JP5679279B2 - Alumina cement composition and repair method using the same - Google Patents

Alumina cement composition and repair method using the same Download PDF

Info

Publication number
JP5679279B2
JP5679279B2 JP2010230906A JP2010230906A JP5679279B2 JP 5679279 B2 JP5679279 B2 JP 5679279B2 JP 2010230906 A JP2010230906 A JP 2010230906A JP 2010230906 A JP2010230906 A JP 2010230906A JP 5679279 B2 JP5679279 B2 JP 5679279B2
Authority
JP
Japan
Prior art keywords
alumina cement
parts
cement composition
composition according
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010230906A
Other languages
Japanese (ja)
Other versions
JP2012082113A (en
Inventor
和人 田原
和人 田原
高木 聡史
聡史 高木
宮口 克一
克一 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010230906A priority Critical patent/JP5679279B2/en
Publication of JP2012082113A publication Critical patent/JP2012082113A/en
Application granted granted Critical
Publication of JP5679279B2 publication Critical patent/JP5679279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、コンクリート構造物の補修、特に硫酸により劣化を受けた下水処理施設のコンクリート構造物の補修などに使用するアルミナセメント組成物およびそれを用いた補修工法に関する。   The present invention relates to an alumina cement composition used for repairing a concrete structure, particularly repairing a concrete structure in a sewage treatment facility that has been deteriorated by sulfuric acid, and a repair method using the same.

下水処理施設におけるコンクリート構造物は、下水中で発生する硫酸還元細菌の影響で硫酸が発生しコンクリートが侵食され、さらに内部の鉄筋の腐食で錆による膨張圧が生じ、コンクリートにひび割れ、浮きが発生し、コンクリート片のはく落などが起きている。このような下水処理施設での補修工法としては、劣化部をウォータージェットにより除去し断面修復してから樹脂ライニングを行う方法が多く実施されている。これに用いる断面修復材は、高炉水砕スラグにポリマーを配合した材料(特許文献1)、アルミナセメントを使用した材料(特許文献2、3)、高炉水砕スラグやシリカフュームなどの微粉末を多量に混和したセメントモルタルが使用されている(特許文献4)。また、アルミナセメントと高炉スラグ微粉末を用いた材料で、5μm以下のアルミナセメント粒子を25重量%以下とし、リチウム塩を含有する材料が提案されている(特許文献5)。
さらに、アルミナセメント、ポゾラン物質、LiO含有量が0.7〜2.5質量%のヘクトライト、無機繊維、および流動化剤を含有するアルミナセメント組成物が使用されている(特許文献6)。
In concrete structures in sewage treatment facilities, sulfuric acid is generated due to the effect of sulfate-reducing bacteria generated in the sewage, and the concrete is eroded. In addition, the corrosion of the internal rebar causes rust expansion pressure, and the concrete cracks and floats. However, the concrete pieces are peeled off. As a repair method in such a sewage treatment facility, a method of removing a deteriorated portion with a water jet and repairing a cross section and then performing resin lining is often performed. The cross-sectional restoration material used for this is a material containing a polymer in blast furnace granulated slag (Patent Document 1), a material using alumina cement (Patent Documents 2 and 3), and a large amount of fine powder such as blast furnace granulated slag and silica fume. Cement mortar blended with the above is used (Patent Document 4). Further, a material using alumina cement and blast furnace slag fine powder, and a material containing 5 μm or less of alumina cement particles of 25 μ% or less and containing a lithium salt has been proposed (Patent Document 5).
Furthermore, an alumina cement composition containing alumina cement, pozzolanic material, hectorite having a Li 2 O content of 0.7 to 2.5% by mass, inorganic fibers, and a fluidizing agent is used (Patent Document 6). ).

特開平03−290348号公報Japanese Patent Laid-Open No. 03-290348 特開2003−89565号公報JP 2003-89565 A 特開2004−292245号公報JP 2004-292245 A 特開2000−128618号公報JP 2000-128618 A 特開2002−293603号公報JP 2002-293603 A 特開2007−223876号公報JP 2007-223876 A

しかしながら、硫酸によるコンクリート構造物の劣化は、セメントの水和で生じる水酸化カルシウムと硫酸が反応することで進行するため、通常のポルトランドセメントを用いた補修材料では樹脂ライニングにわずかなピンホールが存在すれば長期的な耐久性は望めないという課題があった。また、アルミナセメントを使用した場合でも下水処理施設には、湿度が低く風通りのよい開放されたピットや水路なども存在し、冬季の寒い時期の施工では、セメントの凝結時間が遅れるため初期収縮ひび割れが発生しやすく、表層部がドライアウトし、十分な付着強度が得られないという課題があった。さらに、微粉末を多量に混和した材料は、自己収縮がポリマーセメントよりも大きく、冬季に限らず初期ひび割れが発生しやすく、モルタルの粘りが強く作業性が悪いという課題があった。
本発明者らは、前記課題を解決するため、特定のアルミナセメント組成物およびそれを用いた補修工法を提供する。
However, the deterioration of concrete structures due to sulfuric acid proceeds due to the reaction of calcium hydroxide and sulfuric acid generated by cement hydration, so there is a slight pinhole in the resin lining in repair materials using ordinary Portland cement. Then, there was a problem that long-term durability could not be expected. Even when alumina cement is used, sewage treatment facilities also have open pits and waterways with low humidity and good wind passage. There was a problem that cracks were likely to occur, the surface layer portion dried out, and sufficient adhesion strength could not be obtained. Furthermore, a material in which a large amount of fine powder is mixed has a problem that self-shrinkage is larger than that of polymer cement, initial cracking is likely to occur not only in winter, but mortar has a strong stickiness and workability is poor.
In order to solve the above problems, the present inventors provide a specific alumina cement composition and a repair method using the same.

本発明は、(1)アルミナセメント、ポゾラン物質、SiO/ROモル比がであるアルカリ金属珪酸塩、増粘剤および流動化剤を含有してなり、増粘剤が、粘度10,000〜40,000mPa・sの水溶性アルキルセルロース、および粘度10,000〜40,000mPa・sの水溶性ヒドロキシアルキルアルキルセルロースの中から選ばれた少なくとも1種であり、流動化剤が、ポリカルボン酸系物質類の中から選ばれた少なくとも1種とリグニンスルホン酸系物質類の中から選ばれた少なくとも1種を併用したものである、アルミナセメント組成物、(2)アルミナセメント100部に対して、ポゾラン物質が80〜200部であり、アルカリ金属珪酸塩が0.05〜10部であり、増粘剤が0.01〜5部であり、流動化剤が0.05〜1.5部である、(1)のアルミナセメント組成物、(3)流動化剤がポリカルボン酸系物質類100部に対してリグニンスルホン酸系物質類10〜200部である(1)または(2)のアルミナセメント組成物、(4)高分子繊維を含有する(1)〜(3)いずれかのアルミナセメント組成物、(5)セメント混和用ポリマーを含有する(1)〜(4)いずれかのアルミナセメント組成物、(6)骨材を含有する(1)〜(5)いずれかのアルミナセメント組成物、(7)(1)〜(6)のうちいずれかのアルミナセメント組成物を用いることを特徴とする補修工法、(8)(1)〜(6)のうちいずれかのアルミナセメント組成物を吹付けることを特徴とする補修工法である。 The present invention comprises (1) an alumina cement, a pozzolanic material, an alkali metal silicate having a SiO 2 / R 2 O molar ratio of 1 , a thickener and a fluidizing agent, and the thickener has a viscosity of 10 is at least one selected from among water-soluble hydroxyalkyl alkyl cell row scan of the water-soluble alkyl cellulose 000~40,000mPa · s, and a viscosity 10,000~40,000mPa · s, fluidizing agent, An alumina cement composition comprising at least one selected from polycarboxylic acid-based materials and at least one selected from lignin sulfonic acid-based materials, (2) 100 parts of alumina cement In contrast, the pozzolanic material is 80 to 200 parts, the alkali metal silicate is 0.05 to 10 parts, the thickener is 0.01 to 5 parts, (1) Alumina cement composition, wherein the agent is 0.05 to 1.5 parts, and (3) the lignin sulfonic acid materials 10 to 200 with respect to 100 parts of the polycarboxylic acid materials. Part (1) or (2) alumina cement composition, (4) containing polymer fiber, (1) to (3) any alumina cement composition, and (5) cement admixture polymer (1) to (4) any one alumina cement composition, (6) containing aggregate (1) to (5) any alumina cement composition, (7) (1) to (6) A repair method characterized by using any one of the alumina cement compositions, and a repair method characterized by spraying any one of the alumina cement compositions among (8) (1) to (6).

本発明のアルミナセメント組成物は、流動性、作業性に優れる。さらに、その硬化体は、初期ひび割れ抵抗性、強度発現性、耐硫酸性などに優れるため、長期耐久性が良好なコンクリート構造物の補修を行うことが可能となる。   The alumina cement composition of the present invention is excellent in fluidity and workability. Furthermore, since the cured body is excellent in initial crack resistance, strength development, and sulfuric acid resistance, it becomes possible to repair a concrete structure with good long-term durability.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.

本発明で使用するアルミナセメントとは、モノカルシウムアルミネートを主要鉱物として含有するクリンカー粉砕物から得られるものであり、例えば、アルミナセメント1号やアルミナセメント2号などが使用できる。アルミナセメントの粉末度は、水和活性の点で2000〜8000cm/gが好ましい。また、アルミナセメントの粒度調整を行い、粒子径5μm以下の粒子を全体の30質量%未満としたものが硬化するときの収縮が小さくなるので好ましい。 The alumina cement used in the present invention is obtained from a clinker pulverized product containing monocalcium aluminate as a main mineral. For example, alumina cement 1 or alumina cement 2 can be used. The fineness of the alumina cement is preferably 2000 to 8000 cm 2 / g in terms of hydration activity. Moreover, the particle size of the alumina cement is adjusted, and particles having a particle diameter of 5 μm or less and less than 30% by mass are preferable because shrinkage when cured is reduced.

本発明で使用するポゾラン物質とは、アルカリ刺激によりポゾラン活性を示す物質であり、アルミナセメントと併用することで、水和物の相転移による強度低下を抑制する目的や、施工時のモルタルのダレ抵抗性を向上させる目的で使用するものである。例えば、高炉水砕スラグ、高炉徐冷スラグ、転炉スラグ、シリカフューム、およびフライアッシュなどが挙げられる。
ポゾラン物質の粉末度は、水和活性の点でブレーン比表面積3000cm/g以上が好ましい。
ポゾラン物質の使用量は、通常、アルミナセメント100部に対して、80〜200部が好ましく、100〜150部がより好ましい。なお、シリカフュームは、アルミナセメント100部に対して1〜10部が好ましい。
The pozzolanic substance used in the present invention is a substance that exhibits pozzolanic activity by alkali stimulation, and is used in combination with alumina cement for the purpose of suppressing strength reduction due to phase transition of hydrate, and dripping of mortar during construction. It is used for the purpose of improving resistance. Examples include blast furnace granulated slag, blast furnace slow-cooled slag, converter slag, silica fume, fly ash, and the like.
The fineness of the pozzolanic material is preferably a brane specific surface area of 3000 cm 2 / g or more in terms of hydration activity.
Usually, the amount of the pozzolanic material is preferably 80 to 200 parts, more preferably 100 to 150 parts, relative to 100 parts of the alumina cement. Silica fume is preferably 1 to 10 parts with respect to 100 parts of alumina cement.

本発明で使用するSiO/RO(Rはアルカリ金属)モル比が0.5〜2であるアルカリ金属珪酸塩は、低温時の硬化性状の改善と耐硫酸性の向上を目的に使用する。アルカリ金属珪酸塩は、特に限定されるものではないが、珪酸ナトリウム、珪酸カリウムおよび珪酸リチウムなどがあげられる。これらは、粉末状あるいは溶液として使用して差し支えないが、プレミックスできることから粉末状のものが好ましい。中でも、工業的に安価である珪酸ナトリウムがより好ましい。SiO/ROモル比は0.5〜2が好ましく0.5〜1がより好ましい。0.5以下であると流動性に悪影響を及ぼす場合があり、2以上では耐硫酸性に悪影響を及ぼす場合がある。
アルカリ金属珪酸塩の使用量は、アルミナセメント100部に対して0.05〜10部が好ましく、0.1〜5部がより好ましい。0.05部未満では低温での硬化促進効果が小さく、10部を超えて使用すると、流動性に悪影響を及ぼす。
The alkali metal silicate having a SiO 2 / R 2 O (R is alkali metal) molar ratio of 0.5 to 2 used in the present invention is used for the purpose of improving curability at low temperatures and improving sulfuric acid resistance. To do. The alkali metal silicate is not particularly limited, and examples thereof include sodium silicate, potassium silicate, and lithium silicate. These may be used in powder form or as a solution, but are preferably in powder form because they can be premixed. Of these, sodium silicate, which is industrially inexpensive, is more preferable. The SiO 2 / R 2 O molar ratio is preferably 0.5 to 2, and more preferably 0.5 to 1. If it is 0.5 or less, the fluidity may be adversely affected. If it is 2 or more, the sulfuric acid resistance may be adversely affected.
The amount of alkali metal silicate used is preferably 0.05 to 10 parts, more preferably 0.1 to 5 parts, per 100 parts of alumina cement. If it is less than 0.05 part, the effect of promoting curing at low temperatures is small, and if it exceeds 10 parts, the fluidity is adversely affected.


本発明で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。
style='font-size:10.5pt;font-family:"MS 明朝";color:black'>

As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, and various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, Examples include filler cement mixed with limestone powder and blast furnace slow-cooled slag fine powder, as well as Portland cement such as environmentally friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash. 1 type or 2 types or more can be used.
style = 'font-size: 10.5pt; font-family: "MS Mincho"; color: black'>

本発明で使用する増粘剤は、主に、断面修復した際のダレの防止と保水性の向上のために用いるものであり、粘度3,000〜40,000mPa・sの水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロースまたはスルホン酸塩基とアミド酸塩基を含有するポリマーの中から選ばれた少なくとも1種であることを特徴とする。例えば、信越化学社製SBQ−30000PEやBASFポゾリス社製STARVISなどが挙げられる。本発明における増粘剤の粘度は20℃における2%水溶液で測定したものである。
増粘剤の使用量は、アルミナセメント100部に対して、0.01〜5部が好ましく、0.05〜3部がより好ましい。0.01部未満では、ダレの防止と保水性の向上の効果は少なく、5部を超えて使用すると低温における硬化性状に悪影響を及ぼす場合がある。
The thickener used in the present invention is mainly used for preventing dripping at the time of cross-sectional repair and improving water retention, and is a water-soluble alkylcellulose having a viscosity of 3,000 to 40,000 mPa · s, It is at least one selected from water-soluble hydroxyalkylalkylcellulose or a polymer containing a sulfonate group and an amidate group. Examples thereof include SBQ-30000PE manufactured by Shin-Etsu Chemical Co., and STARVIS manufactured by BASF Pozzolith. The viscosity of the thickener in the present invention is measured with a 2% aqueous solution at 20 ° C.
The amount of thickener used is preferably 0.01 to 5 parts, more preferably 0.05 to 3 parts, per 100 parts of alumina cement. If it is less than 0.01 part, the effect of preventing sagging and improving water retention is small, and if it exceeds 5 parts, it may adversely affect the curing properties at low temperatures.

本発明で使用する流動化剤とは、モルタルに適度な流動性を与える目的で使用するものであり、例えば、ポリカルボン酸系物質類、メラミン系物質類、リグニンスルホン酸系質類、ナフタレンスルホン酸系物質類などが挙げられる。これらの中で、適度な流動性を与え、強度発現性に影響を与えにくい点でポリカルボン酸系物質類、リグニンスルホン酸系物質類を併用して使用することが好ましい。   The fluidizing agent used in the present invention is used for the purpose of imparting an appropriate fluidity to the mortar. For example, polycarboxylic acid substances, melamine substances, lignin sulfonic acid substances, naphthalene sulfone. Examples include acid substances. Among these, it is preferable to use polycarboxylic acid-based substances and lignin sulfonic acid-based substances in combination in terms of giving appropriate fluidity and hardly affecting strength development.

アルミナセメントにリチウムを含有する物質やアルカリ金属珪酸塩等を併用すると、少量でもフローロスが大きくなる傾向があり、20m以上のポンプ圧送を必要とする施工方法に適用することが困難な場合がある。しかしながら、ポリカルボン酸系物質とリグニンスルホン酸系物質を併用して使用すると、適当な流動性を与え且つフローロスを抑制できることが可能となり、コテ塗りはもちろんポンプ圧送性にも優れるアルミナセメント組成物とすることが可能である。
ポリカルボン酸系物質とリグニンスルホン酸系物質を併用する割合は、ポリカルボン酸系物質類100部に対してリグニンスルホン酸系物質類10〜200部が好ましい。10部未満では流動性ロスを抑制する効果が小さく、200部を超えると初期強度発現性を阻害する場合がある。
流動化剤の使用量は、アルミナセメント100部に対して0.05〜1.5部が好ましく、0.1〜1部がより好ましい。0.05部未満では、適度な流動性が得られ難く、1.5部を超えると強度発現性に影響する場合がある。
When a material containing lithium, alkali metal silicate, or the like is used in combination with alumina cement, flow loss tends to increase even in a small amount, and it may be difficult to apply to a construction method that requires pumping of 20 m or more. However, when a polycarboxylic acid-based material and a lignin sulfonic acid-based material are used in combination, it becomes possible to give appropriate fluidity and suppress flow loss, and with an alumina cement composition having excellent pumpability as well as iron coating Is possible.
The ratio of the combined use of the polycarboxylic acid material and the lignin sulfonic acid material is preferably 10 to 200 parts of the lignin sulfonic acid material with respect to 100 parts of the polycarboxylic acid material. If it is less than 10 parts, the effect of suppressing fluidity loss is small, and if it exceeds 200 parts, the initial strength development may be inhibited.
The amount of the fluidizing agent used is preferably 0.05 to 1.5 parts, more preferably 0.1 to 1 part, with respect to 100 parts of alumina cement. If it is less than 0.05 part, moderate fluidity is difficult to obtain, and if it exceeds 1.5 part, strength development may be affected.

本発明で使用する高分子繊維とは、アルミナセメントが硬化するまでに入るひび割れを抑制するために使用するもので、ひび割れ応力を分散する効果がある。繊維長やアスペクト比は特に限定するものではないが、ひび割れ抑制効果やモルタルの流動性を阻害しにくい点で繊維長が2〜15mm、アスペクト比が300〜1000の高分子繊維が好ましい。
高分子繊維の種類としては、例えば、ビニロン繊維、ポリプロピレン繊維、アクリル繊維、ナイロン繊維などが挙げられる。特に限定されるものではないが、これらの中でモルタル中における繊維の付着力が比較的優れるビニロン繊維やアクリル繊維の使用が好ましい。
高分子繊維の使用量は、アルミナセメントとポゾラン物質と骨材の合計100部に対して0.02〜0.6部が好ましく、0.07〜0.4部がより好ましい。0.02部未満では、ひび割れ抑制効果が小さく、0.6部を超えるとモルタルの流動性に影響する場合がある。
The polymer fiber used in the present invention is used to suppress cracks that enter until the alumina cement is hardened, and has an effect of dispersing cracking stress. The fiber length and the aspect ratio are not particularly limited, but polymer fibers having a fiber length of 2 to 15 mm and an aspect ratio of 300 to 1000 are preferred in that they are difficult to inhibit cracking suppression and mortar fluidity.
Examples of the polymer fiber include vinylon fiber, polypropylene fiber, acrylic fiber, and nylon fiber. Although not particularly limited, it is preferable to use vinylon fibers or acrylic fibers, which have relatively good fiber adhesion in mortar.
The amount of the polymer fiber used is preferably 0.02 to 0.6 part, more preferably 0.07 to 0.4 part with respect to 100 parts in total of the alumina cement, the pozzolanic material and the aggregate. If it is less than 0.02 part, the crack inhibiting effect is small, and if it exceeds 0.6 part, the flowability of the mortar may be affected.

本発明で使用するセメント混和用ポリマーとは、JIS A 6203で規定されているセメント混和用のポリマー(ポリマーディスパージョン)であり、中性化、塩害、凍害などの耐久性を向上させ、モルタルの付着強度、曲げ強度、引張強度などの強度特性を改善する目的で使用する。
例えば、アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、および天然ゴムなどのゴムラテックス、エチレン・酢酸ビニル共重合体、ポリアクリル酸エステル、酢酸ビニルビニルバーサテート系共重合体、およびスチレン・アクリル酸エステル共重合体やアクリロニトリル・アクリル酸エステルに代表されるアクリル酸エステル系共重合体、エポキシ樹脂、不飽和ポリエステル樹脂に代表される液状ポリマーなどが挙げられ、これらの1種または2種以上の混合物を使用できる。
セメント混和用ポリマーの使用量は、アルミナセメント100部に対して固形分換算で1〜20部が好ましく、3〜10部がより好ましい。1部未満では耐久性の向上効果が小さく、20部を超えると強度発現性に影響する場合がある。
The cement-mixing polymer used in the present invention is a cement-mixing polymer (polymer dispersion) defined in JIS A 6203, which improves durability such as neutralization, salt damage, frost damage, etc. Used to improve strength properties such as adhesion strength, bending strength, and tensile strength.
For example, rubber latex such as acrylonitrile-butadiene rubber, styrene-butadiene rubber, chloroprene rubber, and natural rubber, ethylene-vinyl acetate copolymer, polyacrylic ester, vinyl acetate vinyl versatate copolymer, and styrene-acrylic Examples include acid ester copolymers, acrylic ester copolymers represented by acrylonitrile / acrylic acid esters, epoxy resins, liquid polymers represented by unsaturated polyester resins, and the like. Mixtures can be used.
The amount of the cement-mixing polymer used is preferably 1 to 20 parts, more preferably 3 to 10 parts in terms of solid content with respect to 100 parts of alumina cement. If it is less than 1 part, the durability improvement effect is small, and if it exceeds 20 parts, strength development may be affected.

本発明のアルミナセメント組成物は、水と混合し、骨材を含まないペースト、あるいは骨材を含むモルタルやコンクリートとして使用できるが、使用する骨材の種類としては、特に限定されるものではないが、耐酸性を有する骨材の使用が好ましい。例えば、珪石骨材、アルミナ骨材、ムライト骨材、シャモット骨材、炭化珪素骨材、アルミナセメントクリンカー骨材などが挙げられる。
骨材の使用量は、アルミナセメントとポゾラン物質及びアルカリ金属珪酸塩の合計100部に対して250部以下であり、250部を超えると流動性や付着強度が低下する傾向がある。
また、2mm以下の薄塗りをする場合は骨材を含まないペーストを使用し、2mmを超える厚みを確保する場合は骨材を含むモルタルやコンクリートを使用することが好ましい。
The alumina cement composition of the present invention can be mixed with water and used as a paste containing no aggregate, or as a mortar or concrete containing aggregate, but the type of aggregate to be used is not particularly limited. However, it is preferable to use an aggregate having acid resistance. Examples thereof include silica aggregate, alumina aggregate, mullite aggregate, chamotte aggregate, silicon carbide aggregate, alumina cement clinker aggregate, and the like.
The amount of the aggregate used is 250 parts or less with respect to 100 parts in total of the alumina cement, the pozzolanic material and the alkali metal silicate, and if it exceeds 250 parts, the fluidity and adhesion strength tend to be lowered.
Moreover, it is preferable to use the paste which does not contain an aggregate when thinly coating 2 mm or less, and to use the mortar and concrete containing an aggregate when ensuring the thickness exceeding 2 mm.

本発明では、低温においてより迅速な強度発現が必要な場合は、炭酸、硫酸、硝酸、水酸化物、リン酸、ホウ酸、有機酸などのリチウム塩を併用することができる。
また、本発明のアルミナセメント組成物には品質に悪影響を与えない範囲で、AE剤、増粘剤、発泡剤、凝結遅延剤、撥水剤、防錆剤、防凍剤、収縮低減剤、防水剤、抗菌剤などの各種添加剤を併用することができる。
In the present invention, when rapid strength development is required at low temperatures, lithium salts such as carbonic acid, sulfuric acid, nitric acid, hydroxide, phosphoric acid, boric acid, and organic acid can be used in combination.
In addition, the AE agent, thickener, foaming agent, setting retarder, water repellent, rust preventive, antifreeze, shrinkage reducing agent, waterproofing, as long as the quality of the alumina cement composition of the present invention is not adversely affected. Various additives such as agents and antibacterial agents can be used in combination.

本発明のアルミナセメント組成物を用いたコンクリート構造物の補修では、ミキサーで練り混ぜたモルタルやコンクリートをコテで塗っても良く、型枠を作りその内部に充填しても良く、さらに、圧縮空気を用いて吹き飛ばす吹付けで施工しても良い。特に、大きな断面を補修する場合は,モルタルを吹付けで施工することが作業効率の点で好ましい。   In repairing a concrete structure using the alumina cement composition of the present invention, mortar or concrete kneaded with a mixer may be applied with a trowel, a mold may be formed and filled inside, and compressed air may be used. You may construct by blowing off using. In particular, when repairing a large cross section, it is preferable from the viewpoint of work efficiency that the mortar is applied by spraying.

以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

アルミナセメント100部に対して、ポゾラン物質100部、表1に示す種類と量の、アルカリ金属珪酸塩0.5部、増粘剤A0.1部、流動化剤0.7部(流動化剤A0.5部、流動化剤B0.2部)を加え、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩の合計100部に対して、骨材170部を加えドライモルタルとしアルミナセメント組成物を調製した。なお、液体のアルカリ金属珪酸塩については水投入時に同時に添加した。このアルミナセメント組成物100部に対して水を13.8部加え、モルタルを調製した。モルタルのフロー、フロー保持率、ダレ性、始発時間、圧縮強度、耐硫酸性、保水率を測定した。その結果を表1に示す。   100 parts of alumina cement, 100 parts of pozzolanic material, 0.5 part of alkali metal silicate, 0.1 part of thickener A, 0.7 part of fluidizer (fluidizer) of the types and amounts shown in Table 1. A0.5 parts, fluidizing agent B 0.2 parts), and further, 170 parts of aggregate is added to 100 parts of the total amount of alumina cement, pozzolanic material and alkali metal silicate to form dry mortar. Prepared. The liquid alkali metal silicate was added at the same time when water was added. 13.8 parts of water was added to 100 parts of this alumina cement composition to prepare a mortar. Mortar flow, flow retention, sagging properties, initial time, compressive strength, sulfuric acid resistance, and water retention were measured. The results are shown in Table 1.

(使用材料)
アルミナセメント:アルミナセメント1号、市販品
アルカリ金属珪酸塩A:市販品、無水メタ珪酸ナトリウム(粉末) SiO/ROモル比=1
アルカリ金属珪酸塩B:市販品、珪酸リチウム(液体) SiO/ROモル比=2アルカリ金属珪酸塩C:市販品、一号珪酸カリウム(液体) SiO/ROモル比=2
増粘剤A:市販品、メチルセルロース系増粘剤(商品名:SBQ−30000PE、信越化学社製、粘度30,000mPa・s)
ポゾラン物質A:高炉水砕スラグ微粉末、ブレーン比表面積7000cm/g、市販品
流動化剤:流動化剤Aのポリカルボン酸系物質(BASFポゾリス社製、商品名メルフラックスAP101F)100部に対し流動化剤Bのリグニンスルホン酸系物質(日本製紙ケミカル社製、商品名バニレックスN)40部を配合した混合物
骨材:乾燥珪砂、最大粒径1.2mm
(Materials used)
Alumina cement: Alumina cement No. 1, commercial product alkali metal silicate A: commercial product, anhydrous sodium metasilicate (powder) SiO 2 / R 2 O molar ratio = 1
Alkali metal silicate B: commercial product, lithium silicate (liquid) SiO 2 / R 2 O molar ratio = 2 Alkali metal silicate C: commercial product, No. 1 potassium silicate (liquid) SiO 2 / R 2 O molar ratio = 2
Thickener A: Commercially available product, methylcellulose thickener (trade name: SBQ-30000PE, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 30,000 mPa · s)
Pozzolanic material A: ground granulated blast furnace slag, Blaine specific surface area of 7000 cm 2 / g, commercially available fluidizing agent: 100 parts of polycarboxylic acid-based material of fluidizing agent A (trade name Melflux AP101F, manufactured by BASF Pozzolith) On the other hand, a mixture containing 40 parts of a lignin sulfonic acid material (Nippon Paper Chemical Co., Ltd., trade name Vanillex N) as a fluidizing agent B. Aggregate: dry silica sand, maximum particle size 1.2 mm

(試験方法)
フロー試験、圧縮強度試験:JIS R 5201に準拠して測定した。
フロー保持率: 練り混ぜた直後のフローと60分後のフローの比。測定は温度20℃、湿度80%で行った。
フロー保持率(%)=(60分後のフロー/練り混ぜ直後のフロー)×100
ダレ性:縦30cm×横30cm×厚み6cmのコンクリート製平版の表面を湿らせ、厚み2cmでモルタルを塗り付けて24時間後の付着状態を観察した。異常なければ○とし、はらんだり、ずれ落ちたりすれば×とした。試験は温度20℃、湿度60%の室内で行った。
始発時間:JIS A 1147に準拠して測定した(試験温度5℃)。
耐硫酸性試験: 練り混ぜたモルタルをφ7.5×15cmに成形し、温度20℃の水中に28日間養生後、温度20℃で5%硫酸水溶液中に28日間浸漬したときの硫酸イオンの浸透深さを測定した。浸透深さの判定はフェノールフタレイン法で行った。
保水率:練り混ぜたモルタルをφ5×2.5cmに成形し、速やかにその質量を測定し、温度20℃、湿度60%の室内に24時間放置した後、再び質量を測定した。
保水率(%)=(24時間後の質量/成型直後の質量)×100
(Test method)
Flow test, compressive strength test: Measured according to JIS R 5201.
Flow retention: Ratio of the flow immediately after mixing and the flow after 60 minutes. The measurement was performed at a temperature of 20 ° C. and a humidity of 80%.
Flow retention rate (%) = (flow after 60 minutes / flow immediately after mixing) × 100
Sagging property: The surface of a concrete lithographic plate having a length of 30 cm, a width of 30 cm, and a thickness of 6 cm was moistened. If it was not abnormal, it was rated as ○, and if it got stuck or slipped off, it was marked as ×. The test was conducted in a room at a temperature of 20 ° C. and a humidity of 60%.
First time: Measured according to JIS A 1147 (test temperature 5 ° C.).
Sulfuric acid resistance test: Kneaded mortar formed into φ7.5 × 15cm, cured in water at 20 ° C for 28 days, and then immersed in 5% sulfuric acid aqueous solution at 20 ° C for 28 days. The depth was measured. The penetration depth was determined by the phenolphthalein method.
Water retention rate: The kneaded mortar was molded into φ5 × 2.5 cm, its mass was measured immediately, left in a room with a temperature of 20 ° C. and a humidity of 60% for 24 hours, and then the mass was measured again.
Water retention rate (%) = (mass after 24 hours / mass immediately after molding) × 100

Figure 0005679279
Figure 0005679279

表1より、本発明のアルミナセメント組成物は、フローが大きくその保持率が高い優れた流動性と、優れたダレ性を有し、しかも、始発時間が長く作業性が良好で強度発現性、耐硫酸性および保水性に優れていることが判る。   From Table 1, the alumina cement composition of the present invention has an excellent fluidity with a large flow and a high retention rate, and an excellent sagging property, and has a long initial start time, good workability, and good strength development. It turns out that it is excellent in sulfuric acid resistance and water retention.

アルミナセメント100部に対して、表2に示す量の増粘剤A、B、Cを加えた配合物を調製し、この配合物中のアルミナセメント100部に対して、ポゾラン物質100部、アルカリ金属珪酸塩A0.5部、流動化剤0.7部、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩の合計100部に対して、骨材170部を加えドライモルタルとしたこと以外は実施例1と同様に行った。その結果を表2に示す。   A blend is prepared by adding the thickeners A, B, and C in the amounts shown in Table 2 to 100 parts of alumina cement. 100 parts of pozzolanic material, alkali are added to 100 parts of alumina cement in the blend. Implemented except that 0.5 parts of metal silicate A, 0.7 parts of fluidizing agent, and a total of 100 parts of alumina cement, pozzolanic material and alkali metal silicate were added to 170 parts of aggregate to form dry mortar. Performed as in Example 1. The results are shown in Table 2.

(使用材料)
増粘剤B:市販品、ヒドロキシプロピルメチルセルロース系増粘剤(商品名:SEB−15T、信越化学社製、粘度15,000mPa・s)
増粘剤C:市販品、スルホン酸基とアミド酸基を含有する合成ポリマー系増粘剤(商品名:STARVIS、BASFポゾリス社製)
(Materials used)
Thickener B: Commercially available product, hydroxypropyl methylcellulose-based thickener (trade name: SEB-15T, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 15,000 mPa · s)
Thickener C: Commercial product, synthetic polymer thickener containing sulfonic acid group and amic acid group (trade name: STARVIS, manufactured by BASF Pozzolith)

Figure 0005679279
Figure 0005679279

表2より、本発明のアルミナセメント組成物は、フローが大きくその保持率が高い優れた流動性と、優れたダレ性を有し、しかも、始発時間が長く作業性が良好で強度発現性、耐硫酸性及び保水性に優れていることが判る。   From Table 2, the alumina cement composition of the present invention has an excellent fluidity with a large flow and a high retention rate, and an excellent sagging property. It turns out that it is excellent in sulfuric acid resistance and water retention.

アルミナセメント100部に対して、表3に示す種類と量のポゾラン物質を加えた配合物を調製し、この配合物中のアルミナセメント100部に対して、アルカリ金属珪酸塩A0.5部、増粘剤A0.1部、流動化剤0.7部、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩の合計100部に対して、骨材170部加えドライモルタルとしたこと以外は実施例1と同様に行った。その結果を表3に示す。   A formulation in which the kind and amount of pozzolanic material shown in Table 3 was added to 100 parts of alumina cement was prepared, and 0.5 part of alkali metal silicate A was added to 100 parts of alumina cement in this formulation. Example 1 except that 0.1 part of a sticking agent A, 0.7 part of a fluidizing agent, and 170 parts of aggregate were added to dry mortar with respect to a total of 100 parts of alumina cement, pozzolanic material and alkali metal silicate. As well as. The results are shown in Table 3.

(使用材料)
ポゾラン物質B:フライアッシュ、ブレーン比表面積4500cm/g、市販品
ポゾラン物質C:シリカフューム、平均粒子径0.1〜0.2μm、市販品
(Materials used)
Pozzolanic material B: fly ash, Blaine specific surface area 4500 cm 2 / g, commercial product pozzolanic material C: silica fume, average particle size 0.1-0.2 μm, commercial product

Figure 0005679279
Figure 0005679279

表3より本発明のアルミナセメント組成物は、フローが大きくその保持率が高い優れた流動性と、優れたダレ性を有し、しかも、始発時間が長く作業性が良好で強度発現性、耐硫酸性及び保水性に優れていることが判る。   From Table 3, the alumina cement composition of the present invention has excellent fluidity with a large flow and a high retention rate, excellent sagging property, long work-up time, good workability, strength development, It turns out that it is excellent in sulfuric acid property and water retention.

アルミナセメント100部に対して、表4に示す量の流動化剤Aと流動化剤Bを加え配合物を調製し、この配合物中のアルミナセメント100部に対して、アルカリ金属珪酸塩0.5部、増粘剤A0.1部、ポゾラン物質A100部、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩の合計100部に対して、骨材170部を加えドライモルタルとしたこと以外は実施例1と同様に行った。その結果を表4に示す。   A formulation is prepared by adding the fluidizing agent A and fluidizing agent B in the amounts shown in Table 4 to 100 parts of alumina cement. 5 parts, 0.1 parts thickener A, 100 parts pozzolanic material, and 100 parts total of alumina cement, pozzolanic material and alkali metal silicate, except that 170 parts of aggregate was added to make dry mortar Performed as in Example 1. The results are shown in Table 4.

Figure 0005679279
Figure 0005679279

表4より、本発明のアルミナセメント組成物は、フローが大きくその保持率が高い優れた流動性と、優れたダレ性を有し、しかも、始発時間が長く作業性が良好で強度発現性、耐硫酸性及び保水性に優れていることが判る。 From Table 4, the alumina cement composition of the present invention has an excellent fluidity with a large flow and a high retention rate, and excellent sagging properties, and has a long initial time and good workability and good strength development. It turns out that it is excellent in sulfuric acid resistance and water retention.

アルミナセメント100部に対して、アルカリ金属珪酸塩0.5部、増粘剤A0.1部、流動化剤0.7部、ポゾラン物質A100部、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩の合計100部に対して、骨材170部を加え、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩と骨材の合計100部に対して表5に示す種類と量の高分子繊維を加えドライモルタルとし、初期ひび割れ抵抗性を測定したこと以外は実施例1と同様に行った。その結果を表5に示す。   100 parts of alumina cement, 0.5 part of alkali metal silicate, 0.1 part of thickener A, 0.7 part of fluidizing agent, 100 parts of pozzolanic material, and further, alumina cement, pozzolanic material and alkali metal silicate 170 parts of aggregate are added to a total of 100 parts, and the types and amounts of polymer fibers shown in Table 5 are added to 100 parts of alumina cement, pozzolanic material, alkali metal silicate, and aggregate. The same procedure as in Example 1 was performed except that dry mortar was used and initial crack resistance was measured. The results are shown in Table 5.

(使用材料)
高分子繊維A:ビニロン繊維、繊維長6mm、繊維径26μm、アスペクト比231、市販品
高分子繊維B:ビニロン繊維、繊維長6mm、繊維径14μm、アスペクト比429、市販品
(Materials used)
Polymer fiber A: Vinylon fiber, fiber length 6 mm, fiber diameter 26 μm, aspect ratio 231, commercially available polymer fiber B: Vinylon fiber, fiber length 6 mm, fiber diameter 14 μm, aspect ratio 429, commercially available product

(試験方法)
初期ひび割れ抵抗性:練り混ぜたモルタルを縦30cm×横30cm×厚さ6cmのコンクリート製平板に厚さ10mmとなるようにコテで塗り付け、温度5℃、湿度40%、平均風速2m/sの空間に放置し、1日後のひび割れ全長さを測定した。
(Test method)
Initial crack resistance: Kneaded mortar is applied to a concrete flat plate 30cm long x 30cm wide x 6cm thick to a thickness of 10mm, temperature 5 ° C, humidity 40%, average wind speed 2m / s It was left in the space and the total length of cracks after one day was measured.

Figure 0005679279
Figure 0005679279

表5より、本発明のアルミナセメント組成物は、フローが大きくその保持率が高い優れた流動性と、優れたダレ性を有し、しかも、始発時間が長く作業性が良好で強度発現性、耐硫酸性、保水性に優れ、さらに、初期ひび割れ抵抗性に優れていることが判る。   From Table 5, the alumina cement composition of the present invention has excellent fluidity with a large flow and a high retention rate, and excellent sagging properties, and has a long initial time and good workability and good strength development. It can be seen that it is excellent in sulfuric acid resistance and water retention, and further excellent in initial crack resistance.

アルミナセメント100部に対して表6に示す量のセメント混和用ポリマーを加えた配合物を調製し、この配合物中のアルミナセメント100部に対して、アルカリ金属珪酸塩0.5部、増粘剤A0.1部、流動化剤0.7部、ポゾラン物質A 100部、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩の合計100部に対して、骨材170部、さらに、アルミナセメントとポゾラン物質とアルカリ金属珪酸塩と骨材の合計100部に対して高分子繊維Aを表6に示す量を加えドライモルタルとし、塩化物イオン浸透抵抗性を測定したこと以外は実施例1と同様に行った。   A blend was prepared by adding the amount of cement admixing polymer shown in Table 6 to 100 parts of alumina cement, and 0.5 parts of alkali metal silicate and thickening were added to 100 parts of alumina cement in the blend. 0.1 part of agent A, 0.7 part of fluidizing agent, 100 parts of pozzolanic substance A, and further, 170 parts of aggregate, 100 parts of aggregate, and 100 parts of alumina cement, pozzolanic substance and alkali metal silicate The same as Example 1 except that the polymer fiber A was added to the total amount of 100 parts of the pozzolanic material, the alkali metal silicate and the aggregate to form dry mortar and the chloride ion permeation resistance was measured. Went to.

(使用材料)
セメント混和用ポリマー:アクリル−スチレン系再乳化型樹脂粉末、市販品
(Materials used)
Cement admixture polymer: Acrylic-styrene re-emulsifying resin powder, commercial product

(試験方法)
塩分浸透性試験:JIS A 1171に準拠した。
(Test method)
Salt permeability test: Conforms to JIS A 1171.

Figure 0005679279
Figure 0005679279

表6より、本発明のアルミナセメント組成物は、フローが大きくその保持率が高い優れた流動性と、優れたダレ性を有し、しかも、始発時間が長く作業性が良好で強度発現性、耐硫酸性に優れ、さらに、塩分浸透性に優れていることが判る。   From Table 6, the alumina cement composition of the present invention has an excellent fluidity with a large flow and a high retention rate, and an excellent sagging property. It can be seen that it is excellent in sulfuric acid resistance and further excellent in salt permeability.

表7に示す実施例1、2、3、5、6の各実験No.のアルミナセメント組成物を用いて、サンドブラストで表面を目粗しした0.5mのコンクリート表面に厚み2cmになるようにコテを用いて塗り付け、ダレ性、60分練り置いた後のコテ塗り性、浮き、ひび割れを確認し、さらに、材齢30日後の付着強度を測定した。その結果を表7に示す。 Using the alumina cement composition of each experiment No. of Examples 1, 2, 3, 5, and 6 shown in Table 7, the surface of the concrete is 0.5 m 2 with a surface of 2 m thick by sandblasting. A trowel was used to apply, sag, and trowelability after kneading for 60 minutes, floating and cracking were confirmed, and the adhesion strength after 30 days of age was measured. The results are shown in Table 7.

(試験方法)
ダレ性:サンドブラストした表面を目粗しした0.5mのコンクリート表面に厚み2cmになるように塗りつけて24時間後の付着状態を観察した。異常がなければ○とし、はらんだり、ずれ落ちたりすれば×とした。試験は温度20℃、湿度60%の室内で行った。
60分練り置いた後のコテ塗り性:練り混ぜてから60分後にコテ塗りを行ったときの作業性を確認した。硬くてコテ塗りできない場合は×、塗りにくい場合は△、練り混ぜ直後とほぼ同様なコテ塗り性であれば○とした。
浮き:材齢28日後に硬化したモルタルをハンマーで打音検査を行った。浮きがある場合は×、浮きが無い場合は○とした。
ひび割れ:材齢28日後に硬化したモルタルのひび割れの有無を観察し、ひび割れ全長さを測定した。付着強度:材齢28日後にφ55mmのコアドリルで硬化したモルタルを下地コンクリートまで削孔し、エポキシ樹脂で引張試験用のアタッチメントを取り付け、材齢30日となる時点で建研式引張試験機により測定した。
(Test method)
Sagging property: The surface of sandblasted surface was applied to a 0.5 m 2 concrete surface so as to have a thickness of 2 cm, and the adhesion state after 24 hours was observed. If there was no abnormality, it was rated as ○, and if it got stuck or fell off, it was marked as ×. The test was conducted in a room at a temperature of 20 ° C. and a humidity of 60%.
Ironing performance after kneading for 60 minutes: Workability when ironing was performed 60 minutes after mixing. When it was hard and could not be coated with iron, it was evaluated as x.
Floating: A hammering test was performed on a mortar cured after 28 days of age with a hammer. When there was a float, it was marked as x, and when there was no float, it was marked as ○.
Cracks: Mortars cured after 28 days of age were observed for cracks, and the total length of the cracks was measured. Adhesive strength: Mortar hardened with a core drill of φ55 mm after 28 days of age is drilled to the base concrete, attached with an attachment for tensile testing with epoxy resin, measured by Kenken type tensile testing machine when age of 30 days did.

Figure 0005679279
Figure 0005679279

表7より、本発明のアルミナセメント組成物は、優れたダレ性を有し、しかも、60分後のコテ塗り性に優れ、硬化したモルタルに浮きが無く、ひび割れが少なく、コンクリートとの付着強度が高いことが判る。   From Table 7, the alumina cement composition of the present invention has excellent sagging properties, and also has excellent trowelability after 60 minutes, the hardened mortar does not float, there are few cracks, and adhesion strength with concrete. Is high.

表8に示す実施例1、2、3、4、5、6の各実験No.のアルミナセメント組成物を用いて、サンドブラストで表面を目粗しした0.5mのコンクリート表面に厚み4cmになるように吹き付けた直後にコテ仕上げを行い、ダレ性、60分練り置いた後のポンプ圧送性、さらに、実施例7と同様に、浮き、ひび割れを確認し、材齢30日後の付着強度を測定した。その結果を表8に示す。 Using the alumina cement composition of each experiment No. of Examples 1, 2, 3, 4, 5, and 6 shown in Table 8, the surface of the concrete is 0.5 m 2 having a thickness of 4 cm, which is roughened by sandblasting. The trowel finish is performed immediately after spraying, the sag, the pumpability after kneading for 60 minutes, and in the same manner as in Example 7, check for floating and cracks, and the adhesion strength after 30 days of age. It was measured. The results are shown in Table 8.

(試験方法)
ダレ性:サンドブラストした表面を目粗しした0.5mのコンクリート表面に厚み4cmになるように吹き付けて24時間後の付着状態を観察した。異常がなければ○とし、はらんだり、ずれ落ちたりすれば×とした。試験は温度20℃、湿度60%の室内で行った。
60分練り置いた後のポンプ圧送性:練り混ぜたアルミナセメント組成物をホッパーに投入し、ホース先端まで圧送後運転を停止し、60分後再起動したときのポンプの圧送負荷を確認した。負荷が大き過ぎて圧送できない場合は×、圧送できる場合を○とした。
(Test method)
Sagging property: The surface of sandblasted surface was sprayed on a 0.5 m 2 concrete surface so as to have a thickness of 4 cm, and the adhesion state after 24 hours was observed. If there was no abnormality, it was rated as ○, and if it got stuck or fell off, it was marked as ×. The test was conducted in a room at a temperature of 20 ° C. and a humidity of 60%.
Pump feedability after kneading for 60 minutes: The kneaded alumina cement composition was put into a hopper, the operation was stopped after pumping to the tip of the hose, and the pumping load when the pump was restarted after 60 minutes was confirmed. When the load was too large to be pumped, it was marked as x, and when it could be pumped, it was marked as ◯.

Figure 0005679279
Figure 0005679279

表8より、本発明のアルミナセメント組成物は、優れたダレ性を有し、しかも、60分後のポンプ圧送性に優れ、硬化したモルタルに浮きが無く、ひび割れが少なく、コンクリートとの付着強度が高いことが判る。   From Table 8, the alumina cement composition of the present invention has excellent sag properties, excellent pumpability after 60 minutes, no hardened mortar, no cracks, and adhesion strength with concrete. Is high.

本発明のアルミナセメント組成物およびそれを用いた補修工法は、流動性、作業性に優れる。さらに、初期ひび割れ抵抗性、強度発現性、耐硫酸性などに優れるため長期耐久性が良好なコンクリート構造物の補修を容易に行うことが可能となるので、下水処理施設などの土木分野に幅広く適用できる。   The alumina cement composition of the present invention and the repair method using the same are excellent in fluidity and workability. Furthermore, because it is excellent in initial crack resistance, strength development, and sulfuric acid resistance, it is possible to easily repair concrete structures with good long-term durability, so it is widely applied in the civil engineering field such as sewage treatment facilities. it can.

Claims (8)

アルミナセメント、ポゾラン物質、SiO/ROモル比がであるアルカリ金属珪酸塩、増粘剤および流動化剤を含有してなり、増粘剤が、粘度10,000〜40,000mPa・sの水溶性アルキルセルロース、および粘度10,000〜40,000mPa・sの水溶性ヒドロキシアルキルアルキルセルロースの中から選ばれた少なくとも1種であり、流動化剤が、ポリカルボン酸系物質類の中から選ばれた少なくとも1種とリグニンスルホン酸系物質類の中から選ばれた少なくとも1種を併用したものである、アルミナセメント組成物。 An alumina cement, a pozzolanic material, an alkali metal silicate having a SiO 2 / R 2 O molar ratio of 1 , a thickener and a fluidizing agent, and the thickener has a viscosity of 10,000 to 40,000 mPa · s is at least one selected from among water-soluble hydroxyalkyl alkyl cell row scan of the water-soluble alkyl cellulose, and a viscosity 10,000~40,000MPa · s of fluidizing agent, a polycarboxylic acid-based substances An alumina cement composition, which is a combination of at least one selected from the group consisting of at least one selected from lignin sulfonic acid substances. アルミナセメント100部に対して、ポゾラン物質が80〜200部であり、アルカリ金属珪酸塩が0.05〜10部であり、増粘剤が0.01〜5部であり、流動化剤が0.05〜1.5部である、請求項1に記載のアルミナセメント組成物。 For 100 parts of alumina cement, the pozzolanic material is 80 to 200 parts, the alkali metal silicate is 0.05 to 10 parts, the thickener is 0.01 to 5 parts, and the fluidizing agent is 0. The alumina cement composition according to claim 1, which is 0.05 to 1.5 parts. 流動化剤がポリカルボン酸系物質類100部に対してリグニンスルホン酸系物質類10〜200部である請求項1または2に記載のアルミナセメント組成物。 3. The alumina cement composition according to claim 1, wherein the fluidizing agent is 10 to 200 parts of lignin sulfonic acid type substance with respect to 100 parts of polycarboxylic acid type substance. 高分子繊維を含有する請求項1〜3のいずれか1項に記載のアルミナセメント組成物。 The alumina cement composition according to any one of claims 1 to 3, comprising a polymer fiber. セメント混和用ポリマーを含有する請求項1〜4のいずれか1項に記載のアルミナセメント組成物。 The alumina cement composition according to any one of claims 1 to 4, comprising a cement admixing polymer. 骨材を含有する請求項1〜5のいずれか1項に記載のアルミナセメント組成物。 The alumina cement composition according to any one of claims 1 to 5, comprising an aggregate. 請求項1〜6のいずれか1項に記載のアルミナセメント組成物を用いることを特徴とする補修工法。 A repair method using the alumina cement composition according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載のアルミナセメント組成物を吹付けることを特徴とする補修工法。 A repair method characterized by spraying the alumina cement composition according to any one of claims 1 to 6.
JP2010230906A 2010-10-13 2010-10-13 Alumina cement composition and repair method using the same Active JP5679279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230906A JP5679279B2 (en) 2010-10-13 2010-10-13 Alumina cement composition and repair method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230906A JP5679279B2 (en) 2010-10-13 2010-10-13 Alumina cement composition and repair method using the same

Publications (2)

Publication Number Publication Date
JP2012082113A JP2012082113A (en) 2012-04-26
JP5679279B2 true JP5679279B2 (en) 2015-03-04

Family

ID=46241395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230906A Active JP5679279B2 (en) 2010-10-13 2010-10-13 Alumina cement composition and repair method using the same

Country Status (1)

Country Link
JP (1) JP5679279B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2460517A1 (en) * 2001-09-14 2003-03-27 Satoshi Okazawa Additive for cement composition and cement composition containing the same
JP4634213B2 (en) * 2005-04-27 2011-02-16 電気化学工業株式会社 Alumina cement composition and repair method using the same

Also Published As

Publication number Publication date
JP2012082113A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
KR101681596B1 (en) Mortar composition of improving chemical resistance and durability for repairing and reinforcing concrete structures , and method of repairing and reinforcing concrete structures using the same
KR101608018B1 (en) Method of repairing and protecting surface of concrete structure
JP6223813B2 (en) Mortar composition
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
JP6647885B2 (en) Corrosion resistant mortar composition
KR101608015B1 (en) Method of repairing and reinforcing cross section of concrete structure using fast hardening mortar
JP5939776B2 (en) Repair mortar composition
KR102196634B1 (en) Mortar composition for repairing concrete structures with excellent chemical resistance and durability and seismic performance, and the method for repairing and reinforcing concrete structures using the same
KR20110035684A (en) Composition of polymer mortar for spray apparatus and repair method of concrete structures using the same
JP4634213B2 (en) Alumina cement composition and repair method using the same
JP7234001B2 (en) Repair method for polymer cement mortar and reinforced concrete
JP2007320783A (en) Thick applying mortar
WO2001060760A1 (en) Cement mortar and shooting material
JP4634212B2 (en) Alumina cement composition and repair method using the same
KR102224215B1 (en) Non-shirinkage mortar composition with crack resistance and the concrete structure section restoration method using thereof
JP2011121795A (en) Fiber-reinforced mortar composition
JP2009256121A (en) Spraying material and spray repairing method using the same
JP5308304B2 (en) Spraying material and spraying method using the same
JP2003306369A (en) Spray material and spraying method using it
KR102363726B1 (en) Concrete mortar for repairing cross-section of concrete structure having sulfate resistance and antibacterial function and the method of repairing cross-section of concrete structure using the same
KR101556231B1 (en) Composition compound for repairing concrete srtructure and composition method using the same thing
JP2020158348A (en) Polymer cement grout mortar composition and polymer cement grout mortar
KR100941932B1 (en) Reinforcing compositions with no-rebounds for concrete structures and its reinforcing method using the structures and deterioration-preventiong coation materials
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R151 Written notification of patent or utility model registration

Ref document number: 5679279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250