしてフライホイール電力貯蔵装置に適用した実施の形態の概略断面図である。1 is a schematic cross-sectional view of an embodiment in which a rotary type moving magnetic field generator is applied to a flywheel power storage device as a speed-up magnetic coupling.

本発明の移動磁場発生装置の実施の形態と移動磁場発生装置を利用した各種の機器の実施の形態を図面を参照して説明する。図1(A)乃至(C)は、本発明を回転型の移動磁場発生装置に適用した場合の構成と発生する合成磁束の流れ示しており、図1(D)乃至(F)は図1(A)乃至(C)の合成磁束により形成される合成磁極を模式的に示した図である。本実施の形態の回転型の移動磁場発生装置1は、N極とS極とが列をなして交互に並ぶように第1のピッチτpで配置された2N個(具体的には24個)の磁石3からなる環状の磁石列5と、環状の磁石列5との間に間隔を開け、磁石列5を間に挟み、磁石列に沿って延び且つ相互間に所定の位相差(電気角で180度:機械角でτs/2)をもって配置された環状の第1及び第2の磁極片列7及び9とを備えている。磁石列5の各磁石は、図中に矢印で示した方向(径方向)に交互に異なる磁極が現れるように着磁されている。なおこのような磁石列5は、円環状の磁性体を部分的に着磁機により着磁することにより簡単に得ることができる。   Embodiments of a moving magnetic field generator of the present invention and embodiments of various devices using the moving magnetic field generator will be described with reference to the drawings. FIGS. 1A to 1C show a configuration when the present invention is applied to a rotating type moving magnetic field generator and the flow of a generated magnetic flux. FIGS. 1D to 1F are FIGS. It is the figure which showed typically the synthetic | combination magnetic pole formed with the synthetic | combination magnetic flux of (A) thru | or (C). In the rotating type moving magnetic field generator 1 of the present embodiment, 2N pieces (specifically, 24 pieces) are arranged at the first pitch τp so that the N poles and the S poles are alternately arranged in a row. A space is formed between the annular magnet array 5 composed of the magnets 3 and the annular magnet array 5, the magnet array 5 is sandwiched between them, and extends along the magnet array and has a predetermined phase difference (electrical angle) between them. 180 °: annular first and second magnetic pole piece arrays 7 and 9 arranged at a mechanical angle of τs / 2). Each magnet of the magnet row 5 is magnetized so that different magnetic poles appear alternately in the direction (radial direction) indicated by the arrow in the drawing. Such a magnet array 5 can be easily obtained by partially magnetizing an annular magnetic body with a magnetizer.

図2に示すように、磁石列5は円板状の剛性を有する第1の支持体4に支持されて回転構造体(第1の構造体)6を構成している。第1の支持体4は、モータMの軸に固定されている。環状の第1の磁極片列7は、磁石列5の少なくとも隣り合う二つの磁石3と対向する長さを有する複数の第1の磁極片8が第2のピッチτsで列をなすように配置されて構成されている。第2の磁極片列9は、磁石列5の少なくとも隣り合う二つの磁石3と対向する長さを有する複数の第2の磁極片10が第2のピッチτsで列をなすように配置されて構成されている。第1及び第2の磁極片8及び10は、それぞれ鉄片により形成されている。第1及び第2の磁極片列7及び9は、径方向に対向する一対の環状壁部11及び12を備えた第2の支持体13に支持されている。第1及び第2の磁極片列7及び9と第2の支持体13とにより第2の構造体14が構成されている。   As shown in FIG. 2, the magnet array 5 is supported by a first support body 4 having a disk-like rigidity and constitutes a rotating structure (first structure) 6. The first support 4 is fixed to the shaft of the motor M. The annular first magnetic pole piece row 7 is arranged such that a plurality of first magnetic pole pieces 8 having a length facing at least two adjacent magnets 3 in the magnet row 5 form a row at the second pitch τs. Has been configured. The second magnetic pole piece row 9 is arranged such that a plurality of second magnetic pole pieces 10 having a length facing at least two adjacent magnets 3 in the magnet row 5 form a row at a second pitch τs. It is configured. The first and second magnetic pole pieces 8 and 10 are each formed of an iron piece. The first and second magnetic pole piece arrays 7 and 9 are supported by a second support body 13 having a pair of annular wall portions 11 and 12 that are opposed to each other in the radial direction. The first and second magnetic pole piece arrays 7 and 9 and the second support 13 constitute a second structure 14.

本実施の形態では、第1及び第2の磁極片列7及び9並びに磁石列5の一方が他方に対して所定の相対移動速度で移動したときに、磁石列5中の連続するn個(nはN以下の自然数)の磁石3から出た磁束が、n個の磁石3と対向する第1の磁極片列7中の第1の磁極片8と、n個の磁石3と対向する第2の磁極片列9中の第2の磁極片10を順に通る合成磁束φが形成される。図1(A)乃至(C)に示すように合成磁束φは、磁石3→第1の磁極片8→磁石3→第2の磁極片10→磁石3→第2の磁極片8・・の順に順番に蛇行して流れ、漏れ磁束φ′となってループ状の磁路を構成する。図1の実施の形態では、2つのループ状の磁路が形成されている。この2つのループ状の磁路に磁束が流れることよって、図1(D)乃至(F)に示すように、2つの回転する合成磁極M1及びM2が形成される。ここで合成磁極とは、ループ状の磁路に磁束が流れて形成されるものである。図1(B)は、図1(A)の状態からτp/2反時計回り方向に回転した状態を示し、図1(C)は、図1(A)の状態からτp反時計回り方向に磁石列5が回転した状態を示している。図1(A)乃至(C)に対応する図1(D)乃至(F)を見ると判るように、磁石列5がτp/2回転するだけで、合成磁極M1及びM2は機械角度で90度回転し、磁石列5がτp回転するだけで、合成磁極M1及びM2は機械角度で180度回転する。すなわち磁石列5の回転速度(所定の相対移動速度)よりも速い速度で移動する高速移動磁場を形成することができる。高速移動磁場の移動速度vtは、相対移動速度vsと、前述の第1及び第2のピッチτp及びτs並びに第1及び第2の磁極片列の位相差によって定まる。本実施の形態では、磁石列5の回転速度が相対移動速度となるが、第1及び第2の磁極片列7及び9を回転させる場合には、その回転速度が相対移動速度となり、磁石列5と第1及び第2の磁極片列7及び9とをそれぞれ反対方向に回転させる場合には、磁石列5の回転速度と第1及び第2の磁極片列7及び9の回転速度の合計速度が相対移動速度となる。   In the present embodiment, when one of the first and second magnetic pole piece arrays 7 and 9 and the magnet array 5 moves at a predetermined relative moving speed with respect to the other, n consecutive ( The first magnetic pole piece 8 in the first magnetic pole piece array 7 facing the n number of magnets 3 and the first magnetic pole piece 8 facing the n number of magnets 3, and A combined magnetic flux φ passing through the second magnetic pole piece 10 in the second magnetic pole piece array 9 is formed. As shown in FIGS. 1A to 1C, the composite magnetic flux φ is calculated as follows: magnet 3 → first magnetic pole piece 8 → magnet 3 → second magnetic pole piece 10 → magnet 3 → second magnetic pole piece 8. The coil snakes in order to form a leakage magnetic flux φ ′ to form a loop-shaped magnetic path. In the embodiment of FIG. 1, two looped magnetic paths are formed. When magnetic flux flows through these two loop-shaped magnetic paths, two rotating synthetic magnetic poles M1 and M2 are formed as shown in FIGS. Here, the composite magnetic pole is formed by a magnetic flux flowing in a loop magnetic path. FIG. 1B shows a state rotated from the state of FIG. 1A in the τp / 2 counterclockwise direction, and FIG. 1C shows the state of FIG. 1A from the state of τp counterclockwise. The state where the magnet row | line | column 5 rotated is shown. As can be seen from FIGS. 1D to 1F corresponding to FIGS. 1A to 1C, only the magnet array 5 rotates τp / 2, and the resultant magnetic poles M1 and M2 are 90 in mechanical angle. The combined magnetic poles M1 and M2 are rotated by 180 degrees at the mechanical angle only by rotating the magnet array 5 by τp. That is, it is possible to form a high-speed moving magnetic field that moves at a speed faster than the rotational speed (predetermined relative movement speed) of the magnet array 5. The moving speed vt of the high-speed moving magnetic field is determined by the relative moving speed vs, the aforementioned first and second pitches τp and τs, and the phase difference between the first and second magnetic pole piece arrays. In the present embodiment, the rotational speed of the magnet array 5 becomes the relative movement speed. However, when the first and second magnetic pole piece arrays 7 and 9 are rotated, the rotational speed becomes the relative movement speed, and the magnet array 5 and the first and second magnetic pole piece rows 7 and 9 are rotated in opposite directions, respectively, the sum of the rotational speed of the magnet row 5 and the rotational speeds of the first and second magnetic pole piece rows 7 and 9. The speed becomes the relative movement speed.

1ユニットの基準移動長さ(磁石列5が1回転する長さ)をLとしたときに、基準移動長さL当りの磁石列5の複数の磁石の数を2Nとすると、磁石列5の第1のピッチτpは、τp=L/(2・N)となり、基準移動長さ当りの第1及び第2の磁極片列の磁極片の数Mは、
M=N+a,aは0を除く整数(a=・・・−3,−2,−1,1,2,3,・・・)
となり、磁極片の第2のピッチτsが、τs=L/Mとなる場合に、
合成磁極の長さに相当する合成磁極ピッチτtはτt=L/|(2・a)|となり、
磁極片移動速度をvs、磁石列移動速度をvmとすると、
合成磁極移動速度vtはvt=(M/a)・vs−(N/a)・vmとなる。
When the reference moving length of one unit (the length of one rotation of the magnet array 5) is L, the number of magnets in the magnet array 5 per reference moving length L is 2N. The first pitch τp is τp = L / (2 · N), and the number M of magnetic pole pieces of the first and second magnetic pole piece arrays per reference moving length is
M = N + a, a is an integer other than 0 (a =... -3, -2, -1, 1, 2, 3,...)
When the second pitch τs of the pole pieces is τs = L / M,
The composite magnetic pole pitch τt corresponding to the length of the composite magnetic pole is τt = L / | (2 · a) |
If the pole piece moving speed is vs and the magnet row moving speed is vm,
The combined magnetic pole moving speed vt is vt = (M / a) · vs− (N / a) · vm.

磁極片列が速度vsで移動すると、合成磁極の移動速度vtはvsの(M/a)倍となり、磁石列が速度−vmで移動すると、合成磁極の移動速度vtはvmの(N/a)倍となる。磁極片列と磁石列のうち、どちらか一方が移動しても高速で移動する磁場が得られ、両者のそれぞれが移動した場合にはさらに高速で移動する磁場を得ることができる。   When the magnetic pole piece array moves at the speed vs, the moving speed vt of the composite magnetic pole becomes (M / a) times vs, and when the magnet array moves at the speed −vm, the moving speed vt of the composite magnetic pole becomes (N / a) ) Doubled. A magnetic field that moves at high speed is obtained even if one of the magnetic pole piece array or the magnet array moves, and a magnetic field that moves at higher speed can be obtained when both of them move.

なお磁石列5、第1及び第2の磁極片列7及び9は、それぞれリニアな形状を有していてもよい。   The magnet array 5 and the first and second magnetic pole piece arrays 7 and 9 may each have a linear shape.

図3は、移動磁場発生装置101の第1及び第2の磁極片列107及び109と対向するように、N極とS極とが列をなして交互に並ぶように所定のピッチで配置された複数個の磁石115からなる可動磁石列116を有する筒状の移動手段117を設けたリニア型の磁気伝達増減速機118の概略構造を示す図である。このリニア型の磁気伝達増減速機118では、移動磁場発生装置101の磁石列105を支持した図示しない第1の支持体を固定して第1の構造体とし、第1及び第2の磁極片列107及び109を支持した図示しない第2の支持体を所定の相対速度で移動する第2の構造体とする。他の基本要素は以下の通りである。   In FIG. 3, the N and S poles are arranged at a predetermined pitch so as to be alternately arranged in a row so as to face the first and second magnetic pole piece rows 107 and 109 of the moving magnetic field generator 101. FIG. 2 is a diagram showing a schematic structure of a linear type magnetic transmission speed increasing / decreasing device 118 provided with a cylindrical moving means 117 having a movable magnet row 116 composed of a plurality of magnets 115. In the linear type magnetic transmission speed increasing / decreasing device 118, a first support (not shown) that supports the magnet array 105 of the moving magnetic field generator 101 is fixed to form a first structure, and the first and second magnetic pole pieces. A second support (not shown) that supports the columns 107 and 109 is a second structure that moves at a predetermined relative speed. Other basic elements are as follows.

基準移動長さ L
基準移動長さ当りの磁石列105の磁石103の個数 2・N, Nは自然数
磁石列105の磁石のピッチτp τp=L/(2・N)
基準移動長さ当りの磁極片列中の磁極片の数M
M=N+a,aは0を除く整数(a=・・・−3,−2,−1,1,2,3,・・・)
磁極片のピッチτs τs=L/M
合成磁極の磁極ピッチτt τt=L/|(2・a)|
磁極片移動速度 vs
磁石列移動速度 vm
合成磁極移動速度vt vt=(M/a)・vs−(N/a)・vm
そして本実施の形態では、各要素を以下のように定めている。
Reference travel length L
Number of magnets 103 in magnet array 105 per reference moving length 2 · N, N is a natural number Pitch of magnets in magnet array 105 τp τp = L / (2 · N)
Number M of pole pieces in the pole piece array per reference moving length
M = N + a, a is an integer other than 0 (a =... -3, -2, -1, 1, 2, 3,...)
Pole pitch τs τs = L / M
Magnetic pole pitch τt τt = L / | (2 · a) |
Pole piece moving speed vs.
Magnet array moving speed vm
Synthetic magnetic pole moving speed vt vt = (M / a) · vs− (N / a) · vm
And in this Embodiment, each element is defined as follows.

L =360
2N=24
τp=15
M=13,a=1
τs=27.69
τt=180
M/a=13
N/a=12
なお、vt、vs、vmの値がマイナスになる場合には、移動方向が逆になることを意味する。またL及びτtは、相対的な長さを示すもので、電気角に限定されるものではない。
L = 360
2N = 24
τp = 15
M = 13, a = 1
τs = 27.69
τt = 180
M / a = 13
N / a = 12
In addition, when the values of vt, vs, and vm are negative, it means that the moving direction is reversed. L and τt represent relative lengths and are not limited to electrical angles.

図4(A)乃至(C)に示すように、第1及び第2の磁極片列107及び109をΔx移動させると、移動手段117は13Δx移動することになる。即ち増速比M/a倍の速度で合成磁界が移動して移動磁場が形成され、その結果移動手段117は相対速度のM/a倍の速度で移動する。   As shown in FIGS. 4A to 4C, when the first and second magnetic pole piece arrays 107 and 109 are moved by Δx, the moving means 117 is moved by 13Δx. That is, the combined magnetic field is moved at a speed of the speed increasing ratio M / a times to form a moving magnetic field. As a result, the moving means 117 moves at a speed M / a times the relative speed.

図5は、図3と同様に、移動磁場発生装置101の第1及び第2の磁極片列107及び109と対向するように、N極とS極とが列をなして交互に並ぶように所定のピッチで配置された複数個の磁石115からなる可動磁石列116を有する筒状の移動手段117を設けたリニア型の磁気伝達増減速機118′の概略構造を示す図である。このリニア型の磁気伝達増減速機118では、移動磁場発生装置101の磁石列105を支持した図示しない第1の支持体を相対移動する第1の構造体とし、第1及び第2の磁極片列107及び109を支持した図示しない第2の支持体を固定した第2の構造体とする。他の基本要素は以下の通りである。   In FIG. 5, as in FIG. 3, the north and south poles are alternately arranged in a row so as to face the first and second magnetic pole piece rows 107 and 109 of the moving magnetic field generator 101. It is a figure which shows schematic structure of the linear type | mold magnetic transmission speed increase / decrease device 118 'provided with the cylindrical moving means 117 which has the movable magnet row | line | column 116 which consists of the several magnet 115 arrange | positioned with a predetermined pitch. In the linear type magnetic transmission speed increasing / decreasing device 118, a first support body (not shown) that supports the magnet array 105 of the moving magnetic field generator 101 is used as a first structure that moves relative to the first support body, and the first and second pole pieces. A second structure (not shown) that supports the columns 107 and 109 is fixed to a second structure. Other basic elements are as follows.

基準移動長さ L
基準移動長さ当りの磁石列105の磁石103の個数 2・N, Nは自然数
磁石列105の磁石のピッチτp τp=L/(2・N)
基準移動長さ当りの磁極片列中の磁極片の数 M
M=N+a,aは0を除く整数(a=・・・−3,−2,−1,1,2,3,・・・)
磁極片のピッチτs τs=L/M
合成磁極の磁極ピッチτt τt=L/|(2・a)|
磁極片移動速度 vs
磁石列移動速度 vm
合成磁極移動速度 vt vt=(M/a)・vs−(N/a)・vm
そして本実施の形態では、各要素を以下のように定めている。
Reference travel length L
Number of magnets 103 in magnet array 105 per reference moving length 2 · N, N is a natural number Pitch of magnets in magnet array 105 τp τp = L / (2 · N)
Number of pole pieces in the pole piece row per reference travel length M
M = N + a, a is an integer other than 0 (a =... -3, -2, -1, 1, 2, 3,...)
Pole pitch τs τs = L / M
Magnetic pole pitch τt τt = L / | (2 · a) |
Pole piece moving speed vs.
Magnet array moving speed vm
Synthetic magnetic pole moving speed vt vt = (M / a) · vs− (N / a) · vm
And in this Embodiment, each element is defined as follows.

L =360
2N=24
τp=15
M=13,a=1
τm=27.69
τt=180
M/a=13
N/a=12
なお、vt、vs、vmの値がマイナスになる場合には、移動方向が逆になることを意味する。
L = 360
2N = 24
τp = 15
M = 13, a = 1
τm = 27.69
τt = 180
M / a = 13
N / a = 12
In addition, when the values of vt, vs, and vm are negative, it means that the moving direction is reversed.

図6(A)乃至(C)に示すように、磁石列105をΔx移動させると、移動手段117は12Δx移動することになる。即ち増速比N/a倍の速度で合成磁界が移動して移動磁場が形成され、その結果移動手段117は相対速度のN/a倍の速度で移動する。   As shown in FIGS. 6A to 6C, when the magnet array 105 is moved by Δx, the moving means 117 is moved by 12Δx. That is, the combined magnetic field is moved at a speed of the speed increasing ratio N / a times to form a moving magnetic field. As a result, the moving means 117 moves at a speed N / a times the relative speed.

図7(A)は、移動磁場発生装置201の第2の磁極片列209と対向するように、N極とS極とが列をなして交互に並ぶように180度のピッチで配置された2個の磁石215からなる可動磁石列を有する円柱状の移動手段217を設けた回転型の磁気伝達増減速機218の概略構造を示す図である。円柱状の移動手段217は、磁束が流れる材料から形成されて、図示しない軸受け手段により回転可能に支持された軸219に固定されている。この回転型の磁気伝達増減速機218では、移動磁場発生装置201の磁石列205を支持した図示しない第1の支持体を第1の構造体とし、第1及び第2の磁極片列107及び109を支持した図示しない第2の支持体を第2の構造体として、第1の支持体及び第2の支持体の少なくとも一方を相対移動速度で回転させる低速ロータとする。この低速ロータに対して、移動手段217が高速ロータとなる。なお本実施の形態の動作は、図3及び図5に示したリニア型の磁気伝達増減速機の動作を回転動作に変えたものである点を除いて動作が同じであるため省略する。この実施の形態では、低速ロータ(205又は207及び209)が回ると内側に高速回転磁場が発生し、高速ロータ(217)が速く回転する。この構造では、磁石列205を有効利用する割合が大きく、大きな磁気結合トルクを生み出すことができる。   In FIG. 7A, the N pole and the S pole are arranged at a pitch of 180 degrees so as to be alternately arranged in a row so as to face the second magnetic pole piece row 209 of the moving magnetic field generator 201. It is a figure which shows schematic structure of the rotary type magnetic transmission speed increasing / decreasing device 218 provided with the column-shaped moving means 217 which has the movable magnet row | line | column which consists of two magnets 215. FIG. The columnar moving means 217 is made of a material through which magnetic flux flows, and is fixed to a shaft 219 that is rotatably supported by bearing means (not shown). In this rotary magnetic transmission speed increasing / decreasing device 218, a first support (not shown) that supports the magnet array 205 of the moving magnetic field generator 201 is used as the first structure, and the first and second magnetic pole piece arrays 107 and A second support (not shown) supporting 109 is used as a second structure, and at least one of the first support and the second support is a low-speed rotor that rotates at a relative movement speed. For this low speed rotor, the moving means 217 is a high speed rotor. Since the operation of the present embodiment is the same except that the operation of the linear type magnetic transmission speed increase / decrease shown in FIGS. 3 and 5 is changed to a rotation operation, the description thereof will be omitted. In this embodiment, when the low-speed rotor (205 or 207 and 209) rotates, a high-speed rotating magnetic field is generated inside, and the high-speed rotor (217) rotates faster. In this structure, the ratio of effectively using the magnet array 205 is large, and a large magnetic coupling torque can be generated.

図7(B)は、高速ロータ(217′)の磁石215′を埋め込み構造(IPM構造)にした例である。その他の点は図7(A)の構造と同様である。この構造にすると、図7(A)の構造よりも、より大きな遠心力に耐えることができる。そのため、限界回転数をより大きくできる利点が得られる。   FIG. 7B shows an example in which the magnet 215 ′ of the high-speed rotor (217 ′) has an embedded structure (IPM structure). Other points are similar to the structure of FIG. With this structure, it is possible to withstand a greater centrifugal force than the structure of FIG. Therefore, there is an advantage that the limit rotational speed can be increased.

図8は、移動磁場発生装置301を固定子の一部と可動子として利用するために、第1及び第2の磁極片列307及び309と対向するように、複数の磁極を構成する複数のコイル315を所定のピッチτcで配置した磁極列316を固定子のヨーク317に設けたリニアモータ318の構造を示す図である。この実施の形態では、三相U,W及びV並びに−U,−W及び−Vの交流電流がそれぞれ各コイル315に流れる。移動磁場発生装置301を間に挟む一対のコイルには、それぞれU相の交流電流と−U相の交流電流、W相の交流電流と−W相の交流電流及びV相の交流電流と−V相の交流電流がそれぞれ順次流れて移動磁界が形成されている。このリニアモータで、磁石列305と図示しない第1の支持体とからなる第1の構造体とコイル315を備えたヨーク317を固定子とした場合には、第1及び第2の磁極片列307及び309とこれらを支持する第2の支持体とからなる第2の構造体が可動子となる。この場合には、各構成要素の関係は下記のようになる。   FIG. 8 shows a plurality of magnetic poles constituting a plurality of magnetic poles so as to face the first and second magnetic pole piece arrays 307 and 309 in order to use the moving magnetic field generator 301 as a part of a stator and a mover. It is a figure which shows the structure of the linear motor 318 which provided the magnetic pole row | line | column 316 which has arrange | positioned the coil 315 by predetermined pitch (tau) c in the yoke 317 of the stator. In this embodiment, three-phase U, W, and V and -U, -W, and -V alternating currents flow through the coils 315, respectively. A pair of coils sandwiching the moving magnetic field generator 301 are respectively provided with a U-phase AC current, a -U-phase AC current, a W-phase AC current, a -W-phase AC current, a V-phase AC current, and -V. Phase alternating currents flow sequentially to form a moving magnetic field. In this linear motor, when the first structure body including the magnet array 305 and a first support (not shown) and the yoke 317 provided with the coil 315 are used as the stator, the first and second magnetic pole piece arrays A second structure including 307 and 309 and a second support that supports them serves as a mover. In this case, the relationship between each component is as follows.

基準移動長さ L
基準移動長さ当りの磁石列305の磁石303の個数 2・N(Nは自然数)
磁石列305の磁石のピッチτp τp=L/(2・N)
基準移動長さ当りの磁極片列307及び309中の磁極片の数 M
M=N+a,aは0を除く整数(a=・・・−3,−2,−1,1,2,3,・・・)
磁極片列の磁極片のピッチτs τs=L/M
合成磁極の磁極ピッチτt τt=L/|(2・a)|
磁極片列移動速度 vs
コイルの励磁周波数 f
磁石列移動速度 vm
コイル磁界移動速度 vc vc=f・2・τt
=(M/a)・vs−(N/a)・vm
図8の具体例では、上記構成要素は下記のようになる。
Reference travel length L
Number of magnets 303 in the magnet row 305 per reference moving length 2 · N (N is a natural number)
Magnet pitch τp τp = L / (2 · N) of magnet row 305
Number of pole pieces in pole piece rows 307 and 309 per reference travel length M
M = N + a, a is an integer other than 0 (a =... -3, -2, -1, 1, 2, 3,...)
Pole pitch τs τs = L / M of the pole piece array
Magnetic pole pitch τt τt = L / | (2 · a) |
Magnetic pole piece travel speed vs
Coil excitation frequency f
Magnet array moving speed vm
Coil magnetic field moving speed vc vc = f · 2 · τt
= (M / a) .vs- (N / a) .vm
In the specific example of FIG. 8, the above-described components are as follows.

L=360
2N=24
τp=15
M=13,a=1
τs=27.69
τt=180
M/a=13
N/a=12
この実施の形態では、コイル315に移動速度vcの移動磁界を発生させると、磁石列305が固定側(磁石列移動速度vm=0)の場合、第1及び第2の磁極片列307及び309の移動速度vsはvc/13となる。つまり減速比が1/13となり、高推力のリニアモータを提供することができる。
L = 360
2N = 24
τp = 15
M = 13, a = 1
τs = 27.69
τt = 180
M / a = 13
N / a = 12
In this embodiment, when a moving magnetic field having a moving speed vc is generated in the coil 315, the first and second magnetic pole piece arrays 307 and 309 are provided when the magnet array 305 is on the fixed side (magnet array moving speed vm = 0). The moving speed vs is vc / 13. That is, the reduction ratio becomes 1/13, and a high-thrust linear motor can be provided.

図8の構造において、磁石列305を移動側とし、コイル315及び第1及び第2の磁極片列307及び309を固定側(磁石列移動速度vs=0)とした場合、コイル315に移動速度vcの移動磁界を発生させると、磁石列305の移動速度vmは−vc/12となる。つまり減速比が−1/12となり、高推力のリニアモータを提供することができる(ここで、値がマイナスになるのは、駆動方向が逆になることを示している)。   In the structure of FIG. 8, when the magnet array 305 is the moving side and the coil 315 and the first and second magnetic pole piece arrays 307 and 309 are the fixed side (magnet array moving speed vs = 0), the moving speed of the coil 315 is increased. When a moving magnetic field of vc is generated, the moving speed vm of the magnet array 305 becomes −vc / 12. That is, the reduction ratio becomes −1/12, and a high-thrust linear motor can be provided (here, a negative value indicates that the driving direction is reversed).

なお上記実施の形態の3相モータの場合には、τc=τt/3であるが、τc=τt・2/3でも構成できる。また2相モータの場合は、τc=τt/2となる。   In the case of the three-phase motor of the above embodiment, τc = τt / 3, but τc = τt · 2/3 can also be configured. In the case of a two-phase motor, τc = τt / 2.

図9(A)は、本発明の移動磁場発生装置401を固定子の一部と可動子として利用するために、環状の第2の磁極片列409と対向するように、6個の磁極を構成する6個のコイル415を所定のピッチτcで配置した磁極列416を固定子のヨーク417に設けた回転型モータ418の構造を示す図である。この実施の形態のモータでは、三相U,W及びV並びに−U,−W及び−Vの交流電流がそれぞれ各コイル415に流れる。   In FIG. 9A, in order to use the moving magnetic field generator 401 of the present invention as a part of a stator and a mover, six magnetic poles are arranged so as to face the annular second magnetic pole piece array 409. It is a figure which shows the structure of the rotary motor 418 which provided the magnetic pole row | line | column 416 which has arrange | positioned the six coils 415 to comprise at the predetermined pitch (tau) c in the yoke 417 of the stator. In the motor of this embodiment, three-phase U, W, and V and -U, -W, and -V alternating currents flow through each coil 415, respectively.

この実施の形態では、コイルを交流励磁すると回転磁界が発生する。コイルによる回転磁界の回転速度をωcとし、磁石列405の回転速度をωm,磁極片列407及び409の回転速度をωsとすると、それぞれの関係は、次式で表すことができる。   In this embodiment, when the coil is AC-excited, a rotating magnetic field is generated. When the rotational speed of the rotating magnetic field by the coil is ωc, the rotational speed of the magnet array 405 is ωm, and the rotational speed of the magnetic pole piece arrays 407 and 409 is ωs, the respective relationships can be expressed by the following equations.

ωc=(M/a)・ωs−(N/a)・ωm
図9(A)の具体例での構成要素は下記のようになる。
ωc = (M / a) · ωs− (N / a) · ωm
The components in the specific example of FIG. 9A are as follows.

磁石列一周分の磁石数 2N=24
片側の磁極片列中の磁極片の数 M=13
MとNの差 a=1
ここで、磁石列405が固定され、回転速度ωm=0とした場合、磁極片列407及び409の回転速度ωsは、ωs=ωc/13となる。つまり、コイルによる回転磁界に対する減速比が1/13となり、低速大トルクを高効率で発生させることができる。
Number of magnets for one round of magnet row 2N = 24
Number of pole pieces in one pole piece row M = 13
Difference between M and N a = 1
Here, when the magnet array 405 is fixed and the rotational speed ωm = 0, the rotational speed ωs of the magnetic pole piece arrays 407 and 409 is ωs = ωc / 13. That is, the reduction ratio with respect to the rotating magnetic field by the coil becomes 1/13, and a large low-speed torque can be generated with high efficiency.

一方、磁極片列407及び409を固定側とし、回転速度をωs=0とした場合、磁石列405の回転速度ωmは、ωm=−ωc/12となる。つまり、コイルによる回転磁界に対する減速比が−1/12となり、低速大トルクを高効率で発生させることができる(ここで、値がマイナスになるのは、回転方向が逆になることを示している)。   On the other hand, when the magnetic pole piece arrays 407 and 409 are fixed and the rotational speed is ωs = 0, the rotational speed ωm of the magnet array 405 is ωm = −ωc / 12. That is, the reduction ratio with respect to the rotating magnetic field by the coil becomes −1/12, and a large amount of low speed torque can be generated with high efficiency (here, a negative value indicates that the rotating direction is reversed). )

本実施の形態によれば、磁石列を有効利用する割合が大きく、大きなトルクを生み出すことができる。この構造において、ロータを入力側にすると、発電機になる。磁場が高速で回転するため、誘起電圧が高く効率が高い発電機となる。   According to the present embodiment, the ratio of effective use of the magnet array is large, and a large torque can be generated. In this structure, when the rotor is on the input side, it becomes a generator. Since the magnetic field rotates at high speed, the generator has a high induced voltage and high efficiency.

図9(B)はコイル415を3相コイルを3個にした例であり、その他は図9(A)の構成と同じである。   FIG. 9B shows an example in which the coil 415 includes three three-phase coils, and the other configuration is the same as that in FIG. 9A.

図10(A)及び(B)は、本発明の移動磁場発生装置501を固定子の一部と可動子として利用するために、環状の第1及び第2の磁極片列507及び509と磁石列505と、6個の磁極を構成する6個のコイル515を所定のピッチτcで外周部に配置した磁極列516を固定子のヨーク517とが、アキシャルギャップ方向で対向するタイプの回転型モータ518の概略構造を示す平面図及び側面図である。この実施の形態のモータでも、三相の交流電流がそれぞれ各コイル515に流れる。このモータでは、磁石列505と第1及び第2の磁極片列507及び509のうち、どちらか一方を固定側とし、他方をロータ(可動子)とする。コイル515を励磁し回転磁界を発生させると、低速高トルクで高効率なモータが得られ、ロータを外力によって回すと、移動磁場発生装置501の内側に高速回転磁場が発生する。高速回転磁場が、コイル515に誘起する電圧を高くするため、高効率な発電機が得られる。   FIGS. 10A and 10B show an annular first and second magnetic pole piece arrays 507 and 509 and a magnet in order to use the moving magnetic field generator 501 of the present invention as a part of a stator and a mover. A rotary motor of a type in which a row 505 and a magnetic pole row 516 in which six coils 515 constituting six magnetic poles are arranged at an outer peripheral portion at a predetermined pitch τc are opposed to a stator yoke 517 in the axial gap direction. It is the top view and side view which show the schematic structure of 518. Also in the motor of this embodiment, a three-phase alternating current flows through each coil 515. In this motor, one of the magnet array 505 and the first and second magnetic pole piece arrays 507 and 509 is a fixed side, and the other is a rotor (movable element). When the coil 515 is excited to generate a rotating magnetic field, a low-speed and high-torque and high-efficiency motor is obtained. When the rotor is rotated by an external force, a high-speed rotating magnetic field is generated inside the moving magnetic field generator 501. Since the high-speed rotating magnetic field increases the voltage induced in the coil 515, a highly efficient generator can be obtained.

図11(A)及び(B)は、それぞれ本発明の移動磁場発生装置601を構成する環状の磁石列605と環状の第1及び第2の磁極片列607及び609の内側に、発電機用のコイル615が配置された単相発電機618の概略構造をそれぞれ示している。この実施の形態の発電機では、磁石列605と第1及び第2の磁極片列607及び609のうち、どちらか一方を固定側とし、他方をロータ(可動子)とする。ロータが回ると、移動磁場発生装置601の内側に高速回転磁場が発生し、この高速回転磁場がコイル615と鎖交して発電が行われる。従来の発電機では、高効率領域即ち高速域での動作をさせるために、増速ギヤを用いて、発電機を高速で回転させるようにしていた。しかし、ギヤの寿命や破損がコスト面やメンテナンスの課題となっていた。また、ギヤが複雑で発電機を小型化できない問題もあった。これに対して本発明の移動磁場発生装置を用いた発電機は、ロータの回転速度に比べ、移動磁場の回転数が高いために、低速でも高電圧の誘起電圧を生じ、ロータの回転速度が低くても、高効率の発電が可能となり、ギヤを不要とすることができる。図11(B)に示す発電機のように、磁極片列607及び609を固定側とし、磁石列605をロータとする場合には、コイル615内側に配置した鉄芯617と第2の磁極片列609の磁極片610の一部が結合されていてもよい。このような構造では、ロータが回ると内側に高速回転磁場が発生する。そのため磁石列605を有効利用する割合が大きくなり、しかも磁場が高速で回転するため、誘起電圧が高く効率が高い発電機となる。   11 (A) and 11 (B) show the generator magnet 605 and the annular first and second magnetic pole piece arrays 607 and 609 constituting the moving magnetic field generator 601 of the present invention, respectively. The schematic structure of the single-phase generator 618 in which the coil 615 is arrange | positioned is each shown. In the generator of this embodiment, one of the magnet array 605 and the first and second magnetic pole piece arrays 607 and 609 is a fixed side, and the other is a rotor (mover). When the rotor rotates, a high-speed rotating magnetic field is generated inside the moving magnetic field generator 601, and this high-speed rotating magnetic field is linked to the coil 615 to generate power. In a conventional generator, in order to operate in a high efficiency region, that is, a high speed region, a speed increasing gear is used to rotate the generator at a high speed. However, the life and breakage of the gears have been a problem of cost and maintenance. There is also a problem that the gears are complicated and the generator cannot be reduced in size. On the other hand, the generator using the moving magnetic field generator of the present invention generates a high induced voltage even at a low speed because the rotational speed of the moving magnetic field is higher than the rotational speed of the rotor. Even if it is low, high-efficiency power generation is possible, and gears can be dispensed with. As in the generator shown in FIG. 11B, when the magnetic pole piece arrays 607 and 609 are fixed and the magnet array 605 is a rotor, the iron core 617 and the second magnetic pole piece arranged inside the coil 615 are used. Part of the pole pieces 610 in the row 609 may be coupled. In such a structure, when the rotor rotates, a high-speed rotating magnetic field is generated inside. For this reason, the ratio of effective use of the magnet array 605 increases, and the magnetic field rotates at a high speed, so that a generator with high induced voltage and high efficiency is obtained.

図12は、回転型の移動磁場発生装置701の環状の第2の磁極片列709の内側に2つのホール素子H1及びH2を配置した高精度磁気エンコーダ718の構成を示す図である。2つのホール素子H1及びH2は、磁気の検出方向がx方向とy方向に90度異なるように配置位置が定められている。このエンコーダ718において、磁石列705と第1及び第2の磁極片列707及び709のうち、どちらか一方を固定側とし、他方をロータとする。ロータが回ると、移動磁場発生装置701の内側に高速回転磁場が発生する。図12の実施の形態の場合、磁極片列707及び709が1回転すると、図13(A)に示すように内側の磁場は、13回転する。そして磁石列705が1回転すると、図13(B)に示すように、内側の磁場は、12回転することになる。そのため、高分解能な磁気センサを簡素な検出素子で構成できる。また、本実施の形態では、全ての磁石の磁気が合成されたものを検出するため、磁石1個の誤差の影響が僅かであり、高い精度が得られる。   FIG. 12 is a diagram showing a configuration of a high-precision magnetic encoder 718 in which two Hall elements H1 and H2 are arranged inside an annular second magnetic pole piece array 709 of the rotary type moving magnetic field generator 701. The arrangement positions of the two Hall elements H1 and H2 are determined so that the magnetic detection direction differs by 90 degrees in the x direction and the y direction. In the encoder 718, one of the magnet array 705 and the first and second magnetic pole piece arrays 707 and 709 is a fixed side, and the other is a rotor. When the rotor rotates, a high-speed rotating magnetic field is generated inside the moving magnetic field generator 701. In the case of the embodiment of FIG. 12, when the pole piece arrays 707 and 709 rotate once, the inner magnetic field rotates 13 times as shown in FIG. When the magnet array 705 rotates once, the inner magnetic field rotates 12 times as shown in FIG. 13B. Therefore, a high-resolution magnetic sensor can be configured with a simple detection element. Further, in the present embodiment, since the combined magnetism of all the magnets is detected, the influence of the error of one magnet is slight and high accuracy can be obtained.

図14に示すように、x方向に2つのホール素子H11及びH12を配置し、y方向に2つのホール素子H21及びH22を配置すると、2つのホール素子の出力を平均化することができ、さらに高精度の磁気エンコーダを得ることができる。   As shown in FIG. 14, if two Hall elements H11 and H12 are arranged in the x direction and two Hall elements H21 and H22 are arranged in the y direction, the outputs of the two Hall elements can be averaged. A highly accurate magnetic encoder can be obtained.

図15は、二重反転モータの構造の概略を示している。このモータでは、回転型の移動磁場発生装置801の磁石列805を有する第1の回転構造体と第1及び第2の磁極片列807及び809を有する第2の回転構造体とを、それぞれ独立して回転できるように構成し、第1及び第2の回転構造体の内側に回転磁場を発生する三相の励磁コイル815を備えたモータ固定子817を配置して、第1の回転構造体と第2の回転構造体とが反対方向に回転する二重反転モータが得られる。   FIG. 15 shows an outline of the structure of the counter rotating motor. In this motor, the first rotating structure having the magnet row 805 and the second rotating structure having the first and second magnetic pole piece rows 807 and 809 of the rotary type moving magnetic field generator 801 are independent of each other. The motor stator 817 having a three-phase excitation coil 815 that generates a rotating magnetic field is arranged inside the first and second rotating structures, and the first rotating structure is arranged. And a counter rotating motor in which the second rotating structure rotates in the opposite direction.

励磁コイル815に三相電流を流すと回転磁界が発生し、磁石列805を有する第1の回転構造体と第1及び第2の磁極片列807及び809を有する第2の回転構造体がそれぞれ逆方向に回転する。それぞれ回転する速度は、回転磁界に比べ低速・高トルクになるため、高静圧で高効率のファンモータを得ることができる。   When a three-phase current is passed through the exciting coil 815, a rotating magnetic field is generated, and a first rotating structure having a magnet array 805 and a second rotating structure having first and second magnetic pole piece arrays 807 and 809 are respectively obtained. Rotate in the opposite direction. Since the rotation speed is low and high torque compared to the rotating magnetic field, a high static pressure and high efficiency fan motor can be obtained.

なお本実施の形態の場合、励磁コイル815が作る磁場が左回転とすると、第1及び第2の磁極片列807及び809を備えたロータ(第2の回転構造体)は左回転し、磁石列805を備えたロータ(第2の回転構造体)は右回転する。   In the case of the present embodiment, if the magnetic field generated by the exciting coil 815 is counterclockwise, the rotor (second rotating structure) including the first and second magnetic pole piece arrays 807 and 809 rotates counterclockwise and the magnet The rotor (second rotating structure) including the row 805 rotates clockwise.

図16(A)及び(B)は、図15の二重反転モータの励磁コイルを2相にした二重反転モータを利用した二重反転ファン918の構成を示す断面図と半部断面図である。この二重反転ファン918では、磁石列905を備えた第1の回転構造体904に第1のインペラ921を取り付け、第1及び第2の磁極片列907及び909を備えた第2の回転構造体914に第2のインペラ922を取り付けている。符号923及び924で示す部材は、それぞれベアリングである。なお第1のインペラ921に設けた複数枚のブレードと第2のインペラ922に設けた複数枚のブレードは、それぞれ吐き出す風の回転方向が逆になるように形状が定められている。内側の2相コイル915に2相電流を流すと、2相コイル915が作る磁場が回転する。それに伴い、磁石列905が設けられた第1の回転構造体904と第1及び第2の磁極片列907及び909が設けられた第2の回転構造体914とが逆方向に回転する。風圧は同一方向に発生し、高風量,高風圧のファンを実現できる。なお従来は、正転と逆転を別々のモータで構成していたが、本実施の形態によれば、一つのモータとモータ駆動回路を用いて構成できるので、軸線方向の寸法を小さくすることができ、ファンの価格を低減することができる。なおインペラ921とインペラ922の回転数は任意であり、それぞれの負荷に合わせ、それぞれが回転することで、騒音を抑制し、最適な流れを実現できる。   FIGS. 16A and 16B are a cross-sectional view and a half cross-sectional view showing the configuration of a counter rotating fan 918 using a counter rotating motor in which the excitation coil of the counter rotating motor of FIG. is there. In this counter-rotating fan 918, the first impeller 921 is attached to the first rotating structure 904 including the magnet row 905, and the second rotating structure including the first and second magnetic pole piece rows 907 and 909 is attached. A second impeller 922 is attached to the body 914. The members indicated by reference numerals 923 and 924 are bearings. The plurality of blades provided on the first impeller 921 and the plurality of blades provided on the second impeller 922 are shaped so that the rotation direction of the discharged air is reversed. When a two-phase current is passed through the inner two-phase coil 915, the magnetic field created by the two-phase coil 915 rotates. Accordingly, the first rotating structure 904 provided with the magnet array 905 and the second rotating structure 914 provided with the first and second magnetic pole piece arrays 907 and 909 rotate in the opposite directions. Wind pressure is generated in the same direction, and a fan with high air volume and high air pressure can be realized. Conventionally, the forward rotation and the reverse rotation are configured by separate motors. However, according to the present embodiment, it can be configured by using one motor and a motor drive circuit, so that the dimension in the axial direction can be reduced. This can reduce the price of the fan. In addition, the rotation speed of the impeller 921 and the impeller 922 is arbitrary, and according to each load, a noise can be suppressed and an optimal flow can be implement | achieved by each rotating.

また移動磁場発生装置901の磁気減速機構により、高トルクを発生できるため、自起動周波数が高く、動作が安定し、高静圧となる利点が得られる。   Moreover, since a high torque can be generated by the magnetic deceleration mechanism of the moving magnetic field generator 901, there are obtained advantages that the self-starting frequency is high, the operation is stable, and the static pressure is high.

図17(A)及び(B)は、回転型の移動磁場発生装置1001の磁石列1005を有する第1の回転構造体1004と第1及び第2の磁極片列1007及び1009を有する第2の回転構造体1014とを、それぞれ独立して回転できるように構成し、第1及び第2の回転構造体1004及び1014の内側に複数の発電用のコイル1015を設け、第1の回転構造体1004に第1のインペラ1021を取り付け、第2の回転構造体1014に第1のインペラ1021とは逆方向に回る第2のインペラ1022を取り付けた二重反転風力発電機の一部断面にした正面図及び側面図である。この風力発電機1018は、風を受けると、第1のインペラ1021と第2のインペラ1022とが逆方向に回転する。そうすると、コイル1015に発生する磁界は、高速回転磁界となり、コイル105には、高い誘起電圧が誘起され、高い効率で発電することが可能になる。本実施の形態では、「第2のインペラ1022の回転数の13倍+第1のインペラ1021の回転数の12倍」の回転速度で、内側の磁場が回転する。本実施の形態は2相発電機であるが、コイルを単相構成にすれば単相発電機になり、3相構成にすれば、3相発電機になる。第1のインペラ1021と第2のインペラ1022の回転数は必ずしも一致している必要はなく、それぞれの風圧に応じて回転する。両回転数がずれることで、共振振動による騒音を抑制することができる。   17A and 17B show a second rotating structure 1004 having a magnet row 1005 and a first and second magnetic pole piece rows 1007 and 1009 of a rotary type moving magnetic field generator 1001. The rotating structure 1014 is configured to be able to rotate independently of each other, and a plurality of power generation coils 1015 are provided inside the first and second rotating structures 1004 and 1014, and the first rotating structure 1004. 1 is a partial cross-sectional front view of a counter rotating wind generator in which a first impeller 1021 is attached to a second rotating structure 1014 and a second impeller 1022 that rotates in a direction opposite to the first impeller 1021 is attached to a second rotating structure 1014. FIG. When the wind power generator 1018 receives wind, the first impeller 1021 and the second impeller 1022 rotate in opposite directions. Then, the magnetic field generated in the coil 1015 becomes a high-speed rotating magnetic field, and a high induced voltage is induced in the coil 105, so that power can be generated with high efficiency. In the present embodiment, the inner magnetic field rotates at a rotational speed of “13 times the rotational speed of the second impeller 1022 +12 times the rotational speed of the first impeller 1021”. Although the present embodiment is a two-phase generator, a single-phase generator is provided if the coil has a single-phase configuration, and a three-phase generator is provided if a three-phase configuration is used. The rotation speeds of the first impeller 1021 and the second impeller 1022 do not necessarily coincide with each other, and rotate according to the respective wind pressures. By deviating both rotation speeds, noise due to resonance vibration can be suppressed.

図18は、回転型の移動磁場発生装置1101を増速磁気カップリングとしてフライホイール電力貯蔵装置1118に本発明を適用した実施の形態の概略断面図である。フライホイール電力貯蔵装置1118は、磁石列1105を有する第1の構造体1104を発電電動機1131の回転軸1131Aに固定している。第1及び第2の磁極片列1107及び1109は、ケース本体となる第2の構造体1114に固定されている。そして第1の構造体1104と第2の構造体1114の中心部にN極とS極とが列をなして交互に並ぶように所定のピッチで配置された複数個の磁石からなる磁石列を備えたロータ1136を配置し、このロータ1136が固定された軸1137にフライホイール1134が固定されている。軸1137は垂直方向軸受け1133及び径方向軸受け1135によって軸支されている。この装置では、フライホイール1134の回転でエネルギを蓄積し、フライホイール1134に蓄積されたエネルギを発電電動機1131から電力として出力することができる。本実施の形態のように、移動磁場発生装置1101からなる増速磁気カップリングを介して発電電動機1131でフライホイール1134を回転させると、回転数の二乗に比例して運動エネルギーを蓄積できる。特に、増速機構により、モータ回転数の数倍〜数十倍の回転速度でフライホイールを回すことができる。そのため、同じ装置体積で、より多くのエネルギーを蓄積できるため、装置の小型化が可能となる。   FIG. 18 is a schematic cross-sectional view of an embodiment in which the present invention is applied to a flywheel power storage device 1118 using a rotary type moving magnetic field generator 1101 as a speed increasing magnetic coupling. The flywheel power storage device 1118 fixes the first structure 1104 having the magnet array 1105 to the rotating shaft 1131 </ b> A of the generator motor 1131. The first and second magnetic pole piece arrays 1107 and 1109 are fixed to a second structure 1114 serving as a case body. Then, a magnet row composed of a plurality of magnets arranged at a predetermined pitch so that N poles and S poles are alternately arranged in a row at the center of the first structure body 1104 and the second structure body 1114. The provided rotor 1136 is disposed, and a flywheel 1134 is fixed to a shaft 1137 to which the rotor 1136 is fixed. The shaft 1137 is supported by a vertical bearing 1133 and a radial bearing 1135. In this device, energy can be accumulated by the rotation of the flywheel 1134, and the energy accumulated in the flywheel 1134 can be output from the generator motor 1131 as electric power. When the flywheel 1134 is rotated by the generator motor 1131 through the speed increasing magnetic coupling including the moving magnetic field generator 1101 as in the present embodiment, kinetic energy can be stored in proportion to the square of the number of rotations. In particular, the flywheel can be rotated at a rotational speed several times to several tens of times the motor rotational speed by the speed increasing mechanism. Therefore, more energy can be stored with the same device volume, and the device can be downsized.

本発明の移動磁場発生装置によれば、合成磁束が相対移動速度よりも速い速度で移動することにより高速移動磁場を簡単に形成することができる。   According to the moving magnetic field generator of the present invention, a high-speed moving magnetic field can be easily formed by moving the combined magnetic flux at a speed faster than the relative moving speed.

1 移動磁場発生装置
3 磁石
4 支持体
5 磁石列
7 第1の磁極片列
8 第1の磁極片
9 第2の磁極片列
10 第2の磁極片
11 環状壁部
13 支持体
14 構造体
DESCRIPTION OF SYMBOLS 1 Moving magnetic field generator 3 Magnet 4 Support body 5 Magnet row 7 First magnetic pole piece row 8 First magnetic pole piece 9 Second magnetic pole piece row 10 Second magnetic pole piece 11 Annular wall portion 13 Support body 14 Structure

Claims (4)

N極とS極とが列をなして交互に並ぶように第1のピッチで配置された複数個の磁石からなる磁石列と、
前記磁石列との間に間隔を開け、前記磁石列を間に挟み、前記磁石列に沿って延び且つ相互間に所定の位相差をもって配置された第1及び第2の磁極片列とを備え、
前記第1の磁極片列は、少なくとも隣り合う二つの前記磁石と対向する長さを有する複数の第1の磁極片が第2のピッチで列をなすように配置されて構成され、
前記第2の磁極片列は、少なくとも隣り合う二つの前記磁石と対向する長さを有する複数の第2の磁極片が第2のピッチで列をなすように配置されて構成され、
前記第1及び第2の磁極片列並びに前記磁石列の一方が他方に対して所定の相対移動速度で移動したときに、前記磁石列中の連続するn個(nはN以下の自然数)の前記磁石から出た磁束が、前記n個の磁石と対向する前記第1の磁極片列中の前記第1の磁極片と、前記n個の磁石と対向する前記第2の磁極片列中の前記第2の磁極片を順に通る合成磁束を形成することにより移動する合成磁極を形成し、且つ前記移動する合成磁極が前記所定の相対移動速度よりも速い速度で移動する高速移動磁場を形成するように、前記第1及び第2のピッチ並びに前記位相差が定められており、
前記磁石列、前記第1及び第2の磁極片列が、それぞれ同心の環状形状を有しており、
前記第1及び第2の磁極片列の少なくとも一方と対向するように、複数の磁極を構成する複数のコイルが所定のピッチで配置された磁極列を有し、
前記第1及び第2の磁極片列並びに前記磁石列の一方が固定子となり、他方が回転子となることを特徴とする回転型モータ。
A magnet row composed of a plurality of magnets arranged at a first pitch so that the N pole and the S pole are alternately arranged in a row;
The first and second magnetic pole piece rows are spaced apart from the magnet row, sandwich the magnet row, extend along the magnet row, and are arranged with a predetermined phase difference therebetween. ,
The first magnetic pole piece row is configured by arranging a plurality of first magnetic pole pieces having a length facing at least two adjacent magnets so as to form a row at a second pitch,
The second magnetic pole piece row is configured by arranging a plurality of second magnetic pole pieces having a length facing at least two adjacent magnets so as to form a row at a second pitch,
When one of the first and second magnetic pole piece rows and the magnet row moves at a predetermined relative movement speed with respect to the other, n consecutive (n is a natural number equal to or less than N) in the magnet row. Magnetic flux emitted from the magnets in the first magnetic pole piece row in the first magnetic pole piece row facing the n number of magnets and in the second magnetic pole piece row in the opposite direction to the n number of magnets. A combined magnetic pole is formed by forming a combined magnetic flux that sequentially passes through the second magnetic pole piece , and a high-speed moving magnetic field in which the moving combined magnetic pole moves at a speed faster than the predetermined relative moving speed is formed. Thus, the first and second pitches and the phase difference are determined ,
The magnet rows and the first and second pole piece rows each have a concentric annular shape;
To at least one facing of the first and second pole piece array, a plurality of coils constituting a plurality of magnetic poles have a arranged magnetic pole row at a predetermined pitch,
One of the first and second magnetic pole piece arrays and the magnet array is a stator, and the other is a rotor .
1ユニットの基準移動長さをLと定めたときに、基準移動長さ当りの前記磁石列の前記複数の磁石の数を2Nとすると、
前記磁石列の前記第1のピッチτpが、τp=L/(2・N)となり、
基準移動長さ当りの前記第1及び第2の磁極片列中のそれぞれの磁極片の数Mが、
M=N+a,aは0を除く整数(a=・・・−3,−2,−1,1,2,3,・・・)
前記磁極片の前記第2のピッチτsが、τs=L/Mとなり、
磁極片移動速度をvs、磁石列移動速度をvmとしたときに、前記高速移動磁場の移動速度vtがvt=(M/a)・vs−(N/a)・vmと定まるように、
前記L、N及びa並びに前記位相差が定められていることを請求項1に記載の回転型モータ。
When the reference movement length of one unit is set to L, if the number of the plurality of magnets in the magnet row per reference movement length is 2N,
The first pitch τp of the magnet array is τp = L / (2 · N),
The number M of each pole piece in the first and second pole piece rows per reference travel length is
M = N + a, a is an integer other than 0 (a =... -3, -2, -1, 1, 2, 3,...)
The second pitch τs of the pole pieces is τs = L / M,
When the magnetic pole piece moving speed is vs and the magnet row moving speed is vm, the moving speed vt of the high-speed moving magnetic field is determined as vt = (M / a) · vs− (N / a) · vm,
The rotary motor according to claim 1, wherein the L, N, a, and the phase difference are determined.
N極とS極とが列をなして交互に並ぶように第1のピッチで配置された複数個の磁石からなる磁石列と、
前記磁石列との間に間隔を開け、前記磁石列を間に挟み、前記磁石列に沿って延び且つ相互間に所定の位相差をもって配置された第1及び第2の磁極片列とを備え、
前記第1の磁極片列は、少なくとも隣り合う二つの前記磁石と対向する長さを有する複数の第1の磁極片が第2のピッチで列をなすように配置されて構成され、
前記第2の磁極片列は、少なくとも隣り合う二つの前記磁石と対向する長さを有する複数の第2の磁極片が第2のピッチで列をなすように配置されて構成され、
前記第1及び第2の磁極片列並びに前記磁石列の一方が他方に対して所定の相対移動速度で移動したときに、前記磁石列中の連続するn個(nはN以下の自然数)の前記磁石から出た磁束が、前記n個の磁石と対向する前記第1の磁極片列中の前記第1の磁極片と、前記n個の磁石と対向する前記第2の磁極片列中の前記第2の磁極片を順に通る合成磁束を形成することにより移動する合成磁極を形成し、且つ前記移動する合成磁極が前記所定の相対移動速度よりも速い速度で移動する高速移動磁場を形成するように、前記第1及び第2のピッチ並びに前記位相差が定められており、
前記磁石列、前記第1及び第2の磁極片列が、それぞれ同心の環状形状を有しており、
前記磁石列を有する第1の回転構造体と前記第1及び第2の磁極片列を有する第2の回転構造体とが、それぞれ独立して回転できるように構成され、
前記第1及び第2の回転構造体の内側に回転磁場を発生する複数の励磁巻線を備えたモータ固定子が配置されなる二重反転モータ。
A magnet row composed of a plurality of magnets arranged at a first pitch so that the N pole and the S pole are alternately arranged in a row;
The first and second magnetic pole piece rows are spaced apart from the magnet row, sandwich the magnet row, extend along the magnet row, and are arranged with a predetermined phase difference therebetween. ,
The first magnetic pole piece row is configured by arranging a plurality of first magnetic pole pieces having a length facing at least two adjacent magnets so as to form a row at a second pitch,
The second magnetic pole piece row is configured by arranging a plurality of second magnetic pole pieces having a length facing at least two adjacent magnets so as to form a row at a second pitch,
When one of the first and second magnetic pole piece rows and the magnet row moves at a predetermined relative movement speed with respect to the other, n consecutive (n is a natural number equal to or less than N) in the magnet row. Magnetic flux emitted from the magnets in the first magnetic pole piece row in the first magnetic pole piece row facing the n number of magnets and in the second magnetic pole piece row in the opposite direction to the n number of magnets. A combined magnetic pole is formed by forming a combined magnetic flux that sequentially passes through the second magnetic pole piece, and a high-speed moving magnetic field in which the moving combined magnetic pole moves at a speed faster than the predetermined relative moving speed is formed. Thus, the first and second pitches and the phase difference are determined,
The magnet rows and the first and second pole piece rows each have a concentric annular shape;
The first rotating structure having the magnet row and the second rotating structure having the first and second magnetic pole piece rows are configured to be able to rotate independently of each other,
It said first and second plurality of counter-rotating motor which motor stator with excitation windings, which are arranged to generate a rotating magnetic field inside of the rotary structure.
請求項3に記載の二重反転モータの前記第1の回転構造体に取り付けられた第1のインペラと、前記第2の回転構造体に取り付けられた第2のインペラとを有する二重反転ファン。   4. A counter-rotating fan having a first impeller attached to the first rotating structure of the counter-rotating motor according to claim 3 and a second impeller attached to the second rotating structure. .
JP2013172091A 2013-08-22 2013-08-22 Rotary motor Expired - Fee Related JP5695711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172091A JP5695711B2 (en) 2013-08-22 2013-08-22 Rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172091A JP5695711B2 (en) 2013-08-22 2013-08-22 Rotary motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010220070A Division JP5354687B2 (en) 2010-09-29 2010-09-29 Moving magnetic field generator

Publications (2)

Publication Number Publication Date
JP2014003897A JP2014003897A (en) 2014-01-09
JP5695711B2 true JP5695711B2 (en) 2015-04-08

Family

ID=50036492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172091A Expired - Fee Related JP5695711B2 (en) 2013-08-22 2013-08-22 Rotary motor

Country Status (1)

Country Link
JP (1) JP5695711B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245045A (en) * 2004-02-24 2005-09-08 Shin Etsu Chem Co Ltd Permanent magnet type field generator for torque converter
JP2006191782A (en) * 2004-12-09 2006-07-20 Yamaha Motor Co Ltd Rotating-electric machine
JP2009095173A (en) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc Counter rotor mechanism
JP4747184B2 (en) * 2008-04-14 2011-08-17 本田技研工業株式会社 Electric motor

Also Published As

Publication number Publication date
JP2014003897A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5354687B2 (en) Moving magnetic field generator
US7626308B2 (en) Permanent magnet excited transverse flux motor with outer rotor
US7781931B2 (en) Switched reluctance motor
JP5449892B2 (en) Permanent magnet excitation type radial magnetic bearing and magnetic bearing device including the radial magnetic bearing
US7952252B2 (en) Inner rotor type permanent magnet excited transverse flux motor
JP5491484B2 (en) Switched reluctance motor
JP4474547B2 (en) Permanent magnet movable electric machine
JP5750358B2 (en) Electric machine
JP2013038944A (en) Motor
KR20120049168A (en) Stepping motor able to create small increments
JP2016538817A (en) Transverse flux type electric machine
JP4652382B2 (en) Permanent magnet type brushless motor for electric power steering system
JP2007306798A (en) Permanent magnet type brushless motor for electric power-steering system
JP5695711B2 (en) Rotary motor
JP2017509311A (en) Hybrid electric machine
JP2010516224A (en) Multi-phase drive or generator machine
JP5540482B2 (en) Actuator
Wang et al. Segmental rotor axial field switched reluctance motor with single teeth winding
JP2005102366A (en) Multipole rotary electric machine
JP2011211881A (en) Reluctance motor
JP2007306797A (en) Permanent magnet type brushless motor for electric power-steering system
JP2008178246A (en) Stepping motor, and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees