JP5694888B2 - Anisotropic conductive member and manufacturing method thereof - Google Patents

Anisotropic conductive member and manufacturing method thereof Download PDF

Info

Publication number
JP5694888B2
JP5694888B2 JP2011209057A JP2011209057A JP5694888B2 JP 5694888 B2 JP5694888 B2 JP 5694888B2 JP 2011209057 A JP2011209057 A JP 2011209057A JP 2011209057 A JP2011209057 A JP 2011209057A JP 5694888 B2 JP5694888 B2 JP 5694888B2
Authority
JP
Japan
Prior art keywords
base material
conductive member
conduction path
anisotropic conductive
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011209057A
Other languages
Japanese (ja)
Other versions
JP2013069629A (en
Inventor
堀田 吉則
吉則 堀田
広祐 山下
広祐 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011209057A priority Critical patent/JP5694888B2/en
Publication of JP2013069629A publication Critical patent/JP2013069629A/en
Application granted granted Critical
Publication of JP5694888B2 publication Critical patent/JP5694888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、異方導電性部材およびその製造方法に関する。   The present invention relates to an anisotropic conductive member and a method for manufacturing the same.

異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材や機能検査を行う際の検査用コネクタ等として広く使用されている。   An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and electrical connection between the electronic component and the circuit board can be obtained simply by applying pressure. It is widely used as an electrical connection member or a connector for inspection when performing functional inspection.

一方、半導体素子等の電子部品は、高集積化が一層進むことに伴い、電極(端子)サイズはより小さくなり、電極(端子)数はより増加し、端子間の距離もより狭くなってきている。
また、近年、狭ピッチで多数配置されている各端子の表面が本体表面よりも奥まった位置にある表面構造の電子部品も現れてきている。
そのため、このような電子部品に対応できるよう、異方導電性部材における導通路もその外径(太さ)をより小さくし、かつ、狭ピッチで配列させる必要が生じている。
On the other hand, as electronic components such as semiconductor elements become more highly integrated, the size of electrodes (terminals) becomes smaller, the number of electrodes (terminals) increases, and the distance between terminals becomes narrower. Yes.
In recent years, electronic components having a surface structure in which a large number of terminals arranged at a narrow pitch have a surface deeper than the surface of the main body have appeared.
For this reason, it is necessary to arrange the conduction paths in the anisotropic conductive member to have a smaller outer diameter (thickness) and to be arranged at a narrow pitch so as to cope with such electronic components.

このような異方導電性部材として、本出願人は、特許文献1において「絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で前記絶縁性基材を厚み方向に貫通し、かつ、前記各導通路の一端が前記絶縁性基材の一方の面において露出し、前記各導通路の他端が前記絶縁性基材の他方の面において露出した状態で設けられる異方導電性部材であって、
前記導通路の密度が200万個/mm2以上であり、前記絶縁性基材がマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる構造体である、異方導電性部材。」を提案しており([請求項1])、「前記導通路が、前記各導通路の一端が前記絶縁性基材の一方の面から突出し、前記各導通路の他端が前記絶縁性基材の他方の面から突出した状態で設けられる」態様も提案している([請求項3])。
As such an anisotropic conductive member, the present applicant has disclosed in Patent Document 1 that “the insulating base material in the insulating base material in a state where a plurality of conductive paths made of the conductive member are insulated from each other. In a state of penetrating in the thickness direction, one end of each conductive path is exposed on one surface of the insulating base material, and the other end of each conductive path is exposed on the other surface of the insulating base material. An anisotropic conductive member provided,
An anisotropic conductive member, wherein the density of the conductive paths is 2 million pieces / mm 2 or more, and the insulating base material is a structure made of an anodized film of an aluminum substrate having micropores. ([Claim 1]), "One end of each of the conductive paths protrudes from one surface of the insulating base material, and the other end of each of the conductive paths has the insulating property." An aspect of “provided in a state of protruding from the other surface of the substrate” is also proposed ([Claim 3]).

特開2008−270158号公報JP 2008-270158 A

本発明者は、特許文献1に記載の異方導電性部材について検討を行った結果、導通路を絶縁性基材の表面から突出させた場合、突出部分の形成方法によっては、突出部分の高さの均一性に劣る場合があり、また、使用環境によっては、抵抗変化率が大きくなる場合があることが分かった。   As a result of studying the anisotropic conductive member described in Patent Document 1, the present inventor found that when the conduction path protrudes from the surface of the insulating base material, depending on the method of forming the protruding portion, the height of the protruding portion is increased. It was found that the uniformity of the thickness may be inferior, and the resistance change rate may be increased depending on the use environment.

そこで、本発明は、導通路の突出部分の高さの均一性に優れ、抵抗変化率も小さい異方導電性部材、および、その製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an anisotropic conductive member that is excellent in the uniformity of the height of the protruding portion of the conduction path and has a small resistance change rate, and a method for manufacturing the same.

本発明者は、上記目的を達成すべく鋭意研究した結果、絶縁性基材に対する導通路の突出部分と貫通部分との各平均直径の比率を特定の値とすることで、導通路の突出部分の高さの均一性が良好となり、異方導電性部材としての抵抗変化率も小さくなることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(1)〜(4)を提供する。
As a result of earnest research to achieve the above-mentioned object, the present inventor determined the ratio of the average diameter of the protruding portion and the penetrating portion of the conductive path to the insulating base material to a specific value, so that the protruding portion of the conductive path As a result, the present inventors have found that the uniformity of the height becomes good and the rate of change in resistance as an anisotropic conductive member becomes small, and the present invention has been completed.
That is, the present invention provides the following (1) to (4).

(1)絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で上記絶縁性基材を厚み方向に貫通し、かつ、上記各導通路の一端が上記絶縁性基材の一方の面において突出し、上記各導通路の他端が上記絶縁性基材の他方の面において突出した状態で設けられ、
上記導通路の密度が200万個/mm2以上であり、上記絶縁性基材がマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる異方導電性部材であって、
上記導通路における上記絶縁層基材の面から突出している部分の平均直径と、上記導通路における上記絶縁層基材を貫通している部分の平均直径との比率(突出部/貫通部)が、1.05以上であり、
上記導通路における上記絶縁層基材の面から突出している部分と、上記導通路における上記絶縁層基材を貫通している部分とが、同種の導電性部材で一体形成されている、異方導電性部材。
(1) In the insulating base material, a plurality of conductive paths made of conductive members penetrate the insulating base material in the thickness direction while being insulated from each other, and one end of each of the conductive paths is insulated. Projecting on one side of the conductive substrate, the other end of each conduction path is provided in a state of projecting on the other surface of the insulating substrate,
The density of the conduction path is 2 million pieces / mm 2 or more, and the insulating base material is an anisotropic conductive member made of an anodized film of an aluminum substrate having micropores,
A ratio (protruding portion / penetrating portion) between an average diameter of a portion protruding from the surface of the insulating layer base material in the conduction path and an average diameter of a portion passing through the insulating layer base material in the conductive path. state, and are equal to or greater than 1.05,
An anisotropic method in which a portion protruding from the surface of the insulating layer base material in the conductive path and a portion penetrating the insulating layer base material in the conductive path are integrally formed of the same type of conductive member Conductive member.

(2)上記導通路における上記絶縁層基材の面から突出している部分と上記導通路における上記絶縁層基材を貫通している部分とが電気抵抗率が103Ω・cm以下の導電性部材で一体形成されている上記(1)の異方導電性部材。 (2) Conductivity having an electrical resistivity of 10 3 Ω · cm or less between a portion protruding from the surface of the insulating layer base in the conduction path and a portion penetrating the insulating layer base in the conduction path The anisotropic conductive member according to the above (1), which is integrally formed of members.

(3)絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で上記絶縁性基材を厚み方向に貫通し、かつ、上記各導通路の一端が上記絶縁性基材の一方の面において突出し、上記各導通路の他端が上記絶縁性基材の他方の面において突出した状態で設けられ、
上記導通路の密度が200万個/mm2以上であり、上記絶縁性基材がマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる異方導電性部材であって、
上記導通路における上記絶縁層基材の面から突出している部分の平均直径と、上記導通路における上記絶縁層基材を貫通している部分の平均直径との比率(突出部/貫通部)が、1.05以上である異方導電性部材を製造する異方導電性部材の製造方法であって、少なくとも、
アルミニウム基板を陽極酸化する陽極酸化処理工程、
上記陽極酸化処理工程の後に、上記陽極酸化により生じたマイクロポアによる孔を貫通化して上記絶縁性基材を得る貫通化処理工程、
上記貫通化処理工程の後に、得られた上記絶縁性基材における貫通化した孔の内部に導電性部材である金属を充填する金属充填工程、
上記金属充填工程の後に、表面および裏面を平滑化する表面平滑処理工程、および、
上記平滑処理工程の後に、加熱処理によって上記金属を膨張させて上記導通路を形成し、上記異方導電性部材を得る加熱処理工程、を具備する異方導電性部材の製造方法。
(3) In the insulating base material, a plurality of conductive paths made of conductive members penetrate the insulating base material in the thickness direction while being insulated from each other, and one end of each of the conductive paths is insulated. Projecting on one side of the conductive substrate, the other end of each conduction path is provided in a state of projecting on the other surface of the insulating substrate,
The density of the conduction path is 2 million pieces / mm 2 or more, and the insulating base material is an anisotropic conductive member made of an anodized film of an aluminum substrate having micropores,
A ratio (protruding portion / penetrating portion) between an average diameter of a portion protruding from the surface of the insulating layer base material in the conduction path and an average diameter of a portion passing through the insulating layer base material in the conductive path. , An anisotropic conductive member manufacturing method for manufacturing an anisotropic conductive member that is 1.05 or more,
An anodizing process for anodizing an aluminum substrate;
After the anodizing treatment step, a penetrating treatment step for obtaining the insulating base material by penetrating holes by the micropores generated by the anodizing,
After the penetration process step, a metal filling step of filling a metal that is a conductive member into the inside of the penetrated hole in the obtained insulating base material,
After the metal filling step, a surface smoothing step for smoothing the front and back surfaces, and
A method for producing an anisotropic conductive member comprising, after the smoothing treatment step, a heat treatment step of expanding the metal by heat treatment to form the conduction path to obtain the anisotropic conductive member.

(4)上記表面平滑処理工程後の表面および裏面の算術平均粗さRaが0.10μm以下である上記(3)に記載の異方導電性部材の製造方法。   (4) The method for producing an anisotropic conductive member according to (3), wherein the arithmetic average roughness Ra of the front surface and the back surface after the surface smoothing treatment step is 0.10 μm or less.

以下に示すように、本発明によれば、導通路の突出部分の高さの均一性に優れ、抵抗変化率も小さい異方導電性部材、および、その製造方法を提供することができる。   As shown below, according to the present invention, it is possible to provide an anisotropic conductive member that is excellent in the uniformity of the height of the protruding portion of the conduction path and has a small resistance change rate, and a method for manufacturing the same.

図1は、本発明の異方導電性部材の好適な実施態様の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a preferred embodiment of the anisotropic conductive member of the present invention.

[異方導電性部材]
本発明の異方導電性部材は、絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で上記絶縁性基材を厚み方向に貫通し、かつ、上記各導通路の一端が上記絶縁性基材の一方の面において突出し、上記各導通路の他端が上記絶縁性基材の他方の面において突出した状態で設けられ、上記導通路の密度が200万個/mm2以上であり、上記絶縁性基材がマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる異方導電性部材であって、
上記導通路における上記絶縁層基材の面から突出している部分の平均直径と、上記導通路における上記絶縁層基材を貫通している部分の平均直径との比率(突出部/貫通部)が、1.05以上である異方導電性部材である。
次に、本発明の異方導電性部材の構成について、図1を用いて説明する。
[Anisotropic conductive member]
In the anisotropic conductive member of the present invention, the insulating base material has a plurality of conductive paths made of the conductive member penetrating the insulating base material in the thickness direction while being insulated from each other. One end of the conductive path protrudes on one surface of the insulating base material, the other end of each conductive path protrudes on the other surface of the insulating base material, and the density of the conductive path is 2,000,000. pieces / mm 2 or more, the insulating base is an anisotropic conductive member made of an anodized aluminum substrate having micropores,
A ratio (protruding portion / penetrating portion) between an average diameter of a portion protruding from the surface of the insulating layer base material in the conduction path and an average diameter of a portion passing through the insulating layer base material in the conductive path. 1.05 or more, an anisotropic conductive member.
Next, the configuration of the anisotropic conductive member of the present invention will be described with reference to FIG.

図1は、本発明の異方導電性部材の好適な実施態様の一例を示す模式図であり、図1(A)は正面図、図1(B)は図1(A)の切断面線Ib−Ibからみた断面図である。
図1(A)および(B)に示すように、本発明の異方導電性部材1は、絶縁性基材2および導電性部材からなる複数の導通路3を具備するものである。
ここで、上記導通路3は、図1(B)に示すように、軸線方向の長さが絶縁性基材2の厚み方向Zの長さ(厚み)以上であり、かつ、各導通路3の一端が絶縁性基材2の一方の面において突出し、各導通路3の他端が絶縁性基材2の他方の面において突出した状態で設けられる。
また、上記導通路3は、図1(A)および(B)に示すように、互いに絶縁された状態で絶縁性基材2を貫通して設けられる。
すなわち、上記導通路3は、絶縁性基材2の主面である2aおよび2bから突出している部分(以下、「突出部」ともいい、図1(B)では符号4aおよび4bで表される。)と、絶縁性基材2内を貫通している部分(以下、「貫通部」ともいい、図1(B)では符号5で表される。)とを有する。
FIG. 1 is a schematic view showing an example of a preferred embodiment of the anisotropic conductive member of the present invention, FIG. 1 (A) is a front view, and FIG. 1 (B) is a cut line of FIG. 1 (A). It is sectional drawing seen from Ib-Ib.
As shown in FIGS. 1 (A) and 1 (B), the anisotropic conductive member 1 of the present invention comprises a plurality of conductive paths 3 composed of an insulating substrate 2 and a conductive member.
Here, as shown in FIG. 1B, the conductive path 3 has an axial length that is equal to or greater than the length (thickness) in the thickness direction Z of the insulating base 2, and each conductive path 3. Are provided in a state in which one end of the conductive base 3 protrudes on one surface of the insulating base material 2 and the other end of each conduction path 3 protrudes on the other surface of the insulating base material 2.
Moreover, the said conduction | electrical_connection path 3 is penetrated and provided in the insulating base material 2, as shown in FIG. 1 (A) and (B).
That is, the conduction path 3 is a portion protruding from 2a and 2b which is the main surface of the insulating base material 2 (hereinafter, also referred to as a “projection”, and is represented by reference numerals 4a and 4b in FIG. 1B). And a portion penetrating through the insulating base material 2 (hereinafter also referred to as a “penetrating portion” and represented by reference numeral 5 in FIG. 1B).

そして、本発明においては、上記導通路3における突出部4aおよび4bの平均直径と、上記導通路3における貫通部5の平均直径との比率(突出部/貫通部)が、1.05以上であり、隣接する導通路(突出部)同士が互いに接触せず、異方導電性をより確実に担保する観点から、1.15以下であるのが好ましい。
ここで、導通路における突出部の平均直径とは、各突出部4aの先端における直径の平均値と各突出部4bの先端における直径の平均値とを合算して2で除した(割った)値をいう。
また、導通路における貫通部の平均直径とは、各導通路の貫通部における直径の平均値をいい、各導通路の貫通部における直径が均一でない場合にはその最大直径の平均値をいう。
次に、絶縁性基材および導通路のそれぞれについて、材料、寸法、形成方法等について説明する。
In the present invention, the ratio (projecting part / penetrating part) between the average diameter of the protruding parts 4a and 4b in the conducting path 3 and the average diameter of the penetrating part 5 in the conducting path 3 is 1.05 or more. Yes, it is preferably 1.15 or less from the viewpoint of ensuring that anisotropic conductivity is more reliably ensured that adjacent conducting paths (projections) do not contact each other.
Here, the average diameter of the protrusions in the conduction path is the sum of the average value of the diameters at the tips of the protrusions 4a and the average value of the diameters of the tips of the protrusions 4b and divided by 2 (divided). Value.
Moreover, the average diameter of the penetration part in a conduction path means the average value of the diameter in the penetration part of each conduction path, and when the diameter in the penetration part of each conduction path is not uniform, it means the average value of the maximum diameter.
Next, materials, dimensions, formation methods, and the like will be described for each of the insulating base material and the conduction path.

〔絶縁性基材〕
本発明の異方導電性部材を構成する上記絶縁性基材は、マイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる構造体である。
ここで、上記マイクロポアは、後述する製造方法に示すように、貫通後に上記導通路の形成材料が充填される部位であるため、隣接する導通路(突出部)同士が互いに接触せず、異方導電性をより確実に担保する観点から、等間隔で規則的に配列されていることが好ましい。
また、アルミニウムの陽極酸化皮膜の素材であるアルミナは、従来公知の異方導電性フィルム等を構成する絶縁性基材(例えば、熱可塑性エラストマー等)と同様、電気抵抗率は1014Ω・cm程度である。
[Insulating substrate]
The said insulating base material which comprises the anisotropically conductive member of this invention is a structure which consists of an anodic oxide film of the aluminum substrate which has a micropore.
Here, as shown in the manufacturing method described later, the micropore is a portion where the material for forming the conduction path is filled after the penetration, and therefore, the adjacent conduction paths (projections) are not in contact with each other. From the viewpoint of ensuring the direction conductivity more reliably, it is preferable that they are regularly arranged at equal intervals.
In addition, alumina, which is a material for the anodized film of aluminum, has an electrical resistivity of 10 14 Ω · cm, as in the case of an insulating base material (for example, a thermoplastic elastomer) that constitutes a conventionally known anisotropic conductive film. Degree.

本発明においては、上記絶縁性基材の厚み(図1(B)においては符号6で表される部分)は、1〜1000μmであるのが好ましく、5〜500μmであるのがより好ましく、10〜300μmであるのが更に好ましい。絶縁性基材の厚みがこの範囲であると、絶縁性基材の取り扱い性が良好となる。   In the present invention, the thickness of the insulating substrate (the portion represented by reference numeral 6 in FIG. 1B) is preferably 1-1000 μm, more preferably 5-500 μm. More preferably, it is -300 micrometers. When the thickness of the insulating substrate is within this range, the handleability of the insulating substrate is improved.

また、本発明においては、上記絶縁性基材における上記導通路間の幅(図1(B)においては符号7で表される部分)は、10nm以上であるのが好ましく、20〜200nmであるのがより好ましい。絶縁性基材における導通路間の幅がこの範囲であると、絶縁性基材が絶縁性の隔壁として十分に機能する。   Moreover, in this invention, it is preferable that the width | variety between the said conduction paths in the said insulating base material (part represented by the code | symbol 7 in FIG. 1 (B)) is 10 nm or more, and is 20-200 nm. Is more preferable. When the width between the conductive paths in the insulating substrate is within this range, the insulating substrate sufficiently functions as an insulating partition.

本発明においては、上記絶縁性基材は、例えば、アルミニウム基板を陽極酸化し、陽極酸化により生じたマイクロポアを貫通化することにより製造することができる。
ここで、陽極酸化および貫通化の処理工程については、後述する本発明の異方導電性部材の製造方法において詳述する。
In the present invention, the insulating base material can be produced, for example, by anodizing an aluminum substrate and penetrating micropores generated by the anodization.
Here, the anodizing and penetrating treatment steps will be described in detail in the method for manufacturing an anisotropic conductive member of the present invention described later.

[導通路]
本発明の異方導電性部材を構成する上記導通路は導電性部材からなるものである。
上記導電性部材は、電気抵抗率が103Ω・cm以下の材料であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、インジウムがドープされたスズ酸化物(ITO)等が好適に例示される。
中でも、電気伝導性の観点から、銅、金、アルミニウム、ニッケルが好ましく、銅、金がより好ましい。
[Conduction path]
The conduction path constituting the anisotropic conductive member of the present invention is made of a conductive member.
The conductive member is not particularly limited as long as the electrical resistivity is 10 3 Ω · cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al ), Magnesium (Mg), nickel (Ni), indium-doped tin oxide (ITO), and the like.
Among these, from the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, and copper and gold are more preferable.

上記導通路は柱状であり、その平均直径は、5〜500nmであるのが好ましく、20〜400nmであるのがより好ましく、40〜200nmであるのが更に好ましく、50〜100nmであるのが特に好ましい。
導通路の平均直径がこの範囲であると、電気信号を流した際に十分な応答が得ることができるため、本発明の異方導電性部材を電子部品の電気的接続部材や検査用コネクタとして好適に用いることができる。
そして、本発明においては、上述したように、上記導通路の突出部の平均直径(図1(B)においては符号8で表される部分の平均値)と貫通部(図1(B)においては符号9で表される部分の平均値)の平均直径との比率(突出部/貫通部)が1.05以上であり、1.15以下であるのが好ましい。
比率(突出部/貫通部)がこの範囲であると、導通路の突出部分の高さの均一性が良好となり、異方導電性部材の抵抗変化率も小さくなる。これは、上記導通路の突出部の直径が貫通部の直径よりも大きく、上記導通路そのものが上記絶縁性基材の貫通孔から上下方向にずれることを抑制できるためであると考えられる。
The conduction path is columnar, and the average diameter is preferably 5 to 500 nm, more preferably 20 to 400 nm, still more preferably 40 to 200 nm, and particularly preferably 50 to 100 nm. preferable.
If the average diameter of the conductive path is within this range, a sufficient response can be obtained when an electric signal is passed. Therefore, the anisotropic conductive member of the present invention is used as an electrical connection member or inspection connector for electronic components. It can be used suitably.
And in this invention, as above-mentioned, in the average diameter (The average value of the part represented by the code | symbol 8 in FIG. 1 (B)) and the penetration part (FIG. 1 (B)) of the said conduction path. Is an average diameter ratio (protrusion / penetrating portion) of 1.05 or more, and preferably 1.15 or less.
When the ratio (protruding portion / penetrating portion) is within this range, the uniformity of the height of the protruding portion of the conduction path is good, and the resistance change rate of the anisotropic conductive member is also small. This is considered to be because the diameter of the projecting portion of the conduction path is larger than the diameter of the through portion, and the conduction path itself can be prevented from shifting vertically from the through hole of the insulating base material.

また、本発明においては、上記導通路における突出部を電着等の方法で形成した場合と比較した有利な効果、すなわち、上記導通路における突出部と貫通部との間で生じる局部電池反応による腐食が抑制できるという理由から、上記導通路における突出部と貫通部とが同種の導電性部材で一体形成されているのが好ましい。
また、上記導通路における突出部のビッカース硬さは、電気的に接続される電子部品の回路基板の電極表面になじみ易いという観点から、100Hv以下であるのが好ましい。
Further, in the present invention, an advantageous effect as compared with the case where the protruding portion in the conductive path is formed by a method such as electrodeposition, that is, due to a local battery reaction occurring between the protruding portion and the penetrating portion in the conductive path. For the reason that corrosion can be suppressed, it is preferable that the protruding portion and the penetrating portion in the conduction path are integrally formed of the same kind of conductive member.
Moreover, it is preferable that the Vickers hardness of the protrusion part in the said conduction path is 100 Hv or less from a viewpoint that it is easy to adapt to the electrode surface of the circuit board of the electronic component electrically connected.

更に、本発明においては、上記導通路の突出部の高さは、10〜100nmであるのが好ましく、10〜50nmであるのがより好ましい。バンブの高さがこの範囲であると、電子部品の電極(パッド)部分との接合性が向上し、安定した抵抗値が得られる。   Furthermore, in this invention, it is preferable that the height of the protrusion part of the said conduction path is 10-100 nm, and it is more preferable that it is 10-50 nm. When the height of the bump is within this range, the bondability with the electrode (pad) portion of the electronic component is improved, and a stable resistance value can be obtained.

本発明においては、上記導通路は上記絶縁性基材によって互いに絶縁された状態で存在するものであるが、その密度は200万個/mm2以上であるのが好ましく、1000万個/mm2以上であるのがより好ましく、5000万個/mm2以上であるのが更に好ましく、1億個/mm2以上であるのが特に好ましい。
上記導通路の密度がこの範囲にあることにより、本発明の異方導電性部材は高集積化が一層進んだ現在においても半導体素子等の電子部品の検査用コネクタや電気的接続部材等として使用することができる。
In the present invention, the conductive paths exist in a state of being insulated from each other by the insulating base material, and the density is preferably 2 million pieces / mm 2 or more, and 10 million pieces / mm 2. More preferably, it is more preferably 50 million pieces / mm 2 or more, and particularly preferably 100 million pieces / mm 2 or more.
The anisotropic conductive member of the present invention is used as a connector for inspection of electronic parts such as semiconductor elements or an electrical connection member even at the present time when the high integration is further advanced because the density of the conductive path is in this range. can do.

また、本発明においては、隣接する各導通路の中心間距離(図1においては符号10で表される部分。以下、「ピッチ」ともいう。)は、20〜500nmであるのが好ましく、40〜200nmであるのがより好ましく、50〜140nmであるのが更に好ましい。ピッチがこの範囲であると、導通路直径と導通路間の幅(絶縁性の隔壁厚)とのバランスがとりやすい。   In the present invention, the distance between the centers of adjacent conductive paths (a portion represented by reference numeral 10 in FIG. 1; hereinafter, also referred to as “pitch”) is preferably 20 to 500 nm, and 40 More preferably, it is -200 nm, and it is still more preferable that it is 50-140 nm. When the pitch is within this range, it is easy to balance the conduction path diameter and the width between the conduction paths (insulating partition wall thickness).

更に、本発明においては、上記絶縁性基材の厚みに対する上記導通路の中心線の長さ(長さ/厚み)は1.0〜1.2であるのが好ましく、1.0〜1.05であるのがより好ましい。上記絶縁性基材の厚みに対する上記導通路の中心線の長さがこの範囲であると、上記導通路が直管構造であると評価でき、電気信号を流した際に1対1の応答を確実に得ることができるため、本発明の異方導電性部材を電子部品の検査用コネクタや電気的接続部材として好適に用いることができる。   Furthermore, in this invention, it is preferable that the length (length / thickness) of the center line of the said conduction path with respect to the thickness of the said insulating base material is 1.0-1.2, 1.0-1. More preferably, it is 05. When the length of the center line of the conduction path with respect to the thickness of the insulating substrate is within this range, it can be evaluated that the conduction path has a straight pipe structure, and a one-to-one response is obtained when an electric signal is passed. Since it can obtain reliably, the anisotropically conductive member of this invention can be used suitably as a connector for an inspection of an electronic component, or an electrical connection member.

本発明においては、上記導通路は、例えば、上記絶縁性基材における貫通化したマイクロポアによる孔の内部に導電性部材である金属を充填することにより製造することができる。
ここで、金属を充填する処理工程については、後述する本発明の異方導電性部材の製造方法において詳述する。
In the present invention, the conduction path can be manufactured by, for example, filling a metal which is a conductive member into a hole formed by a micropore formed in the insulating base material.
Here, the processing step of filling the metal will be described in detail in the method for manufacturing the anisotropic conductive member of the present invention described later.

[異方導電性部材の製造方法]
本発明の異方導電性部材の製造方法(以下、単に「本発明の製造方法」ともいう。)は、上述した本発明の異方導電性部材を製造する異方導電性部材の製造方法であって、少なくとも、
アルミニウム基板を陽極酸化する陽極酸化処理工程、
上記陽極酸化処理工程の後に、上記陽極酸化により生じたマイクロポアによる孔を貫通化して上記絶縁性基材を得る貫通化処理工程、
上記貫通化処理工程の後に、得られた上記絶縁性基材における貫通化した孔の内部に導電性部材である金属を充填する金属充填工程、
上記金属充填工程の後に、表面および裏面を平滑化する表面平滑処理工程、および、
上記平滑処理工程の後に、加熱処理によって上記金属を膨張させて上記導通路を形成し、上記異方導電性部材を得る加熱処理工程
次に、本発明の製造方法に用いられるアルミニウム基板およびアルミニウム基板に施す各処理工程について詳述する。
[Method of manufacturing anisotropic conductive member]
The method for producing an anisotropic conductive member of the present invention (hereinafter also simply referred to as “the method of production of the present invention”) is a method for producing an anisotropic conductive member for producing the anisotropic conductive member of the present invention described above. At least,
An anodizing process for anodizing an aluminum substrate;
After the anodizing treatment step, a penetrating treatment step for obtaining the insulating base material by penetrating holes by the micropores generated by the anodizing,
After the penetration process step, a metal filling step of filling a metal that is a conductive member into the inside of the penetrated hole in the obtained insulating base material,
After the metal filling step, a surface smoothing step for smoothing the front and back surfaces, and
After the smoothing process, the metal is expanded by heat treatment to form the conduction path and obtain the anisotropic conductive member. Next, an aluminum substrate and an aluminum substrate used in the manufacturing method of the present invention Each processing step applied to will be described in detail.

〔アルミニウム基板〕
本発明の製造方法に用いられるアルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
[Aluminum substrate]
The aluminum substrate used in the production method of the present invention is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and a trace amount of foreign elements; low-purity aluminum (for example, recycled material) ) On which a high-purity aluminum is deposited; a substrate on which the surface of silicon wafer, quartz, glass or the like is coated with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate on which aluminum is laminated;

本発明においては、アルミニウム基板のうち、後述する陽極酸化処理工程により陽極酸化皮膜を設ける表面は、アルミニウム純度が、99.5質量%以上であるのが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上記範囲であると、マイクロポア配列の規則性が十分となる。   In the present invention, of the aluminum substrate, the surface on which the anodized film is provided by the anodizing treatment step described later preferably has an aluminum purity of 99.5% by mass or more, and 99.9% by mass or more. Is more preferable, and it is still more preferable that it is 99.99 mass% or more. When the aluminum purity is in the above range, the regularity of the micropore array is sufficient.

また、本発明においては、アルミニウム基板のうち後述する陽極酸化処理工程を施す表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されるのが好ましい。
ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特許文献1(特開2008−270158号公報)の[0044]〜[0054]段落に記載された各処理と同様の処理を施すことができる。
Moreover, in this invention, it is preferable that the surface which performs the anodic oxidation process mentioned later among aluminum substrates is heat-processed, a degreasing process, and a mirror surface finishing process previously.
Here, about heat processing, a degreasing process, and a mirror surface finishing process, the process similar to each process described in the paragraph [0044]-[0054] of patent document 1 (Unexamined-Japanese-Patent No. 2008-270158) can be performed. .

〔陽極酸化処理工程〕
上記陽極酸化工程は、上記アルミニウム基板に陽極酸化処理を施すことにより、上記アルミニウム基板表面にマイクロポアを有する酸化皮膜を形成する工程である。
本発明の製造方法における陽極酸化処理は、従来公知の方法を用いることができるが、マイクロポア配列の規則性を高くし、平面方向の導電部の絶縁性をより確実に担保する観点から、自己規則化法や定電圧処理を用いるのが好ましい。
ここで、陽極酸化処理の自己規則化法や定電圧処理については、特許文献1(特開2008−270158号公報)の[0056]〜[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
[Anodizing treatment process]
The anodic oxidation step is a step of forming an oxide film having micropores on the surface of the aluminum substrate by subjecting the aluminum substrate to an anodic oxidation treatment.
For the anodizing treatment in the production method of the present invention, a conventionally known method can be used. However, from the viewpoint of increasing the regularity of the micropore array and ensuring the insulation of the conductive portion in the planar direction more securely, It is preferable to use a regularization method or a constant voltage process.
Here, for the self-ordering method and the constant voltage treatment of the anodizing treatment, each treatment described in paragraphs [0056] to [0108] and [FIG. 3] of Patent Document 1 (Japanese Patent Laid-Open No. 2008-270158). The same processing can be performed.

〔貫通化処理工程〕
上記貫通化処理工程は、上記陽極酸化処理工程の後に、上記陽極酸化により生じたマイクロポアによる孔を貫通化して上記絶縁性基材を得る工程である。
上記貫通化処理工程としては、具体的には、例えば、上記陽極酸化処理工程の後に、アルミニウム基板を溶解し、陽極酸化皮膜の底部を除去する方法;上記陽極酸化処理工程の後に、アルミニウム基板およびアルミニウム基板近傍の陽極酸化皮膜を切断する方法;等が挙げられる。
ここで、貫通化処理工程におけるこれらの方法については、例えば、特許文献1(特開2008−270158号公報)の[0110]〜[0121]段落ならびに[図3]および[図4]に記載された各方法と同様の方法が挙げられる。
[Penetration process]
The penetrating treatment step is a step of obtaining the insulating base material by penetrating holes by the micropores generated by the anodizing after the anodizing treatment step.
Specifically, as the penetration treatment step, for example, after the anodizing treatment step, a method of dissolving the aluminum substrate and removing the bottom of the anodized film; after the anodizing treatment step, the aluminum substrate and A method of cutting an anodized film in the vicinity of an aluminum substrate;
Here, these methods in the penetration process step are described in, for example, paragraphs [0110] to [0121] and [FIG. 3] and [FIG. 4] of Patent Document 1 (Japanese Patent Laid-Open No. 2008-270158). The method similar to each method mentioned above is mentioned.

〔金属充填工程〕
上記金属充填工程は、上記貫通化処理工程の後に、得られた上記絶縁性基材における貫通孔の内部に導電性部材である金属を充填する工程である。
ここで、上記貫通孔に充填する金属は、本発明の異方導電性部材における上記導通路(貫通部)を構成するものであり、本発明の異方導電性部材において導電性部材として説明したものと同様である。
また、上記貫通孔に金属を充填する方法は、例えば、特許文献1(特開2008−270158号公報)の[0123]〜[0126]段落および[図4]に記載された各方法と同様の方法が挙げられる。
上記金属充填工程により、突出部が形成される前の異方導電性部材が得られる。
[Metal filling process]
The said metal filling process is a process of filling the metal which is an electroconductive member in the inside of the through-hole in the obtained said insulating base material after the said penetration process process.
Here, the metal filled in the through hole constitutes the conduction path (penetrating portion) in the anisotropic conductive member of the present invention, and has been described as a conductive member in the anisotropic conductive member of the present invention. It is the same as that.
Moreover, the method of filling the through hole with metal is similar to, for example, the methods described in paragraphs [0123] to [0126] and [FIG. 4] of Patent Document 1 (Japanese Patent Laid-Open No. 2008-270158). A method is mentioned.
By the metal filling step, an anisotropic conductive member before the protrusion is formed is obtained.

〔表面平滑処理工程〕
上記表面平滑処理工程は、上記金属充填工程の後に、表面および裏面を平滑化する工程である。
表面平滑処理工程を行うことにより、金属を充填させた後の表面および裏面の平滑化と表面に付着した余分な金属を除去することができる。
このような表面平滑処理としては、例えば、以下に示す、機械研磨処理、化学機械研磨(CMP)処理、電解研磨処理、イオンミリング処理が好適に挙げられる。
[Surface smoothing process]
The surface smoothing process is a process of smoothing the front and back surfaces after the metal filling process.
By performing the surface smoothing treatment step, it is possible to smooth the front and back surfaces after filling with metal and to remove excess metal adhering to the surface.
As such a surface smoothing treatment, for example, a mechanical polishing treatment, a chemical mechanical polishing (CMP) treatment, an electrolytic polishing treatment, and an ion milling treatment described below are preferably exemplified.

<機械研磨処理>
機械研磨処理としては、例えば、#800〜#1500の粒度の研磨布(例えば、SiC布)を用いて、ラッピングを行い、厚みを調整し、その後、平均粒子径1〜3μmのダイヤモンドスラリーでポリッシングを行い、さらに、平均粒子径0.1〜0.5μmのダイヤモンドスラリーでポリッシングを行うことで、鏡面状態にすることができる。
ここで、電極面の研磨厚みは0μm〜20μmであるのが好ましく、対する開口面の研磨厚みは10μm〜50μmであるのが好ましい。
また、回転速度は、10rpm〜100rpmであるのが好ましく、20〜60rpmであるのがより好ましい。
また、荷重は、0.01〜0.1kgf/cm2であるのが好ましく、0.02〜0.08kgf/cm2であるのがより好ましい。
<Mechanical polishing>
As the mechanical polishing treatment, for example, lapping is performed using a polishing cloth (for example, SiC cloth) of # 800 to # 1500, the thickness is adjusted, and then polishing is performed with diamond slurry having an average particle diameter of 1 to 3 μm. Further, polishing can be performed with a diamond slurry having an average particle size of 0.1 to 0.5 μm to obtain a mirror surface state.
Here, the polishing thickness of the electrode surface is preferably 0 μm to 20 μm, and the polishing thickness of the opening surface is preferably 10 μm to 50 μm.
Further, the rotation speed is preferably 10 rpm to 100 rpm, more preferably 20 to 60 rpm.
Moreover, it is preferable that it is 0.01-0.1 kgf / cm < 2 >, and, as for a load, it is more preferable that it is 0.02-0.08 kgf / cm < 2 >.

<化学機械研磨(CMP)処理>
CMP処理には、フジミインコーポレイテッド社製のPNANERLITE−7000、日立化成社製のGPX HSC800、旭硝子(セイミケミカル)社製のCL−1000等のCMPスラリーを用いることができる。
<Chemical mechanical polishing (CMP) treatment>
For the CMP treatment, a CMP slurry such as PNINERLITE-7000 manufactured by Fujimi Incorporated, GPX HSC800 manufactured by Hitachi Chemical Co., Ltd., CL-1000 manufactured by Asahi Glass (Seimi Chemical Co., Ltd.), or the like can be used.

<電解研磨処理>
電解研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164−165に記載されている各種の方法;米国特許第2708655号明細書に記載されている方法;「実務表面技術」,vol.33,No.3,1986年,p.32−38に記載されている方法;等が好適に挙げられる。
<Electropolishing treatment>
As electrolytic polishing, for example, “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p. 164-165; various methods described in US Pat. No. 2,708,655; “Practical Surface Technology”, vol. 33, no. 3, 1986, p. The method described in 32-38;

<イオンミリング処理>
イオンミリング処理は、上記CMPによる処理や、電解研磨処理よりもさらに精密な研磨が必要な際に施され、公知の技術を用いることができる。イオン種としては一般的なアルゴンイオンを用いることが好ましい。
<Ion milling>
The ion milling process is performed when more precise polishing is required than the above-described CMP process or electrolytic polishing process, and a known technique can be used. It is preferable to use general argon ions as the ion species.

本発明においては、導通路の突出部分の高さの均一性がより良好となり、異方導電性部材の抵抗変化率もより小さくなる理由から、上記表面平滑処理工程後の表面および裏面の算術平均粗さRaが0.10μm以下であるのが好ましく、0.01〜0.10μmであるのがより好ましい。
ここで、「算術平均粗さRa」は、JIS B0601:2001に記載された表面性状パラメータのことをいい、触針式表面粗さ計、原子間力顕微鏡、レーザー顕微鏡、干渉型表面形状観察装置などを用いて測定することができるが、表面へのダメージの少ない観点から、本発明においては、レーザー顕微鏡を用いて測定した値を採用する。
In the present invention, since the uniformity of the height of the protruding portion of the conduction path becomes better and the resistance change rate of the anisotropic conductive member becomes smaller, the arithmetic average of the front and back surfaces after the surface smoothing treatment step is used. The roughness Ra is preferably 0.10 μm or less, and more preferably 0.01 to 0.10 μm.
Here, “arithmetic mean roughness Ra” refers to a surface property parameter described in JIS B0601: 2001, a stylus type surface roughness meter, an atomic force microscope, a laser microscope, an interference type surface shape observation device. The value measured using a laser microscope is adopted in the present invention from the viewpoint of little damage to the surface.

〔加熱処理工程〕
上記加熱処理工程は、上記平滑処理工程の後に、加熱処理によって上記貫通孔内の金属を膨張させて上記導通路(突出部)を形成し、本発明の異方導電性部材を得る工程である。
ここで、上記加熱処理は、上記貫通孔内の金属の種類によっても異なるため、貫通孔内の金属を突出させ、導通路における突出部の平均直径と貫通部の平均直径との比率(突出部/貫通部)が1.05以上となる加熱条件であれば特に限定されないが、例えば、金属がCuやAuである場合は、150〜250℃であるのが好ましい。
また、上記加熱処理は、大気下で施すことができるが、異方導電性部材の抵抗変化率がより小さくなる理由から、窒素ガスやアルゴンガスの雰囲気下で施すのが好ましい。
更に、上記加熱処理の処理時間は特に限定されないが、10〜100分であるのが好ましい。
[Heat treatment process]
The heat treatment step is a step of obtaining the anisotropic conductive member of the present invention by forming the conduction path (protrusion) by expanding the metal in the through hole by heat treatment after the smoothing step. .
Here, since the heat treatment varies depending on the type of metal in the through hole, the metal in the through hole is protruded, and the ratio of the average diameter of the protruding portion to the average diameter of the through portion in the conduction path (the protruding portion) However, when the metal is Cu or Au, for example, the temperature is preferably 150 to 250 ° C.
Moreover, although the said heat processing can be performed in air | atmosphere, it is preferable to apply in the atmosphere of nitrogen gas or argon gas from the reason for the resistance change rate of an anisotropically conductive member becoming smaller.
Furthermore, although the processing time of the said heat processing is not specifically limited, It is preferable that it is 10 to 100 minutes.

上記加熱処理を施すことにより、特許文献1(特開2008−270158号公報)の[0129]および[0130]段落に記載されたトリミング処理や電着処理を施した場合とは異なり、異常析出もなく、導通路における突出部の平均直径と貫通部の平均直径との比率(突出部/貫通部)を1.05以上とすることができる。
そして、上述したように、本発明においては、上記比率が1.05以上であるため、導通路の突出部分の高さの均一性が良好となり、異方導電性部材の抵抗変化率も十分に小さくなる。
Unlike the case where the trimming process and the electrodeposition process described in paragraphs [0129] and [0130] of Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-270158) are performed by the above heat treatment, abnormal precipitation is also caused. In addition, the ratio of the average diameter of the protrusions and the average diameter of the through portions in the conduction path (protrusion / through portion) can be 1.05 or more.
As described above, in the present invention, since the ratio is 1.05 or more, the uniformity of the height of the protruding portion of the conduction path is good, and the resistance change rate of the anisotropic conductive member is also sufficient. Get smaller.

〔その他の処理〕
<保護膜形成処理>
本発明の製造方法においては、アルミナで形成された絶縁性基材が、空気中の水分との水和により、経時により孔径が変化してしまうことから、上記金属充填工程前に、保護膜形成処理を施すことが好ましい。
ここで、保護膜形成処理については、特許文献1(特開2008−270158号公報)の[0133]〜[0140]段落に記載された各処理と同様の処理を施すことができる。
[Other processing]
<Protective film formation process>
In the manufacturing method of the present invention, since the insulating base material formed of alumina changes its pore diameter over time due to hydration with moisture in the air, the protective film is formed before the metal filling step. It is preferable to perform the treatment.
Here, with respect to the protective film forming process, the same processes as those described in paragraphs [0133] to [0140] of Patent Document 1 (Japanese Patent Laid-Open No. 2008-270158) can be performed.

<洗浄処理>
本発明の製造方法においては、上記加熱処理工程の後、上記導通路(突出部)の表面が酸化された場合には、必要に応じて金属酸化物(例えば、酸化銅)を除去する洗浄処理を施すことができる。
上記洗浄処理としては、例えば、酸化銅を除去する場合には、塩化アンモニウム溶液を用いることができる。
<Cleaning process>
In the manufacturing method of the present invention, after the heat treatment step, when the surface of the conduction path (protrusion) is oxidized, a cleaning treatment is performed to remove metal oxide (for example, copper oxide) as necessary. Can be applied.
As the cleaning treatment, for example, when removing copper oxide, an ammonium chloride solution can be used.

<被覆処理>
本発明の製造方法においては、上記絶縁性基材と上記導通路との間に隙間がある場合、上記加熱処理工程の後、必要に応じてアンダーフィル剤で被覆することができる。
<Coating treatment>
In the production method of the present invention, when there is a gap between the insulating base material and the conduction path, it can be covered with an underfill agent as necessary after the heat treatment step.

以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。   The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.

<実施例1>
(A1)電解研磨処理
高純度アルミニウム基板(住友軽金属社製、純度99.99質量%、厚さ0.4mm)を10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用い、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
<Example 1>
(A1) Electropolishing treatment A high-purity aluminum substrate (manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99 mass%, thickness 0.4 mm) was cut so that it could be anodized in an area of 10 cm square, and an electropolishing liquid having the following composition was The electropolishing treatment was performed under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho) was used as the power source. The flow rate of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(電解研磨液組成)
・85質量%リン酸(和光純薬社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
(Electrolytic polishing liquid composition)
-660 mL of 85% phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.)
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL

(B1)陽極酸化処理
次いで、電解研磨処理後のアルミニウム基板に、0.30mol/L硫酸の電解液で、電圧25V、液温度15℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
その後、0.30mol/L硫酸の電解液で、電圧25V、液温度15℃、液流速3.0m/minの条件で、1時間の再陽極酸化処理を施した。
なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110−30R(高砂製作所社製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学社製)、かくはん加温装置にはペアスターラー PS−100(EYELA社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
(B1) Anodizing treatment Next, the aluminum substrate after the electropolishing treatment was treated with an electrolytic solution of 0.30 mol / L sulfuric acid for 5 hours under conditions of a voltage of 25 V, a liquid temperature of 15 ° C., and a liquid flow rate of 3.0 m / min. A pre-anodizing treatment was performed.
Thereafter, a film removal treatment was performed in which the aluminum substrate after the pre-anodizing treatment was immersed in a mixed aqueous solution (liquid temperature: 50 ° C.) of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid for 12 hours.
Thereafter, re-anodizing treatment was performed for 1 hour with an electrolyte of 0.30 mol / L sulfuric acid under conditions of a voltage of 25 V, a liquid temperature of 15 ° C., and a liquid flow rate of 3.0 m / min.
In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho). Moreover, NeoCool BD36 (made by Yamato Kagaku) was used for the cooling device, and Pear Stirrer PS-100 (made by EYELA) was used for the stirring and heating device. Furthermore, the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(C1)貫通化処理
次いで、20質量%塩化水銀水溶液(昇汞)に20℃、3時間浸漬させることによりアルミニウム基板を溶解し、更に、5質量%リン酸に30℃、30分間浸漬させることにより陽極酸化皮膜の底部を除去し、マイクロポアからなる貫通孔を有する陽極酸化皮膜からなる構造体(絶縁性基材)を作製した。
(C1) Penetration treatment Next, the aluminum substrate was dissolved by dipping in a 20% by mass mercury chloride aqueous solution (raised) at 20 ° C. for 3 hours, and further immersed in 5% by mass phosphoric acid at 30 ° C. for 30 minutes. The bottom of the anodized film was removed, and a structure (insulating base material) made of an anodized film having a through-hole made of micropores was produced.

(D1)金属充填処理
次いで、上記貫通化処理後の構造体の一方の表面に銅電極を密着させ、該銅電極を陰極にし、白金を正極にして電解メッキを行なった。
硫酸銅/硫酸/塩酸=200/50/15(g/L)の混合溶液を25℃に保った状態で電解液として使用し、定電圧パルス電解を実施することにより、貫通孔に銅が充填された構造体(異方導電性部材前駆体)を製造した。
ここで、定電圧パルス電解は、山本鍍金社製のメッキ装置を用い、北斗電工社製の電源(HZ−3000)を用い、メッキ液中でサイクリックボルタンメトリを行なって析出電位を確認した後、皮膜側の電位を−2Vに設定して行った。また、定電圧パルス電解のパルス波形は矩形波であった。具体的には、電解の総処理時間が300秒になるように、1回の電解時間が60秒の電解処理を、各電解処理の間に40秒の休止時間を設けて5回施した。
銅を充填した後の表面を電界放出形走査電子顕微鏡(FE−SEM)で観察すると、陽極酸化皮膜の表面から一部あふれるような形になっていた。
(D1) Metal filling treatment Next, a copper electrode was brought into close contact with one surface of the structure after the penetration treatment, and the copper electrode was used as a cathode and electrolytic plating was carried out using platinum as a positive electrode.
Using a mixed solution of copper sulfate / sulfuric acid / hydrochloric acid = 200/50/15 (g / L) as an electrolyte while maintaining the temperature at 25 ° C., and carrying out constant-voltage pulse electrolysis, the through-hole is filled with copper. The manufactured structure (an anisotropic conductive member precursor) was manufactured.
Here, the constant voltage pulse electrolysis was performed by using a plating apparatus manufactured by Yamamoto Sekin Co., Ltd., using a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd., and performing cyclic voltammetry in the plating solution to confirm the deposition potential. Thereafter, the potential on the film side was set to -2V. The pulse waveform of constant voltage pulse electrolysis was a rectangular wave. Specifically, the electrolysis treatment of one electrolysis time of 60 seconds was performed five times with a 40-second rest period between each electrolysis treatment so that the total electrolysis treatment time was 300 seconds.
When the surface after filling with copper was observed with a field emission scanning electron microscope (FE-SEM), the surface was partially overflowed from the surface of the anodized film.

(E1)前処理(表面平滑化処理)
次いで、金属充填処理後の構造体に機械研磨処理を施し、表面からオーバーフロした金属(銅)を除去した後、更に電極側の表面を2μm研磨し、その反対の面を8μm研磨した。
その後、構造体の表面および裏面には、フジミインコーポレイテッド社製のPNANERLITE−7000をCMPスラリーとして用い、CMP処理を4時間実施した。
なお、CMP処理後の構造体の表面および裏面の算出平均粗さRaを、SII社製のAFMを用いて測定したところ、いずれの面のRaも下記第1表に示す値であった。
(E1) Pretreatment (surface smoothing treatment)
Next, the structure after the metal filling process was subjected to a mechanical polishing process to remove metal (copper) overflowing from the surface, and then the surface on the electrode side was further polished by 2 μm, and the opposite surface was polished by 8 μm.
Thereafter, the front and back surfaces of the structure were subjected to CMP treatment for 4 hours using PANANERLITE-7000 manufactured by Fujimi Incorporated as a CMP slurry.
In addition, when the calculated average roughness Ra of the front surface and the back surface of the structure after the CMP treatment was measured using an AFM manufactured by SII, Ra on any surface was a value shown in Table 1 below.

(F1)加熱処理
次いで、表面平滑化処理後の構造体を大気圧下で200℃、60分間加熱し、貫通孔内に充填された銅を突出させることにより、異方導電性部材を作製した。
なお、作製した異方導電性部材について、FE−SEMにより表面写真(倍率20000倍)を撮影し、2μm×2μmの視野で、導通路の密度を測定した。結果を第1表に示す。
(F1) Heat treatment Subsequently, the structure after the surface smoothing treatment was heated at 200 ° C. for 60 minutes under atmospheric pressure to project the copper filled in the through hole, thereby producing an anisotropic conductive member. .
In addition, about the produced anisotropically conductive member, the surface photograph (magnification 20000 times) was image | photographed by FE-SEM, and the density of the conduction path was measured in the visual field of 2 micrometers x 2 micrometers. The results are shown in Table 1.

<実施例2>
上記(F1)加熱処理を窒素雰囲気下で行った以外は、実施例1と同様の方法により異方導電性部材を作製した。
<Example 2>
An anisotropic conductive member was produced in the same manner as in Example 1 except that the (F1) heat treatment was performed in a nitrogen atmosphere.

<実施例3>
上記(B1)陽極酸化処理に代えて、以下に示す「(B2)陽極酸化処理」を施した以外は、実施例1と同様の方法により異方導電性部材を作製した。
(B2)陽極酸化処理
次いで、電解研磨処理後のアルミニウム基板に、0.5mol/L蓚酸の電解液で、電圧40V、液温度15℃、液流速3.0m/minの条件で、2時間のプレ陽極酸化処理を施した。その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。その後、0.5mol/L蓚酸の電解液で、電圧40V、液温度15℃、液流速3.0m/minの条件で、1時間の再陽極酸化処理を施した。なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110−30R(高砂製作所社製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学社製)、かくはん加温装置にはペアスターラー PS−100(EYELA社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
<Example 3>
An anisotropic conductive member was produced in the same manner as in Example 1 except that the following (B2) anodizing treatment was performed instead of the (B1) anodizing treatment.
(B2) Anodizing treatment Next, the aluminum substrate after the electropolishing treatment was subjected to 0.5 mol / L oxalic acid electrolytic solution at a voltage of 40 V, a liquid temperature of 15 ° C. and a liquid flow rate of 3.0 m / min for 2 hours A pre-anodizing treatment was performed. Thereafter, a film removal treatment was performed in which the aluminum substrate after the pre-anodizing treatment was immersed in a mixed aqueous solution (liquid temperature: 50 ° C.) of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid for 12 hours. Thereafter, re-anodizing treatment was performed for 1 hour with an electrolyte solution of 0.5 mol / L oxalic acid under conditions of a voltage of 40 V, a liquid temperature of 15 ° C., and a liquid flow rate of 3.0 m / min. In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho). Moreover, NeoCool BD36 (made by Yamato Kagaku) was used for the cooling device, and Pear Stirrer PS-100 (made by EYELA) was used for the stirring and heating device. Furthermore, the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

<実施例4>
上記(F1)加熱処理の後、更に以下に示す「(G1)後処理(洗浄処理)」を施した以外は、実施例1と同様の方法により異方導電性部材を作製した。
(G1)後処理(洗浄処理)
上記加熱処理後の構造体を塩化アンモニウム水溶液で洗浄し、突出した銅の表面の一部に形成されていた酸化銅を除去することにより、異方導電性部材を作製した。
<Example 4>
An anisotropic conductive member was produced in the same manner as in Example 1 except that (G1) post-treatment (cleaning treatment) described below was further performed after the (F1) heat treatment.
(G1) Post-treatment (cleaning treatment)
The structure after the heat treatment was washed with an aqueous ammonium chloride solution, and the copper oxide formed on a part of the protruding copper surface was removed to prepare an anisotropic conductive member.

<実施例5>
上記(D1)金属充填処理に代えて、以下に示す「(D2)金属充填処理」を施した以外は、実施例1と同様の方法により異方導電性部材を作製した。
(D2)金属充填処理
次いで、貫通化処理後の構造体の一方の表面に金電極を蒸着により形成し、これをどう電極に密着させ、該銅/金電極を陰極にし、白金を正極にして電解メッキを行なった。
塩化金酸ナトリウム溶液20(wt%)の溶液を60℃に保った状態で電解液として使用し、電位走査電解を実施することにより、貫通孔に金が充填された構造体(異方導電性部材前駆体)を製造した。
ここで、定電圧パルス電解は、山本鍍金社製のメッキ装置を用い、北斗電工社製の電源(HZ−3000)を用い、メッキ液中でサイクリックボルタンメトリを行なって析出電位を確認した後、皮膜側の電位を0V⇒2Vに走査して行った。走査速度は0.5mV/secであり、電解の総処理時間は4000秒であった。
金を充填した後の表面をFE−SEMで観察すると、陽極酸化皮膜の表面から一部あふれるような形になっていた。
<Example 5>
An anisotropic conductive member was produced in the same manner as in Example 1 except that the following (D2) metal filling treatment was performed instead of the (D1) metal filling treatment.
(D2) Metal filling treatment Next, a gold electrode is formed on one surface of the structure after the penetration treatment by vapor deposition, this is adhered to the electrode, the copper / gold electrode is used as a cathode, and platinum is used as a cathode. Electrolytic plating was performed.
A structure in which a through-hole is filled with gold (anisotropic conductivity) by using a solution of a sodium chloroaurate solution 20 (wt%) as an electrolytic solution in a state kept at 60 ° C. and performing potential scanning electrolysis. Member precursor) was produced.
Here, the constant voltage pulse electrolysis was performed by using a plating apparatus manufactured by Yamamoto Sekin Co., Ltd., using a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd., and performing cyclic voltammetry in the plating solution to confirm the deposition potential. Thereafter, the potential on the film side was scanned from 0V to 2V. The scanning speed was 0.5 mV / sec, and the total electrolysis treatment time was 4000 seconds.
When the surface after filling with gold was observed with an FE-SEM, the surface of the anodized film partially overflowed.

<実施例6>
上記(E1)前処理(表面平滑化処理)に代えて、以下に示す「(E2)前処理(表面平滑化処理)」を施した以外、すなわちCMP処理を施さなかった以外は、実施例1と同様の方法により異方導電性部材を作製した。
(E2)前処理(表面平滑化処理)
次いで、金属充填処理後の構造体に機械研磨処理を施し、表面からオーバーフロした金属(銅)を除去した後、更に電極側の表面を2μm研磨し、その反対の面を8μm研磨した。
<Example 6>
Example 1 except that (E1) pretreatment (surface smoothing treatment) shown below was performed instead of (E1) pretreatment (surface smoothing treatment), that is, CMP treatment was not performed. An anisotropic conductive member was produced by the same method as described above.
(E2) Pretreatment (surface smoothing treatment)
Next, the structure after the metal filling process was subjected to a mechanical polishing process to remove metal (copper) overflowing from the surface, and then the surface on the electrode side was further polished by 2 μm, and the opposite surface was polished by 8 μm.

<比較例1>
上記(F1)加熱処理に代えて、以下に示す「(F2)トリミング処理」を施し、その後に更に「(G3)後処理(純水洗浄処理)」を施した以外は、実施例1と同様の方法により異方導電性部材を作製した。
(F2)トリミング処理
次いで、表面平滑化処理後の構造体を水酸化ナトリウム水溶液(濃度:5質量%、液温度:20℃)に浸漬させ、陽極酸化皮膜を選択的に溶解し、導通路である銅の円柱を突出させた。
(G3)後処理(純水洗浄処理)
上記(F2)トリミング処理の後、純水を用いて洗浄することにより、異方導電性部材を作製した。
<Comparative Example 1>
Instead of the above (F1) heat treatment, the same as in Example 1 except that the following “(F2) trimming treatment” was performed, followed by “(G3) post-treatment (pure water cleaning treatment)”. An anisotropic conductive member was produced by the method described above.
(F2) Trimming treatment Next, the structure after the surface smoothing treatment is immersed in an aqueous sodium hydroxide solution (concentration: 5 mass%, liquid temperature: 20 ° C.) to selectively dissolve the anodized film, A certain copper cylinder protruded.
(G3) Post-treatment (pure water cleaning treatment)
After the (F2) trimming process, the anisotropic conductive member was produced by washing with pure water.

<比較例2>
上記(F2)トリミング処理に代えて、以下に示す「(F3)トリミング処理」を施した以外は、比較例1と同様の方法により異方導電性部材を作製した。
(F3)トリミング処理
次いで、表面平滑化処理後の構造体を水酸化ナトリウムおよびポリエチレングリコール(PEG)を含有する水溶液(水酸化ナトリウム濃度:5質量%、PEG濃度:10質量%、液温度:20℃)に浸漬させ、陽極酸化皮膜を選択的に溶解し、導通路である銅の円柱を突出させた。
<Comparative Example 2>
An anisotropic conductive member was produced by the same method as Comparative Example 1 except that the following (F3) trimming process was performed instead of the trimming process (F2).
(F3) Trimming treatment Next, the structure after the surface smoothing treatment is an aqueous solution containing sodium hydroxide and polyethylene glycol (PEG) (sodium hydroxide concentration: 5 mass%, PEG concentration: 10 mass%, liquid temperature: 20). C.), the anodized film was selectively dissolved, and a copper cylinder as a conduction path was protruded.

<比較例3>
上記(D1)金属充填処理に代えて、実施例4で施した上記(D2)金属充填処理を施した以外は、比較例2と同様の方法により異方導電性部材を作製した。
<Comparative Example 3>
An anisotropic conductive member was produced in the same manner as in Comparative Example 2 except that the (D2) metal filling process performed in Example 4 was performed instead of the (D1) metal filling process.

<導通路の直径の比率>
作製した各異方導電性部材を集束イオンビーム(FIB)加工装置を用いて切断し、得られた切断面をFE−SEM(倍率:50000倍)で観察し、任意の10個の導通路における突出部の直径および貫通部の直径を測定し、それらの平均値の比率(突出部/貫通部)を算出した。結果を下記第1表に示す。
<Ratio of diameter of conduction path>
Each manufactured anisotropic conductive member is cut using a focused ion beam (FIB) processing apparatus, and the obtained cut surface is observed with an FE-SEM (magnification: 50000 times), and in any 10 conduction paths. The diameter of the protrusion and the diameter of the penetration were measured, and the ratio of the average values (projection / penetration) was calculated. The results are shown in Table 1 below.

<導通路(突出部)の硬度>
作製した各異方導電性部材について、島津製作所社製の超微小硬度計複合型SPMシステム(SPM+TriboScope)を用いて導通路の突出部のビッカース硬さを測定した。なお、荷重は10mNとし、変位量は50nmで測定した。結果を下記第1表に示す。
<Hardness of conduction path (protrusion)>
About each produced anisotropically conductive member, the Vickers hardness of the protrusion part of a conduction path was measured using the Shimadzu Corporation super-micro hardness meter composite type SPM system (SPM + TriboScope). The load was 10 mN and the displacement was measured at 50 nm. The results are shown in Table 1 below.

<導通路(突出部)の高さ>
作製した各異方導電性部材を集束イオンビーム(FIB)加工装置を用いて切断し、得られた切断面をFE−SEM(倍率:50000倍)で観察し、任意の50個以上の導通路における突出部の高さを測定し、下記式から突出部の高さのバラツキを算出した。
突出部の高さバラツキ(%)=(高さの最大値−高さ最小値)÷平均高さ×100
ここで、バラツキ10%未満であるものを突出部の高さの均一性が良好であるものとして「○」と評価し、バラツキ10%以上30%未満であるものを突出部の高さの均一性が若干劣るが実用上問題のないものとして「○△」と評価し、バラツキ30%以上50%未満であるものを突出部の高さの均一性が劣るものとして「△」と評価し、バラツキ50%以上であるものを突出部の高さの均一性が極めて劣るものとして「×」と評価した。これらの結果を下記第1表に示す。
<Height of conduction path (projection)>
Each produced anisotropic conductive member is cut using a focused ion beam (FIB) processing apparatus, and the obtained cut surface is observed with an FE-SEM (magnification: 50000 times), and any 50 or more conductive paths The height of the protruding portion was measured, and the variation in the height of the protruding portion was calculated from the following formula.
Height variation of protrusions (%) = (maximum height-minimum height) / average height x 100
Here, a case where the variation is less than 10% is evaluated as “◯” as a case where the uniformity of the height of the protruding portion is good, and a case where the variation is 10% or more and less than 30% is uniform in the height of the protruding portion. Although it is slightly inferior in nature, it is evaluated as “◯ △” as having no problem in practical use, and those having a variation of 30% or more and less than 50% are evaluated as “△” as being inferior in the uniformity of the height of the protruding portion, Those having a variation of 50% or more were evaluated as “x” because the uniformity of the height of the protrusions was extremely inferior. These results are shown in Table 1 below.

<抵抗変化率>
作製した各異方導電性部材について、湿度65%、温度60℃の条件下で500時間保管するHHBT試験を行った。
ここで、保管後の抵抗値Rsが、保管前の抵抗値から5%未満の変動であるものを抵抗変化率が十分に小さいものとして「○」と評価し、保管前の抵抗値から5%以上10%未満の変動であるものを抵抗変化率が小さいものとして「○△」と評価し、保管前の抵抗値から10%以上30%未満の変動であるものを抵抗変化率が大きいものとして「△」と評価し、保管前の抵抗値から30%以上の変動であるものを抵抗変化率が極めて大きいものとして「×」と評価した。これらの結果を下記第1表に示す。
<Rate of change in resistance>
About each produced anisotropically conductive member, the HHBT test which stores for 500 hours on the conditions of humidity 65% and temperature 60 degreeC was done.
Here, when the resistance value Rs after storage is less than 5% variation from the resistance value before storage, the resistance change rate is evaluated as “◯” and the resistance value Rs before storage is 5%. If the fluctuation is less than 10%, the resistance change rate is evaluated as “◯ △”, and if the resistance value is 10% or more and less than 30% from the resistance value before storage, the resistance change rate is large. It evaluated as "(triangle | delta)", and evaluated as "x" as the resistance change rate was very large for the thing which is 30% or more of fluctuation | variation from the resistance value before storage. These results are shown in Table 1 below.

第1表に示す結果から、導通路(突出部)を形成する処理として加熱処理を施さなかった比較例1〜3で作製した異方導電性部材は、いずれも導通路の平均直径の比率(突出部/貫通部)が低くなり、導通路の突出部分の高さの均一性が劣り、抵抗変化率も大きくなることが分かった。
これに対し、導通路(突出部)を形成する処理として加熱処理を施して作製した実施例1〜6の異方導電性部材は、いずれも導通路の平均直径の比率(突出部/貫通部)が1.05以上となり、導通路の突出部分の高さの均一性に優れ、抵抗変化率も小さくなることが分かった。
また、実施例1と実施例6とを対比から、表面平滑化処理(前処理)後の表面および裏面の算出平均粗さRaが0.10以下であると、導通路の突出部分の高さの均一性がより良好となり、抵抗変化率もより小さくなることが分かった。
From the results shown in Table 1, the anisotropic conductive members produced in Comparative Examples 1 to 3 that were not subjected to heat treatment as a process for forming a conduction path (protruding portion) are all ratios of the average diameter of the conduction path ( It was found that the projecting portion / penetrating portion) became lower, the uniformity of the height of the projecting portion of the conduction path was inferior, and the rate of resistance change also increased.
On the other hand, as for the anisotropic conductive member of Examples 1-6 produced by performing heat processing as a process which forms a conduction path (protrusion part), all are ratios (projection part / penetration part) of the average diameter of a conduction path. ) Was 1.05 or more, and it was found that the height of the protruding portion of the conduction path was excellent in uniformity and the rate of change in resistance was small.
Further, in comparison between Example 1 and Example 6, when the calculated average roughness Ra of the front surface and the back surface after the surface smoothing treatment (pretreatment) is 0.10 or less, the height of the protruding portion of the conduction path It was found that the uniformity of the film becomes better and the resistance change rate becomes smaller.

1 異方導電性部材
2 絶縁性基材
3 導通路
4a,4b 突出部
5 貫通部
6 絶縁性基材の厚み
7 導通路間の幅
8 突出部の直径
9 貫通部の直径
10 導通路の中心間距離(ピッチ)
DESCRIPTION OF SYMBOLS 1 Anisotropic conductive member 2 Insulating base material 3 Conductive path 4a, 4b Protrusion part 5 Through part 6 Insulating base material thickness 7 Width between conductive paths 8 Diameter of projecting part 9 Diameter of through part 10 Center of conductive path Distance (pitch)

Claims (4)

絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で前記絶縁性基材を厚み方向に貫通し、かつ、前記各導通路の一端が前記絶縁性基材の一方の面において突出し、前記各導通路の他端が前記絶縁性基材の他方の面において突出した状態で設けられ、
前記導通路の密度が200万個/mm2以上であり、前記絶縁性基材がマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる異方導電性部材であって、
前記導通路における前記絶縁層基材の面から突出している部分の平均直径と、前記導通路における前記絶縁層基材を貫通している部分の平均直径との比率(突出部/貫通部)が、1.05以上であり、
前記導通路における前記絶縁層基材の面から突出している部分と、前記導通路における前記絶縁層基材を貫通している部分とが、同種の導電性部材で一体形成されている、異方導電性部材。
In the insulating base material, a plurality of conductive paths made of a conductive member penetrate the insulating base material in the thickness direction in a state of being insulated from each other, and one end of each of the conductive paths is the insulating base material Projecting on one side of the conductive path, the other end of each conduction path is provided in a state of projecting on the other side of the insulating substrate,
The density of the conduction path is 2 million pieces / mm 2 or more, and the insulating base material is an anisotropic conductive member made of an anodized film of an aluminum substrate having micropores,
A ratio (protruding portion / penetrating portion) between an average diameter of a portion protruding from the surface of the insulating layer base material in the conduction path and an average diameter of a portion passing through the insulating layer base material in the conductive path. state, and are equal to or greater than 1.05,
A portion of the conductive path that protrudes from the surface of the insulating layer base material and a portion of the conductive path that penetrates the insulating layer base material are integrally formed of the same type of conductive member. Conductive member.
前記導通路における前記絶縁層基材の面から突出している部分と前記導通路における前記絶縁層基材を貫通している部分とが電気抵抗率が103Ω・cm以下の導電性部材で一体形成されている請求項1の異方導電性部材。 A portion protruding from the surface of the insulating layer base material in the conduction path and a portion penetrating the insulating layer base material in the conduction path are integrally formed by a conductive member having an electric resistivity of 10 3 Ω · cm or less. The anisotropic conductive member according to claim 1 formed. 絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で前記絶縁性基材を厚み方向に貫通し、かつ、前記各導通路の一端が前記絶縁性基材の一方の面において突出し、前記各導通路の他端が前記絶縁性基材の他方の面において突出した状態で設けられ、
前記導通路の密度が200万個/mm2以上であり、前記絶縁性基材がマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる異方導電性部材であって、
前記導通路における前記絶縁層基材の面から突出している部分の平均直径と、前記導通路における前記絶縁層基材を貫通している部分の平均直径との比率(突出部/貫通部)が、1.05以上である異方導電性部材を製造する異方導電性部材の製造方法であって、少なくとも、
アルミニウム基板を陽極酸化する陽極酸化処理工程、
前記陽極酸化処理工程の後に、前記陽極酸化により生じたマイクロポアによる孔を貫通化して前記絶縁性基材を得る貫通化処理工程、
前記貫通化処理工程の後に、得られた前記絶縁性基材における貫通化した孔の内部に導電性部材である金属を充填する金属充填工程、
前記金属充填工程の後に、表面および裏面を平滑化する表面平滑処理工程、および、
前記平滑処理工程の後に、加熱処理によって前記金属を膨張させて前記導通路を形成し、前記異方導電性部材を得る加熱処理工程、を具備する異方導電性部材の製造方法。
In the insulating base material, a plurality of conductive paths made of a conductive member penetrate the insulating base material in the thickness direction in a state of being insulated from each other, and one end of each of the conductive paths is the insulating base material Projecting on one side of the conductive path, the other end of each conduction path is provided in a state of projecting on the other side of the insulating substrate,
The density of the conduction path is 2 million pieces / mm 2 or more, and the insulating base material is an anisotropic conductive member made of an anodized film of an aluminum substrate having micropores,
A ratio (protruding portion / penetrating portion) between an average diameter of a portion protruding from the surface of the insulating layer base material in the conduction path and an average diameter of a portion passing through the insulating layer base material in the conductive path. , An anisotropic conductive member manufacturing method for manufacturing an anisotropic conductive member that is 1.05 or more,
An anodizing process for anodizing an aluminum substrate;
After the anodizing treatment step, a penetrating treatment step for obtaining the insulating base material by penetrating holes due to the micropores generated by the anodization,
A metal filling step of filling a metal which is a conductive member into the inside of the penetrated hole in the obtained insulating base material after the penetration treatment step;
After the metal filling step, a surface smoothing step for smoothing the front and back surfaces, and
A method for producing an anisotropic conductive member comprising, after the smoothing step, a heat treatment step of expanding the metal by heat treatment to form the conduction path to obtain the anisotropic conductive member.
前記表面平滑処理工程後の表面および裏面の算術平均粗さRaが0.10μm以下である請求項3に記載の異方導電性部材の製造方法。   The method for producing an anisotropic conductive member according to claim 3, wherein the arithmetic average roughness Ra of the front surface and the back surface after the surface smoothing treatment step is 0.10 μm or less.
JP2011209057A 2011-09-26 2011-09-26 Anisotropic conductive member and manufacturing method thereof Active JP5694888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209057A JP5694888B2 (en) 2011-09-26 2011-09-26 Anisotropic conductive member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209057A JP5694888B2 (en) 2011-09-26 2011-09-26 Anisotropic conductive member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013069629A JP2013069629A (en) 2013-04-18
JP5694888B2 true JP5694888B2 (en) 2015-04-01

Family

ID=48475070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209057A Active JP5694888B2 (en) 2011-09-26 2011-09-26 Anisotropic conductive member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5694888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012234A1 (en) * 2013-07-22 2015-01-29 富士フイルム株式会社 Method for fabrication of anisotropic conductive member and method for fabrication of anisotropic conductive bonding package
JP6084709B2 (en) * 2014-01-27 2017-02-22 富士フイルム株式会社 MICROSTRUCTURE, MULTILAYER WIRING BOARD, SEMICONDUCTOR PACKAGE, AND MICROSTRUCTURE MANUFACTURING METHOD
JP2015147969A (en) * 2014-02-05 2015-08-20 住友電気工業株式会社 Substrate, and manufacturing method thereof
JP7394525B2 (en) * 2018-11-29 2023-12-08 信越ポリマー株式会社 Manufacturing method of anisotropic conductive sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154713B2 (en) * 1990-03-16 2001-04-09 株式会社リコー Anisotropic conductive film and method for manufacturing the same
JP2984205B2 (en) * 1996-01-10 1999-11-29 日東電工株式会社 Anisotropic conductive film
JP4395038B2 (en) * 2004-09-22 2010-01-06 富士フイルム株式会社 Fine structure and manufacturing method thereof
JP2009224146A (en) * 2008-03-14 2009-10-01 Fujifilm Corp Laminated plate having anisotropic conductive member and method of manufacturing the same
JP5253972B2 (en) * 2008-04-28 2013-07-31 富士フイルム株式会社 Structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013069629A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
US10057981B2 (en) Stretchable circuit board and method of manufacturing the same
JP5463052B2 (en) Metal parts
JP5512542B2 (en) Highly conductive surface for electrochemical applications
JP4221389B2 (en) Method of manufacturing field emission emitter electrode using self-assembly of carbon nanotube and field emission emitter electrode manufactured thereby
JP5435493B2 (en) Fine structure and manufacturing method thereof
US20110043239A1 (en) Probe card
JP6084709B2 (en) MICROSTRUCTURE, MULTILAYER WIRING BOARD, SEMICONDUCTOR PACKAGE, AND MICROSTRUCTURE MANUFACTURING METHOD
JP5694888B2 (en) Anisotropic conductive member and manufacturing method thereof
JP2008270157A (en) Anisotropic conductive member, and manufacturing method thereof
JP5253972B2 (en) Structure and manufacturing method thereof
JP2009283431A (en) Microstructural body and method of manufacturing the same
JP2009224146A (en) Laminated plate having anisotropic conductive member and method of manufacturing the same
WO2015012234A1 (en) Method for fabrication of anisotropic conductive member and method for fabrication of anisotropic conductive bonding package
Jung et al. Fabrication and characterization of porous silicon nanowires
JP5824435B2 (en) Anisotropic conductive member and multilayer wiring board
JP5363131B2 (en) Anisotropic conductive member and manufacturing method thereof
JP7343706B2 (en) Manufacturing method of anisotropically conductive member
JP5435484B2 (en) Method for producing metal-filled microstructure
JP2009244244A (en) Probe card
JP6055552B2 (en) Multilayer structure, interposer, and manufacturing method of interposer
JP7369871B2 (en) Manufacturing method of anisotropically conductive member
TW202341303A (en) Metal filled microstructure
Banerjee et al. Electrochemical growth of ordered nickel nano-rods within a composite structure of anodic-alumina-membrane/metal/silicon substrate
JP5043691B2 (en) Method for producing metal-filled microstructure, metal-filled microstructure and anisotropic conductive member
JP2009263748A (en) Fine structure and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5694888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250