JP5677202B2 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
JP5677202B2
JP5677202B2 JP2011123980A JP2011123980A JP5677202B2 JP 5677202 B2 JP5677202 B2 JP 5677202B2 JP 2011123980 A JP2011123980 A JP 2011123980A JP 2011123980 A JP2011123980 A JP 2011123980A JP 5677202 B2 JP5677202 B2 JP 5677202B2
Authority
JP
Japan
Prior art keywords
chamber
pump
pump chamber
wall
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123980A
Other languages
Japanese (ja)
Other versions
JP2012251471A (en
Inventor
壮一 百済
壮一 百済
恵弘 新村
恵弘 新村
真己 長山
真己 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2011123980A priority Critical patent/JP5677202B2/en
Priority to TW101118674A priority patent/TWI554684B/en
Priority to EP12793624.3A priority patent/EP2715139B1/en
Priority to KR1020137028886A priority patent/KR101760550B1/en
Priority to PCT/JP2012/064346 priority patent/WO2012165645A1/en
Priority to CN2012800187110A priority patent/CN103477080A/en
Priority to US14/119,858 priority patent/US20140112815A1/en
Publication of JP2012251471A publication Critical patent/JP2012251471A/en
Application granted granted Critical
Publication of JP5677202B2 publication Critical patent/JP5677202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/007Venting; Gas and vapour separation during pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/30Use in a chemical vapor deposition [CVD] process or in a similar process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/40Pumps with means for venting areas other than the working chamber, e.g. bearings, gear chambers, shaft seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、半導体、液晶、太陽電池、LED等の製造工程の一つであるCVDやエッチングといったプロセスで使用される真空ポンプであって、ポンプ内部に昇華性ガスや腐食性ガスが流入するプロセスで使用される真空ポンプに関する。   The present invention is a vacuum pump used in a process such as CVD or etching, which is one of the manufacturing processes of semiconductors, liquid crystals, solar cells, LEDs, etc., and a process in which sublimation gas or corrosive gas flows into the pump. Relates to a vacuum pump used in the above.

例えば、真空チャンバに接続されて、真空チャンバ内に導入したプロセスガスを排気するのに使用される真空ポンプは、一般に、吸気口と排気口とを有し、内部にポンプ室を備えたポンプケーシングと、このポンプケーシングの内部に収容されたロータとを有し、ポンプ室の内部でロータを回転させることで、プロセスガスを吸気口からポンプケーシング内部に流入させて圧縮し、排気口から外部に排気するように構成されている。ロータは、ポンプケーシングの内部を延びる回転軸に固定され、回転軸の両端は、ポンプケーシングの側方に配置された室の内部に収容された一対の軸受で回転自在に支承されている。   For example, a vacuum pump connected to a vacuum chamber and used for exhausting process gas introduced into the vacuum chamber is generally a pump casing having an intake port and an exhaust port and having a pump chamber therein. And a rotor housed inside the pump casing, and by rotating the rotor inside the pump chamber, the process gas flows into the pump casing from the intake port and is compressed, and the exhaust port exits to the outside. It is configured to exhaust. The rotor is fixed to a rotating shaft extending inside the pump casing, and both ends of the rotating shaft are rotatably supported by a pair of bearings housed in a chamber disposed on the side of the pump casing.

このため、真空ポンプの真空チャンバに接続されるポンプケーシングの吸気口付近は、真空チャンバの内部と同じ真空状態となり、ポンプケーシングの排気口付近は、大気に開放されてほぼ大気圧となる。回転軸は、その両端を軸受によって回転自在に支承されているとともに、軸受に入ったプロセスガスによって生成された生成物で軸受が破壊されるのを防止するため、接触シールまたは非接触シールでシールされている。回転軸のシールには、接触による損傷を防止した非接触シールが広く使用されている。   For this reason, the vicinity of the intake port of the pump casing connected to the vacuum chamber of the vacuum pump is in the same vacuum state as the inside of the vacuum chamber, and the vicinity of the exhaust port of the pump casing is opened to the atmosphere and becomes almost atmospheric pressure. The rotating shaft is rotatably supported by bearings at both ends, and is sealed with a contact seal or non-contact seal to prevent the bearing from being destroyed by the product generated by the process gas entering the bearing. Has been. Non-contact seals that prevent damage due to contact are widely used as seals for rotary shafts.

例えば、複数段のポンプ室を有する多段真空ポンプを使用して真空チャンバ等の内部を真空排気する場合は、1段目よりも2段目、2段目よりも3段目と、段数が増加するに従ってポンプ室の内部圧力が段階的に増加し、しかも、同じポンプ室であっても、ポンプ室の出口側に位置する気体の方が入口側に位置する気体よりも圧力が高くなる。つまり、最終段ポンプ室の出口側(排気口)がほぼ大気圧となり、最終段ポンプ室の入口側は大気圧よりも低い圧力となる。摩耗を防止するため、回転軸のシールに非接触シールを使用した場合、最終段ポンプ室に隣接して内部に軸受を収納した室の内部圧力は、最終段ポンプ室の内部圧力(平均圧力)に見合った圧力となる。例えば、真空ポンプの最終段ポンプ室の出口側(排気口)がほぼ大気圧の760Torrで、最終段ポンプ室の入口側が大気圧よりも低い200Torrである場合、最終段ポンプ室に隣接して内部に軸受を収納した室の内部圧力は、およそ480Torr(=(760+200)/2)となる。   For example, when the inside of a vacuum chamber or the like is evacuated using a multi-stage vacuum pump having a multi-stage pump chamber, the number of stages increases to the second stage from the first stage and the third stage from the second stage. Accordingly, the internal pressure of the pump chamber gradually increases, and even in the same pump chamber, the gas located on the outlet side of the pump chamber has a higher pressure than the gas located on the inlet side. That is, the outlet side (exhaust port) of the final stage pump chamber is almost at atmospheric pressure, and the inlet side of the final stage pump chamber is at a pressure lower than atmospheric pressure. In order to prevent wear, when a non-contact seal is used for the rotary shaft, the internal pressure of the chamber containing the bearing adjacent to the final stage pump chamber is the internal pressure (average pressure) of the final stage pump chamber. The pressure is commensurate with For example, when the outlet side (exhaust port) of the final stage pump chamber of the vacuum pump is 760 Torr, which is substantially atmospheric pressure, and the inlet side of the final stage pump chamber is 200 Torr, which is lower than the atmospheric pressure, the interior is adjacent to the final stage pump chamber. The internal pressure of the chamber containing the bearing is about 480 Torr (= (760 + 200) / 2).

最終段ポンプ室の入口側の圧力は、真空チャンバ側からのプロセスガスの流入等によって変化する。例えば、真空チャンバ側からプロセスガスが流入すると、最終段ポンプ室の入口側の圧力が200Torrから300Torrに上昇する。一方、最終段ポンプ室の出口側圧力は、ポンプ排気管を通し大気に連通しているため、大気圧からほとんど変化しない。そして、最終段ポンプ室の入口側の圧力が200Torrから300Torrに変化すると、最終段ポンプ室内の内部圧力(平均圧力)は、530Torr(=(760+300)/2)となり、最終段ポンプ室に隣接して内部に軸受を収納した室の内部圧力の480Torrよりも高くなる。   The pressure on the inlet side of the final stage pump chamber changes due to the inflow of process gas from the vacuum chamber side. For example, when process gas flows from the vacuum chamber side, the pressure on the inlet side of the final stage pump chamber increases from 200 Torr to 300 Torr. On the other hand, the outlet side pressure of the final stage pump chamber hardly changes from the atmospheric pressure because it communicates with the atmosphere through the pump exhaust pipe. When the pressure on the inlet side of the final stage pump chamber changes from 200 Torr to 300 Torr, the internal pressure (average pressure) in the final stage pump chamber becomes 530 Torr (= (760 + 300) / 2), which is adjacent to the final stage pump chamber. Thus, the internal pressure of the chamber containing the bearing is higher than 480 Torr.

そして、このように最終段ポンプ室内の平均圧力の方が最終段ポンプ室に隣接して内部に軸受を収納した室の内部圧力よりも高くなると、この室の内部に最終段ポンプ室の内部に流入したプロセスガスが漏れる。このように、軸受を収納した室の内部にプロセスガスが漏れると、プロセスガスに昇華性物質等が含まれている場合、該室の温度は一般に低いため、該室の内部に配置されている軸受や軸受を潤滑するための潤滑油に生成物等の析出物が析出して、軸受損傷の原因となる。   When the average pressure in the final stage pump chamber becomes higher than the internal pressure of the chamber in which the bearing is housed adjacent to the final stage pump chamber in this way, the inside of the final stage pump chamber is placed inside this chamber. Inflowing process gas leaks. As described above, when the process gas leaks into the chamber containing the bearing, when the process gas contains a sublimable substance or the like, the temperature of the chamber is generally low, and thus the chamber is arranged inside the chamber. Precipitates such as products are deposited in the lubricating oil for lubricating the bearing and the bearing, which causes damage to the bearing.

なお、凝縮性気体や昇華性気体等の気体の排気に適するようにポンプ室の温度を高めに維持しつつ、潤滑油室の潤滑油の温度を低めに維持するのに有利で、潤滑油の蒸気化を抑えるため、相対的に温度が高めのポンプ室と相対的に温度が低めの潤滑油室との間に中空状をなす断熱用の中間室と、冷媒を通過させる冷却通路とを形成するようにしたドライポンプが提案されている(特許文献1参照)。   It is advantageous to keep the temperature of the lubricating oil in the lubricating oil chamber low while keeping the temperature of the pump chamber high so that it is suitable for exhausting gases such as condensable gas and sublimable gas. In order to suppress vaporization, a heat-insulating intermediate chamber and a cooling passage through which the refrigerant passes are formed between a pump chamber having a relatively high temperature and a lubricating oil chamber having a relatively low temperature. A dry pump designed to do this has been proposed (see Patent Document 1).

特開2005−105829号公報JP 2005-105829 A

しかしながら、特許文献1に記載のドライポンプは、凝縮性気体や昇華性気体等の気体の排気に適するようにポンプ室の温度を高めに維持しつつ、潤滑油室の潤滑油の温度を低めに維持するのに有利で、潤滑油の蒸気化を抑えるようにしたものであって、ポンプケーシングの側方に位置する室の内部に収容された軸受をプロセスガスから保護するようにしたものではない。なお、回転軸の非接触シールにNガス等のパージガスを導入することで、プロセスガスの軸受側への漏れを防止することも広く行われているが、回転軸の非接触シールに導入するNガス等のパージガスの量を増やすとポンプ室の圧力も悪くなってしまうため、回転軸の非接触シールに導入するNガス等のパージガスの量には一定の限界がある。 However, the dry pump described in Patent Document 1 keeps the temperature of the lubricating oil in the lubricating oil chamber low while maintaining the pump chamber at a high temperature so as to be suitable for exhausting gases such as condensable gas and sublimable gas. It is advantageous to maintain and suppresses the vaporization of the lubricating oil, and does not protect the bearing housed inside the chamber located on the side of the pump casing from the process gas. . In addition, by introducing a purge gas such as N 2 gas into the non-contact seal of the rotating shaft, it is widely practiced to prevent the process gas from leaking to the bearing side, but it is introduced into the non-contact seal of the rotating shaft. If the amount of purge gas such as N 2 gas is increased, the pressure in the pump chamber also deteriorates, and therefore the amount of purge gas such as N 2 gas introduced into the non-contact seal of the rotating shaft has a certain limit.

本発明は上記事情に鑑みて為されたもので、ポンプ内部に流入したプロセスガスが軸受側に漏れることをより確実に防止して、軸受をプロセスガスから保護できるようにした真空ポンプを提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a vacuum pump that can more reliably prevent the process gas flowing into the pump from leaking to the bearing side and protect the bearing from the process gas. For the purpose.

請求項1に記載の発明は、吸気口と排気口とを有し、互いに連通し、仕切壁で仕切られた複数段のポンプ室を内部に備えたポンプケーシングと、両端を軸受で回転自在に支承されて前記ポンプケーシングの長さ方向に沿って配置される回転軸と、前記ポンプ室内にそれぞれ収容され、前記回転軸に連結されて該回転軸の回転に伴って回転する複数のロータとを有し、最終段ポンプ室は、吸気側の仕切壁と排気側の端壁によって形成され、前記排気側の端壁の側方にはサイドパネルが設けられており、前記端壁と前記サイドパネルの間には、前記排気口に連通し大気に開放させた大気開放室が設けられており、前記ポンプケーシングは、内壁と該内壁と所定間隔離間して配置される外壁とを備えた二重壁構造を有していることを特徴とする真空ポンプである。 According to the first aspect of the present invention, there is provided a pump casing having an intake port and an exhaust port , communicated with each other, and provided with a plurality of stages of pump chambers partitioned by a partition wall; A rotating shaft that is supported and disposed along the length direction of the pump casing, and a plurality of rotors that are respectively housed in the pump chamber and that are coupled to the rotating shaft and rotate as the rotating shaft rotates. The final-stage pump chamber is formed by a partition wall on the intake side and an end wall on the exhaust side, and a side panel is provided on a side of the end wall on the exhaust side, and the end wall and the side panel between the and air release chamber is opened to the atmosphere communication is provided in the exhaust port, the pump casing, the two having an outer wall which is spaced apart inner walls and inner walls and the predetermined distance double vacuum, characterized in that it has a wall structure It is a pump.

このように、ポンプケーシングの排気口側に該排気口に連通し大気に開放させた大気開放室を設けることで、たとえポンプ室の内部圧力が変化し、回転軸のシールに非接触シールを使用した場合でも、大気開放室の側方に位置して内部に軸受を収容している室の内部が常にほぼ大気圧となるようにすることができる。これによって、ポンプ室内に流入したプロセスガスが大気開放室の側方に位置して内部に軸受を収容している室の内部に漏れてしまうことをより確実に防止して、軸受をプロセスガスから保護することができる。   In this way, by providing an air release chamber on the exhaust port side of the pump casing that is connected to the exhaust port and opened to the atmosphere, the internal pressure of the pump chamber changes, and a non-contact seal is used for the seal of the rotating shaft. Even in this case, the interior of the chamber that is located on the side of the open air chamber and that houses the bearing therein can always be at almost atmospheric pressure. This more reliably prevents the process gas flowing into the pump chamber from leaking into the chamber that is located on the side of the open air chamber and accommodates the bearing therein, and removes the bearing from the process gas. Can be protected.

多段真空ポンプにあっては、前述のように、最終段ポンプ室の出口側(排気口)がほぼ大気圧となっても、最終段ポンプ室の入口側は大気圧よりも低い圧力となり、真空チャンバ側からプロセスガスが流入すると、最終段ポンプ室の内部圧力(平均圧力)が変化(上昇)するが、最終段ポンプ室の側方に大気開放室を設けることで、最終段ポンプ室の内部圧力(平均圧力)が変化(上昇)しても、この圧力変化が大気開放室の側方に位置して内部に軸受を収容している室内の圧力に影響することを防止することができる。   In the multi-stage vacuum pump, as described above, even if the outlet side (exhaust port) of the final stage pump chamber is almost atmospheric pressure, the inlet side of the final stage pump chamber has a pressure lower than the atmospheric pressure, and vacuum When the process gas flows in from the chamber side, the internal pressure (average pressure) of the final stage pump chamber changes (increases). By providing an air release chamber on the side of the final stage pump chamber, the internal pressure of the final stage pump chamber Even if the pressure (average pressure) changes (increases), this pressure change can be prevented from affecting the pressure in the chamber that is located on the side of the open air chamber and that houses the bearing therein.

請求項に記載の発明は、前記サイドパネルの内部に前記回転軸挿通されており、該回転軸の挿通部にパージガスを供給するパージガス通路が設けられていることを特徴とする請求項1記載の真空ポンプである。
請求項3に記載の発明は、前記大気開放室は一定の幅を有していることを特徴とする請求項1または2に記載の真空ポンプである。
Invention according to claim 2, the inside of the side panels, wherein the and rotary shaft is inserted, the purge gas passage for supplying purge gas into the insertion portion of the rotary shaft is provided according claim 1 Symbol placing vacuum pump.
A third aspect of the present invention is the vacuum pump according to the first or second aspect, wherein the atmosphere release chamber has a certain width.

このように、内部に回転軸を挿通させるサイドパネルに、該回転軸の挿通部にパージガスを供給するパージガス通路を設けることで、サイドパネルと回転軸との間に、接触による摩耗を防止した非接触シールを構成することができる。   Thus, by providing a purge gas passage for supplying purge gas to the insertion portion of the rotary shaft in the side panel through which the rotary shaft is inserted, wear due to contact between the side panel and the rotary shaft is prevented. A contact seal can be constructed.

本発明によれば、たとえポンプ室の内部圧力が変化しても、大気開放室の側方に位置して内部に軸受を収容している室の内部圧力が常に大気圧となるため、ポンプ室内に流入したプロセスガスが大気開放室の側方に位置して内部に軸受を収容している室内に漏れてしまうことをより確実に防止して、軸受をプロセスガスから保護することができる。   According to the present invention, even if the internal pressure of the pump chamber changes, the internal pressure of the chamber located on the side of the atmosphere release chamber and containing the bearing therein is always atmospheric pressure. It is possible to more reliably prevent the process gas that has flowed into the chamber from leaking into the chamber that is located on the side of the open air chamber and accommodates the bearing therein, thereby protecting the bearing from the process gas.

本発明の実施形態の真空ポンプを示す縦断正面図である。It is a vertical front view which shows the vacuum pump of embodiment of this invention. 図1に示す真空ポンプに備えられているメインポンプの第1段ポンプ室の縦断側面図である。It is a vertical side view of the 1st stage | paragraph pump chamber of the main pump with which the vacuum pump shown in FIG. 1 is equipped.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係る真空ポンプ10の縦断正面図を示す。図1に示すように、真空ポンプ10は、真空側に配置されるブースタポンプ12と大気側に配置されるメインポンプ14とを有しており、ブースタポンプ12とメインポンプ14は、連絡配管16で互いに接続されている。この例にあっては、メインポンプ14として、6段のルーツ式真空ポンプが使用され、単段のルーツ式真空ポンプからなるブースタポンプ12と組合せて使用するように構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal front view of a vacuum pump 10 according to an embodiment of the present invention. As shown in FIG. 1, the vacuum pump 10 includes a booster pump 12 disposed on the vacuum side and a main pump 14 disposed on the atmosphere side. The booster pump 12 and the main pump 14 are connected to a communication pipe 16. Are connected to each other. In this example, a six-stage Roots type vacuum pump is used as the main pump 14 and is configured to be used in combination with a booster pump 12 composed of a single-stage Roots type vacuum pump.

ブースタポンプ12は、内部にポンプ室18を区画形成する略円筒状の外胴20を有するポンプケーシング22と、モータ24の駆動に伴って互いに同期して逆方向に回転する一対の回転軸26とを有している。ポンプ室18内には、互いに隣接する位置に、所定のクリアランスをもって、例えば2葉のロータからなる一対のロータ28がそれぞれ回転自在に収容され、この各ロータ28は、回転軸26にそれぞれ固着されている。ポンプケーシング22の外胴20には、処理対象の真空チャンバ等から延びる吐出管(図示せず)に接続される吸気口20aと、連絡配管16に接続される排気口20bが設けられている。これによって、一対のロータ28の互いに同期した逆方向の回転に伴って、吸気口20aからポンプ室18内にプロセスガスを流入させ、圧縮させて排気口20bから外部に移送するようになっている。なお、図1には、回転軸26及び該回転軸26の駆動機構等の一方のみが図示されているが、紙面と反対側にもほぼ同様な構成が備えられている。   The booster pump 12 includes a pump casing 22 having a substantially cylindrical outer body 20 that defines a pump chamber 18 therein, and a pair of rotating shafts 26 that rotate in opposite directions in synchronization with the driving of the motor 24. have. In the pump chamber 18, a pair of rotors 28 made of, for example, two-leaf rotors are rotatably accommodated at positions adjacent to each other with a predetermined clearance, and each rotor 28 is fixed to the rotating shaft 26. ing. The outer body 20 of the pump casing 22 is provided with an intake port 20 a connected to a discharge pipe (not shown) extending from a vacuum chamber to be processed and an exhaust port 20 b connected to the communication pipe 16. As a result, the process gas flows into the pump chamber 18 from the intake port 20a and is compressed and transferred to the outside through the exhaust port 20b as the pair of rotors 28 rotate in opposite directions in synchronization with each other. . In FIG. 1, only one of the rotating shaft 26 and the driving mechanism of the rotating shaft 26 is shown, but a substantially similar configuration is provided on the side opposite to the paper surface.

この例において、ポンプケーシング22の外胴20の吸気口20a及び排気口20bを除く領域の外周部は、略円筒状のヒータジャケット30で一体的に包囲されている。これによって、ポンプ室18の内部がヒータジャケット30で加熱されるようになっている。   In this example, the outer peripheral portion of the outer casing 20 of the pump casing 22 excluding the intake port 20 a and the exhaust port 20 b is integrally surrounded by a substantially cylindrical heater jacket 30. As a result, the inside of the pump chamber 18 is heated by the heater jacket 30.

ブースタポンプ12は、一般に真空度が高い(圧力が低い)ため、圧縮熱があまり発生せず、ポンプ温度が低くなっている。このため、たとえポンプ室18内の圧力が低くても、ポンプ室18内に流入したプロセスガスに含まれる昇華性物質等がポンプ室18の内周面等に析出する恐れがあるが、前述のように、ヒータジャケット30で、ポンプ室18内の温度を上昇させることで、ポンプ室18内に流入したプロセスガスに含まれる昇華性物質等がポンプ室18の内周面等に析出することを防止することができる。   Since the booster pump 12 generally has a high degree of vacuum (pressure is low), compression heat is not generated so much and the pump temperature is low. For this reason, even if the pressure in the pump chamber 18 is low, a sublimable substance or the like contained in the process gas flowing into the pump chamber 18 may be deposited on the inner peripheral surface of the pump chamber 18. As described above, by raising the temperature in the pump chamber 18 with the heater jacket 30, the sublimable substance contained in the process gas flowing into the pump chamber 18 is deposited on the inner peripheral surface of the pump chamber 18. Can be prevented.

ポンプケーシング22の両側方には、サイドパネル32a,32bがそれぞれ配置され、この各サイドパネル32a,32bにそれぞれ取り付けた軸受ハウジング34a,34b内に収容した軸受36a,36bを介して、回転軸26がその両端において回転自在に支承されている。更に、サイドパネル32a,32bの側方に位置して、内部に潤滑油を溜める潤滑油ハウジング40a,40bが配置され、一方の潤滑油ハウジング40bにモータ24のモータハウジングが連結されている。   Side panels 32a and 32b are respectively arranged on both sides of the pump casing 22, and the rotary shaft 26 is provided via bearings 36a and 36b accommodated in bearing housings 34a and 34b attached to the side panels 32a and 32b, respectively. Is rotatably supported at both ends thereof. Further, lubricating oil housings 40a and 40b for storing lubricating oil are disposed inside the side panels 32a and 32b, and the motor housing of the motor 24 is connected to one lubricating oil housing 40b.

サイドパネル32a,32bには、サイドパネル32a,32bの回転軸26の挿通部にNガス等のパージガスを供給して、ポンプ室18内に流入したプロセスガスが軸受36a,36bの方向に流出することを防止するためのパージガス通路42a,42bがそれぞれ設けられ、これによって、サイドパネル32a,32bと回転軸26との間に、接触による摩耗を防止した非接触シールが構成されている。 A purge gas such as N 2 gas is supplied to the side panels 32a and 32b through the insertion portion of the rotating shaft 26 of the side panels 32a and 32b, and the process gas flowing into the pump chamber 18 flows out in the direction of the bearings 36a and 36b. Purge gas passages 42a and 42b for preventing this are provided, and thereby a non-contact seal is formed between the side panels 32a and 32b and the rotary shaft 26 to prevent wear due to contact.

メインポンプ14は、この例では、6段のルーツ式真空ポンプで構成されており、内部に第1〜第6の合計6段のポンプ室50a〜50fと、第6段ポンプ室50fに隣接する大気開放室52を区画形成する略円筒状の外胴54を有するポンプケーシング56と、モータ58の駆動に伴って互いに同期して逆方向に回転する一対の回転軸60を有している。第1段ポンプ室50aの内部には、図2に示すように、例えば3葉ロータからなる一対のロータ62aがそれぞれ回転自在に収容されている。同様に、第2段ポンプ室50bの内部には、例えば3葉ロータからなる一対のロータ62bが、第3段ポンプ室50cの内部には、例えば3葉ロータからなる一対のロータ62cが、第4段ポンプ室50dの内部には、例えば3葉ロータからなる一対のロータ62dが、第5段ポンプ室50eの内部には、例えば3葉ロータからなる一対のロータ62eが、第6段ポンプ室50fの内部には、例えば3葉ロータからなる一対のロータ62fがそれぞれ収容されている。そして、直線状に並ぶ一方のロータ62a〜62fは一方の回転軸60に、他方のロータ62a〜62fは他方の回転軸60にそれぞれ固着されている。   In this example, the main pump 14 is composed of a six-stage roots-type vacuum pump, and is adjacent to the first to sixth total six-stage pump chambers 50a to 50f and the sixth-stage pump chamber 50f. A pump casing 56 having a substantially cylindrical outer body 54 that defines the atmosphere opening chamber 52 and a pair of rotating shafts 60 that rotate in opposite directions in synchronization with driving of the motor 58 are provided. As shown in FIG. 2, a pair of rotors 62a made of, for example, a three-leaf rotor is housed in the first stage pump chamber 50a so as to be rotatable. Similarly, a pair of rotors 62b made of, for example, a three-leaf rotor is provided inside the second stage pump chamber 50b, and a pair of rotors 62c made of, for example, a three-leaf rotor is placed inside the third stage pump chamber 50c. A pair of rotors 62d made of, for example, a three-leaf rotor is disposed inside the four-stage pump chamber 50d, and a pair of rotors 62e composed of, for example, a three-leaf rotor is disposed inside the fifth-stage pump chamber 50e. A pair of rotors 62f made of, for example, a three-leaf rotor are accommodated inside 50f. One rotor 62 a to 62 f arranged in a straight line is fixed to one rotating shaft 60, and the other rotor 62 a to 62 f is fixed to the other rotating shaft 60.

ポンプケーシング56は、外胴54の端部を閉塞する一対の端壁64a,64bと、外胴54の内部を仕切る5枚の仕切壁66a〜66eとを有しており、一方の端壁64aと第1仕切壁66aとの間に第1段ポンプ室50aが、第1仕切壁66aと第2仕切壁66bとの間に第2段ポンプ室50bが、第2仕切壁66bと第3仕切壁66cとの間に第3段ポンプ室50cが、第3仕切壁66cと第4仕切壁66dとの間に第4段ポンプ室50dが、第4仕切壁66dと第5仕切壁66eとの間に第5段ポンプ室50eが、第5仕切壁66eと他方の端壁64bとの間に第6段ポンプ室50fがそれぞれ形成されている。そして、他方の端壁64bと該端壁64bに隣接するサイドパネル80bの間に大気開放室52が形成されている。   The pump casing 56 includes a pair of end walls 64a and 64b that closes the end of the outer cylinder 54, and five partition walls 66a to 66e that partition the inside of the outer cylinder 54, and one end wall 64a. Between the first partition wall 66a and the first partition wall 66a, the second stage pump chamber 50b between the first partition wall 66a and the second partition wall 66b, the second partition wall 66b and the third partition. The third-stage pump chamber 50c is between the wall 66c, the fourth-stage pump chamber 50d is between the third partition wall 66c and the fourth partition wall 66d, and the fourth partition wall 66d and the fifth partition wall 66e. A fifth-stage pump chamber 50e is formed therebetween, and a sixth-stage pump chamber 50f is formed between the fifth partition wall 66e and the other end wall 64b. An air release chamber 52 is formed between the other end wall 64b and the side panel 80b adjacent to the end wall 64b.

第1段ポンプ室50aは、図2に示すように、一対のロータ62aの互いに同期した逆方向の回転に伴って、この入口側(図示では上側、以下同じ)から第1段ポンプ室50aの内部にプロセスガスを流入させて圧縮し、出口側(図示では下側、以下同じ)から第1段ポンプ室50aの外部にプロセスガスを移送するようになっている。このことは、第2段〜第6段ポンプ室50b〜50fにあってもほぼ同様である。   As shown in FIG. 2, the first-stage pump chamber 50 a moves from the inlet side (the upper side in the drawing, the same applies hereinafter) to the first-stage pump chamber 50 a as the pair of rotors 62 a rotate in opposite directions. The process gas is introduced into the interior and compressed, and the process gas is transferred from the outlet side (lower side in the drawing, the same applies hereinafter) to the outside of the first stage pump chamber 50a. This is substantially the same even in the second to sixth stage pump chambers 50b to 50f.

ポンプケーシング56の外胴54には、連絡配管16に接続されて第1段ポンプ室50aの入口側(上側)に連通する吸気口54aと、第6段ポンプ室(最終段ポンプ室)50fの出口側(下側)に連通する排気口54bが設けられている。また排気口54bは、端壁64bを介して大気開放室52に連通している。これにより、大気開放室52は、排気口54bを通して大気に開放される。更に、ポンプケーシング56の外胴54は、内壁68と該内壁68と所定間隔離間して配置される外壁70とを備えた二重壁構造を有しており、内壁68と外壁70との間にガス通路72a〜72eが形成されている。つまり、第1段ポンプ室50aの周囲に第1ガス通路72aが、第2段ポンプ室50bの周囲に第2ガス通路72bが、第3段ポンプ室50cの周囲に第3ガス通路72cが、第4段ポンプ室50dの周囲に第4ガス通路72dが、第5段ポンプ室50eの周囲に第5ガス通路72eがそれぞれ形成されている。第5段ガス通路72eは、さらに、第6段ポンプ室50fの周囲に拡張している。   The outer body 54 of the pump casing 56 is connected to the communication pipe 16 and communicates with the inlet side (upper side) of the first stage pump chamber 50a, and the sixth stage pump chamber (final stage pump chamber) 50f. An exhaust port 54b communicating with the outlet side (lower side) is provided. Further, the exhaust port 54b communicates with the atmosphere opening chamber 52 through the end wall 64b. Thereby, the atmosphere release chamber 52 is opened to the atmosphere through the exhaust port 54b. Further, the outer cylinder 54 of the pump casing 56 has a double wall structure including an inner wall 68 and an outer wall 70 that is spaced apart from the inner wall 68 by a predetermined distance, and between the inner wall 68 and the outer wall 70. Gas passages 72a to 72e are formed in the upper part. That is, the first gas passage 72a around the first stage pump chamber 50a, the second gas passage 72b around the second stage pump chamber 50b, and the third gas passage 72c around the third stage pump chamber 50c, A fourth gas passage 72d is formed around the fourth stage pump chamber 50d, and a fifth gas passage 72e is formed around the fifth stage pump chamber 50e. The fifth stage gas passage 72e further extends around the sixth stage pump chamber 50f.

これらの各ガス通路72a〜72eの一方は、各ポンプ室50a〜50eの出口側(下側)で各ポンプ室50a〜50eの内部にそれぞれ連通し、各ガス通路72a〜72eの他方は、各ポンプ室50b〜50fの入口側(上側)で各ポンプ室50b〜50fの内部にそれぞれ連通している。これによって、図2に示すように、吸気口54aを通して入口側から第1段ポンプ室50a内に流入したプロセスガスは、第1段ポンプ室50aの内部を通過した後、第1段ポンプ室50aの出口側(下側)から第1ガス通路72a内に流入し、該第1ガス通路72aに沿って上方に流れた後、第2段ポンプ室50bの入口側(上側)に達する。そして、入口側から第2段ポンプ室50b内に流入したプロセスガスは、第2段ポンプ室50bの内部を通過した後、第2段ポンプ室50bの出口側から第2ガス通路72b内に流入し、該第2ガス通路72bに沿って上方に流れた後、第3段ポンプ室50cの入口側に達する。このようにして、プロセスガスは、更に第3段〜第6段ポンプ室50c〜50f内を順次通過した後、第6段ポンプ室50fの出口側から排気口54bを通して外部に排気される。   One of these gas passages 72a to 72e communicates with the inside of each pump chamber 50a to 50e on the outlet side (lower side) of each pump chamber 50a to 50e, and the other of each gas passage 72a to 72e The pump chambers 50b to 50f communicate with the interiors of the pump chambers 50b to 50f on the inlet side (upper side). Accordingly, as shown in FIG. 2, the process gas that has flowed into the first stage pump chamber 50a from the inlet side through the intake port 54a passes through the inside of the first stage pump chamber 50a, and then the first stage pump chamber 50a. The gas flows into the first gas passage 72a from the outlet side (lower side) of the gas, flows upward along the first gas passage 72a, and then reaches the inlet side (upper side) of the second-stage pump chamber 50b. Then, the process gas flowing into the second stage pump chamber 50b from the inlet side passes through the inside of the second stage pump chamber 50b, and then flows into the second gas passage 72b from the outlet side of the second stage pump chamber 50b. Then, after flowing upward along the second gas passage 72b, it reaches the inlet side of the third stage pump chamber 50c. In this way, the process gas further sequentially passes through the third to sixth stage pump chambers 50c to 50f, and then is exhausted to the outside through the exhaust port 54b from the outlet side of the sixth stage pump chamber 50f.

この例によれば、ポンプケーシング56の外胴54を、内部にガス通路72a〜72eを有する二重壁構造とすることで、このガス通路72a〜72eに沿って流れる高温のプロセスガスを通して、ポンプ室50a〜50fの内部と外部とをより確実に遮断し、これによって、ポンプ内部が低温となって、プロセスガスに含まれる昇華性物質等が気体から固体となってポンプ内部(ポンプケーシング内周面)に付着してしまうことを防止することができる。特に、高温のプロセスガスがガス通路72a〜72eに沿って各ポンプ室50a〜50eの出口側(下側)から次の段の入口側(上側)に向かって流れるようにすることで、この高温のプロセスガスでポンプ室50a〜50fを有効に加熱することができる。   According to this example, the outer cylinder 54 of the pump casing 56 has a double-wall structure having gas passages 72a to 72e inside, so that the pump passes through the hot process gas flowing along the gas passages 72a to 72e. The interior and exterior of the chambers 50a to 50f are more reliably shut off, whereby the inside of the pump is cooled to a low temperature, and the sublimable substances contained in the process gas are turned into solids from the gas. Can be prevented from adhering to the surface. In particular, the high-temperature process gas flows along the gas passages 72a to 72e from the outlet side (lower side) of each pump chamber 50a to 50e toward the inlet side (upper side) of the next stage. The pump chambers 50a to 50f can be effectively heated with the process gas.

この例では、ポンプケーシング56の外胴54の吸気口54a及び排気口54bを除く領域の外周部を略円筒状の保温ジャケット74で一体的に包囲している。これによって、ポンプ室50a〜50fの内部と外部とを保温ジャケット74によっても遮断して、ポンプ室50a〜50fの保温効果を高めることができる。   In this example, an outer peripheral portion of a region of the outer casing 54 of the pump casing 56 excluding the intake port 54 a and the exhaust port 54 b is integrally surrounded by a substantially cylindrical heat retaining jacket 74. Thereby, the inside and the outside of the pump chambers 50a to 50f can be blocked by the heat insulation jacket 74, and the heat insulation effect of the pump chambers 50a to 50f can be enhanced.

ポンプケーシング56の端壁64a,64bの側方には、サイドパネル80a,80bがそれぞれ配置され、このサイドパネル80a,80bにそれぞれ取り付けた軸受ハウジング82a,82b内に収容した軸受84a,84bを介して、回転軸60がその両端において回転自在に支承されている。更に、サイドパネル80a,80bの側方に位置して、内部に潤滑油を溜める潤滑油ハウジング88a,88bが配置され、一方の潤滑油ハウジング88bの側方にモータ58のモータハウジングが連結されている。サイドパネル80a,80bには、サイドパネル80a,80bの回転軸60の挿通部にNガス等のパージガスを供給して、ポンプ室50a〜50f内に流入したプロセスガスが軸受84a,84bの方向に流出することを防止するためのパージガス通路90a,90bが設けられ、これによって、サイドパネル80a,80bと回転軸60との間に、接触による摩耗を防止した非接触シールが構成されている。なお、パージガス通路90bを流れたパージガスは、大気開放室52内にも流入する。 Side panels 80a and 80b are respectively arranged on the sides of the end walls 64a and 64b of the pump casing 56. The bearings 84a and 84b are housed in bearing housings 82a and 82b attached to the side panels 80a and 80b, respectively. Thus, the rotary shaft 60 is rotatably supported at both ends thereof. Further, lubricating oil housings 88a and 88b for storing lubricating oil are disposed inside the side panels 80a and 80b, and the motor housing of the motor 58 is connected to the side of one lubricating oil housing 88b. Yes. In the side panels 80a and 80b, a purge gas such as N 2 gas is supplied to the insertion part of the rotating shaft 60 of the side panels 80a and 80b, and the process gas flowing into the pump chambers 50a to 50f is directed to the bearings 84a and 84b. Purge gas passages 90a and 90b are provided for preventing the gas from flowing out, thereby forming a non-contact seal between the side panels 80a and 80b and the rotary shaft 60 to prevent wear due to contact. The purge gas that has flowed through the purge gas passage 90 b also flows into the atmosphere release chamber 52.

この例では、最も高圧となる第6段ポンプ室(最終段ポンプ室)50f側の端壁64bと該端壁64bに隣接して配置されるサイドパネル80bとの間に、排気口54bに連通して大気に開放される大気開放室52を設け、軸受84bを収納した軸受ハウジング82bを内部に収納した潤滑油ハウジング88bを該サイドパネル80bに取り付けている。これにより、たとえ第6段ポンプ室(最終段ポンプ室)50fの内部圧力が変化しても、大気開放室52の側方に位置して内部に軸受84bを収容している室、つまりサイドパネル80bと潤滑油ハウジング88bで周囲を包囲された室Rの内部が常にほぼ大気圧となるようにすることができる。これによって、ポンプ室50a〜50f内に流入したプロセスガスが、大気開放室52の側方に位置して内部に軸受84bを収容している室Rの内部に漏れてしまうことをより確実に防止して、軸受84bをプロセスガスから保護することができる。   In this example, the exhaust port 54b communicates between the end wall 64b on the side of the sixth-stage pump chamber (final stage pump chamber) 50f that has the highest pressure and the side panel 80b that is disposed adjacent to the end wall 64b. Then, an air release chamber 52 that is open to the atmosphere is provided, and a lubricating oil housing 88b that houses therein a bearing housing 82b that houses a bearing 84b is attached to the side panel 80b. Thereby, even if the internal pressure of the sixth-stage pump chamber (final-stage pump chamber) 50f changes, the chamber is located on the side of the atmosphere release chamber 52 and accommodates the bearing 84b, that is, the side panel. The inside of the chamber R surrounded by 80b and the lubricating oil housing 88b can always be at almost atmospheric pressure. As a result, the process gas that has flowed into the pump chambers 50a to 50f is more reliably prevented from leaking into the chamber R which is located on the side of the atmosphere release chamber 52 and accommodates the bearing 84b therein. Thus, the bearing 84b can be protected from the process gas.

これは、以下の理由による。回転軸60とサイドパネル80bとの間を非接触シールでシールし、第6段ポンプ室(最終段ポンプ室)50fとサイドパネル80bとが互いに隣接して配置されている場合、すなわち、大気開放室52がない場合、サイドパネル80bの側方に位置して内部に軸受84bを収容している室、つまりサイドパネル80bと潤滑油ハウジング88bで周囲を包囲された室Rの内部圧力は、第6段ポンプ室(最終段ポンプ室)50fのほぼ平均圧力となる。例えば、第6段ポンプ室50fの出口側圧力はほぼ大気圧(760Torr)であるが、入口側圧力が大気圧より低い圧力、仮に200Torrである場合、サイドパネル80bと潤滑油ハウジング88bで周囲を包囲された室Rの内部圧力は、ほぼ480Torr(=(760+200)/2)となる。そして、真空チャンバ側からのプロセスガスの流入により第6段ポンプ室50fの入口側圧力が200Torrから300Torrに変化(上昇)すると、第6段ポンプ室50fの平均圧力も530Torr(=(760+300)/2)となり、サイドパネル80bと潤滑油ハウジング88bで周囲を包囲された室Rの内部圧力が530Torrに上昇するまで、プロセスガスを含んだガスが、第6段ポンプ室50fからサイドパネル80bと回転軸60の隙間を通って室Rに流入する。   This is due to the following reason. When the rotary shaft 60 and the side panel 80b are sealed with a non-contact seal, the sixth stage pump chamber (final stage pump chamber) 50f and the side panel 80b are disposed adjacent to each other, that is, open to the atmosphere. When the chamber 52 is not provided, the internal pressure of the chamber R which is located on the side of the side panel 80b and accommodates the bearing 84b therein, that is, the chamber R surrounded by the side panel 80b and the lubricating oil housing 88b is The average pressure in the six-stage pump chamber (final stage pump chamber) 50f is obtained. For example, the outlet side pressure of the sixth stage pump chamber 50f is almost atmospheric pressure (760 Torr), but if the inlet side pressure is lower than atmospheric pressure, ie, 200 Torr, the side panel 80b and the lubricant housing 88b surround the periphery. The internal pressure of the enclosed chamber R is approximately 480 Torr (= (760 + 200) / 2). When the pressure on the inlet side of the sixth stage pump chamber 50f changes (increases) from 200 Torr to 300 Torr due to the inflow of process gas from the vacuum chamber side, the average pressure in the sixth stage pump chamber 50f also increases to 530 Torr (= (760 + 300) / 2) until the internal pressure of the chamber R surrounded by the side panel 80b and the lubricant housing 88b rises to 530 Torr, the gas containing the process gas rotates from the sixth-stage pump chamber 50f to the side panel 80b. It flows into the chamber R through the gap of the shaft 60.

これに対して、この例のように、第6段ポンプ室(最終段ポンプ室)50f側の端壁64bと該端壁64bに隣接して配置されるサイドパネル80bとの間に、排気口54bに連通して大気に開放される大気開放室52を設けると、前述のように、第6段ポンプ室(最終段ポンプ室)50fの内部圧力(平均圧力)が変化(上昇)しても、大気開放室52の圧力は大気圧から殆ど変化せず、また、サイドパネル80bの側方に位置して内部に軸受84bを収容している室、つまりサイドパネル80bと潤滑油ハウジング88bで周囲を包囲された室Rの内部圧力も、殆ど影響を受けることなく、ほぼ大気圧のままに維持される。   On the other hand, as in this example, an exhaust port is provided between the end wall 64b on the side of the sixth stage pump chamber (final stage pump chamber) 50f and the side panel 80b disposed adjacent to the end wall 64b. If the air release chamber 52 that communicates with the air b and is opened to the atmosphere is provided, as described above, even if the internal pressure (average pressure) of the sixth stage pump chamber (final stage pump chamber) 50f changes (rises). The pressure in the atmosphere opening chamber 52 hardly changes from the atmospheric pressure, and is located around the side panel 80b and the lubricating oil housing 88b. The internal pressure of the chamber R surrounded by the chamber R is also hardly affected and is maintained at almost atmospheric pressure.

上述のように構成された真空ポンプ10にあっては、ブースタポンプ12のモータ24及びメインポンプ14のモータ58を駆動して、真空チャンバの内部に導入されたプロセスガスをブースタポンプ12及びメインポンプ14で真空排気する。この時、大気開放室52の側方に位置して内部に軸受84bを収容している室、つまりサイドパネル80bと潤滑油ハウジング88bで周囲を包囲された室Rの内部が常にほぼ大気圧となるようにすることで、ポンプ内部に流入したプロセスガスが軸受側に漏れることをより確実に防止して、軸受をプロセスガスから保護できる。   In the vacuum pump 10 configured as described above, the motor 24 of the booster pump 12 and the motor 58 of the main pump 14 are driven, and the process gas introduced into the vacuum chamber is supplied to the booster pump 12 and the main pump. 14 is evacuated. At this time, the chamber which is located on the side of the air release chamber 52 and accommodates the bearing 84b therein, that is, the interior of the chamber R surrounded by the side panel 80b and the lubricating oil housing 88b is always at almost atmospheric pressure. By doing so, the process gas flowing into the pump can be more reliably prevented from leaking to the bearing side, and the bearing can be protected from the process gas.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。例えば、上記実施形態では、多段ルーツ式真空ポンプに適用した例を示しているが、単段ルーツ式真空ポンプに適用してもよく、またクロー式真空ポンプの他に、例えばルーツ式、クロー式、スクリュー式の内、2方式もしくは3方式全てを同一回転軸上で組合せた真空ポンプに適用することもできる。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea. For example, in the above-described embodiment, an example is shown in which the present invention is applied to a multi-stage roots vacuum pump. However, the present invention may be applied to a single-stage roots vacuum pump. Also, it can be applied to a vacuum pump in which two or three of screw types are combined on the same rotating shaft.

10 真空ポンプ
12 ブースタポンプ
14 メインポンプ
16 連絡配管
18 ポンプ室
20 外胴
20a 吸気口
20b 排気口
22 ポンプケーシング
24 モータ
26 回転軸
28 ロータ
30 ヒータジャケット
32a,32b サイドパネル
36a,36b 軸受
40a,40b 潤滑油ハウジング
42a,42b パージガス通路
50a〜50f ポンプ室
52 大気開放室
54 外胴
54a 吸気口
54b 排気口
56 ポンプケーシング
58 モータ
60 回転軸
62a〜62f ロータ
64a,64b 端壁
66a〜66e 仕切壁
68 内壁
70 外壁
72a〜72e ガス通路
74 保温ジャケット
80a,80b サイドパネル
84a,84b 軸受
88a,88b 潤滑油ハウジング
90a,90b パージガス通路
DESCRIPTION OF SYMBOLS 10 Vacuum pump 12 Booster pump 14 Main pump 16 Connection piping 18 Pump chamber 20 Outer trunk 20a Inlet 20b Exhaust outlet 22 Pump casing 24 Motor 26 Rotating shaft 28 Rotor 30 Heater jacket 32a, 32b Side panel 36a, 36b Bearing 40a, 40b Lubrication Oil housings 42a, 42b Purge gas passages 50a-50f Pump chamber 52 Atmospheric release chamber 54 Outer cylinder 54a Inlet port 54b Exhaust port 56 Pump casing 58 Motor 60 Rotating shaft 62a-62f Rotors 64a, 64b End walls 66a-66e Partition wall 68 Inner wall 70 Outer walls 72a to 72e Gas passage 74 Thermal insulation jackets 80a and 80b Side panels 84a and 84b Bearings 88a and 88b Lubricating oil housings 90a and 90b Purge gas passage

Claims (3)

吸気口と排気口とを有し、互いに連通し、仕切壁で仕切られた複数段のポンプ室を内部に備えたポンプケーシングと、
両端を軸受で回転自在に支承されて前記ポンプケーシングの長さ方向に沿って配置される回転軸と、
前記ポンプ室内にそれぞれ収容され、前記回転軸に連結されて該回転軸の回転に伴って回転する複数のロータとを有し、
最終段ポンプ室は、吸気側の仕切壁と排気側の端壁によって形成され、
前記排気側の端壁の側方にはサイドパネルが設けられており、
前記端壁と前記サイドパネルの間には、前記排気口に連通し大気に開放させた大気開放室が設けられており、
前記ポンプケーシングは、内壁と該内壁と所定間隔離間して配置される外壁とを備えた二重壁構造を有していることを特徴とする真空ポンプ。
And a intake port outlet, communicating with each other, a pump casing having a pump chamber of a plurality of stages which are partitioned by a partition wall inside,
A rotary shaft that is rotatably supported by bearings at both ends and arranged along the length direction of the pump casing;
A plurality of rotors respectively housed in the pump chamber, coupled to the rotating shaft and rotating with the rotation of the rotating shaft;
The final stage pump chamber is formed by an intake side partition wall and an exhaust side end wall,
A side panel is provided on the side of the end wall on the exhaust side,
Between said side panels and said end wall is the air release chamber is opened to the atmosphere communication is provided in the exhaust port,
2. The vacuum pump according to claim 1, wherein the pump casing has a double wall structure including an inner wall and an outer wall arranged at a predetermined distance from the inner wall .
前記サイドパネルの内部に前記回転軸挿通されており、該回転軸の挿通部にパージガスを供給するパージガス通路が設けられていることを特徴とする請求項1記載の真空ポンプ。 The inside of the side panel is inserted through the rotary shaft, according to claim 1 Symbol placement of the vacuum pump, characterized in that the purge gas passage for supplying purge gas into the insertion portion of the rotary shaft. 前記大気開放室は一定の幅を有していることを特徴とする請求項1または2に記載の真空ポンプ。  The vacuum pump according to claim 1, wherein the open air chamber has a certain width.
JP2011123980A 2011-06-02 2011-06-02 Vacuum pump Active JP5677202B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011123980A JP5677202B2 (en) 2011-06-02 2011-06-02 Vacuum pump
TW101118674A TWI554684B (en) 2011-06-02 2012-05-25 Vacuum pump
KR1020137028886A KR101760550B1 (en) 2011-06-02 2012-05-29 Vacuum pump
PCT/JP2012/064346 WO2012165645A1 (en) 2011-06-02 2012-05-29 Vacuum pump
EP12793624.3A EP2715139B1 (en) 2011-06-02 2012-05-29 Vacuum pump
CN2012800187110A CN103477080A (en) 2011-06-02 2012-05-29 Vacuum pump
US14/119,858 US20140112815A1 (en) 2011-06-02 2012-05-29 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123980A JP5677202B2 (en) 2011-06-02 2011-06-02 Vacuum pump

Publications (2)

Publication Number Publication Date
JP2012251471A JP2012251471A (en) 2012-12-20
JP5677202B2 true JP5677202B2 (en) 2015-02-25

Family

ID=47259490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123980A Active JP5677202B2 (en) 2011-06-02 2011-06-02 Vacuum pump

Country Status (7)

Country Link
US (1) US20140112815A1 (en)
EP (1) EP2715139B1 (en)
JP (1) JP5677202B2 (en)
KR (1) KR101760550B1 (en)
CN (1) CN103477080A (en)
TW (1) TWI554684B (en)
WO (1) WO2012165645A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752571B2 (en) * 2012-07-03 2017-09-05 Brian J. O'Connor Multiple segment lobe pump
US10760573B2 (en) * 2014-06-27 2020-09-01 Ateliers Busch Sa Method of pumping in a system of vacuum pumps and system of vacuum pumps
WO2017031807A1 (en) * 2015-08-27 2017-03-02 上海伊莱茨真空技术有限公司 Non-coaxial vacuum pump with multiple driving chambers
FR3065040B1 (en) * 2017-04-07 2019-06-21 Pfeiffer Vacuum PUMPING GROUP AND USE
DE202017003212U1 (en) * 2017-06-17 2018-09-18 Leybold Gmbh Multi-stage Roots pump
CN107084135A (en) * 2017-06-29 2017-08-22 德耐尔节能科技(上海)股份有限公司 A kind of dry-type spiral vacuum pump
KR102610994B1 (en) * 2019-06-19 2023-12-06 가시야마고교가부시끼가이샤 vacuum pump
FR3119209B1 (en) * 2021-01-25 2023-03-31 Pfeiffer Vacuum Dry type vacuum pump and pump unit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733834B2 (en) * 1986-12-18 1995-04-12 株式会社宇野澤組鐵工所 Inner partial-flow reverse-flow cooling multistage three-leaf vacuum pump in which the outer peripheral temperature of the housing with built-in rotor is stabilized
JPH05296171A (en) * 1992-04-13 1993-11-09 Ulvac Japan Ltd Shaft seal mechanism for positive displacement vacuum pump without using sealing fluid
GB9708397D0 (en) * 1997-04-25 1997-06-18 Boc Group Plc Improvements in vacuum pumps
JP4007130B2 (en) 2002-09-10 2007-11-14 株式会社豊田自動織機 Vacuum pump
JP4232505B2 (en) * 2003-03-27 2009-03-04 アイシン精機株式会社 Vacuum pump
JP3991918B2 (en) * 2003-05-19 2007-10-17 株式会社豊田自動織機 Roots pump
JP2005105829A (en) 2003-09-26 2005-04-21 Aisin Seiki Co Ltd Dry pump
JP4767625B2 (en) * 2005-08-24 2011-09-07 樫山工業株式会社 Multi-stage Roots type pump
JP5313260B2 (en) * 2008-10-10 2013-10-09 株式会社アルバック Dry pump
CN201396281Y (en) * 2009-03-19 2010-02-03 孙成忠 Multistage three-blade Roots vacuum pump
JP5330896B2 (en) * 2009-05-20 2013-10-30 三菱重工業株式会社 Dry vacuum pump
CN102282371B (en) * 2009-05-20 2014-12-31 三菱重工业株式会社 Dry vacuum pump
JP5473400B2 (en) * 2009-05-20 2014-04-16 三菱重工業株式会社 Dry vacuum pump and sealing method thereof
US8512016B2 (en) 2009-08-14 2013-08-20 Ulvac, Inc. Positive-displacement dry pump

Also Published As

Publication number Publication date
CN103477080A (en) 2013-12-25
TWI554684B (en) 2016-10-21
EP2715139B1 (en) 2018-01-10
JP2012251471A (en) 2012-12-20
EP2715139A4 (en) 2014-12-17
US20140112815A1 (en) 2014-04-24
KR101760550B1 (en) 2017-07-21
WO2012165645A1 (en) 2012-12-06
KR20140023958A (en) 2014-02-27
TW201307685A (en) 2013-02-16
EP2715139A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5677202B2 (en) Vacuum pump
JP5793004B2 (en) Vacuum pump
KR20130050488A (en) Multistage dry vaccum pump
JPH01163492A (en) Screw vacuum pump
JP2003097480A (en) Screw type vacuum pump
KR101613161B1 (en) Two stages type's dry vacuum pump
CN103807176A (en) Multistage dry vacuum pump
US7052259B2 (en) Vacuum exhausting apparatus
KR102504556B1 (en) Dry pump and exhaust gas treatment method
JPH11280681A (en) Vacuum pump
JP3941484B2 (en) Multistage vacuum pump
JP3921551B1 (en) Multi-stage roots compressor
JP3112490B2 (en) Mechanical vacuum pump
JP4111763B2 (en) Vertical screw vacuum pump
JP2004293434A (en) Dry pump
JP2004293377A (en) Multi-stage dry pump
JP2014055580A (en) Vacuum pump
JP2010229832A (en) Dry vacuum pump and processing chamber pressure reduction method using the same
JP2000186685A (en) Rotary multistage vacuum pump device dealing with high temperature gas
JP2003322094A (en) Vacuum exhausting device
JP2000186686A (en) Rotary multistage vacuum pump device dealing with high temperature gas
JPH04128592A (en) Dry pump
JP2002174175A (en) Evacuator
JPS62136812A (en) Exhauster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5677202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250