JP5435484B2 - Method for producing metal-filled microstructure - Google Patents

Method for producing metal-filled microstructure Download PDF

Info

Publication number
JP5435484B2
JP5435484B2 JP2010067757A JP2010067757A JP5435484B2 JP 5435484 B2 JP5435484 B2 JP 5435484B2 JP 2010067757 A JP2010067757 A JP 2010067757A JP 2010067757 A JP2010067757 A JP 2010067757A JP 5435484 B2 JP5435484 B2 JP 5435484B2
Authority
JP
Japan
Prior art keywords
metal
hole
electrolytic plating
filled
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010067757A
Other languages
Japanese (ja)
Other versions
JP2011202194A (en
Inventor
広祐 山下
優介 畠中
吉則 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010067757A priority Critical patent/JP5435484B2/en
Publication of JP2011202194A publication Critical patent/JP2011202194A/en
Application granted granted Critical
Publication of JP5435484B2 publication Critical patent/JP5435484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁性基材に設けられた微細孔に金属が充填されてなる、金属充填微細構造体の製造方法に関する。具体的には、絶縁性基材に設けられた微細孔への金属の充填率が高く、かつ、金属充填に伴う残留応力による反りの発生を抑制することができる金属微細構造体の製造方法に関する。   The present invention relates to a method for producing a metal-filled microstructure in which fine holes provided in an insulating substrate are filled with metal. Specifically, the present invention relates to a method for manufacturing a metal microstructure that has a high metal filling rate in fine holes provided in an insulating base material and can suppress the occurrence of warpage due to residual stress associated with metal filling. .

絶縁性基材に設けられた微細孔に金属が充填されてなる金属充填微細構造体(デバイス)は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電部材としての用途が期待されている。
異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材や機能検査を行う際の検査用コネクタ等として広く使用されている。
Metal-filled microstructures (devices) in which fine holes provided in an insulating substrate are filled with metal are one of the fields that have recently been attracting attention in nanotechnology. For example, they are used as anisotropic conductive members. Is expected.
An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and electrical connection between the electronic component and the circuit board can be obtained simply by applying pressure. It is widely used as an electrical connection member or a connector for inspection when performing functional inspection.

特に、半導体素子等の電子接続部材は、そのダウンサイジング化が顕著であり、従来のワイヤーボンディングのような直接配線基板を接続するような方式では、ワイヤーの径をこれ以上小さくすることが困難となってきており、接続の安定性を十分に保証することが困難となってきている。
そこで、近年になり、絶縁素材の皮膜中に導電部材が貫通林立したタイプや金属球を配置したタイプの異方導電部材が注目されてきている。
In particular, the downsizing of electronic connection members such as semiconductor elements is remarkable, and it is difficult to further reduce the diameter of the wire in a method of directly connecting a wiring board such as conventional wire bonding. As a result, it has become difficult to ensure sufficient connection stability.
Therefore, in recent years, anisotropic conductive members of a type in which a conductive member penetrates in a film of an insulating material or a type in which a metal ball is arranged have been attracting attention.

また、半導体素子等の検査用コネクタは、半導体素子等の電子部品を回路基板に実装した後に機能検査を行うと、電子部品が不良であった場合に、回路基板もともに処分されることとなり、金額的な損失が大きくなってしまうという問題を回避するために使用される。
即ち、半導体素子等の電子部品を、実装時と同様のポジションで回路基板に異方導電性部材を介して接触させて機能検査を行うことで、電子部品を回路基板上に実装せずに、機能検査を実施でき、上記の問題を回避することができる。
In addition, the inspection connector such as the semiconductor element, when the electronic component such as the semiconductor element is mounted on the circuit board and the function inspection is performed, when the electronic component is defective, the circuit board is also disposed of together. It is used to avoid the problem of a large monetary loss.
That is, an electronic component such as a semiconductor element is brought into contact with the circuit board through an anisotropic conductive member at a position similar to that at the time of mounting, and a function test is performed, so that the electronic component is not mounted on the circuit board. Functional inspection can be performed, and the above problems can be avoided.

このような異方導電性部材として、特許文献1には、「接着性絶縁材料からなるフィルム基板中に、導電性材料からなる複数の導通路が、互いに絶縁された状態で、かつ該フィルム基板を厚み方向に貫通した状態で配置され、フィルム基板の長手方向と平行な導通路の断面における形状の外周上の2点間の最大長の平均が10〜30μmであり、隣接する導通路の間隔が、上記最大長の平均の0.5〜3倍であることを特徴とする異方導電性フィルム。」が開示されている。   As such an anisotropic conductive member, Patent Document 1 states that “in a film substrate made of an adhesive insulating material, a plurality of conductive paths made of a conductive material are insulated from each other and the film substrate is made. The average of the maximum length between two points on the outer periphery of the shape in the cross section of the conduction path parallel to the longitudinal direction of the film substrate is 10 to 30 μm, and the distance between adjacent conduction paths Is an anisotropic conductive film characterized in that it is 0.5 to 3 times the average of the maximum length.

また、特許文献2には、「絶縁性樹脂よりなるフィルム基材中に、複数の導通路が、互いに絶縁されて、該フィルム基材を厚み方向に貫通し、かつ、千鳥配列で配置されている、異方導電性フィルムであって、導通路列内の導通路間距離よりも、隣り合う導通路列間での導通路間距離が小さいことを特徴とする、異方導電性フィルム。」が開示されている。   Patent Document 2 states that “in a film base material made of an insulating resin, a plurality of conductive paths are insulated from each other, penetrate the film base material in the thickness direction, and are arranged in a staggered arrangement. An anisotropic conductive film, characterized in that the distance between the conductive paths between adjacent conductive path arrays is smaller than the distance between the conductive paths in the conductive path array. " Is disclosed.

このような異方導電性フィルムの製造方法として、特許文献1および2には、異方導電性材料の細線を絶縁性フィルム上に挟み込んだ後、加熱及び加圧により一体化し、厚み方向にスクライブする方法が開示されている。
また、特許文献3には、レジストとマスクを用いて導電性の柱を電鋳で作製し、これに絶縁性素材を流し込み硬化させることで異方導電性フィルムを製造する方法が検討されている。
As a method for producing such an anisotropic conductive film, Patent Documents 1 and 2 describe that a thin wire of an anisotropic conductive material is sandwiched on an insulating film, and then integrated by heating and pressing, and scribed in the thickness direction. A method is disclosed.
Patent Document 3 discusses a method for producing an anisotropic conductive film by producing a conductive column by electroforming using a resist and a mask, and pouring an insulating material into the column and curing it. .

一方、特許文献4には、「電気的絶縁材からなる保持体と、該保持体中に互いに絶縁状態にて備えられた複数の導電部材とを有し、前記各導電部材の一端が前記保持体の一方の面において露出しており、前記各導電部材の他端が前記保持体の他方の面において露出している電気的接続部材を製造する方法において、
基体と、該基体に積層されて設けられるところの前記保持体となる絶縁層とを有する母材に対し前記絶縁層側から高エネルギビームを照射して、複数の領域において前記絶縁層の全部と前記基体の一部とを除去し、前記母材に複数の穴を形成する第1の工程と、
形成された複数の穴に、前記絶縁層の面と面一またはこの面より突出させて、前記導電部材となる導電材料を充填する第2の工程と、前記基体を除去する第3の工程と、を有することを特徴とする電気的接続部材の製造方法。」が開示されており、絶縁層として、ポリイミド樹脂、エポキシ樹脂、シリコン樹脂等の種々の材質に関する検討も行なわれている。
On the other hand, in Patent Document 4, “a holding body made of an electrically insulating material and a plurality of conductive members provided in an insulated state in the holding body, one end of each of the conductive members is the holding In the method of manufacturing an electrical connection member that is exposed on one surface of the body and the other end of each conductive member is exposed on the other surface of the holding body,
A high energy beam is irradiated from a side of the insulating layer to a base material having a base and an insulating layer serving as the holding body provided by being laminated on the base. A first step of removing a part of the base and forming a plurality of holes in the base material;
A second step of filling a plurality of formed holes with a surface of the insulating layer or projecting from the surface and filling a conductive material to be the conductive member; and a third step of removing the substrate A method for manufacturing an electrical connection member, comprising: And various materials such as a polyimide resin, an epoxy resin, and a silicon resin have been studied as an insulating layer.

ところで、近年、半導体素子等の電子部品は、高集積化が一層進むことに伴い、電極(端子)サイズはより小さくなり、電極(端子)数はより増加し、端子間の距離もより狭くなってきている。また、狭ピッチで多数配置されている各端子の表面が本体表面よりも奥まった位置にある表面構造の電子部品も現れてきている。
そのため、このような電子部品に対応できるよう、異方導電性部材における導通路もその外径(太さ)をより小さくし、かつ、狭ピッチで配列させる必要が生じている。
しかしながら、上記特許文献1〜4等に記載されている異方導電性フィルムや電気的接続部材では、導通路のサイズを小さくすることは非常に困難であり、狭ピッチに対応した導電部材を高密度で充填させる方法が期待されている。
By the way, in recent years, as electronic components such as semiconductor elements are further integrated, the size of electrodes (terminals) is reduced, the number of electrodes (terminals) is increased, and the distance between terminals is also reduced. It is coming. In addition, electronic components having a surface structure in which the surface of each terminal arranged in a large number at a narrow pitch is located deeper than the surface of the main body have also appeared.
For this reason, it is necessary to arrange the conduction paths in the anisotropic conductive member to have a smaller outer diameter (thickness) and to be arranged at a narrow pitch so as to cope with such electronic components.
However, in the anisotropic conductive films and electrical connection members described in Patent Documents 1 to 4 and the like, it is very difficult to reduce the size of the conduction path. A method of filling with density is expected.

これに対し、本出願人は、特許文献5において「絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で前記絶縁性基材を厚み方向に、1000万個/mm2以上の密度で貫通し、かつ、前記各導通路の一端が前記絶縁性基材の一方の面において露出し、前記各導通路の他端が前記絶縁性基材の他方の面において露出した状態で設けられる異方導電性部材の製造方法であって、少なくとも、
(1)アルミニウム基板を陽極酸化し、マイクロポアを有するアルミナ皮膜を形成する陽極酸化処理工程、
(2)前記陽極酸化処理工程の後に、前記陽極酸化により生じたマイクロポアによる孔を貫通化して前記絶縁性基材を得る貫通化処理工程、および
(3)前記貫通化処理工程の後に、得られた前記絶縁性基材における貫通化した孔の内部に導電性部材を充填して前記異方導電性部材を得る導電性部材充填工程、
を具備する、異方導電性部材の製造方法。」を提案している。
特許文献5に記載の方法によれば、本発明によれば、導通路の設置密度を飛躍的に向上させ、高集積化が一層進んだ現在においても半導体素子等の電子部品の接続部材及び検査用コネクタ等として使用することができる異方導電性部材を提供することができる。
On the other hand, the present applicant, in Patent Document 5, stated that “in the insulating base material, a plurality of conductive paths made of conductive members are insulated from each other, and the insulating base material is 10 million in the thickness direction. Penetrating at a density of at least 2 pieces / mm 2 , one end of each conducting path is exposed on one surface of the insulating substrate, and the other end of each conducting path is the other surface of the insulating substrate. A method for producing an anisotropic conductive member provided in an exposed state in
(1) Anodizing step of anodizing an aluminum substrate to form an alumina film having micropores;
(2) After the anodizing treatment step, a penetrating treatment step for obtaining the insulating base material by penetrating holes by the micropores generated by the anodizing, and (3) obtained after the penetrating treatment step. A conductive member filling step of obtaining the anisotropic conductive member by filling a conductive member into the perforated hole in the insulating base material,
A method for producing an anisotropic conductive member comprising: ".
According to the method described in Patent Document 5, according to the present invention, the connection density and the inspection of electronic components such as semiconductor elements can be greatly improved even if the integration density of the conduction paths is dramatically improved and the high integration is further advanced. An anisotropic conductive member that can be used as a connector for an automobile or the like can be provided.

特開2000−012619号公報JP 2000-012619 A 特開2005−085634号公報JP 2005-085634 A 特開2002−134570号公報JP 2002-134570 A 特開平03−182081号公報Japanese Patent Laid-Open No. 03-182081 特開2008−270157号公報JP 2008-270157 A

特許文献5に記載の方法では、絶縁性基材における貫通化した孔の内部に導電性部材を充填して異方導電性部材を得る導電性部材充填工程において、下記(3−a)〜(3−c)のいずれかの処理を実施することが好ましいとしている。
(3−a)導電性部材を有する液中に、上記貫通化した孔を有する絶縁性基材を浸漬し、該孔内に導電性部材を充填する処理(浸漬処理)。
(3−b)電解めっきにより、上記貫通化した孔内に導電性部材を充填する処理(電解めっき処理)。
(3−c)蒸着により上記貫通化した孔内に導電性部材を充填する処理(蒸着処理)。
導電性部材が金属の場合、これらの処理のうち、(3−b)、すなわち、電解めっき処理が、孔内への導電性部材の充填率を高くできること、蒸着処理のような真空下での処理が必要でないこと等の理由から好ましい。
In the method described in Patent Document 5, in the conductive member filling step of obtaining an anisotropic conductive member by filling a conductive member into the penetrated hole in the insulating base material, the following (3-a) to (3- It is preferable to perform any one of the processes of 3-c).
(3-a) A treatment (immersion treatment) in which the insulating base material having the penetrated hole is immersed in the liquid having the conductive member, and the conductive member is filled in the hole.
(3-b) A process (electrolytic plating process) of filling a conductive member into the penetrated hole by electrolytic plating.
(3-c) A process (vapor deposition process) in which the conductive member is filled into the through holes formed by vapor deposition.
When the conductive member is a metal, among these processes, (3-b), that is, the electroplating process can increase the filling rate of the conductive member into the hole, and under vacuum such as a vapor deposition process. It is preferable for reasons such as that treatment is not necessary.

導電性部材充填工程において、電解めっき処理を実施する場合、特許文献5の実施例1に記載されているように、絶縁性基材(陽極酸化皮膜)の表面から導電性部材である金属(実施例1では銅)をあふれさせることが孔内への充填率を高めるうえで好ましい。絶縁性基材の表面にあふれた金属は、導電性部材充填工程の後に、絶縁性基材の表面および裏面を平滑化する表面平滑処理工程を実施することで除去される。   In the conductive member filling step, when performing an electroplating process, as described in Example 1 of Patent Document 5, a metal that is a conductive member from the surface of the insulating base (anodized film) (implemented) In Example 1, it is preferable to overflow copper) in order to increase the filling rate into the holes. The metal overflowing on the surface of the insulating substrate is removed by performing a surface smoothing process for smoothing the surface and the back surface of the insulating substrate after the conductive member filling process.

しかしながら、上記の手順で製造される金属充填微細構造体で反りが発生して、微細構造体の平坦度が低下する場合があることを本発明者らは見出した。
上述したように、導電性部材充填工程において、電解めっき処理を実施する場合、絶縁性基材の表面から導電性部材である金属をあふれさせることが孔内への充填率を高めるうえで好ましい。この場合、絶縁性基材の表面からあふれた金属は、該絶縁性部材の表面に付着して金属膜を形成する。このようにして形成される金属膜と、孔内部に充填される金属と、の残留応力の差が原因で反りが発生し、微細構造体の平坦度が低下する。
However, the present inventors have found that warpage occurs in the metal-filled microstructure manufactured by the above procedure, and the flatness of the microstructure may decrease.
As described above, in the conductive member filling step, when the electrolytic plating process is performed, it is preferable to overflow the metal as the conductive member from the surface of the insulating base material in order to increase the filling rate into the holes. In this case, the metal overflowing from the surface of the insulating base material adheres to the surface of the insulating member to form a metal film. Warpage occurs due to the difference in residual stress between the metal film formed in this way and the metal filled in the hole, and the flatness of the microstructure is lowered.

本発明は、上述した従来技術における問題点を解決するため、絶縁性基材に設けられた微細孔への金属の充填率が高く、かつ、金属充填に伴う残留応力による反りの発生を抑制することができる金属充填微細構造体の製造方法を提供することを目的とする。   In order to solve the above-described problems in the prior art, the present invention has a high metal filling rate in the fine holes provided in the insulating base material and suppresses the occurrence of warping due to residual stress accompanying the metal filling. An object of the present invention is to provide a method for producing a metal-filled microstructure that can be used.

本発明者らは、上記目的を達成すべく鋭意研究した結果、以下の理由によって金属充填微細構造体で反りが生じることを見出した。
すなわち、電解めっき処理の際に、絶縁性基材に設けられた孔内に充填された金属と、絶縁性基材の表面に付着して金属膜を形成している金属と、の間で結晶粒子径に差が生じること、このような結晶粒子径の差が原因で、孔内に充填された金属と、絶縁性基材の表面に形成された金属膜と、の間で残留応力に差が生じること、および、このような残留応力の差によって、金属充填微細構造体に反りが生じることを見出した。
本発明者らは、上記の知見に基づいて本発明を完成させた。すなわち、本発明は、以下の(1)〜(9)を提供する。
As a result of intensive studies to achieve the above object, the present inventors have found that warpage occurs in a metal-filled microstructure for the following reasons.
That is, during the electroplating process, a crystal is formed between the metal filled in the holes provided in the insulating base material and the metal that has adhered to the surface of the insulating base material to form a metal film. Due to the difference in particle size and the difference in crystal particle size, there is a difference in residual stress between the metal filled in the holes and the metal film formed on the surface of the insulating substrate. It has been found that warpage occurs in the metal-filled microstructure due to such a difference and the difference in residual stress.
The present inventors have completed the present invention based on the above findings. That is, the present invention provides the following (1) to (9).

(1)絶縁性基材に設けられた貫通孔内部に金属が充填されてなる金属充填微細構造体を製造する金属充填微細構造体の製造方法であって、
上記絶縁性基材における、上記貫通孔の平均開孔径が10〜5000nmであり、上記貫通孔の平均深さが10〜1000μmであり、かつ、上記貫通孔の密度が1×106〜1×1010個/mm2であり、
上記金属充填微細構造体の製造方法が、少なくとも、下記式で求められる上記貫通孔への金属の仮想充填率が110%よりも大きくなるように、電解めっき処理により上記貫通孔へ金属を充填する工程、および、電解めっき処理によって上記絶縁性基材の表面に付着した金属を研磨処理により除去する工程を有し、上記貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差が20nm以下となるように上記電解めっき処理を実施することを特徴とする、金属充填微細構造体の製造方法。
貫通孔への金属の仮想充填率(%)=電解めっきによる金属析出量から求められる微細構造体における金属の仮想高さ(μm)/貫通孔の平均深さ(μm)×100
(1) A metal-filled microstructure manufacturing method for manufacturing a metal-filled microstructure in which a metal is filled in a through-hole provided in an insulating substrate,
In the insulating substrate, the average opening diameter of the through holes is 10 to 5000 nm, the average depth of the through holes is 10 to 1000 μm, and the density of the through holes is 1 × 10 6 to 1 ×. 10 10 pieces / mm 2 ,
The metal-filled microstructure manufacturing method fills the through-hole with metal by electrolytic plating so that at least the virtual filling rate of the metal into the through-hole obtained by the following formula is larger than 110 %. And a step of removing the metal adhering to the surface of the insulating substrate by an electrolytic plating process by a polishing process, the average crystal particle diameter of the metal filled in the through-hole, and the insulating group A method for producing a metal-filled microstructure, wherein the electrolytic plating treatment is performed such that a difference between the average crystal particle diameter of a metal adhering to the surface of the material is 20 nm or less.
Virtual filling rate of metal in through hole (%) = virtual height of metal (μm) / average depth of through hole (μm) × 100 obtained from the amount of metal deposited by electrolytic plating × 100

(2)上記貫通孔内部に充填される金属の平均結晶粒子径、および、上記絶縁性基材の表面に付着する金属の平均結晶粒子径が、いずれも上記貫通孔の平均開孔径以下となるように上記電解めっき処理を実施する、上記(1)に記載の金属充填微細構造体の製造方法。   (2) The average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate are both equal to or smaller than the average opening diameter of the through hole. The method for producing a metal-filled microstructure according to (1), wherein the electrolytic plating treatment is performed as described above.

(3)下記(a)〜(d)を満たすように、上記電解めっき処理を実施する、上記(1)または(2)に記載の金属充填微細構造体の製造方法。
(a)定電流電解めっき処理として電解めっき処理を開始する。
(b)上記貫通孔への金属の仮想充填率が75〜125%に達した時点で電解めっき時の電流値をマイナス方向へ増大させる。
(c)上記貫通孔への金属の仮想充填率が110%以上となるまで電解めっき処理を実施する。
(d)電解めっき時の電流値をマイナス方向へ増大させてから電解めっき処理を終了するまでの上記貫通孔への金属の仮想充填率が1%以上となるように電解めっき処理を実施する。
(3) The method for producing a metal-filled microstructure according to (1) or (2), wherein the electrolytic plating treatment is performed so as to satisfy the following (a) to (d).
(A) An electrolytic plating process is started as a constant current electrolytic plating process.
(B) When the virtual filling rate of the metal in the through hole reaches 75 to 125%, the current value during electrolytic plating is increased in the negative direction.
(C) The electroplating process is performed until the virtual filling rate of the metal in the through hole becomes 110 % or more.
(D) The electrolytic plating process is performed so that the virtual filling rate of the metal in the through hole from the time when the current value during the electrolytic plating is increased in the minus direction to the end of the electrolytic plating process is 1% or more.

(4)上記電解めっき時の電流値のマイナス方向への増大量が0.5A/dm2以上である、上記(3)に記載の金属充填微細構造体の製造方法。 (4) The method for producing a metal-filled microstructure according to (3), wherein an increase amount in the negative direction of the current value during the electrolytic plating is 0.5 A / dm 2 or more.

(5)上記電解めっき時の電流値をマイナス方向へ増大させる際の電流値の変化率が0.1A/dm2・秒以上である、上記(4)に記載の金属充填微細構造体の製造方法。 (5) Manufacture of a metal-filled microstructure according to (4), wherein the rate of change in current value when the current value during electrolytic plating is increased in the minus direction is 0.1 A / dm 2 · sec or more. Method.

(6)上記電解めっき時の電流値のマイナス方向への増大が、電位、温度、めっき浴内の金属イオン濃度、および、めっき液の液流速度からなる群から選択される少なくとも1つを変化させることにより行なわれる、上記(3)〜(5)のいずれかに記載の金属充填微細構造体の製造方法。   (6) Increase in the negative direction of the current value during the electrolytic plating changes at least one selected from the group consisting of potential, temperature, metal ion concentration in the plating bath, and the flow rate of the plating solution. The method for producing a metal-filled microstructure according to any one of (3) to (5), wherein

(7)上記(b)において、上記電解めっき時の電流値をめっき時間に対して連続的にマイナス方向へ増大させる、上記(3)〜(6)のいずれかに記載の金属充填微細構造体の製造方法。 (7) The metal-filled microstructure according to any one of (3) to (6), wherein, in (b), the current value during the electrolytic plating is continuously increased in the negative direction with respect to the plating time. Manufacturing method.

(8)上記貫通孔について下記式(i)により定義される規則化度が50%以上である、上記(1)〜(7)のいずれかに記載の金属充填微細構造体の製造方法。
規則化度(%)=B/A×100 (i)
上記式(i)中、Aは、測定範囲における貫通孔の全数を表す。Bは、一の貫通孔の重心を中心とし、他の貫通孔の縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一の貫通孔以外の貫通孔の重心を6個含むことになる前記一の貫通孔の測定範囲における数を表す。
(8) The method for producing a metal-filled microstructure according to any one of (1) to (7), wherein the degree of ordering defined by the following formula (i) for the through-hole is 50% or more.
Ordering degree (%) = B / A × 100 (i)
In the above formula (i), A represents the total number of through holes in the measurement range. B is centered on the center of gravity of one through hole, and when a circle with the shortest radius inscribed in the edge of the other through hole is drawn, the center of gravity of the through hole other than the one through hole is inside the circle. The number in the measurement range of the said 1 through-hole which will contain 6 is represented.

(9)上記(1)〜(8)のいずれかに記載の金属充填微細構造体の製造方法により得られる金属充填微細構造体。   (9) A metal-filled microstructure obtained by the method for producing a metal-filled microstructure according to any one of (1) to (8) above.

本発明によれば、絶縁性基材に設けられた微細孔への金属の充填率が高く、かつ、金属充填に伴う残留応力による反りの発生が抑制された、平坦度が良好な金属充填微細構造体を得ることができる。   According to the present invention, the metal filling rate of the metal having a high flatness in which the filling rate of the metal into the fine holes provided in the insulating base material is high and the occurrence of warpage due to the residual stress accompanying the metal filling is suppressed. A structure can be obtained.

図1は、貫通孔の規則化度を算出する方法の説明図である。FIG. 1 is an explanatory diagram of a method for calculating the degree of ordering of through holes. 図2は、貫通孔の密度を計算するための説明図である。FIG. 2 is an explanatory diagram for calculating the density of the through holes.

以下に、本発明の金属充填微細構造体の製造方法を詳細に説明する。
本発明の金属充填微細構造体の製造方法(以下、単に「本発明の製造方法」ともいう。)は、絶縁性基材に設けられた貫通孔内部に金属が充填されてなる金属充填微細構造体を製造する金属充填微細構造体の製造方法であって、
上記絶縁性基材における、上記貫通孔の平均開孔径が10〜5000nmであり、上記貫通孔の平均深さが10〜1000μmであり、かつ、上記貫通孔の密度が1×106〜1×1010個/mm2であり、
上記金属充填微細構造体の製造方法が、少なくとも、下記式で求められる上記貫通孔への金属の仮想充填率が100%よりも大きくなるように、電解めっき処理により上記貫通孔へ金属を充填する工程(金属充填処理工程)、および、電解めっき処理によって上記絶縁性基材の表面に付着した金属を研磨処理により除去する工程(研磨除去処理工程)を有し、上記貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差が20nm以下となるように上記電解めっき処理を実施することを特徴とする。
貫通孔への金属の仮想充填率(%)=電解めっきによる金属析出量から求められる微細構造体における金属の仮想高さ(μm)/貫通孔の平均深さ(μm)×100
Below, the manufacturing method of the metal filling fine structure of this invention is demonstrated in detail.
The method for producing a metal-filled microstructure of the present invention (hereinafter also simply referred to as “the method of production of the present invention”) is a metal-filled microstructure in which a metal is filled in a through-hole provided in an insulating substrate. A method for producing a metal-filled microstructure for producing a body,
In the insulating substrate, the average opening diameter of the through holes is 10 to 5000 nm, the average depth of the through holes is 10 to 1000 μm, and the density of the through holes is 1 × 10 6 to 1 ×. 10 10 pieces / mm 2 ,
The manufacturing method of the metal-filled fine structure fills the through-hole with metal by electrolytic plating so that at least the virtual filling rate of the metal into the through-hole obtained by the following formula is larger than 100%. A step (metal filling treatment step) and a step (polishing removal treatment step) of removing metal adhering to the surface of the insulating substrate by electrolytic plating treatment (polishing removal treatment step) and filling the inside of the through hole The electrolytic plating treatment is performed such that the difference between the average crystal particle diameter of the metal and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate is 20 nm or less.
Virtual filling rate of metal in through hole (%) = virtual height of metal (μm) / average depth of through hole (μm) × 100 obtained from the amount of metal deposited by electrolytic plating × 100

ここで、電解めっきによる金属析出量から求められる微細構造体における金属の仮想高さ(以下、本明細書において、単に「微細構造体における金属の仮想高さ」という。)は、以下の手順で求められる。
電解めっきによる金属析出量と、絶縁性基材の表面積、該絶縁性基材における貫通孔の平均開孔径および貫通孔の密度と、の関係から、該貫通孔における金属の充填高さ(以下、本明細書において、単に「金属の充填高さ」という。)が計算上求められる。この値が貫通孔の平均深さ以下の場合、電解めっきによって析出する金属は、理論上は全て貫通孔に充填されることになるので、貫通孔における金属の充填高さ=微細構造体における金属の仮想高さとなる。
一方、上記の手順で求められる金属の充填高さが貫通孔の平均深さよりも大きい場合、電解めっきにより析出する金属が貫通孔からあふれて絶縁性基材の表面に金属膜を形成することとなる。この場合、電解めっきによる金属析出量のうち、金属の充填高さが貫通孔の平均深さと一致するのに要する量を差し引いた残りの部分については、絶縁性基材の表面積との関係から、絶縁性基材の表面に形成される金属膜の厚さ(以下、本明細書において、単に「金属膜の厚さ」という場合がある。)を求める。そして、金属の充填高さ(=貫通孔の平均深さ)と、金属膜の厚さと、の和が微細構造体における金属の仮想高さとなる。
Here, the virtual height of the metal in the microstructure obtained from the amount of deposited metal by electroplating (hereinafter simply referred to as “the virtual height of the metal in the microstructure” in the present specification) is as follows. Desired.
From the relationship between the amount of metal deposited by electrolytic plating, the surface area of the insulating base material, the average opening diameter of the through holes in the insulating base material, and the density of the through holes, the metal filling height in the through holes (hereinafter, In the present specification, simply referred to as “metal filling height”) is calculated. When this value is less than the average depth of the through holes, the metal deposited by electrolytic plating is theoretically filled in the through holes. Therefore, the filling height of the metal in the through holes = the metal in the microstructure. Of virtual height.
On the other hand, if the metal filling height required by the above procedure is larger than the average depth of the through holes, the metal deposited by electrolytic plating overflows the through holes and forms a metal film on the surface of the insulating substrate; Become. In this case, of the amount of metal deposited by electrolytic plating, the remaining portion after subtracting the amount required for the metal filling height to match the average depth of the through holes, from the relationship with the surface area of the insulating substrate, The thickness of the metal film formed on the surface of the insulating substrate (hereinafter, simply referred to as “the thickness of the metal film” in this specification) is obtained. The sum of the metal filling height (= the average depth of the through holes) and the thickness of the metal film is the virtual metal height in the microstructure.

[絶縁性基体]
本発明の製造方法に用いられる絶縁性基体は、平均開孔径が10〜5000nmであり、平均深さが10〜1000μmであり、かつ、密度が1×106〜1×1010/mm2である貫通孔を有する絶縁性基体である。
[Insulating substrate]
The insulating substrate used in the production method of the present invention has an average pore diameter of 10 to 5000 nm, an average depth of 10 to 1000 μm, and a density of 1 × 10 6 to 1 × 10 10 / mm 2 . It is an insulating substrate having a certain through hole.

本発明の製造方法においては、上記絶縁性基体の厚みは、5〜1000μmであるのが好ましく、50〜1000μmであるのがより好ましく、60〜500μmであるのが更に好ましい。絶縁性基体の厚みがこの範囲であると、絶縁性基体の取り扱い性が良好となる。   In the manufacturing method of this invention, it is preferable that the thickness of the said insulating base | substrate is 5-1000 micrometers, It is more preferable that it is 50-1000 micrometers, It is still more preferable that it is 60-500 micrometers. When the thickness of the insulating substrate is within this range, the handleability of the insulating substrate is improved.

絶縁性基材としては、作製および形状の簡便性から、アルミニウム、チタン、マグネシウム、ジルコニウム、タンタル、亜鉛、ニオブ等に代表される弁(バルブ)金属の陽極酸化により形成される酸化皮膜材料であるのが好ましく、寸法安定性に優れ、比較的安価であるという理由から、アルミニウムの陽極酸化皮膜の素材であるアルミナからなるのがより好ましい。
ここで、アルミナは、従来公知の異方導電性フィルム等を構成する絶縁性基材(例えば、熱可塑性エラストマー等)と同様、電気抵抗率は1014Ω・cm程度である。
The insulating base material is an oxide film material formed by anodic oxidation of a valve metal represented by aluminum, titanium, magnesium, zirconium, tantalum, zinc, niobium, etc., because of the simplicity of production and shape. It is more preferable that it is made of alumina, which is a material of an anodized aluminum film, because it is excellent in dimensional stability and relatively inexpensive.
Here, alumina has an electrical resistivity of about 10 14 Ω · cm, as in the case of an insulating base material (for example, a thermoplastic elastomer) that constitutes a conventionally known anisotropic conductive film or the like.

本発明の製造方法においては、上記絶縁性基体は、アルミニウムに少なくとも陽極酸化処理を施して得られるものであるのが、平均開孔径が10〜5000nmで平均深さが10〜1000μmの貫通孔をマイクロポアとして形成することができ、また、その密度も1×106〜1×1010/mm2とすることが容易となる理由から好ましい。
具体的には、上記基体は、アルミニウム基板を陽極酸化してマイクロポアを有する陽極酸化皮膜を形成する陽極酸化処理(以下、「陽極酸化処理(A)」ともいう。)と、
上記陽極酸化処理後にアルミニウム基板を除去し、上記陽極酸化皮膜をアルミニウム基板から分離する分離処理(以下、「分離処理(B)」ともいう。)と、
上記分離処理により分離された陽極酸化皮膜のマイクロポアを貫通させる貫通化処理(以下、「貫通化処理(C)」ともいう。)と、を施して得られるものであるのが好ましい。
以下に、アルミニウム基板および各処理について詳述する。
In the manufacturing method of the present invention, the insulating substrate is obtained by subjecting aluminum to at least anodizing treatment. It has through holes having an average pore diameter of 10 to 5000 nm and an average depth of 10 to 1000 μm. It can be formed as a micropore, and the density is also preferable because it is easy to make the density 1 × 10 6 to 1 × 10 10 / mm 2 .
Specifically, the substrate is anodized to form an anodized film having micropores by anodizing an aluminum substrate (hereinafter also referred to as “anodizing treatment (A)”);
A separation treatment for removing the aluminum substrate after the anodizing treatment and separating the anodized film from the aluminum substrate (hereinafter also referred to as “separation treatment (B)”);
It is preferable that the anodic oxide film separated by the separation treatment is subjected to a penetration treatment (hereinafter also referred to as “penetration treatment (C)”) that penetrates the micropores.
Below, an aluminum substrate and each process are explained in full detail.

<アルミニウム基板>
アルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
<Aluminum substrate>
The aluminum substrate is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements; and depositing high-purity aluminum on low-purity aluminum (for example, recycled material). Examples of the substrate include: a substrate in which high purity aluminum is coated on the surface of a silicon wafer, quartz, glass or the like by a method such as vapor deposition or sputtering; a resin substrate in which aluminum is laminated;

本発明の製造方法においては、アルミニウム基板のうち、後述する陽極酸化処理により陽極酸化皮膜を設ける表面は、アルミニウム純度が、99.5質量%以上であるのが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上記範囲であると、マイクロポアの配列(ポア配列)の規則性が十分となり、後述する金属充填処理工程により金属(導電材料)を充填した際の独立性が保持され、本発明の金属充填微細構造体を異方導電性部材として用いた場合に、漏れ電流等の影響がなくなるため好ましい。   In the production method of the present invention, among the aluminum substrates, the surface on which the anodized film is provided by an anodic oxidation treatment described later preferably has an aluminum purity of 99.5% by mass or more, and 99.9% by mass or more. More preferably, it is more preferably 99.99% by mass or more. When the aluminum purity is in the above range, the regularity of the micropore arrangement (pore arrangement) is sufficient, and independence is maintained when the metal (conductive material) is filled in the metal filling process described later. When a metal-filled microstructure is used as an anisotropic conductive member, the influence of leakage current and the like is eliminated, which is preferable.

また、本発明の製造方法においては、アルミニウム基板のうち、後述する陽極酸化処理を施す表面は、あらかじめ脱脂処理および鏡面仕上げ処理が施されるのが好ましく、特に、ポア配列の規則性を向上させる観点から、熱処理が施されるのが好ましい。   In the production method of the present invention, it is preferable that the surface of the aluminum substrate to be subjected to the anodizing treatment described later is subjected to a degreasing treatment and a mirror finishing treatment in advance, in particular, improving the regularity of the pore arrangement. From the viewpoint, heat treatment is preferably performed.

(熱処理)
熱処理を施す場合は、200〜350℃で30秒〜2分程度施すのが好ましい。具体的には、例えば、アルミニウム基板を加熱オーブンに入れる方法等が挙げられる。
このような熱処理を施すことにより、後述する陽極酸化処理により生成するマイクロポアの配列の規則性が向上する。
また、熱処理後のアルミニウム基板は、急速に冷却するのが好ましい。冷却する方法としては、例えば、水等に直接投入する方法等が挙げられる。
(Heat treatment)
When heat treatment is performed, it is preferably performed at 200 to 350 ° C. for about 30 seconds to 2 minutes. Specifically, for example, a method of placing an aluminum substrate in a heating oven can be used.
By performing such heat treatment, the regularity of the arrangement of micropores generated by an anodic oxidation process described later is improved.
Moreover, it is preferable to cool the aluminum substrate after heat treatment rapidly. As a method for cooling, for example, a method of directly putting it into water or the like can be mentioned.

(脱脂処理)
脱脂処理は、酸、アルカリ、有機溶剤等を用いて、アルミニウム基板表面に付着した、ほこり、脂、樹脂等の有機成分等を溶解させて除去し、有機成分を原因とする後述の各処理における欠陥の発生を防止することを目的として行われる。
(Degreasing treatment)
The degreasing treatment uses acid, alkali, organic solvent, etc. to dissolve and remove the organic components such as dust, fat, and resin adhered to the surface of the aluminum substrate, and in each treatment described later due to the organic components. This is done for the purpose of preventing the occurrence of defects.

脱脂処理としては、具体的には、例えば、各種アルコール(例えば、メタノール等)、各種ケトン(例えば、メチルエチルケトン等)、ベンジン、揮発油等の有機溶剤を常温でアルミニウム基板表面に接触させる方法(有機溶剤法);石けん、中性洗剤等の界面活性剤を含有する液を常温から80℃までの温度でアルミニウム基板表面に接触させ、その後、水洗する方法(界面活性剤法);濃度10〜200g/Lの硫酸水溶液を常温から70℃までの温度でアルミニウム基板表面に30〜80秒間接触させ、その後、水洗する方法;濃度5〜20g/Lの水酸化ナトリウム水溶液を常温でアルミニウム基板表面に30秒間程度接触させつつ、アルミニウム基板表面を陰極にして電流密度1〜10A/dm2の直流電流を流して電解し、その後、濃度100〜500g/Lの硝酸水溶液を接触させて中和する方法;各種公知の陽極酸化処理用電解液を常温でアルミニウム基板表面に接触させつつ、アルミニウム基板表面を陰極にして電流密度1〜10A/dm2の直流電流を流して、または、交流電流を流して電解する方法;濃度10〜200g/Lのアルカリ水溶液を40〜50℃でアルミニウム基板表面に15〜60秒間接触させ、その後、濃度100〜500g/Lの硝酸水溶液を接触させて中和する方法;軽油、灯油等に界面活性剤、水等を混合させた乳化液を常温から50℃までの温度でアルミニウム基板表面に接触させ、その後、水洗する方法(乳化脱脂法);炭酸ナトリウム、リン酸塩類、界面活性剤等の混合液を常温から50℃までの温度でアルミニウム基板表面に30〜180秒間接触させ、その後、水洗する方法(リン酸塩法);等が挙げられる。 Specifically, as the degreasing treatment, for example, a method in which an organic solvent such as various alcohols (for example, methanol), various ketones (for example, methyl ethyl ketone), benzine, volatile oil or the like is brought into contact with the aluminum substrate surface at room temperature (organic Solvent method); a method of bringing a liquid containing a surfactant such as soap or neutral detergent into contact with the aluminum substrate surface at a temperature from room temperature to 80 ° C., and then washing with water (surfactant method); concentration of 10 to 200 g A method in which an aqueous solution of sulfuric acid / L is brought into contact with an aluminum substrate surface for 30 to 80 seconds at a temperature from room temperature to 70 ° C. and then washed with water; an aqueous sodium hydroxide solution having a concentration of 5 to 20 g / L is applied to the aluminum substrate surface at room temperature. while contacting about seconds, the aluminum substrate surface and the electrolyte by passing a direct current of a current density of 1 to 10 a / dm 2 in the cathode, the , A method of neutralizing by bringing a nitric acid aqueous solution having a concentration of 100 to 500 g / L into contact; while bringing various known anodizing electrolytes into contact with the aluminum substrate surface at room temperature, the aluminum substrate surface is used as a cathode and a current density of 1 to A method in which a 10 A / dm 2 direct current is applied or an alternating current is applied for electrolysis; an alkaline aqueous solution having a concentration of 10 to 200 g / L is brought into contact with the aluminum substrate surface at 40 to 50 ° C. for 15 to 60 seconds; A method of neutralizing by bringing a nitric acid aqueous solution having a concentration of 100 to 500 g / L into contact; an emulsion obtained by mixing light oil, kerosene, etc. with a surfactant, water, etc. is brought into contact with the aluminum substrate surface at a temperature from room temperature to 50 ° C. Then, a method of washing with water (emulsification and degreasing method); a mixed solution of sodium carbonate, phosphates, surfactant and the like on the surface of the aluminum substrate at a temperature from room temperature to 50 ° C Contacting 0-180 seconds, then, a method of washing with water (phosphate method); and the like.

これらのうち、アルミニウム表面の脂分を除去しうる一方で、アルミニウムの溶解がほとんど起こらない観点から、有機溶剤法、界面活性剤法、乳化脱脂法、リン酸塩法が好ましい。   Among these, the organic solvent method, the surfactant method, the emulsion degreasing method, and the phosphate method are preferable from the viewpoint that the fat content on the aluminum surface can be removed while the aluminum hardly dissolves.

また、脱脂処理には、従来公知の脱脂剤を用いることができる。具体的には、例えば、市販されている各種脱脂剤を所定の方法で用いることにより行うことができる。   Moreover, a conventionally well-known degreasing agent can be used for a degreasing process. Specifically, for example, various commercially available degreasing agents can be used by a predetermined method.

(鏡面仕上げ処理)
鏡面仕上げ処理は、アルミニウム基板の表面の凹凸、例えば、アルミニウム基板の圧延時に発生した圧延筋等をなくして、電着法等による封孔処理の均一性や再現性を向上させるために行われる。
本発明の製造方法において、鏡面仕上げ処理は、特に限定されず、従来公知の方法を用いることができる。例えば、機械研磨、化学研磨、電解研磨が挙げられる。
(Mirror finish processing)
The mirror finishing process is performed in order to eliminate unevenness on the surface of the aluminum substrate, for example, rolling streaks generated during the rolling of the aluminum substrate, and improve the uniformity and reproducibility of the sealing process by an electrodeposition method or the like.
In the production method of the present invention, the mirror finish processing is not particularly limited, and a conventionally known method can be used. Examples thereof include mechanical polishing, chemical polishing, and electrolytic polishing.

機械研磨としては、例えば、各種市販の研磨布で研磨する方法、市販の各種研磨剤(例えば、ダイヤ、アルミナ)とバフとを組み合わせた方法等が挙げられる。具体的には、研磨剤を用いる場合、使用する研磨剤を粗い粒子から細かい粒子へと経時的に変更して行う方法が好適に例示される。この場合、最終的に用いる研磨剤としては、#1500のものが好ましい。これにより、光沢度を50%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに50%以上)とすることができる。   Examples of the mechanical polishing include a method of polishing with various commercially available polishing cloths, a method of combining various commercially available abrasives (for example, diamond, alumina) and a buff. Specifically, when an abrasive is used, a method in which the abrasive used is changed from coarse particles to fine particles over time is preferably exemplified. In this case, the final polishing agent is preferably # 1500. Thereby, the glossiness can be 50% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 50% or more).

化学研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164−165に記載されている各種の方法等が挙げられる。
また、リン酸−硝酸法、Alupol I法、Alupol V法、Alcoa R5法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好適に例示される。中でも、リン酸−硝酸法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好ましい。
化学研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
As chemical polishing, for example, “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p. Examples thereof include various methods described in 164 to 165.
Further, the phosphoric acid-nitric acid method, the Alupol I method, the Alupol V method, the Alcoa R5 method, the H 3 PO 4 —CH 3 COOH—Cu method, and the H 3 PO 4 —HNO 3 —CH 3 COOH method are preferably exemplified. . Among these, the phosphoric acid-nitric acid method, the H 3 PO 4 —CH 3 COOH—Cu method, and the H 3 PO 4 —HNO 3 —CH 3 COOH method are preferable.
By chemical polishing, the glossiness can be made 70% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 70% or more).

電解研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164−165に記載されている各種の方法;米国特許第2708655号明細書に記載されている方法;「実務表面技術」,vol.33,No.3,1986年,p.32−38に記載されている方法;等が好適に挙げられる。
電解研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
As electrolytic polishing, for example, “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p. 164-165; various methods described in US Pat. No. 2,708,655; “Practical Surface Technology”, vol. 33, no. 3, 1986, p. The method described in 32-38;
By electropolishing, the gloss can be 70% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 70% or more).

これらの方法は、適宜組み合わせて用いることができる。具体的には、例えば、研磨剤を粗い粒子から細かい粒子へと経時的に変更する機械研磨を施し、その後、電解研磨を施す方法が好適に挙げられる。   These methods can be used in appropriate combination. Specifically, for example, a method of performing mechanical polishing in which the abrasive is changed from coarse particles to fine particles with time, and then performing electrolytic polishing is preferable.

鏡面仕上げ処理により、例えば、平均表面粗さRa0.1μm以下、光沢度50%以上の表面を得ることができる。平均表面粗さRaは、0.03μm以下であるのが好ましく、0.02μm以下であるのがより好ましい。また、光沢度は70%以上であるのが好ましく、80%以上であるのがより好ましい。
なお、光沢度は、圧延方向に垂直な方向において、JIS Z8741−1997の「方法3 60度鏡面光沢」の規定に準じて求められる正反射率である。具体的には、変角光沢度計(例えば、VG−1D、日本電色工業社製)を用いて、正反射率70%以下の場合には入反射角度60度で、正反射率70%を超える場合には入反射角度20度で、測定する。
By mirror finishing, for example, a surface having an average surface roughness R a of 0.1 μm or less and a glossiness of 50% or more can be obtained. The average surface roughness Ra is preferably 0.03 μm or less, and more preferably 0.02 μm or less. Further, the glossiness is preferably 70% or more, and more preferably 80% or more.
The glossiness is a regular reflectance obtained in accordance with JIS Z8741-1997 “Method 3 60 ° Specular Gloss” in the direction perpendicular to the rolling direction. Specifically, using a variable angle gloss meter (for example, VG-1D, manufactured by Nippon Denshoku Industries Co., Ltd.), when the regular reflectance is 70% or less, the incident reflection angle is 60 degrees and the regular reflectance is 70%. In the case of exceeding, the incident / reflection angle is 20 degrees.

<陽極酸化処理(A)>
陽極酸化処理(A)は、アルミニウム基板を陽極酸化することにより、該アルミニウム基板表面にマイクロポアを有する陽極酸化皮膜を形成する処理であり、従来公知の方法を用いることができる。
<Anodizing treatment (A)>
The anodizing treatment (A) is a treatment for forming an anodized film having micropores on the surface of the aluminum substrate by anodizing the aluminum substrate, and a conventionally known method can be used.

上記陽極酸化処理は、本発明の金属充填微細構造体を異方導電性部材として用いる場合は、マイクロポアの独立性が重要となるため、例えば、特許第3,714,507号公報、特開2002−285382号公報、特開2006−124827号公報、特開2007−231339号公報、特開2007−231405公報、特開2007−231340号公報、特開2007−231340号公報、特開2007−238988号公報等に記載されている自己規則化陽極酸化処理であるのが好ましい。
また、上記陽極酸化処理は、後述する金属充填処理工程における電解めっきを施しやすい観点から、下地基板のアルミニウムがマイクロポア底部に露出した特開2002−332578号公報のような形態で施すのが好ましい。
これらの処理は、各特許公報に記載されている処理条件で施すのが好ましい。
In the anodizing treatment, when the metal-filled microstructure of the present invention is used as an anisotropic conductive member, since the independence of the micropores is important, for example, Japanese Patent No. 3,714,507, JP, JP-A-2002-285382, JP-A-2006-1224827, JP-A-2007-231339, JP-A-2007-231405, JP-A-2007-231340, JP-A-2007-231340, JP-A-2007-233898 It is preferable that the self-ordering anodizing treatment described in Japanese Patent Publication No.
The anodizing treatment is preferably carried out in the form as disclosed in Japanese Patent Application Laid-Open No. 2002-332578 in which the aluminum of the base substrate is exposed at the bottom of the micropore from the viewpoint of easy electroplating in the metal filling process described later. .
These treatments are preferably performed under the treatment conditions described in each patent publication.

本発明の製造方法においては、上記陽極酸化処理(A)に代えて、以下に示す種々の方法により貫通孔の起点となる窪みを形成することもできる。   In the manufacturing method of the present invention, in place of the anodic oxidation treatment (A), a depression serving as a starting point of the through hole can be formed by various methods shown below.

(物理的方法)
例えば、インプリント法(突起を有する基板またはロールをアルミニウム板に圧接し、凹部を形成する、転写法、プレスパターニング法)を用いる方法が挙げられる。具体的には、複数の突起を表面に有する基板をアルミニウム表面に押し付けて窪みを形成させる方法が挙げられる。例えば、特開平10−121292号公報に記載されている方法を用いることができる。
また、アルミニウム表面にポリスチレン球を稠密状態で配列させ、その上からSiO2を蒸着した後、ポリスチレン球を除去し、蒸着されたSiO2をマスクとして基板をエッチングして窪みを形成させる方法も挙げられる。
(Physical method)
For example, a method using an imprint method (a transfer method or a press patterning method in which a substrate or a roll having a protrusion is pressed against an aluminum plate to form a recess) can be used. Specifically, a method of forming a depression by pressing a substrate having a plurality of protrusions on the surface thereof against the aluminum surface can be mentioned. For example, a method described in JP-A-10-121292 can be used.
Another example is a method in which polystyrene spheres are arranged in a dense state on the aluminum surface, SiO 2 is vapor-deposited thereon, then the polystyrene spheres are removed, and the substrate is etched using the vapor-deposited SiO 2 as a mask to form depressions. It is done.

(粒子線法)
粒子線法は、アルミニウム表面に粒子線を照射して窪みを形成させる方法である。粒子線法は、窪みの位置を自由に制御することができるという利点を有する。
粒子線としては、例えば、荷電粒子ビーム、集束イオンビーム(FIB:Focused Ion Beam)、電子ビームが挙げられる。
粒子線法としては、例えば、特開2001−105400号公報に記載されている方法を用いることもできる。
(Particle beam method)
The particle beam method is a method in which a hollow is formed by irradiating the aluminum surface with a particle beam. The particle beam method has an advantage that the position of the depression can be freely controlled.
Examples of the particle beam include a charged particle beam, a focused ion beam (FIB), and an electron beam.
As the particle beam method, for example, a method described in JP-A-2001-105400 can be used.

(ブロックコポリマー法)
ブロックコポリマー法は、アルミニウム表面にブロックコポリマー層を形成させ、熱アニールによりブロックコポリマー層に海島構造を形成させた後、島部分を除去して窪みを形成させる方法である。
ブロックコポリマー法としては、例えば、特開2003−129288号公報に記載されている方法を用いることができる。
(Block copolymer method)
The block copolymer method is a method in which a block copolymer layer is formed on an aluminum surface, a sea-island structure is formed in the block copolymer layer by thermal annealing, and then an island portion is removed to form a depression.
As a block copolymer method, the method described in Unexamined-Japanese-Patent No. 2003-129288 can be used, for example.

(レジストパターン・露光・エッチング法)
レジストパターン・露光・エッチング法は、フォトリソグラフィあるいは電子ビームリソグラフィ法によりアルミニウム板表面のレジストに露光および現像を施し、レジストパターンを形成した後これをエッチングする。レジストを設け、エッチングしてアルミニウム表面まで貫通した窪みを形成させる方法である。
(Resist pattern, exposure, etching method)
In the resist pattern / exposure / etching method, the resist on the surface of the aluminum plate is exposed and developed by photolithography or electron beam lithography to form a resist pattern and then etched. In this method, a resist is provided and etched to form a recess penetrating to the aluminum surface.

本発明の製造方法においては、上述した物理的方法、粒子線法、ブロックコポリマー法、レジストパターン・露光・エッチング法を採用する場合には、これらの方法でアルミニウム基板の表面に電解起点を与えた後に更に陽極酸化処理を施すことにより、独立性の高いマイクロポアを形成することもできる。   In the production method of the present invention, when the physical method, the particle beam method, the block copolymer method, the resist pattern / exposure / etching method described above are employed, an electrolytic starting point is given to the surface of the aluminum substrate by these methods. A highly independent micropore can also be formed by further anodizing later.

<分離処理(B)>
分離処理(B)は、上記陽極酸化処理(A)後にアルミニウム基板を除去し、陽極酸化皮膜をアルミニウム基板から分離する処理である。
したがって、アルミニウム除去処理には、アルミナは溶解せず、アルミニウムを溶解する処理液を用いる。
<Separation process (B)>
The separation treatment (B) is a treatment for removing the aluminum substrate after the anodizing treatment (A) and separating the anodized film from the aluminum substrate.
Therefore, in the aluminum removal treatment, a treatment solution that does not dissolve alumina but dissolves aluminum is used.

処理液としては、アルミナは溶解せず、アルミニウムを溶解する液であれば特に限定されないが、例えば、塩化水銀、臭素/メタノール混合物、臭素/エタノール混合物、王水、塩酸/塩化銅混合物等の水溶液等が挙げられる。
濃度としては、0.01〜10mol/Lが好ましく、0.05〜5mol/Lがより好ましい。
処理温度としては、−10℃〜80℃が好ましく、0℃〜60℃が好ましい。
The treatment liquid is not particularly limited as long as it does not dissolve alumina and dissolves aluminum. For example, an aqueous solution such as mercury chloride, bromine / methanol mixture, bromine / ethanol mixture, aqua regia, hydrochloric acid / copper chloride mixture, etc. Etc.
As a density | concentration, 0.01-10 mol / L is preferable and 0.05-5 mol / L is more preferable.
As processing temperature, -10 degreeC-80 degreeC are preferable, and 0 degreeC-60 degreeC is preferable.

分離処理は、上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒〜5時間が好ましく、1分〜3時間がより好ましい。   The separation process is performed by contacting with the above-described processing liquid. The method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred. The contact time at this time is preferably 10 seconds to 5 hours, and more preferably 1 minute to 3 hours.

分離処理後の陽極酸化皮膜の膜厚は、10〜1000μmであるのが好ましく、10〜500μmであるのが更に好ましい。   The thickness of the anodized film after the separation treatment is preferably 10 to 1000 μm, and more preferably 10 to 500 μm.

分離処理後、後述する貫通化処理(C)を行う前に、陽極酸化皮膜を水洗処理するのが好ましい。水和によるマイクロポアのポア径の変化を抑制するため、水洗処理は30℃以下で実施することが好ましい。   After the separation treatment, the anodized film is preferably washed with water before the penetration treatment (C) described later. In order to suppress changes in the pore diameter of the micropores due to hydration, the water washing treatment is preferably performed at 30 ° C. or lower.

<貫通化処理(C)>
貫通化処理(C)は、上記分離処理(B)により分離された陽極酸化皮膜のマイクロポアを貫通させる処理である。
貫通化処理では、マイクロポアを有する陽極酸化皮膜を、酸水溶液またはアルカリ水溶液に浸せきさせることにより、陽極酸化皮膜を部分的に溶解させる。これにより、マイクロポア底部の陽極酸化皮膜が除去され、マイクロポアからなる貫通孔(以下、「マイクロポア貫通孔」ともいう。)が形成される。
貫通化処理により、陽極酸化皮膜に存在するマイクロポアのうち70%以上が貫通することが好ましく、85%以上であることがより好ましく、95%以上であることが更に好ましい。
<Penetration treatment (C)>
The penetration treatment (C) is a treatment for penetrating the micropores of the anodized film separated by the separation treatment (B).
In the penetration treatment, the anodized film having micropores is immersed in an acid aqueous solution or an alkali aqueous solution to partially dissolve the anodized film. As a result, the anodized film on the bottom of the micropore is removed, and a through hole made of micropore (hereinafter also referred to as “micropore through hole”) is formed.
It is preferable that 70% or more of the micropores present in the anodized film penetrate through the penetration treatment, more preferably 85% or more, and still more preferably 95% or more.

マイクロポア底部の陽極酸化皮膜の除去は、予めpH緩衝液に浸漬させてマイクロポアによる孔の開口側から孔内にpH緩衝液を充填した後に、開口部の逆面、即ち、酸化皮膜の底部に酸水溶液またはアルカリ水溶液に接触させる方法により行うのが好ましい。   The removal of the anodic oxide film at the bottom of the micropore is performed by immersing in a pH buffer solution in advance and filling the hole with the pH buffer solution from the opening side of the hole by the micropore. It is preferable to carry out by a method of contacting with an acid aqueous solution or an alkali aqueous solution.

貫通化処理に酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は1〜10質量%であるのが好ましい。酸水溶液の温度は、25〜40℃であるのが好ましい。
貫通化処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1〜5質量%であるのが好ましい。アルカリ水溶液の温度は、20〜35℃であるのが好ましい。
具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸せき時間は、8〜120分であるのが好ましく、10〜90分であるのがより好ましく、15〜60分であるのが更に好ましい。
When an acid aqueous solution is used for the penetration treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid or a mixture thereof. The concentration of the acid aqueous solution is preferably 1 to 10% by mass. The temperature of the acid aqueous solution is preferably 25 to 40 ° C.
When using an aqueous alkali solution for the penetration treatment, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution or 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. .
The immersion time in the acid aqueous solution or alkali aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and still more preferably 15 to 60 minutes.

貫通化処理後の陽極酸化皮膜の膜厚は、10〜1000μmであるのが好ましく、50〜1000μmであるのがより好ましく、60〜500μmであるのが更に好ましい。   The thickness of the anodized film after the penetration treatment is preferably 10 to 1000 μm, more preferably 50 to 1000 μm, and further preferably 60 to 500 μm.

貫通化処理後、陽極酸化皮膜を水洗処理する。水和によるマイクロポア貫通孔のポア径の変化を抑制するため、水洗処理は30℃以下で実施することが好ましい。   After the penetration treatment, the anodized film is washed with water. In order to suppress a change in the pore diameter of the micropore through-hole due to hydration, the water washing treatment is preferably performed at 30 ° C. or lower.

本発明の製造方法においては、上述した分離処理(B)および貫通化処理(C)は、これらの処理を同時に施す方法であってもよい。
具体的には、陽極酸化皮膜の下方、即ち、陽極酸化皮膜におけるアルミニウム基板側の部分を、レーザー等による切削処理や種々の研磨処理等を用いて物理的に除去し、マイクロポア貫通孔を有する陽極酸化皮膜とする方法が好適に例示される。
In the production method of the present invention, the separation process (B) and the penetration process (C) described above may be a method of performing these processes simultaneously.
Specifically, the portion below the anodized film, that is, the portion of the anodized film on the aluminum substrate side is physically removed by using a laser cutting process or various polishing processes to have a micropore through hole. A method of forming an anodized film is preferably exemplified.

[貫通孔]
本発明の製造方法に用いられる絶縁性基体は、上述したように、平均開孔径が10〜5000nmであり、平均深さが10〜1000μmであり、かつ、密度が1×106〜1×1010/mm2の貫通孔を有する。
本発明の製造方法においては、後述するように、金属充填処理工程によって上記貫通孔に金属を充填し、研磨除去処理工程によって絶縁性基材の表面に付着した金属を除去することで、異方導電性部材として用いることができる金属充填微細構造体を得ることができる。
[Through hole]
As described above, the insulating substrate used in the production method of the present invention has an average pore diameter of 10 to 5000 nm, an average depth of 10 to 1000 μm, and a density of 1 × 10 6 to 1 × 10 6. It has a 10 / mm 2 through hole.
In the production method of the present invention, as will be described later, the metal is filled in the through-hole by a metal filling treatment step, and the metal adhering to the surface of the insulating substrate is removed by the polishing removal treatment step. A metal-filled microstructure that can be used as a conductive member can be obtained.

上記貫通孔の平均開孔径は、金属充填後に異方導電性部材として使用した際に、電気信号に対する十分な応答が得られる理由から、10〜1000nmであるのが好ましく、20〜800nmであるのがより好ましく、40〜600nmであるのが更に好ましく、50〜400nmであるのが特に好ましい。
同様に、上記貫通孔の平均深さは、50〜1000μmであるのが好ましく、70〜700μmであるのがより好ましく、100〜500μmであるのが更に好ましい。
同様に、上記貫通孔のアスペクト比は、最低でも100以上であるのが好ましく、平均値では500以上であるのが好ましい。
The average opening diameter of the through holes is preferably 10 to 1000 nm, and preferably 20 to 800 nm, because a sufficient response to an electric signal can be obtained when used as an anisotropic conductive member after metal filling. Is more preferable, it is still more preferable that it is 40-600 nm, and it is especially preferable that it is 50-400 nm.
Similarly, the average depth of the through holes is preferably 50 to 1000 μm, more preferably 70 to 700 μm, and still more preferably 100 to 500 μm.
Similarly, the aspect ratio of the through hole is preferably at least 100 or more, and an average value of 500 or more is preferred.

また、上記貫通孔の密度は、電解めっき方法による金属充填の均一性向上の観点から、密度が1×107〜8×109/mm2であるのが好ましく、1×108〜5×109/mm2であるのが更に好ましい。 The density of the through holes is preferably 1 × 10 7 to 8 × 10 9 / mm 2 from the viewpoint of improving the uniformity of metal filling by the electrolytic plating method, and preferably 1 × 10 8 to 5 ×. More preferably, it is 10 9 / mm 2 .

更に、金属充填後に異方導電性部材として使用した際の導電部の平面方向の絶縁性をより確実に担保する観点から、上記貫通孔について下記式(i)により定義される規則化度が50%以上であるのが好ましい。
規則化度(%)=B/A×100 (i)
上記式(i)中、Aは、測定範囲における貫通孔の全数を表す。Bは、一の貫通孔の重心を中心とし、他の貫通孔の縁に内接する最も半径が短い円を描いた場合に、その円の内部に上記一の貫通孔以外の貫通孔の重心を6個含むことになる上記一の貫通孔の測定範囲における数を表す。
Furthermore, the degree of ordering defined by the following formula (i) for the through-hole is 50 from the viewpoint of ensuring the insulation in the planar direction of the conductive portion when used as an anisotropic conductive member after metal filling. % Or more is preferable.
Ordering degree (%) = B / A × 100 (i)
In the above formula (i), A represents the total number of through holes in the measurement range. B is centered on the center of gravity of one through-hole, and when a circle with the shortest radius inscribed in the edge of the other through-hole is drawn, the center of gravity of the through-holes other than the one through-hole is set inside the circle. The number in the measurement range of the one through-hole to be included is represented.

図1は、貫通孔の規則化度を算出する方法の説明図である。図1を用いて、上記式(i)をより具体的に説明する。
図1(A)に示される貫通孔101は、貫通孔101の重心を中心とし、他の貫通孔の縁に内接する最も半径が短い円103(貫通孔102に内接している。)を描いた場合に、円3の内部に貫通孔101以外の貫通孔の重心を6個含んでいる。したがって、貫通孔101は、Bに算入される。
図1(B)に示される貫通孔104は、貫通孔104の重心を中心とし、他の貫通孔の縁に内接する最も半径が短い円106(貫通孔105に内接している。)を描いた場合に、円106の内部に貫通孔104以外の貫通孔の重心を5個含んでいる。したがって、貫通孔104は、Bに算入されない。
また、図1(B)に示される貫通孔107は、貫通孔107の重心を中心とし、他の貫通孔の縁に内接する最も半径が短い円109(貫通孔108に内接している。)を描いた場合に、円109の内部に貫通孔107以外の貫通孔の重心を7個含んでいる。したがって、貫通孔107は、Bに算入されない。
FIG. 1 is an explanatory diagram of a method for calculating the degree of ordering of through holes. The above formula (i) will be described more specifically with reference to FIG.
The through-hole 101 shown in FIG. 1A draws a circle 103 (inscribed in the through-hole 102) having the shortest radius inscribed in the edge of another through-hole with the center of gravity of the through-hole 101 as the center. In such a case, the center of gravity of the through holes other than the through hole 101 is included in the circle 3. Therefore, the through hole 101 is included in B.
The through-hole 104 shown in FIG. 1B draws a circle 106 (inscribed in the through-hole 105) having the shortest radius that is centered on the center of gravity of the through-hole 104 and inscribed in the edge of the other through-hole. In this case, the center of the through hole other than the through hole 104 is included in the circle 106. Therefore, the through hole 104 is not included in B.
The through-hole 107 shown in FIG. 1B is centered on the center of gravity of the through-hole 107 and has the shortest radius 109 inscribed in the edge of the other through-hole (inscribed in the through-hole 108). Is drawn, the center of the through hole other than the through hole 107 is included in the circle 109. Therefore, the through hole 107 is not included in B.

また、金属充填後に異方導電性部材として使用した際の導電部の平面方向の絶縁性をより確実に担保する観点から、隣接する上記貫通孔同士の幅は、10nm以上であるのが好ましく、20〜100nmであるのがより好ましく、20〜50nmであるのが更に好ましい。   In addition, from the viewpoint of ensuring the insulation in the planar direction of the conductive portion when used as an anisotropic conductive member after metal filling, the width of the adjacent through holes is preferably 10 nm or more, More preferably, it is 20-100 nm, and it is still more preferable that it is 20-50 nm.

更に、金属充填後に異方導電性部材として使用した際の導通路直径と導通路間の幅(絶縁性の隔壁厚)とのバランスがとりやすいという理由から、隣接する貫通孔の中心間距離は、20〜500nmであるのが好ましく、40〜200nmであるのがより好ましく、50〜140nmであるのが更に好ましい。   Furthermore, the distance between the centers of adjacent through-holes is because the balance between the diameter of the conductive path and the width between the conductive paths (insulating partition wall thickness) when used as an anisotropic conductive member after metal filling is easy. It is preferably 20 to 500 nm, more preferably 40 to 200 nm, and still more preferably 50 to 140 nm.

[金属充填処理工程]
金属充填処理工程では、電解めっき処理により上記貫通孔へ金属を充填する。但し、金属充填処理工程では、下記(1),(2)を満たすように電解めっき処理を実施する必要がある。
(1)上記貫通孔への金属の仮想充填率が100%よりも大きくなるように電解めっき処理を実施する。
(2)上記貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差が20nm以下となるように電解めっき処理を実施する。
[Metal filling process]
In the metal filling process, the through hole is filled with metal by electrolytic plating. However, in the metal filling process, it is necessary to perform electrolytic plating so as to satisfy the following (1) and (2).
(1) The electrolytic plating process is performed so that the virtual filling rate of the metal into the through hole is larger than 100%.
(2) The electrolytic plating treatment is performed so that the difference between the average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate is 20 nm or less. carry out.

電解めっき処理によって貫通孔に金属を充填する際、上記貫通孔への金属の仮想充填率が100%となった時点で、理論上は絶縁性基材に存在する全ての貫通孔に金属が完全に充填されることになる。
しかしながら、現実には、電解めっき処理時における貫通孔への金属の充填の度合い(貫通孔への金属の充填されやすさ)は、絶縁性基材に存在する全ての貫通孔で決して同一ではない。たとえば、絶縁性基材における貫通孔の位置によって、貫通孔への金属の充填の度合いは異なる。この結果、上記貫通孔への金属の仮想充填率が100%となった時点で電解めっき処理を終了すると、ある貫通孔では金属が完全に充填されていても、他の貫通孔では金属の充填が不十分となる。貫通孔への金属の充填度にこのようなばらつきが生じることは、金属充填微細構造体を異方導電性部材として使用するうえで好ましくない。
When filling the through-holes with metal by electrolytic plating, when the virtual filling rate of the metal into the through-holes reaches 100%, theoretically, all the through-holes existing in the insulating substrate are completely metal. Will be filled.
However, in reality, the degree of metal filling in the through holes during the electroplating process (ease of filling the through holes with metal) is never the same for all the through holes present in the insulating substrate. . For example, the degree of metal filling in the through hole varies depending on the position of the through hole in the insulating base material. As a result, when the electroplating process is completed when the virtual filling rate of the metal in the through hole reaches 100%, the metal is filled in the other through hole even if the metal is completely filled in the through hole. Is insufficient. Such variation in the filling degree of the metal into the through hole is not preferable when the metal-filled microstructure is used as the anisotropic conductive member.

このため、本発明の金属充填処理工程では、絶縁性基材に存在する全ての貫通孔が金属で完全に充填されるように、上記貫通孔への金属の仮想充填率が100%よりも大きくなるように電解めっき処理を実施する。この場合、電解めっきによる金属析出量が過剰となるので、貫通孔からあふれた金属が絶縁性基材の表面に付着して、該絶縁性基材の表面に金属膜を形成する。
上記の観点からは、上記貫通孔への金属の仮想充填率が101%以上となるように電解めっき処理を実施することが好ましく、110%以上となるように電解めっき処理を実施することがより好ましい。
但し、絶縁性基材の表面に形成される金属膜は研磨除去処理工程で除去されるため、電解めっきによる金属析出量が過度に過剰になることは、電解めっき処理で使用する金属原料の無駄が多くなるうえ、電解めっき処理および研磨除去処理に要する時間が長くなり、微細構造体の生産性が低下するので好ましくない。このため、上記貫通孔への金属の仮想充填率が1100%以下となるように電解めっき処理を実施することが好ましく、300%以下となるように電解めっき処理を実施することがより好ましい。
For this reason, in the metal filling process of the present invention, the virtual filling rate of the metal to the through hole is larger than 100% so that all the through holes existing in the insulating base material are completely filled with the metal. The electrolytic plating process is performed so as to be. In this case, since the amount of metal deposited by electrolytic plating becomes excessive, the metal overflowing from the through hole adheres to the surface of the insulating base material and forms a metal film on the surface of the insulating base material.
From the above viewpoint, it is preferable to carry out the electrolytic plating treatment so that the virtual filling rate of the metal into the through hole is 101% or more, and it is more preferable to carry out the electrolytic plating treatment so as to be 110% or more. preferable.
However, since the metal film formed on the surface of the insulating substrate is removed in the polishing removal process, the excessive amount of metal deposited by electrolytic plating is a waste of the metal raw material used in the electrolytic plating process. In addition, the time required for the electrolytic plating process and the polishing removal process is increased, and the productivity of the fine structure is lowered. For this reason, it is preferable to perform an electrolytic plating process so that the virtual filling rate of the metal to the said through-hole may be 1100% or less, and it is more preferable to perform an electrolytic plating process so that it may become 300% or less.

上述したように、絶縁性基材に存在する全ての貫通孔を金属で完全に充填するためには、上記貫通孔への金属の仮想充填率が100%よりも大きくなるように電解めっき処理を実施することが好ましい。
しかしながら、貫通孔内に充填される金属と、貫通孔からあふれて絶縁性基材の表面に付着して金属膜を形成する金属と、では結晶粒子径に差が生じる。この原因としては、電解めっきによって析出した金属はその結晶粒子が経時的に成長することが挙げられる。また、貫通孔内部は結晶粒子の成長に際して貫通孔の孔径による制限がある系であるのに対し、貫通孔からあふれた部分は開放系であるため、結晶粒子の成長性が異なることが挙げられる。
貫通孔内に充填される金属と、貫通孔からあふれて絶縁性基材の表面に付着して金属膜を形成する金属と、で、結晶粒子径に差が生じると、貫通孔内に充填されている金属における残留応力と、絶縁性基材の表面に形成されている金属膜における残留応力と、の間に差が生じる。このような残留応力の差が大きくなると、金属充填微細構造体に反りが生じ、微細構造体の平坦度が低下するので問題である。
As described above, in order to completely fill all the through-holes existing in the insulating base material with metal, electrolytic plating treatment is performed so that the virtual filling rate of the metal into the through-holes is larger than 100%. It is preferable to implement.
However, there is a difference in crystal particle diameter between the metal filled in the through hole and the metal overflowing from the through hole and adhering to the surface of the insulating base material to form a metal film. This is because the crystal particles of the metal deposited by electrolytic plating grow with time. In addition, the inside of the through hole is a system that is limited by the hole diameter of the through hole when crystal grains are grown, whereas the portion overflowing from the through hole is an open system, so the crystal grain growth is different. .
If there is a difference in crystal particle size between the metal filled in the through hole and the metal that overflows the through hole and adheres to the surface of the insulating base material to form a metal film, the through hole is filled. There is a difference between the residual stress in the metal and the residual stress in the metal film formed on the surface of the insulating substrate. When such a difference in residual stress is increased, the metal-filled microstructure is warped and the flatness of the microstructure is lowered, which is a problem.

本発明の金属充填処理工程では、上記貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差が20nm以下となるように電解めっき処理を実施することで、貫通孔内に充填されている金属における残留応力と、絶縁性基材の表面に形成されている金属膜における残留応力と、の差を小さくして、金属充填微細構造体での反りの発生を抑制する。
上記の観点からは、上記貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差が20nm以下となるように電解めっき処理を実施することが好ましく、15nm以下となるように電解めっき処理を実施することがより好ましく、10nm以下となるように電解めっき処理を実施することがさらに好ましい。
なお、上記貫通孔内部に充填される金属の平均結晶粒子径、および、上記絶縁性基材の表面に付着する金属の平均結晶粒子径は、後述する実施例に記載の手順で測定することができる。
In the metal filling treatment step of the present invention, the difference between the average crystal particle size of the metal filled in the through hole and the average crystal particle size of the metal adhering to the surface of the insulating substrate is 20 nm or less. By carrying out the electrolytic plating process as described above, the difference between the residual stress in the metal filled in the through hole and the residual stress in the metal film formed on the surface of the insulating substrate is reduced, Suppression of warpage in the metal-filled microstructure is suppressed.
From the above viewpoint, electrolysis is performed so that the difference between the average crystal particle size of the metal filled in the through hole and the average crystal particle size of the metal adhering to the surface of the insulating substrate is 20 nm or less. Plating is preferably performed, more preferably electrolytic plating is performed so as to be 15 nm or less, and further preferably electrolytic plating is performed so as to be 10 nm or less.
The average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate can be measured by the procedure described in the examples described later. it can.

金属充填処理工程において、上記貫通孔内部に充填される金属の平均結晶粒子径、および、上記絶縁性基材の表面に付着する金属の平均結晶粒子径が、いずれも上記貫通孔の平均開孔径以下となるように電解めっき処理を実施することが、貫通孔内に充填されている金属における残留応力と、絶縁性基材の表面に形成されている金属膜における残留応力と、の差をより小さくできることから好ましい。
また、上記貫通孔内部に充填される金属の平均結晶粒子径、および、上記絶縁性基材の表面に付着する金属の平均結晶粒子径が、いずれも上記貫通孔の平均開孔径以下となるように電解めっき処理を実施することにより、貫通孔への金属の充填に伴うこれらの残留応力自体を低減することができる。すなわち、貫通孔内に充填されている金属における残留応力、および、絶縁性基材の表面に形成されている金属膜における残留応力を低減することができる。
In the metal filling treatment step, the average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate are both the average opening diameter of the through hole. Performing the electroplating process so as to reduce the difference between the residual stress in the metal filled in the through hole and the residual stress in the metal film formed on the surface of the insulating substrate. It is preferable because it can be made small.
Further, the average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate are both equal to or smaller than the average opening diameter of the through hole. By carrying out the electroplating process, it is possible to reduce the residual stress itself accompanying the filling of the metal into the through hole. That is, the residual stress in the metal filled in the through hole and the residual stress in the metal film formed on the surface of the insulating substrate can be reduced.

金属充填微細構造体で発生する反りの抑制の観点からは、貫通孔内に充填されている金属における残留応力と、絶縁性基材の表面に形成されている金属膜における残留応力と、の差が30MPa以下であることが好ましく、25MPa以下であることが好ましく、15MPa以下であることがさらに好ましい。
また、貫通孔内部に充填されている金属における残留応力、および、絶縁性基材の表面に形成されている金属膜における残留応力が、いずれも30MPa以下であることが好ましく、25MPa以下であることが好ましく、15MPa以下であることがさらに好ましい。
From the viewpoint of suppressing the warpage generated in the metal-filled microstructure, the difference between the residual stress in the metal filled in the through hole and the residual stress in the metal film formed on the surface of the insulating substrate Is preferably 30 MPa or less, more preferably 25 MPa or less, and even more preferably 15 MPa or less.
Also, the residual stress in the metal filled in the through hole and the residual stress in the metal film formed on the surface of the insulating substrate are both preferably 30 MPa or less, and 25 MPa or less. Is preferable, and it is further more preferable that it is 15 MPa or less.

金属充填処理工程では、下記(1)〜(4)を満たすように電解めっき処理を実施することによって、上記貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差を20nm以下にすることができる。
(1)定電流電解めっき処理として電解めっき処理を開始する。
(2)上記貫通孔への金属の仮想充填率が75〜125%に達した時点で電解めっき時の電流値をマイナス方向へ増大させる。
(3)上記貫通孔への金属の仮想充填率が101%以上となるまで電解めっき処理を実施する。
(4)電解めっき時の電流値をマイナス方向へ増大させてから電解めっき処理を終了するまでの上記貫通孔への金属の仮想充填率が1%以上となるように電解めっき処理を実施する。
ここで、「電解めっき時の電流値」とは、単位面積あたりの電流値(mA/dm2)、即ち、電流密度のことである。
「マイナス方向」とは、陰極における金属の析出反応(例えば、銅の場合:Cu2++2e-→Cu)が増加する方向、すなわち、電解槽に流れる電気量としては増大する方向をいい、電流値(電流量)としては減少する方向である。
In the metal filling process, by carrying out an electrolytic plating process so as to satisfy the following (1) to (4), the average crystal particle diameter of the metal filled in the through hole and the surface of the insulating base material The difference between the average crystal particle diameter of the metal adhering to the film can be 20 nm or less.
(1) An electrolytic plating process is started as a constant current electrolytic plating process.
(2) When the virtual filling rate of the metal in the through hole reaches 75 to 125%, the current value during electrolytic plating is increased in the minus direction.
(3) The electroplating process is performed until the virtual filling rate of the metal in the through hole becomes 101% or more.
(4) The electrolytic plating treatment is performed so that the virtual filling rate of the metal in the through hole from the time when the current value during the electrolytic plating is increased in the minus direction to the end of the electrolytic plating treatment is 1% or more.
Here, the “current value during electroplating” is a current value per unit area (mA / dm 2 ), that is, a current density.
The “minus direction” refers to the direction in which the metal deposition reaction (for example, in the case of copper: Cu 2+ + 2e → Cu) increases, that is, the direction in which the amount of electricity flowing through the electrolytic cell increases, The value (current amount) is decreasing.

上記(1)に示すように、定電流電解めっき処理として電解めっき処理を開始した後、上記(2)に示すように、電解めっき時の電流値をマイナス方向へ増大させて、陰極における金属の析出反応の反応性を高めることによって、上記絶縁性基材の表面に付着する金属の結晶粒子の成長を促進させることができる。これにより、貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差を小さくし、両者の平均結晶粒子径の差を20nm以下にすることができる。
なお、上記(3)に示すように、上記貫通孔への金属の仮想充填率が101%以上となるまで電解めっき処理を実施するのは、[0076]に記載したように、上記絶縁性基材に存在する全ての貫通孔が金属で完全に充填するためである。
As shown in the above (1), after starting the electroplating process as the constant current electroplating process, as shown in the above (2), the current value during the electroplating is increased in the minus direction, and the metal in the cathode is increased. By increasing the reactivity of the precipitation reaction, it is possible to promote the growth of crystal grains of the metal adhering to the surface of the insulating base material. As a result, the difference between the average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating base is reduced, and the difference between the average crystal particle diameters of the two is reduced. Can be made 20 nm or less.
As described in (3) above, as described in [0076], the electrolytic plating treatment is performed until the virtual filling rate of the metal in the through-hole becomes 101% or more. This is because all the through holes present in the material are completely filled with metal.

但し、電解めっき時の電流値をマイナス方向へ増大させるタイミングが早すぎると、貫通孔内部に充填されている金属の結晶粒子の成長も促進されるので、貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差を20nm以下にすることができない。このため、上記(2)に示すように、上記貫通孔への金属の仮想充填率が75%に達した時点、または、それ以降に電解めっき時の電流値をマイナス方向へ増大させる必要がある。
一方、電解めっき時の電流値をマイナス方向へ増大させるタイミングが遅すぎると、上記絶縁性基材の表面に付着する金属の結晶粒子の成長を促進させることができず、貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差を20nm以下にすることができない。このため、上記(2)に示すように、上記貫通孔への金属の仮想充填率が125%に達した時点、または、それ以前に電解めっき時の電流値をマイナス方向へ増大させる必要がある。
However, if the timing of increasing the current value during electroplating in the negative direction is too early, the growth of crystal grains of the metal filled in the through holes is also promoted, so the average of the metals filled in the through holes The difference between the crystal particle diameter and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate cannot be 20 nm or less. For this reason, as shown in the above (2), it is necessary to increase the current value in the electroplating in the negative direction when the virtual filling rate of the metal in the through hole reaches 75% or after that. .
On the other hand, if the timing of increasing the current value during electroplating in the negative direction is too late, the growth of metal crystal particles adhering to the surface of the insulating base material cannot be promoted, and the inside of the through hole is filled. The difference between the average crystal particle diameter of the metal and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate cannot be 20 nm or less. For this reason, as shown in (2) above, it is necessary to increase the current value during electroplating in the negative direction when the virtual filling rate of the metal in the through-hole reaches 125% or before that. .

上記の観点からは、上記貫通孔への金属の仮想充填率が、80〜120%に達した時点で、電解めっき時の電流値をマイナス方向へ増大させることが好ましく、90〜110%に達した時点で、電解めっき時の電流値をマイナス方向へ増大させることがより好ましい。   From the above viewpoint, when the virtual filling rate of the metal in the through hole reaches 80 to 120%, it is preferable to increase the current value at the time of electrolytic plating in the negative direction, reaching 90 to 110%. At this point, it is more preferable to increase the current value during electroplating in the negative direction.

また、電解めっき時の電流値をマイナス方向へ増大させてから電解めっきを終了するまでの時間が短すぎると、上記絶縁性基材の表面に付着する金属の結晶粒子の成長を促進させることができず、貫通孔内部に充填される金属の平均結晶粒子径と、上記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差を20nm以下にすることができない。このため、上記(4)に示すように、電解めっき時の電流値をマイナス方向へ増大させてから電解めっき処理を終了するまでの上記貫通孔への金属の仮想充填率が1%以上となるように電解めっき処理を実施する必要がある。
この点において、上記(4)に示すように、電解めっき時の電流値をマイナス方向へ増大させてから電解めっき処理を終了するまでの上記貫通孔への金属の仮想充填率が、5%以上となるように電解めっき処理を実施することが好ましく、10%以上となるように電解めっき処理を実施することがより好ましい。
In addition, if the time from the increase of the current value during electroplating in the negative direction to the end of electroplating is too short, the growth of metal crystal particles adhering to the surface of the insulating substrate may be promoted. The difference between the average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal adhering to the surface of the insulating substrate cannot be made 20 nm or less. For this reason, as shown in said (4), the virtual filling rate of the metal to the said through-hole after increasing the electric current value at the time of electroplating to a minus direction until completion | finish of an electroplating process will be 1% or more. Thus, it is necessary to carry out the electrolytic plating process.
In this respect, as shown in (4) above, the virtual filling rate of the metal in the through hole from when the current value at the time of electrolytic plating is increased in the minus direction until the end of the electrolytic plating treatment is 5% or more It is preferable to carry out the electrolytic plating treatment so as to become, and it is more preferable to carry out the electrolytic plating treatment so as to be 10% or more.

また、上記の観点からは、上記電解めっき時の電流値のマイナス方向への増大量が、0.5A/dm2以上であることが好ましく、2A/dm2以上であることがより好ましい。
但し、電解めっき時の電流値、すなわち、電流密度が大きすぎると局所的にめっき液濃度が低下して部分的にめっき不良が起きるおそれがあることから、上記電解めっき時の電流値のマイナス方向への増大量は50A/dm2以下であることが好ましく、20A/dm2以下であることがより好ましい。
From the above viewpoint, the amount of increase in the negative direction of the current value during the electrolytic plating is preferably 0.5 A / dm 2 or more, and more preferably 2 A / dm 2 or more.
However, the current value during electroplating, that is, if the current density is too large, the plating solution concentration may locally decrease and partial plating failure may occur. The increase amount is preferably 50 A / dm 2 or less, and more preferably 20 A / dm 2 or less.

また、上記の観点からは、電解めっき時の電流値のマイナス方向へ増大させる際の電流値の変化率が0.1A/dm2・秒以上であることが好ましく、0.5A/dm2・秒以上であることがより好ましい。 From the above viewpoint, the rate of change of the current value when the current value during electroplating is increased in the negative direction is preferably 0.1 A / dm 2 · sec or more, preferably 0.5 A / dm 2 · More preferably, it is at least 2 seconds.

金属充填処理工程において、電解めっき時の電流値をめっき時間に対して連続的にマイナス方向へ増大させることが、貫通孔に金属をより良好に充填させることができるから好ましい。
ここで、「連続的」とは、めっき時間に対して、電解めっき時の電流値を常に変化させることをいい、パルス電解のように周期的に電流密度を変化させる態様は含まない。
In the metal filling treatment step, it is preferable to continuously increase the current value at the time of electrolytic plating in the minus direction with respect to the plating time because the through holes can be filled with metal better.
Here, “continuous” means that the current value during electrolytic plating is always changed with respect to the plating time, and does not include a mode in which the current density is periodically changed as in pulse electrolysis.

金属充填処理工程において、電解めっき時の電流値をマイナス方向へ増大させる方法としては、電位、めっき浴の温度、めっき浴内の金属イオン濃度、めっき液の液流速度といったパラメータを変化させる方法が挙げられる。具体的には、めっき浴の温度を高める方法、メッキ浴内の充填するべき金属イオン濃度を高める方法、電位をマイナス側に下げる方法、めっき液の液流速を高める方法等が挙げられる。これら複数の方法を組み合わせて実施してもよい。
また、電解めっき時の金属の析出を促進させる作用を有する添加剤を添加することによっても、電解めっき時の電流値をマイナス方向へ増大させることができる。このような添加剤の具体例としては、めっきの光沢剤として用いられるSPS(ビス(3−スルホプロピル)ジスルフィド2ナトリウム)が挙げられる。
これらの中でも、処理簡便性の観点から、電位を変化させる方法、めっき浴の温度を変化させる方法、または、これらの組み合わせが好ましい。
In the metal filling process, as a method of increasing the current value during electroplating in the minus direction, there is a method of changing parameters such as potential, temperature of the plating bath, metal ion concentration in the plating bath, and the flow rate of the plating solution. Can be mentioned. Specifically, a method for increasing the temperature of the plating bath, a method for increasing the concentration of metal ions to be filled in the plating bath, a method for decreasing the potential to the negative side, a method for increasing the liquid flow rate of the plating solution, and the like can be mentioned. You may implement combining these several methods.
Moreover, the electric current value at the time of electroplating can be increased in the minus direction also by adding an additive having an action of promoting metal deposition during electroplating. A specific example of such an additive is SPS (bis (3-sulfopropyl) disulfide disodium) used as a brightener for plating.
Among these, from the viewpoint of processing simplicity, a method of changing the potential, a method of changing the temperature of the plating bath, or a combination thereof is preferable.

金属充填処理工程では、上記貫通孔のいずれか一方側の開口部が電極膜で覆われた状態となるように、上記貫通孔を有する上記絶縁性基体の一方の表面に電極膜を形成した後に、電解めっき処理を実施して上記貫通孔に金属を充填する。
電極膜の形成方法としては、具体的には、導電性材料(例えば、金、白金、ニッケル、パラジウムなど)の無電解めっき処理、蒸着(PVD、CVD)、直接塗布等が好適に例示される。
これらのうち、電極膜の均一性および操作の簡便性の観点から、無電解めっき処理が好ましい。
In the metal filling process, after the electrode film is formed on one surface of the insulating substrate having the through-hole so that the opening on either side of the through-hole is covered with the electrode film Then, electrolytic plating is performed to fill the through hole with metal.
Specific examples of the method for forming the electrode film include electroless plating treatment, vapor deposition (PVD, CVD), and direct application of a conductive material (for example, gold, platinum, nickel, palladium, etc.). .
Of these, electroless plating is preferable from the viewpoint of the uniformity of the electrode film and the ease of operation.

ここで、無電解めっき処理により電極膜を形成する場合は、めっき核を上記絶縁性基体基体の一方の表面に付与する必要がある。
具体的には、無電解めっき処理により付与するべき金属と同種の金属もしくは金属化合物または無電解めっき処理により付与するべき金属よりもイオン化傾向の高い金属もしくは金属化合物を、上記絶縁性基体の一方の表面に付与する方法が好ましい。
付与方法としては、金属もしくは金属化合物を蒸着または直接塗布する方法が挙げられるが、特に限定されない。
上記のようにめっき核を付与したのち、無電解めっき処理により電極膜を形成する。処理方法は、温度、時間により電極層の厚さを制御できる観点から、浸漬法が好ましい。
Here, when an electrode film is formed by electroless plating, it is necessary to apply plating nuclei to one surface of the insulating base substrate.
Specifically, a metal or metal compound of the same type as the metal to be applied by the electroless plating treatment or a metal or metal compound having a higher ionization tendency than the metal to be applied by the electroless plating treatment is used for one of the insulating substrates. A method of applying to the surface is preferred.
Examples of the application method include a method in which a metal or a metal compound is deposited or directly applied, but is not particularly limited.
After providing the plating nucleus as described above, an electrode film is formed by electroless plating. The treatment method is preferably an immersion method from the viewpoint that the thickness of the electrode layer can be controlled by temperature and time.

また、無電解めっき処理に用いるめっき液としては、従来公知のものを使用することができるが、濃度は、1〜300g/Lであるのが好ましく、100〜200g/Lであるのがより好ましい。
また、形成される電極膜の通電性を高める観点から、金めっき液、銅めっき液、銀めっき液等、貴金属を有するめっき液が好ましく、経時による電極の安定性、すなわち、酸化による劣化を防ぐ観点から、金めっき液がより好ましい。
Moreover, as a plating solution used for an electroless plating process, a conventionally well-known thing can be used, However, It is preferable that a density | concentration is 1-300 g / L, and it is more preferable that it is 100-200 g / L. .
In addition, from the viewpoint of increasing the conductivity of the electrode film to be formed, a plating solution having a noble metal such as a gold plating solution, a copper plating solution, or a silver plating solution is preferable, and the stability of the electrode over time, that is, deterioration due to oxidation is prevented. From the viewpoint, a gold plating solution is more preferable.

更に、無電解めっきの処理の温度、処理時間としては、形成しうる電極の厚さに依存するが、概ね0〜90℃、1分〜10時間が好ましく、5〜75℃、10分〜7時間がより好ましく、10〜60℃、30分〜5時間が特に好ましい。   Furthermore, the temperature and treatment time of the electroless plating process are preferably from 0 to 90 ° C. and from 1 minute to 10 hours, preferably from 5 to 75 ° C. and from 10 minutes to 7 minutes, depending on the thickness of the electrode that can be formed. Time is more preferable, and 10 to 60 ° C. and 30 minutes to 5 hours are particularly preferable.

このような電極膜形成処理により形成される電極膜の厚さは、0.05μm〜100μmが好ましく、0.1μm〜50μmがより好ましく、0.2μm〜20μmが特に好ましい。この範囲より厚さが薄いと、電極膜としての導電性が不十分となり、範囲より厚いと、その形成に時間を要してしまうため、それぞれ好ましくない。   The thickness of the electrode film formed by such an electrode film forming process is preferably 0.05 μm to 100 μm, more preferably 0.1 μm to 50 μm, and particularly preferably 0.2 μm to 20 μm. If the thickness is smaller than this range, the conductivity as the electrode film becomes insufficient, and if it is thicker than the range, it takes time to form the electrode film.

金属充填処理工程において、電解めっき処理によって貫通孔に充填させる金属は、電気抵抗率が103Ω・cm以下の金属であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、タングステン(W)、コバルト(Co)、ロジウム(Rh)、インジウムがドープされたスズ酸化物(ITO)、モリブデン(Mo)、鉄(Fe)、パラジウム(Pd)、ベリリウム(Be)、レニウム(Re)、これらの金属を1種または2種以上含有する合金等が好適に例示される。
これらのうち、電気伝導性の観点から、銅、金、アルミニウム、ニッケルが好ましく、銅、金がより好ましい。
In the metal filling process, the metal filled in the through-hole by electrolytic plating is not particularly limited as long as the electrical resistivity is 10 3 Ω · cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), tungsten (W), cobalt (Co), rhodium (Rh), tin oxide doped with indium (ITO) Preferable examples include molybdenum (Mo), iron (Fe), palladium (Pd), beryllium (Be), rhenium (Re), and alloys containing one or more of these metals.
Among these, from the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, and copper and gold are more preferable.

また、金属充填処理工程において、電解めっき処理時の電解めっき液の液流速度が、3〜200cm/秒であることが、貫通孔に金属をより良好に充填させることができるから好ましく、5〜150cm/秒がより好ましく、10〜120cm/秒が特に好ましい。   Further, in the metal filling treatment step, the flow rate of the electrolytic plating solution during the electrolytic plating treatment is preferably 3 to 200 cm / second because the metal can be filled more favorably into the through holes. 150 cm / sec is more preferable, and 10 to 120 cm / sec is particularly preferable.

また、金属充填処理工程において、電解めっき処理時のめっき液の液流方向が、貫通孔を有する絶縁性基体表面に対して、対向流で流れる方向であるのが好ましい。具体的には、液流方向と陰極基板表面がなす角度が、60〜120°であるのが好ましく、70〜110°であるのがより好ましく、80〜100°であるのが更に好ましく、90°(垂直)であるのが特に好ましい。   Further, in the metal filling process, it is preferable that the flow direction of the plating solution at the time of the electrolytic plating process is a direction in which it flows in a counterflow with respect to the surface of the insulating substrate having through holes. Specifically, the angle formed between the liquid flow direction and the cathode substrate surface is preferably 60 to 120 °, more preferably 70 to 110 °, still more preferably 80 to 100 °, 90 It is particularly preferred that the angle is vertical.

また、金属充填処理工程では、電解めっき液として、従来公知のめっき液を用いることができる。
具体的には、貫通孔に銅を充填させる場合は硫酸銅水溶液を用いることができ、硫酸銅の濃度は、飽和濃度であるのが好ましく、100〜300g/Lであるのがより好ましい。電解液中に塩酸を添加すると、貫通孔への銅の充填を促進することができる。この場合の塩酸濃度は、10〜20g/Lであるのが好ましい。
また、貫通孔に金を充填させる場合はテトラクロロ金の水溶液または硫酸溶液を用いることができ、ニッケルを充填させる場合は塩化ニッケルの水溶液または硫酸溶液を用いることができる。
一方、めっき液の温度としては、2〜80℃が好ましく、10〜70℃がより好ましい。
In the metal filling process, a conventionally known plating solution can be used as the electrolytic plating solution.
Specifically, when filling the through hole with copper, an aqueous copper sulfate solution can be used, and the concentration of copper sulfate is preferably a saturated concentration, more preferably 100 to 300 g / L. When hydrochloric acid is added to the electrolytic solution, filling of the through holes with copper can be promoted. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L.
In addition, when filling the through hole with gold, an aqueous solution or sulfuric acid solution of tetrachlorogold can be used, and when filling with nickel, an aqueous solution or sulfuric acid solution of nickel chloride can be used.
On the other hand, the temperature of the plating solution is preferably 2 to 80 ° C, more preferably 10 to 70 ° C.

また、金属充填処理工程において、電解めっき液の貫通孔への浸透を促進させる観点から、超音波を加える処理を併用することも好ましい。   In addition, in the metal filling process, it is also preferable to use a process of applying ultrasonic waves from the viewpoint of promoting the penetration of the electrolytic plating solution into the through hole.

また、金属充填処理工程において、電解めっき液の貫通孔への浸透を促進させる観点から、貫通孔の内表面を予め親水化処理しておくことが好ましい。
親水化処理としては、シリケート処理と称されるSi元素を貫通孔の内表面に付与しておく方法が好適に例示される。
Si元素を貫通孔の内表面に付与する方法は特に限定されないが、例えば、アルカリ金属ケイ酸塩が溶解している水溶液に直接浸せきして処理する方法が一般的である。アルカリ金属ケイ酸塩の水溶液は、ケイ酸塩の成分である酸化ケイ素SiO2とアルカリ金属酸化物M2Oの比率(一般に〔SiO2〕/〔M2O〕のモル比で表す。)と濃度によって保護膜厚の調節が可能である。
ここで、Mとしては、特にナトリウム、カリウムが好適に用いられる。
また、モル比は、〔SiO2〕/〔M2O〕が0.1〜5.0が好ましく、0.5〜3.0がより好ましい。
更に、SiO2の含有量は、0.1〜20質量%が好ましく、0.5〜10質量%がより好ましい。
Moreover, in the metal filling process, it is preferable that the inner surface of the through hole is previously hydrophilized from the viewpoint of promoting the penetration of the electrolytic plating solution into the through hole.
As the hydrophilization treatment, a method of applying a Si element called silicate treatment to the inner surface of the through hole is preferably exemplified.
The method of applying Si element to the inner surface of the through hole is not particularly limited, but for example, a method of direct immersion in an aqueous solution in which alkali metal silicate is dissolved is generally used. The aqueous solution of alkali metal silicate has a ratio of silicon oxide SiO 2 and alkali metal oxide M 2 O which is a component of silicate (generally expressed as a molar ratio of [SiO 2 ] / [M 2 O]). The protective film thickness can be adjusted by the concentration.
Here, as M, sodium and potassium are particularly preferably used.
The molar ratio of [SiO 2 ] / [M 2 O] is preferably 0.1 to 5.0, and more preferably 0.5 to 3.0.
Furthermore, the content of SiO 2 is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass.

[研磨除去処理工程]
研磨除去処理工程では、電解めっき処理によって上記絶縁性基材の表面に付着した金属、より具体的には、上記絶縁性基材の表面に付着して金属膜を形成している金属を研磨処理により除去する。
研磨除去処理工程において、使用する研磨処理方法は特に限定されず、化学機械研磨(CMP:Chemical Mechanical Polishing)処理、化学研磨処理、バフ研磨処理等の各種研磨処理を使用することができる。これらの中でも、CMP処理が研磨処理面の平滑性に優れることから好ましい。
CMP処理には、フジミインコーポレイテッド社製のPLANERLITE−7000、日立化成社製のGPX HSC800、旭硝子(セイミケミカル)社製のCL−1000等のCMPスラリーを用いることができる。
なお、陽極酸化皮膜を研磨したくないので、層間絶縁膜やバリアメタル用のスラリーを用いるのは好ましくない。
電解めっき処理を実施するために絶縁性基体の一方の表面に形成した電極膜も、CMP処理により除去することが好ましい。
[Polish removal process]
In the polishing removal treatment step, the metal that has adhered to the surface of the insulating base material by electrolytic plating, more specifically, the metal that has adhered to the surface of the insulating base material to form a metal film is ground. To remove.
In the polishing removal processing step, a polishing processing method to be used is not particularly limited, and various types of polishing processing such as chemical mechanical polishing (CMP) processing, chemical polishing processing, buff polishing processing, and the like can be used. Among these, the CMP treatment is preferable because of excellent smoothness of the polished surface.
For the CMP treatment, CMP slurry such as PLANERITE-7000 manufactured by Fujimi Incorporated, GPX HSC800 manufactured by Hitachi Chemical Co., Ltd., CL-1000 manufactured by Asahi Glass (Seimi Chemical Co., Ltd.), or the like can be used.
Since it is not desired to polish the anodized film, it is not preferable to use an interlayer insulating film or a slurry for a barrier metal.
The electrode film formed on one surface of the insulating substrate for carrying out the electrolytic plating treatment is also preferably removed by CMP treatment.

本発明の金属充填微細構造体は、上述した本発明の金属充填微細構造体の製造方法により得られる構造体である。
そのため、本発明の金属充填微細構造体は、絶縁性基体に設けられた、平均開孔径が10〜5000nmであり、平均深さが10〜1000μmであり、かつ、密度が1×106〜1×1010/mm2である貫通孔が、金属で充填された構造を有するものである。
したがって、本発明の金属微細構造体は、高設置密度の導通路を達成し、高集積化が一層進んだ現在においても半導体素子等の電子部品の電気的接続部材や検査用コネクタ等として使用することができる。
本発明の金属微細構造体は、絶縁性基材に設けられた微細孔への金属の充填率が高く、かつ、金属充填に伴う残留応力による反りの発生が抑制されているため、平坦度が良好である。
The metal-filled microstructure of the present invention is a structure obtained by the above-described method for producing a metal-filled microstructure of the present invention.
Therefore, the metal-filled microstructure of the present invention has an average pore diameter of 10 to 5000 nm, an average depth of 10 to 1000 μm, and a density of 1 × 10 6 to 1 provided on the insulating substrate. A through hole of × 10 10 / mm 2 has a structure filled with metal.
Therefore, the metal microstructure of the present invention achieves a high installation density conduction path, and is still used as an electrical connection member or inspection connector for electronic parts such as semiconductor elements even at the present time when high integration is further advanced. be able to.
The metal microstructure of the present invention has a high metal filling rate in the fine holes provided in the insulating base material, and the occurrence of warpage due to residual stress accompanying the metal filling is suppressed. It is good.

以下に金属充填微細構造体の製造についての実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。   The present invention will be specifically described below with reference to examples of the production of metal-filled microstructures. However, the present invention is not limited to these.

(実施例1)
(A)鏡面仕上げ処理(電解研磨処理)
高純度アルミニウム基板(住友軽金属社製、純度99.99質量%、厚さ0.4mm)を10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用い、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
Example 1
(A) Mirror finish (electropolishing)
A high-purity aluminum substrate (manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99 mass%, thickness 0.4 mm) is cut so that it can be anodized in an area of 10 cm square, using an electropolishing liquid having the following composition, voltage 25 V, liquid The electropolishing treatment was performed under conditions of a temperature of 65 ° C. and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho) was used as the power source. The flow rate of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(電解研磨液組成)
・85質量%リン酸(和光純薬社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
(Electrolytic polishing liquid composition)
-660 mL of 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.)
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL

(B)陽極酸化処理
次いで、電解研磨処理後のアルミニウム基板に、特開2007−204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
具体的には、電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度15℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度15℃、液流速3.0m/minの条件で、16時間の再陽極酸化処理を施し、膜厚130μmの酸化皮膜を得た。
なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110−30R(高砂製作所社製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学社製)、かくはん加温装置にはペアスターラー PS−100(EYELA社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
(B) Anodizing treatment Subsequently, the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regulating method according to the procedure described in JP-A-2007-204802.
Specifically, the aluminum substrate after the electropolishing treatment is subjected to a 0.50 mol / L oxalic acid electrolytic solution at a voltage of 40 V, a liquid temperature of 15 ° C., and a liquid flow rate of 3.0 m / min for 5 hours. Oxidation treatment was performed.
Thereafter, a film removal treatment was performed in which the aluminum substrate after the pre-anodizing treatment was immersed in a mixed aqueous solution (liquid temperature: 50 ° C.) of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid for 12 hours.
Then, re-anodization treatment was performed for 16 hours with an electrolyte solution of 0.50 mol / L oxalic acid at a voltage of 40 V, a liquid temperature of 15 ° C., and a liquid flow rate of 3.0 m / min. Obtained.
In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho). Moreover, NeoCool BD36 (made by Yamato Kagaku) was used for the cooling device, and Pear Stirrer PS-100 (made by EYELA) was used for the stirring and heating device. Furthermore, the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(C)貫通化処理
次いで、20質量%塩化水銀水溶液(昇汞)に20℃、3時間浸漬させることによりアルミニウム基板を溶解し、更に、5質量%リン酸に30℃、30分間浸漬させることにより陽極酸化皮膜の底部を除去し、マイクロポアを有する陽極酸化皮膜からなる微細構造体(絶縁性基材)を作製した。
(C) Penetration treatment Next, the aluminum substrate was dissolved by immersing in a 20% by mass mercury chloride aqueous solution (raised) at 20 ° C. for 3 hours, and further immersed in 5% by mass phosphoric acid at 30 ° C. for 30 minutes. The bottom of the anodized film was removed, and a fine structure (insulating base material) made of an anodized film having micropores was produced.

ここで、貫通孔としてのマイクロポアの平均開孔径は、30nmであった。ここで、平均開孔径は、FE−SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出した。   Here, the average pore diameter of the micropores as the through holes was 30 nm. Here, the average pore diameter was calculated as an average value obtained by taking a surface photograph (magnification 50000 times) with FE-SEM and measuring 50 points.

また、貫通孔としてのマイクロポアの平均深さは、130μmであった。ここで、平均深さは、上記で得られた微細構造体をマイクロポアの部分で厚さ方向に対してFIBで切削加工し、その断面をFE−SEMにより表面写真(倍率50000倍)を撮影し、10点測定した平均値として算出した。   Moreover, the average depth of the micropores as the through holes was 130 μm. Here, the average depth is obtained by cutting the fine structure obtained above with FIB in the thickness direction at the micropore portion, and taking a cross-sectional photograph of the surface with a FE-SEM (50000 times magnification). And it computed as the average value which measured 10 points | pieces.

また、貫通孔としてのマイクロポアの密度は、約1.5億個/mm2であった。ここで、密度は、図2に示すように、上記式(i)により定義される規則化度が50%以上となるように配列するマイクロポアの単位格子51中に1/2個のマイクロポア52があるとして、下記式により計算した。ここで、下記式中、Ppは周期を表す。
密度(個/μm2)=(1/2個)/{Pp(μm)×Pp(μm)×√3×(1/2)}
The density of the micropores as the through holes was about 150 million pieces / mm 2 . Here, as shown in FIG. 2, the density is ½ micropores in a unit cell 51 of micropores arranged so that the degree of ordering defined by the above formula (i) is 50% or more. Assuming that there is 52, the following formula was used for calculation. Here, in the following formula, Pp represents a period.
Density (pieces / μm 2 ) = (1/2 piece) / {Pp (μm) × Pp (μm) × √3 × (1/2)}

更に、貫通孔としてのマイクロポアの規則化度は、92%であった。ここで、規則化度は、FE−SEMにより表面写真(倍率20000倍)を撮影し、2μm×2μmの視野で、マイクロポアについて上記式(i)により定義される規則化度を測定した。   Furthermore, the degree of ordering of the micropores as the through holes was 92%. Here, the degree of ordering was obtained by photographing a surface photograph (magnification 20000 times) with FE-SEM and measuring the degree of ordering defined by the above formula (i) for micropores in a field of view of 2 μm × 2 μm.

(D)加熱処理
次いで、上記で得られた微細構造体に、温度400℃で1時間の加熱処理を施した。
(D) Heat treatment Next, the fine structure obtained above was subjected to a heat treatment at a temperature of 400 ° C for 1 hour.

(E)電極膜形成処理
次いで、上記加熱処理後の微細構造体の一方の表面に電極膜を形成する処理を施した。
具体的には、0.7g/L塩化金酸水溶液を、一方の表面に塗布し、140℃で1分乾燥させ、更に500℃で1時間焼成することにより、金のめっき核を作製した。
その後、無電解めっき液としてプレシャスファブACG2000基本液/還元液(日本エレクトロプレイティング・エンジニヤース社製)を用いて、50℃で1時間浸漬処理し、表面との空隙のない電極膜を形成した。
(E) Electrode film formation process Next, the process which forms an electrode film in one surface of the microstructure after the said heat processing was performed.
Specifically, a gold plating nucleus was prepared by applying a 0.7 g / L chloroauric acid aqueous solution to one surface, drying at 140 ° C. for 1 minute, and baking at 500 ° C. for 1 hour.
Thereafter, a precious fab ACG2000 basic solution / reducing solution (manufactured by Nippon Electroplating Engineers Co., Ltd.) was used as an electroless plating solution, and immersion treatment was performed at 50 ° C. for 1 hour to form an electrode film having no gap with the surface. .

(F)金属充填処理(電解めっき処理)
次いで、上記電極膜を形成した面に銅電極を密着させ、該銅電極を陰極にし、白金を正極にして電解めっき処理を施すことで、貫通孔に銅が充填された金属充填微細構造体を作製した。
(F) Metal filling process (electrolytic plating process)
Next, a copper electrode is brought into close contact with the surface on which the electrode film is formed, and an electroplating process is performed using the copper electrode as a cathode and platinum as a positive electrode, thereby forming a metal-filled microstructure in which through holes are filled with copper. Produced.

電解めっき処理では、以下の組成のめっき液を使用した。
銅めっき液組成
・硫酸銅 100g/L
・硫酸 50g/L
・塩酸 15g/L
・温度 25℃
In the electrolytic plating treatment, a plating solution having the following composition was used.
Copper plating solution composition, copper sulfate 100g / L
・ Sulfuric acid 50g / L
・ Hydrochloric acid 15g / L
・ Temperature 25 ℃

電解めっき処理では、山本鍍金社製のめっき装置、および、北斗電工社製の電源(HZ−3000)を用いた。電解めっき処理では、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した。
電解めっき処理は、定電流電解めっき処理として開始した。すなわち、−2.0Vの一定電位で電解めっき処理を開始した。その後、上記貫通孔への金属の仮想充填率が100%となった時点で、電位を−2.0Vから−4.0Vに増加することにより、電解めっき時の電流値をマイナス方向に増大させて、上記貫通孔への金属の仮想充填率が150%になるまで電解めっき処理を実施して、貫通孔に銅が充填された微細構造体を作製した。電解めっき時の電流値のマイナス方向への増大量は6A/dm2であり、電流値の変化率は1A/dm2・秒であった。
In the electrolytic plating treatment, a plating apparatus manufactured by Yamamoto Sekin Co., Ltd. and a power supply (HZ-3000) manufactured by Hokuto Denko Co., Ltd. were used. In the electrolytic plating treatment, cyclic voltammetry was performed in the plating solution to confirm the deposition potential.
The electrolytic plating process was started as a constant current electrolytic plating process. That is, the electrolytic plating process was started at a constant potential of −2.0V. Thereafter, when the virtual filling rate of the metal in the through hole becomes 100%, the potential value is increased from −2.0 V to −4.0 V, thereby increasing the current value during electrolytic plating in the negative direction. Then, an electrolytic plating process was performed until the virtual filling rate of the metal in the through hole reached 150%, and a fine structure in which the through hole was filled with copper was manufactured. The amount of increase in the current value in the negative direction during electrolytic plating was 6 A / dm 2 , and the rate of change in the current value was 1 A / dm 2 · sec.

ここで、貫通孔への金属の仮想充填率は以下の手順により求めた。
微細構造体(絶縁性基材)の表面積が2500mm2であり、マイクロポアの平均開口径が30nmであり、マイクロポア密度が1.5億個/mm2であるので、金属の充填高さは下記式によって求めることができる。
金属の充填高さ(μm)=電解めっきによる銅の析出量(mm3)/(π×(30nm/2)2×1.5億個/mm2×2500mm2
上記式によって求まる金属の充填高さが、貫通孔としてのマイクロポアの深さ(微細構造体の膜厚)である130μm以下の場合、金属の充填高さ=微細構造体における金属の仮想高さとなる。この値と貫通孔としてのマイクロポアの深さ(=130μm)とから上記式により貫通孔への金属の仮想充填率を求めることができる。
なお、上記式によって求まる金属の充填高さ=130μmとなる時点の電解めっきによる銅の析出量は35mm3であり、この時点の電解めっきの電気量をファラデー則から計算すると934Cとなる。
一方、電解めっきによる銅の析出量が35mm3よりも大きい場合、銅の析出量から35mm3を差し引いた残りの部分を、絶縁性基材の表面積(=2500mm2)で割ることによって絶縁性基材の表面に形成される金属膜の厚さを求めることができる。この場合、金属の充填高さ(=130μm)と、金属膜の厚さと、の和が微細構造体における金属の仮想高さとなる。
この値と貫通孔としてのマイクロポアの深さ(=130μm)から上記式により貫通孔への金属の仮想充填率を求めることができる。
Here, the virtual filling rate of the metal into the through hole was obtained by the following procedure.
Since the surface area of the microstructure (insulating base material) is 2500 mm 2 , the average opening diameter of the micropores is 30 nm, and the micropore density is 150 million pieces / mm 2 , the metal filling height is It can be obtained by the following formula.
Metal filling height (μm) = Amount of copper deposited by electrolytic plating (mm 3 ) / (π × (30 nm / 2) 2 × 150 million pieces / mm 2 × 2500 mm 2 .
When the filling height of the metal obtained by the above formula is 130 μm or less, which is the depth of the micropore as the through hole (film thickness of the fine structure), the filling height of the metal = the virtual height of the metal in the fine structure Become. From this value and the depth of the micropore as the through hole (= 130 μm), the virtual filling rate of the metal into the through hole can be obtained by the above formula.
Note that the amount of copper deposited by electrolytic plating at the time when the metal filling height obtained by the above equation becomes 130 μm is 35 mm 3 , and the amount of electricity of electrolytic plating at this time is calculated from Faraday's law to be 934C.
On the other hand, if the amount of precipitation of copper by electrolytic plating is greater than 35 mm 3, an insulating base by the remaining portion of the amount of precipitated copper minus 35 mm 3, divided by the surface area of the insulating base (= 2500 mm 2) The thickness of the metal film formed on the surface of the material can be determined. In this case, the sum of the metal filling height (= 130 μm) and the thickness of the metal film is the virtual height of the metal in the microstructure.
From this value and the depth of the micropore as the through hole (= 130 μm), the virtual filling rate of the metal into the through hole can be obtained by the above formula.

(実施例2)
−2.0Vの一定電位で電解めっき処理を開始し、上記貫通孔への金属の仮想充填率が100%と等しくなった時点で、めっき液の温度を25℃から50℃に増加することにより、電解めっき時の電流値をマイナス方向に増大させた以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。電解めっき時の電流値のマイナス方向への増大量は6A/dm2であり、電流値の変化率は1A/dm2・秒であった。
(Example 2)
By starting the electrolytic plating process at a constant potential of −2.0 V and increasing the temperature of the plating solution from 25 ° C. to 50 ° C. when the virtual filling rate of the metal in the through hole becomes equal to 100%. A fine structure in which the through hole was filled with copper was manufactured by performing the same procedure as in Example 1 except that the current value during electrolytic plating was increased in the negative direction. The amount of increase in the current value in the negative direction during electrolytic plating was 6 A / dm 2 , and the rate of change in the current value was 1 A / dm 2 · sec.

(実施例3)
−2.0Vの一定電位で電解めっき処理を開始し、上記貫通孔への金属の仮想充填率が100%となった時点で、めっき液の硫酸銅濃度を150g/Lから300g/Lに増加することにより、電解めっき時の電流値をマイナス方向に増大させた以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。電解めっき時の電流値のマイナス方向への増大量は6A/dm2であり、電流値の変化率は1A/dm2・秒であった。
(Example 3)
When the electrolytic plating process is started at a constant potential of −2.0 V and the virtual filling rate of the metal in the through hole reaches 100%, the copper sulfate concentration of the plating solution is increased from 150 g / L to 300 g / L. By doing this, the same procedure as in Example 1 was performed except that the current value at the time of electrolytic plating was increased in the minus direction, and a fine structure in which the through hole was filled with copper was produced. The amount of increase in the current value in the negative direction during electrolytic plating was 6 A / dm 2 , and the rate of change in the current value was 1 A / dm 2 · sec.

(実施例4)
−2.0Vの一定電位で電解めっき処理を開始し、上記貫通孔への金属の仮想充填率が100%となった時点で、めっきの光沢剤であるSPS(3,3’−ジチオビス〔1−プロパンスルホン酸〕二ナトリウム)(和光純薬工業株式会社製)を50ppm添加することにより、電解めっき時の電流値をマイナス方向に増大させた以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。電解めっき時の電流値のマイナス方向への増大量は6A/dm2であり、電流値の変化率は1A/dm2・秒であった。
Example 4
The electrolytic plating process was started at a constant potential of −2.0 V, and when the virtual filling rate of the metal into the through hole reached 100%, SPS (3,3′-dithiobis [1 -Propanesulfonic acid] disodium) (manufactured by Wako Pure Chemical Industries, Ltd.) was added in an amount of 50 ppm to carry out the same procedure as in Example 1 except that the current value during electroplating was increased in the negative direction. A fine structure having a through hole filled with copper was produced. The amount of increase in the current value in the negative direction during electrolytic plating was 6 A / dm 2 , and the rate of change in the current value was 1 A / dm 2 · sec.

(実施例5)
銅めっき液の代わりに、以下の組成のニッケルめっき液を使用した点を除いて、実施例1と同様の手順を実施して貫通孔にニッケルが充填された微細構造体を作製した。
なお、ニッケルの析出量が35mm3となる時点の電解めっきの電気量は、1012Cである。
(Example 5)
Except for using a nickel plating solution having the following composition instead of the copper plating solution, the same procedure as in Example 1 was performed to produce a fine structure in which the through holes were filled with nickel.
It should be noted that the amount of electricity for electrolytic plating when the amount of nickel deposited is 35 mm 3 is 1012C.

ニッケルめっき液組成
・硫酸ニッケル 300g/L
・塩化ニッケル 60g/L
・ホウ酸 40g/L
・温度 50℃
Nickel plating solution composition / nickel sulfate 300g / L
・ Nickel chloride 60g / L
・ Boric acid 40g / L
・ Temperature 50 ℃

(実施例6)
−2.0Vの一定電位で電解めっき処理を開始し、上記貫通孔への金属の仮想充填率が80%となった時点で、電位を−2.0Vから−4.0Vに増加することにより、電解めっき時の電流値をマイナス方向に増大させた以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
(Example 6)
By starting the electroplating process at a constant potential of −2.0 V and increasing the potential from −2.0 V to −4.0 V when the virtual filling rate of the metal into the through hole reaches 80%. A fine structure in which the through hole was filled with copper was manufactured by performing the same procedure as in Example 1 except that the current value during electrolytic plating was increased in the negative direction.

(実施例7)
−2.0Vの一定電位で電解めっき処理を開始し、上記貫通孔への金属の仮想充填率が110%となった時点で、電位を−2.0Vから−4.0Vに増加することにより、電解めっき時の電流値をマイナス方向に増大させた以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
(Example 7)
By starting the electrolytic plating process at a constant potential of −2.0 V, and increasing the potential from −2.0 V to −4.0 V when the virtual filling rate of the metal in the through hole reaches 110%. A fine structure in which the through hole was filled with copper was manufactured by performing the same procedure as in Example 1 except that the current value during electrolytic plating was increased in the negative direction.

以下の実施例8、9は、それぞれ貫通孔としてのマイクロポアの平均開口径、マイクロポアの深さ(微細構造体の膜厚)を変化させた場合の実施例を示す。ここでも実施例1と同様の手順で上記貫通孔への金属の仮想充填率を求め、−2.0Vの一定電位で電解めっき処理を開始した後、上記貫通孔への金属の仮想充填率が100%となった時点で、電位を−2.0Vから−4.0Vに増加することにより、電解めっき時の電流値をマイナス方向に増大させて、上記貫通孔への金属の仮想充填率が150%になるまで電解めっき処理を実施した。   Examples 8 and 9 below show examples when the average opening diameter of the micropores as the through holes and the depth of the micropores (film thickness of the fine structure) are changed. Here, the virtual filling rate of the metal to the through hole is obtained in the same procedure as in Example 1, and after starting the electroplating process at a constant potential of −2.0 V, the virtual filling rate of the metal to the through hole is When the potential reaches 100%, the potential is increased from −2.0 V to −4.0 V, thereby increasing the current value during electroplating in the negative direction, and the virtual filling rate of the metal to the through hole is increased. The electrolytic plating process was carried out until it reached 150%.

(実施例8)
上記(C)貫通化処理の時点で30nmであった貫通孔としてのマイクロポアの平均開口径を、40℃, 5%のリン酸に10分浸漬することで、50nmに拡大した以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
ここで、平均開口径は、FE−SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出した。
(Example 8)
Example except that the average opening diameter of the micropore as a through hole which was 30 nm at the time of the above (C) penetration treatment was increased to 50 nm by immersing in phosphoric acid at 40 ° C. and 5% for 10 minutes. The same procedure as in No. 1 was performed to produce a fine structure in which the through hole was filled with copper.
Here, the average opening diameter was calculated as an average value obtained by taking a surface photograph (magnification 50000 times) with FE-SEM and measuring 50 points.

(実施例9)
上記(B)陽極酸化処理において、再陽極酸化処理時間を5時間とし、酸化皮膜の膜厚を40μmとした以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
Example 9
In the above (B) anodizing treatment, the same procedure as in Example 1 was performed except that the re-anodizing treatment time was 5 hours and the film thickness of the oxide film was 40 μm, and the through holes were filled with copper. A structure was produced.

(比較例1)
上記処理(F)金属充填処理工程において、電解めっき時の電流値をマイナス方向に増大させることなしに、−2.0Vの一定電位で電解めっき処理を実施した以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
(Comparative Example 1)
In the above-described treatment (F) metal filling treatment step, the same procedure as in Example 1 except that the electrolytic plating treatment was performed at a constant potential of −2.0 V without increasing the current value during electrolytic plating in the negative direction. The fine structure in which the through hole was filled with copper was manufactured.

(比較例2)
上記処理(F)金属充填処理工程において、電解めっき時の電流値をマイナス方向に増大させることなしに、−2.0Vの一定電位で電解めっき処理を実施した以外は実施例5と同様の手順を実施して貫通孔にニッケルが充填された微細構造体を作製した。
(Comparative Example 2)
In the above-described treatment (F) metal filling treatment step, the same procedure as in Example 5 was carried out except that the electroplating treatment was carried out at a constant potential of −2.0 V without increasing the current value during electroplating in the negative direction. The fine structure in which the through hole was filled with nickel was manufactured.

(比較例3)
上記処理(F)金属充填処理工程において、電解めっき時の電流値をマイナス方向に増大させることなしに、−2.0Vの一定電位で電解めっき処理を実施した以外は実施例8と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
(Comparative Example 3)
In the above-described treatment (F) metal filling treatment step, the same procedure as in Example 8 was carried out except that the electroplating treatment was carried out at a constant potential of −2.0 V without increasing the current value during electroplating in the minus direction. The fine structure in which the through hole was filled with copper was manufactured.

(比較例4)
−2.0Vの一定電位で電解めっき処理を開始し、上記貫通孔への金属の仮想充填率が50%となった時点で、電位を−2.0Vから−4.0Vに増加することにより、電解めっき時の電流値をマイナス方向に増大させた以外は実施例1と同様の手順を実施して貫通孔に銅が充填された微細構造体を作製した。
(Comparative Example 4)
By starting the electroplating process at a constant potential of −2.0 V and increasing the potential from −2.0 V to −4.0 V when the virtual filling rate of the metal in the through hole reaches 50%. A fine structure in which the through hole was filled with copper was manufactured by performing the same procedure as in Example 1 except that the current value during electrolytic plating was increased in the negative direction.

上記のようにして作製した実施例1〜9および比較例1〜4の微細構造体について、貫通孔としてのマイクロポア内部に充填された金属の平均結晶粒子径、および、微細構造体(絶縁性基材)の表面に形成された金属膜の平均結晶粒子径を評価した。具体的には、作製した実施例1〜9および比較例1〜4の微細構造体を厚み方向に対してFIBで切削加工し、その切削面をマイクロX線回折装置による測定を行った。この測定で得られたデータを用いて、下記式(ii),(iii)により結晶粒子径を算出した。また、測定は微細構造体の厚み方向に対して5個所で行い、結晶粒子径の平均値を計算した。
結晶粒子径(nm)=(D×I)/A (ii)
上記式(ii)中、Dは各配向での結晶粒子径(nm)、Iは各配向での回折強度、Aは配向数を表す。
各配向での結晶粒子径(nm)= Κ×λ/(β×cosθ) (iii)
前記式(iii)中、Κはscherrer定数、λは測定X線波長(nm)、βは半価幅(rad)、θは回折線のブラッグ角度を表す。具体的な数値としては、scherrer定数は0.9、測定X線波長はCr Kα線の22.9nmとして、半価幅と回折線のブラッグ角度は測定により得た。ここで、FIB切削には日立集束イオンビーム加工観察装置FB2200を、X線回折測定にはブルカー製D8 Discover with GADDSをそれぞれ使用した。実施例1〜9および比較例1〜4の微細構造体における測定結果を表1に示す。
For the microstructures of Examples 1 to 9 and Comparative Examples 1 to 4 manufactured as described above, the average crystal particle diameter of the metal filled in the micropores as through-holes and the microstructures (insulating properties) The average crystal particle diameter of the metal film formed on the surface of the substrate was evaluated. Specifically, the manufactured microstructures of Examples 1 to 9 and Comparative Examples 1 to 4 were cut with FIB in the thickness direction, and the cut surfaces were measured with a micro X-ray diffractometer. Using the data obtained by this measurement, the crystal particle diameter was calculated by the following formulas (ii) and (iii). Further, the measurement was performed at five points in the thickness direction of the fine structure, and the average value of the crystal particle diameter was calculated.
Crystal particle diameter (nm) = (D × I) / A (ii)
In the above formula (ii), D represents the crystal particle diameter (nm) in each orientation, I represents the diffraction intensity in each orientation, and A represents the number of orientations.
Crystal particle diameter in each orientation (nm) = Κ × λ / (β × cos θ) (iii)
In the formula (iii), Κ represents a Scherrer constant, λ represents a measured X-ray wavelength (nm), β represents a half-value width (rad), and θ represents a Bragg angle of a diffraction line. As specific numerical values, the Scherrer constant was 0.9, the measurement X-ray wavelength was 22.9 nm of the Cr Kα ray, and the half width and the Bragg angle of the diffraction line were obtained by measurement. Here, Hitachi focused ion beam processing observation apparatus FB2200 was used for FIB cutting, and Bruker D8 Discover with GADDS was used for X-ray diffraction measurement. Table 1 shows the measurement results of the microstructures of Examples 1 to 9 and Comparative Examples 1 to 4.

上記のようにして作製した実施例1〜9および比較例1〜4の微細構造体について、貫通孔としてのマイクロポア内部に充填された金属における残留応力、および、微細構造体(絶縁性基材)の表面に形成された金属膜における残留応力を、X線応力測定法を用いて評価した。残留応力測定には、ブルカー製D8 Discover with GADDSを使用し、ヤング率は144.092(GPa)、ポアソン比は0.33とした。実施例1〜9および比較例1〜4の微細構造体における測定結果を表1に示す。ここで、残留応力測定値の(正)の値は引張応力を、(負)の値は圧縮応力を示す。   Regarding the microstructures of Examples 1 to 9 and Comparative Examples 1 to 4 manufactured as described above, the residual stress in the metal filled in the micropores as the through holes, and the microstructure (insulating base material) The residual stress in the metal film formed on the surface was evaluated using an X-ray stress measurement method. For the residual stress measurement, Bruker D8 Discover with GADDS was used, Young's modulus was 144.02 (GPa), and Poisson's ratio was 0.33. Table 1 shows the measurement results of the microstructures of Examples 1 to 9 and Comparative Examples 1 to 4. Here, the (positive) value of the residual stress measurement value indicates the tensile stress, and the (negative) value indicates the compressive stress.

表1の測定結果から、貫通孔内部に充填された金属と、絶縁性基材の表面に形成された金属膜と、の平均結晶粒子径の差が20nm以下の実施例1〜9では、貫通孔内部に充填された金属と、絶縁性基材の表面に形成された金属膜と、の残留応力の差が30MPa以下に低減されていることが確認された。
特に、貫通孔内部に充填された金属、および、絶縁性基材の表面に形成された金属膜の平均結晶粒子径がいずれも貫通孔の平均開孔径以下の実施例1,4,5,8,9では、残留応力の差がより低減されていた。また、これらの実施例では、貫通孔内部に充填されている金属における残留応力、および、絶縁性基材の表面に形成されている金属膜における残留応力が低減されており、いずれも30MPa以下であった。
なお、金属膜の結晶粒子径が貫通孔の開口径よりも大きい例(実施例2,3,5,6,比較例1〜4)では、金属膜における残留応力よりも貫通孔に充填されている金属における残留応力が大きくなっているが、電解めっき処理の実施後、金属膜における残留応力が増加することによって微細構造体に反りが発生し、この反りの発生により金属膜における残留応力が開放され減少するのに対して、貫通孔内部に充填されている金属における残留応力は反りの発生により増加することによるものと考える。
実施例1〜9の金属充填微細構造体は、反りの発生が抑制されており、平坦度が良好であった。一方、比較例1〜4の金属充填微細構造体は、反りの発生により平坦度が低下していた。
From the measurement results in Table 1, in Examples 1 to 9 in which the difference in average crystal particle diameter between the metal filled in the through hole and the metal film formed on the surface of the insulating base material is 20 nm or less, the through It was confirmed that the difference in residual stress between the metal filled in the hole and the metal film formed on the surface of the insulating substrate was reduced to 30 MPa or less.
In particular, Examples 1, 4, 5, and 8 in which the average crystal particle diameters of the metal filled in the through holes and the metal film formed on the surface of the insulating base material are all equal to or smaller than the average opening diameter of the through holes. 9, the residual stress difference was further reduced. Further, in these examples, the residual stress in the metal filled in the through hole and the residual stress in the metal film formed on the surface of the insulating base material are reduced, both of which are 30 MPa or less. there were.
In the examples where the crystal particle diameter of the metal film is larger than the opening diameter of the through hole (Examples 2, 3, 5, 6, and Comparative Examples 1 to 4), the through hole is filled more than the residual stress in the metal film. The residual stress in the metal is increased, but after the electroplating process, the residual stress in the metal film is increased and the microstructure is warped. This warpage releases the residual stress in the metal film. On the other hand, the residual stress in the metal filled in the through hole is considered to increase due to the occurrence of warpage.
In the metal-filled microstructures of Examples 1 to 9, the occurrence of warpage was suppressed and the flatness was good. On the other hand, the flatness of the metal-filled microstructures of Comparative Examples 1 to 4 was lowered due to warpage.

本発明の金属充填微細構造体は、半導体素子等の電子部品等の機能検査を行う際の検査用コネクタとして用いることができ、CPUなどのマザーボードとインターポーザーの間の電気的接点(電子接続部材)として用いることもできる。   The metal-filled microstructure of the present invention can be used as an inspection connector when performing functional inspection of electronic components such as semiconductor elements, and is an electrical contact (electronic connection member) between a mother board such as a CPU and an interposer. ) Can also be used.

また、本発明の金属充填微細構造体は、光伝送素材の用途としても応用が期待できる。   Further, the metal-filled microstructure of the present invention can be expected to be used as an optical transmission material.

51 マイクロポアの単位格子
52 マイクロポア
101、102、104、105、107、108 貫通孔
103、106、109 円
51 Micropore unit cell 52 Micropore 101, 102, 104, 105, 107, 108 Through hole 103, 106, 109 yen

Claims (9)

絶縁性基材に設けられた貫通孔内部に金属が充填されてなる金属充填微細構造体を製造する金属充填微細構造体の製造方法であって、
前記絶縁性基材における、前記貫通孔の平均開孔径が10〜5000nmであり、前記貫通孔の平均深さが10〜1000μmであり、かつ、前記貫通孔の密度が1×106〜1×1010個/mm2であり、
前記金属充填微細構造体の製造方法が、少なくとも、下記式で求められる前記貫通孔への金属の仮想充填率が110%よりも大きくなるように、電解めっき処理により前記貫通孔へ金属を充填する工程、および、電解めっき処理によって前記絶縁性基材の表面に付着した金属を研磨処理により除去する工程を有し、前記貫通孔内部に充填される金属の平均結晶粒子径と、前記絶縁性基材の表面に付着する金属の平均結晶粒子径と、の差が20nm以下となるように前記電解めっき処理を実施することを特徴とする金属充填微細構造体の製造方法。
貫通孔への金属の仮想充填率(%)=電解めっきによる金属析出量から求められる微細構造体における金属の仮想高さ(μm)/貫通孔の平均深さ(μm)×100
A metal-filled microstructure manufacturing method for manufacturing a metal-filled microstructure in which a metal is filled in a through-hole provided in an insulating substrate,
In the insulating substrate, the average opening diameter of the through holes is 10 to 5000 nm, the average depth of the through holes is 10 to 1000 μm, and the density of the through holes is 1 × 10 6 to 1 ×. 10 10 pieces / mm 2 ,
In the method for producing the metal-filled microstructure, the metal is filled into the through hole by electrolytic plating so that at least the virtual filling rate of the metal into the through hole obtained by the following formula is larger than 110 %. And a step of removing the metal adhering to the surface of the insulating substrate by an electrolytic plating process by a polishing process, and an average crystal particle diameter of the metal filled in the through hole, and the insulating group A method for producing a metal-filled microstructure, wherein the electrolytic plating treatment is carried out so that a difference between the average crystal particle diameter of a metal adhering to the surface of the material is 20 nm or less.
Virtual filling rate of metal in through hole (%) = virtual height of metal (μm) / average depth of through hole (μm) × 100 obtained from the amount of metal deposited by electrolytic plating × 100
前記貫通孔内部に充填された金属の平均結晶粒子径、および、前記絶縁性基材の表面に付着した金属の平均結晶粒子径が、いずれも前記貫通孔の平均開孔径以下となるように前記電解めっき処理を実施する、請求項1に記載の金属充填微細構造体の製造方法。   The average crystal particle diameter of the metal filled in the through hole and the average crystal particle diameter of the metal attached to the surface of the insulating substrate are both equal to or less than the average opening diameter of the through hole. The manufacturing method of the metal filling fine structure of Claim 1 which performs an electroplating process. 下記(1)〜(4)を満たすように、前記電解めっき処理を実施する、請求項1または2に記載の金属充填微細構造体の製造方法。
(1)定電流電解めっき処理として電解めっき処理を開始する。
(2)前記貫通孔への金属の仮想充填率が75%〜125%に達した時点で電解めっき時の電流値をマイナス方向へ増大させる。
(3)前記貫通孔への金属の仮想充填率が110%以上となるまで電解めっき処理を実施する。
(4)電解めっき時の電流値をマイナス方向へ増大させてから電解めっき処理を終了するまでの前記貫通孔への金属の仮想充填率が1%以上となるように電解めっき処理を実施する。
The method for producing a metal-filled microstructure according to claim 1 or 2, wherein the electrolytic plating treatment is performed so as to satisfy the following (1) to (4).
(1) An electrolytic plating process is started as a constant current electrolytic plating process.
(2) When the virtual filling rate of the metal in the through hole reaches 75% to 125%, the current value at the time of electrolytic plating is increased in the minus direction.
(3) The electrolytic plating process is performed until the virtual filling rate of the metal in the through hole becomes 110 % or more.
(4) The electrolytic plating process is performed so that the virtual filling rate of the metal in the through-hole from the time when the current value during the electrolytic plating is increased in the minus direction to the end of the electrolytic plating process is 1% or more.
前記電解めっき時の電流値のマイナス方向への増大量が0.5A/dm2以上である、請求項3に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to claim 3, wherein an increase amount of the current value in the negative direction during the electroplating is 0.5 A / dm 2 or more. 前記電解めっき時の電流値をマイナス方向へ増大させる際の電流値の変化率が0.1A/dm2・秒以上である、請求項4に記載の電解めっき方法。 The electrolytic plating method according to claim 4, wherein a rate of change of the current value when the current value during the electrolytic plating is increased in the minus direction is 0.1 A / dm 2 · sec or more. 前記電解めっき時の電流値のマイナス方向への増大が、電位、温度、めっき浴内の金属イオン濃度、および、めっき液の液流速度からなる群から選択される少なくとも1つを変化させることにより行なわれる請求項3〜5のいずれかに記載の金属充填微細構造体の製造方法。   By increasing at least one selected from the group consisting of potential, temperature, metal ion concentration in the plating bath, and the flow rate of the plating solution, the increase in the current value during the electrolytic plating in the negative direction is changed. The method for producing a metal-filled microstructure according to any one of claims 3 to 5, which is performed. 前記(2)において、前記電解めっき時の電流値をめっき時間に対して連続的にマイナス方向へ増大させる、請求項3〜6のいずれかに記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 3 to 6, wherein in (2), the current value during the electrolytic plating is continuously increased in the negative direction with respect to the plating time. 前記貫通孔について下記式(i)により定義される規則化度が50%以上である、請求項1〜7のいずれかに記載の金属充填微細構造体の製造方法。
規則化度(%)=B/A×100 (i)
上記式(i)中、Aは、測定範囲における貫通孔の全数を表す。Bは、一の貫通孔の重心を中心とし、他の貫通孔の縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一の貫通孔以外の貫通孔の重心を6個含むことになる前記一の貫通孔の測定範囲における数を表す。
The method for producing a metal-filled microstructure according to any one of claims 1 to 7, wherein the degree of ordering defined by the following formula (i) for the through-hole is 50% or more.
Ordering degree (%) = B / A × 100 (i)
In the above formula (i), A represents the total number of through holes in the measurement range. B is centered on the center of gravity of one through hole, and when a circle with the shortest radius inscribed in the edge of the other through hole is drawn, the center of gravity of the through hole other than the one through hole is inside the circle. The number in the measurement range of the said 1 through-hole which will contain 6 is represented.
請求項1〜8のいずれかに記載の金属充填微細構造体の製造方法により得られる金属充填微細構造体。   A metal-filled microstructure obtained by the method for producing a metal-filled microstructure according to claim 1.
JP2010067757A 2010-03-24 2010-03-24 Method for producing metal-filled microstructure Active JP5435484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067757A JP5435484B2 (en) 2010-03-24 2010-03-24 Method for producing metal-filled microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067757A JP5435484B2 (en) 2010-03-24 2010-03-24 Method for producing metal-filled microstructure

Publications (2)

Publication Number Publication Date
JP2011202194A JP2011202194A (en) 2011-10-13
JP5435484B2 true JP5435484B2 (en) 2014-03-05

Family

ID=44879142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067757A Active JP5435484B2 (en) 2010-03-24 2010-03-24 Method for producing metal-filled microstructure

Country Status (1)

Country Link
JP (1) JP5435484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627247B2 (en) * 2010-02-10 2014-11-19 キヤノン株式会社 Microstructure manufacturing method and radiation absorption grating
WO2015012234A1 (en) 2013-07-22 2015-01-29 富士フイルム株式会社 Method for fabrication of anisotropic conductive member and method for fabrication of anisotropic conductive bonding package
JP2015147969A (en) * 2014-02-05 2015-08-20 住友電気工業株式会社 Substrate, and manufacturing method thereof
US10519562B2 (en) * 2016-08-17 2019-12-31 Auckland Uniservices Limited Method to create thin functional coatings on light alloys

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780302B2 (en) * 2002-02-27 2006-05-31 株式会社関東学院大学表面工学研究所 Method for plating substrate having via hole and through hole
JP2004119606A (en) * 2002-09-25 2004-04-15 Canon Inc Semiconductor substrate and method for filling through-hole thereof
JP2004143524A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Method for producing columnar electroconductor group
JP3649239B2 (en) * 2002-10-28 2005-05-18 Jsr株式会社 Manufacturing method of sheet-like connector
JP4248353B2 (en) * 2003-09-19 2009-04-02 新光電気工業株式会社 Through-hole filling method
JP4626254B2 (en) * 2004-10-12 2011-02-02 パナソニック電工株式会社 Plating embedding method and plating apparatus in through hole
JP2006161124A (en) * 2004-12-09 2006-06-22 Canon Inc Method for forming penetration electrode
JP2009283431A (en) * 2007-12-27 2009-12-03 Fujifilm Corp Microstructural body and method of manufacturing the same
JP5253972B2 (en) * 2008-04-28 2013-07-31 富士フイルム株式会社 Structure and manufacturing method thereof
JP5362500B2 (en) * 2009-09-18 2013-12-11 富士通株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2011202194A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5043617B2 (en) Anisotropic conductive member and manufacturing method thereof
JP5143045B2 (en) Fine structure and manufacturing method thereof
US8133578B2 (en) Microstructure and method of manufacturing the same
JP6029764B2 (en) Method for producing metal-filled microstructure
CN102318141B (en) Anisotropically conductive member and method for producing the same
EP2213771B1 (en) Microfine structure
WO2009113486A1 (en) Probe guard
EP1976007B1 (en) Method of manufacture of anisotropically conductive member
JP5253972B2 (en) Structure and manufacturing method thereof
JP5435484B2 (en) Method for producing metal-filled microstructure
JP5523941B2 (en) Method for producing metal-filled microstructure
JP6055552B2 (en) Multilayer structure, interposer, and manufacturing method of interposer
JP7343706B2 (en) Manufacturing method of anisotropically conductive member
JP2009287115A (en) Electrolytic plating method and method of manufacturing metal-filled microstructure using the same
JP5043691B2 (en) Method for producing metal-filled microstructure, metal-filled microstructure and anisotropic conductive member
JP5139906B2 (en) Fine structure and manufacturing method thereof
JP2010149211A (en) Surface polishing method for brittle thin film material
JP5693637B2 (en) Manufacturing method of fine structure
JP2010030030A (en) Surface polishing method for thin-film brittle material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5435484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250