JP5675564B2 - Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method - Google Patents

Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method Download PDF

Info

Publication number
JP5675564B2
JP5675564B2 JP2011260171A JP2011260171A JP5675564B2 JP 5675564 B2 JP5675564 B2 JP 5675564B2 JP 2011260171 A JP2011260171 A JP 2011260171A JP 2011260171 A JP2011260171 A JP 2011260171A JP 5675564 B2 JP5675564 B2 JP 5675564B2
Authority
JP
Japan
Prior art keywords
battery
sealing member
rubber sealing
rubber
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011260171A
Other languages
Japanese (ja)
Other versions
JP2013114910A (en
Inventor
貴司 原山
貴司 原山
純太 高須
純太 高須
草間 和幸
和幸 草間
横田 理津子
理津子 横田
片山 竜雄
竜雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiyama Manufacturing Corp
Toyota Motor Corp
Original Assignee
Uchiyama Manufacturing Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiyama Manufacturing Corp, Toyota Motor Corp filed Critical Uchiyama Manufacturing Corp
Priority to JP2011260171A priority Critical patent/JP5675564B2/en
Publication of JP2013114910A publication Critical patent/JP2013114910A/en
Application granted granted Critical
Publication of JP5675564B2 publication Critical patent/JP5675564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Description

本発明は、自身の内外を連通する貫通孔を有する電池ケースと、この電池ケース内に収容された電極体と、電池ケースの貫通孔を外部から気密に封止してなる封止部材とを備える電池及び電池の製造方法に関する。また、上記電池に用いるゴム封止部材及びゴム封止部材の製造方法に関する。   The present invention includes a battery case having a through-hole communicating with the inside and outside of the battery case, an electrode body housed in the battery case, and a sealing member formed by sealing the through-hole of the battery case from the outside. The present invention relates to a battery and a battery manufacturing method. Moreover, it is related with the manufacturing method of the rubber sealing member used for the said battery, and a rubber sealing member.

従来より、電解液を注入するための注液孔などの貫通孔を有する電池ケースと、この電池ケースに収容された電極体と、電池ケースの貫通孔を外部から気密に封止した封止部材とを備える電池が知られている。封止部材としては、例えば、金属からなる金属蓋部材に、ゴム状弾性体からなるゴム栓部材が接合されたものがある。このうちゴム栓部材は、電池ケースの貫通孔に外部から圧入されており、貫通孔を気密に封止(密栓)する。一方、金属蓋部材は、このゴム栓部材を電池ケースの外部から覆いつつ、ゴム栓部材を電池ケースの内部に向けて押圧した状態で、電池ケースに接合されている。このようにすることで、ゴム栓部材による貫通孔の気密封止をより確実なものとすることができる。
なお、このようなゴム栓部材及び金属蓋部材を有する封止部材で貫通孔を封止した形態の電池として、例えば特許文献1に開示された電池が挙げられる。
Conventionally, a battery case having a through hole such as a liquid injection hole for injecting an electrolyte, an electrode body accommodated in the battery case, and a sealing member that hermetically seals the through hole of the battery case from the outside Are known. As the sealing member, for example, there is a member in which a rubber plug member made of a rubber-like elastic body is joined to a metal lid member made of metal. Among these, the rubber plug member is press-fitted into the through hole of the battery case from the outside, and the through hole is hermetically sealed (tightly plugged). On the other hand, the metal lid member is bonded to the battery case in a state where the rubber plug member is pressed toward the inside of the battery case while covering the rubber plug member from the outside of the battery case. By doing in this way, the airtight sealing of the through-hole by a rubber plug member can be made more reliable.
In addition, as a battery of the form which sealed the through-hole with the sealing member which has such a rubber plug member and a metal cover member, the battery disclosed by patent document 1 is mentioned, for example.

特開2009−87659号公報JP 2009-87659 A

従来の電池では、前述のように、貫通孔の気密封止はゴム栓部材で行えば足りると考えられていたため、金属蓋部材と電池ケースとの間の気密性まで厳密に要求されることはなかった。しかしながら、ゴム状弾性体からなるゴム栓部材は、経時的に劣化するため、ゴム栓部材と貫通孔との間の気密性も経時的に低下する。特に、ハイブリッド自動車や電気自動車などの車載用の電池は、例えば10年以上の長期間にわたり使用されるため、この経時劣化による気密性の低下が懸念される。   In the conventional battery, as described above, it was considered that the hermetic sealing of the through hole should be performed by the rubber plug member. Therefore, strictly speaking, the airtightness between the metal lid member and the battery case is strictly required. There wasn't. However, since the rubber plug member made of a rubber-like elastic material deteriorates with time, the airtightness between the rubber plug member and the through hole also decreases with time. In particular, in-vehicle batteries such as hybrid vehicles and electric vehicles are used for a long period of time, for example, 10 years or more, and there is a concern that the airtightness may decrease due to the deterioration with time.

ゴム栓部材が劣化してゴム栓部材と貫通孔との間の気密性が低下すると、電池ケース内に収容されていた電解液が、ゴム栓部材と貫通孔との間に入り込み、更に、金属蓋部材と電池ケースとの間の気密性も低い場合には、その電解液が金属蓋部材と電池ケースとの間を通じて電池外部まで漏れ出てしまうことがある。すると、電池ケース内の電解液が不足して、電池特性が低下するおそれがある。また逆に、金属蓋部材と電池ケースとの間、及び、ゴム栓部材と貫通孔との間を通じて、大気中の水分が電池ケース内に入り込み、電池特性が低下するおそれもある。   When the rubber plug member deteriorates and the airtightness between the rubber plug member and the through hole is reduced, the electrolyte contained in the battery case enters between the rubber plug member and the through hole, and further, the metal When the airtightness between the lid member and the battery case is low, the electrolyte may leak to the outside of the battery through between the metal lid member and the battery case. As a result, the electrolyte in the battery case is insufficient, and the battery characteristics may deteriorate. Conversely, moisture in the atmosphere may enter the battery case between the metal lid member and the battery case, and between the rubber plug member and the through hole, and the battery characteristics may deteriorate.

この問題を解決するため、ゴム栓部材が劣化してゴム栓部材と貫通孔との間の気密性が低下しても、電池ケースの内部と外部が連通しないように、金属蓋部材と電池ケースとの間を確実に気密かつ環状に接合しておくことが考えられる。
しかしながら、このようにした電池は、製造直後にはゴム栓部材がまだ劣化しておらず、ゴム栓部材と貫通孔との間が気密に封止されている。つまり、この電池は、ゴム栓部材と貫通孔との密着、及び、金属蓋部材と電池ケースとの接合により、二重に封止されている。このため、金属蓋部材と電池ケースとの接合の不具合で封止不良が生じていたとしても、この封止不良が生じた電池を検査により判別するのが困難であった。
In order to solve this problem, even if the rubber plug member deteriorates and the airtightness between the rubber plug member and the through hole is reduced, the metal lid member and the battery case are prevented from communicating with each other. It is conceivable to ensure airtight and annular bonding between the two.
However, in such a battery, the rubber plug member has not yet deteriorated immediately after manufacture, and the gap between the rubber plug member and the through hole is hermetically sealed. That is, this battery is double-sealed by the close contact between the rubber plug member and the through hole and the joining of the metal lid member and the battery case. For this reason, even if a sealing failure occurs due to a failure in joining the metal lid member and the battery case, it is difficult to determine the battery in which the sealing failure has occurred by inspection.

本発明は、かかる現状に鑑みてなされたものであって、電池ケースの貫通孔を気密に封止したゴム封止部材と、このゴム封止部材を外部から覆いつつ、電池ケースに気密かつ環状に固着した外側封止部材とを備える電池において、外側封止部材と電池ケースとの間の気密性を容易かつ確実に検査できる電池及び電池の製造方法を提供することを目的とする。また、上記電池に用いるゴム封止部材及びゴム封止部材の製造方法を提供することを目的とする。   The present invention has been made in view of the present situation, and is a rubber sealing member that hermetically seals a through hole of a battery case, and the battery case is airtight and annular while covering the rubber sealing member from the outside. An object of the present invention is to provide a battery and a battery manufacturing method that can easily and reliably inspect the airtightness between the outer sealing member and the battery case. Moreover, it aims at providing the manufacturing method of the rubber sealing member used for the said battery, and a rubber sealing member.

上記課題を解決するための本発明の一態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、前記貫通孔を前記電池ケースの外部から気密に封止してなり、ゴム状弾性体からなるゴム封止部を有するゴム封止部材と、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム封止部を有するゴム封止部材と、前記ゴム封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、前記電池ケースと前記ゴム封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、前記封止空間内に存在する気体である空間内気体は、前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含み、前記ゴム封止部は、有機過酸化物を加硫剤とした過酸化物加硫により形成され、前記有機過酸化物の分解により生成した有機化合物を含んでなり、前記有機化合物のガスを、前記検知可能気体として前記封止空間へ供給する気体供給体を兼ねる電池である。   One aspect of the present invention for solving the above problem is that a battery case having a through hole communicating inside and outside of the battery, an electrode body accommodated in the battery case, and the through hole from the outside of the battery case. A rubber sealing member having a rubber sealing portion made of a rubber-like elastic body and a rubber-like elastic body, hermetically sealed, and the through hole is hermetically sealed from the outside of the battery case. A rubber sealing member having a rubber sealing portion, and an outer seal that is airtightly and annularly fixed around an annular hole surrounding the through hole in the battery case while covering the rubber sealing member from the outside. A sealing member, and an airtightly sealed space formed between the battery case, the rubber sealing member, and the outer sealing member is defined as a sealing space. The gas in the space that is present in the It contains a detectable gas that can be detected separately from gas components in the atmosphere when it leaks outside the pond, and the rubber sealing portion is formed by peroxide vulcanization using an organic peroxide as a vulcanizing agent. A battery comprising an organic compound produced by the decomposition of the organic peroxide and serving also as a gas supply body that supplies the gas of the organic compound as the detectable gas to the sealed space.

この電池では、ゴム封止部材が電池ケースの貫通孔を気密に封止すると共に、このゴム封止部材と一体化された、或いは別体とされた外側封止部材がこのゴム封止部材を外部から覆って電池ケースの孔周囲部に気密かつ環状に固着している。従って、貫通孔は、これらゴム封止部材及び外側封止部材により二重にシールされている。しかし、この電池では、電池ケースとゴム封止部材と外側封止部材との間に形成された封止空間内の空間内気体が、封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む。このため、ゴム封止部材で貫通孔が気密に封止されているにも拘わらず、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間から電池外部に漏れ出るか否かを検査することにより、外側封止部材と電池ケースとの間の気密性を容易かつ確実に検査できる。   In this battery, the rubber sealing member hermetically seals the through-hole of the battery case, and an outer sealing member integrated with or separate from the rubber sealing member replaces the rubber sealing member. Covering from the outside, it is airtightly and annularly fixed around the hole of the battery case. Therefore, the through hole is double-sealed by the rubber sealing member and the outer sealing member. However, in this battery, when the gas in the sealed space formed between the battery case, the rubber sealing member, and the outer sealing member leaks out of the battery from the sealed space, Detectable gas that can be detected separately from gas components. For this reason, although the through hole is hermetically sealed with the rubber sealing member, the airtightness between the outer sealing member and the battery case (the periphery of the hole) can be easily and reliably inspected. That is, it is possible to easily and reliably inspect the airtightness between the outer sealing member and the battery case by inspecting whether or not the detectable gas leaks from the sealing space to the outside of the battery.

更に、この電池では、ゴム封止部材のゴム封止部が、有機過酸化物を加硫剤とした過酸化物加硫により形成されており、かつ、有機過酸化物の分解により生成した有機化合物を含んでいる。そして、このゴム封止部は、この有機化合物のガスを、検知可能気体として封止空間へ供給する気体供給体を兼ねている。このため、検知可能気体を封止空間に供給するための気体供給体を電池内に別途設ける必要がなく、しかも、ゴム封止部から発生した検知可能気体(有機化合物のガス)を、確実に封止空間に供給できる。   Further, in this battery, the rubber sealing portion of the rubber sealing member is formed by peroxide vulcanization using an organic peroxide as a vulcanizing agent, and an organic material generated by decomposition of the organic peroxide is formed. Contains compounds. And this rubber sealing part serves also as the gas supply body which supplies the gas of this organic compound to sealing space as detectable gas. For this reason, it is not necessary to separately provide a gas supply body for supplying the detectable gas to the sealed space in the battery, and the detectable gas (organic compound gas) generated from the rubber sealing portion is securely supplied. It can be supplied to the sealed space.

なお、ゴム封止部をなす「ゴム状弾性体」の材質としては、例えば、エチレンプロピレンジエンゴム(EPDM)、アクリルゴム(ACM)、ニトリルゴム(NBR)、イソプレンゴム(IR)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)、エピクロルヒドリンゴム(CO,ECO)、クロロプレンゴム(CR)、シリコーンゴム(Q)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、フッ素ゴム(FKM)、ブチルゴム(IIR)などが挙げられる。   Examples of the material of the “rubber-like elastic body” forming the rubber sealing portion include ethylene propylene diene rubber (EPDM), acrylic rubber (ACM), nitrile rubber (NBR), isoprene rubber (IR), urethane rubber ( U), chlorosulfonated polyethylene (CSM), epichlorohydrin rubber (CO, ECO), chloroprene rubber (CR), silicone rubber (Q), styrene-butadiene rubber (SBR), butadiene rubber (BR), fluorine rubber (FKM) And butyl rubber (IIR).

また、加硫剤として用いる「有機過酸化物(パーオキサイド)」としては、例えば、メチルエチルパーオキサイド等のケトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン等のパーオキシケタール、クメンハイドロパーオキサイド等のハイドロパーオキサイド、m-トルオイルパーオキサイド、ラウロイルパーオキサイド等のジアシルパーオキサイド、ジクミルパーオキサイド(DCP)、t-ブチルクミルパーオキサイド、α,α'-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン等のジアルキルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシジカーボネート、t-ブチルパーオキシイソプロピルモノカーボネート、クミルパーオキシネオデカネート等のパーオキシエステルが挙げられる。   Examples of the “organic peroxide (peroxide)” used as a vulcanizing agent include ketone peroxides such as methyl ethyl peroxide, 1,1-bis (t-butylperoxy) cyclohexane, 1,1- Peroxyketals such as bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, hydroperoxides such as cumene hydroperoxide, diacyl peroxides such as m-toluoyl peroxide, lauroyl peroxide, dicumyl Peroxide (DCP), t-butyl cumyl peroxide, α, α'-bis (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, etc. Dialkyl peroxides, peroxydicarbonates such as bis (4-t-butylcyclohexyl) peroxydicarbonate, t-butylperoxide Examples include peroxyesters such as xylisopropyl monocarbonate and cumyl peroxyneodecanate.

これらの有機過酸化物の中でも、ジクミルパーオキサイド(DCP)、t-ブチルクミルパーオキサイド、α,α'-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン等のジアルキルパーオキサイドを用いるのが特に好ましい。その理由は、化学的に安定で架橋効率が良く、室温下で検出可能な蒸気圧を有する有機化合物を含む分解生成物が、加硫により発生するからである。   Among these organic peroxides, dicumyl peroxide (DCP), t-butylcumyl peroxide, α, α'-bis (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5- It is particularly preferable to use a dialkyl peroxide such as bis (t-butylperoxy) hexane. This is because a decomposition product containing an organic compound that is chemically stable, has good crosslinking efficiency, and has a vapor pressure detectable at room temperature is generated by vulcanization.

また、有機過酸化物の加硫時の分解生成物であり、ゴム封止部内に残り得る「有機化合物」としては、例えば、ジクミルパーオキサイド(DCP)を加硫剤とした場合のアセトン、トルエン、アセトフェノン、及びα−クミルアルコールが挙げられる。また、t-ブチルクミルパーオキサイドを加硫剤とした場合のアセトン、t-ブタノール、アセトフェノン、及びα-クミルアルコールが挙げられる。また、α,α'-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼンを加硫剤とした場合のアセトン、t-ブタノール、3-アセチルアセトフェノン、2-(3-アセチルフェニル)-2-プロパノール、及びα,α'-ジヒドロキシ-1,3-ジ
イソプロピルベンゼンが挙げられる。また、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサンを加硫剤とした場合のアセトン、t-ブタノール、t-アミルアルコール、及び2,5-ジメチルヘキサン-2,5-ジオールが挙げられる。
In addition, as an “organic compound” that is a decomposition product of an organic peroxide during vulcanization and can remain in a rubber sealing portion, for example, acetone when dicumyl peroxide (DCP) is used as a vulcanizing agent, Examples include toluene, acetophenone, and α-cumyl alcohol. Further, acetone, t-butanol, acetophenone, and α-cumyl alcohol when t-butylcumyl peroxide is used as a vulcanizing agent can be mentioned. Further, acetone, t-butanol, 3-acetylacetophenone, 2- (3-acetylphenyl) -2-propanol when α, α'-bis (t-butylperoxy) diisopropylbenzene is used as a vulcanizing agent, and and α, α′-dihydroxy-1,3-diisopropylbenzene. Further, acetone, t-butanol, t-amyl alcohol, and 2,5-dimethylhexane-2, using 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane as a vulcanizing agent, 5-diol is mentioned.

また、「空間内気体」のうち、前述の検知可能気体以外の気体成分も、適宜変更でき、例えば、大気や窒素ガスなどを用いることができる。   In addition, among the “gas in space”, gas components other than the above-described detectable gas can be changed as appropriate, and for example, air or nitrogen gas can be used.

更に、上記の電池であって、前記ゴム封止部は、前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って形成されてなる電池とすると良い。   Further, in the battery described above, the rubber sealing portion performs the primary vulcanization by the peroxide vulcanization but does not perform the secondary vulcanization, or the secondary compound in which the organic compound remains in itself. A battery formed by vulcanization is preferable.

このゴム封止部は、二次加硫は行わないで、または、自身に有機過酸化物の分解生成物である有機化合物が残るように二次加硫を行って形成したものである。このため、ゴム封止部を、確実に気体供給体とすることができる。   This rubber sealing portion is formed by performing secondary vulcanization without performing secondary vulcanization or leaving an organic compound as a decomposition product of the organic peroxide in itself. For this reason, a rubber sealing part can be made into a gas supply body reliably.

更に、上記のいずれかに記載の電池であって、前記ゴム封止部は、エチレンプロピレンジエンゴムからなる電池とすると良い。   Furthermore, in the battery according to any one of the above, the rubber sealing portion may be a battery made of ethylene propylene diene rubber.

エチレンプロピレンジエンゴム(EPDM)は、耐久性や耐候性、耐熱性に優れていることから、EPDMによりゴム封止部を形成することで、電池の耐久性等を良好にすることができる。   Since ethylene propylene diene rubber (EPDM) is excellent in durability, weather resistance, and heat resistance, battery durability can be improved by forming a rubber sealing portion with EPDM.

また、他の態様は、電池の電池ケースに設けられ、前記電池ケースの内外を連通する貫通孔を、気密に封止するゴム封止部材であって、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止可能に構成されたゴム封止部を有し、前記ゴム封止部は、有機過酸化物を加硫剤とした過酸化物加硫により形成され、前記有機過酸化物の分解により生成され、自身の外部にガスとして放出される有機化合物を含んでなるゴム封止部材である。   Another aspect is a rubber sealing member that is provided in a battery case of a battery and hermetically seals a through hole that communicates between the inside and outside of the battery case, and is formed of a rubber-like elastic body, and the through hole A rubber sealing portion configured to be hermetically sealed from the outside of the battery case, and the rubber sealing portion is formed by peroxide vulcanization using an organic peroxide as a vulcanizing agent, It is a rubber sealing member comprising an organic compound that is generated by decomposition of the organic peroxide and is released to the outside as a gas.

このゴム封止部材を用いて電池ケースの貫通孔を気密に封止し、更に、前述した外側封止部材を電池ケースの孔周囲部に気密かつ環状に固着して、電池を形成すれば、電池ケースとゴム封止部材と外側封止部材との間に形成された封止空間内の空間内気体が、封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む電池を製造できる。従って、前述のように、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。また、ゴム封止部材のゴム封止部は、自身から放出される有機化合物のガスを検知可能気体として封止空間へ供給する気体供給体を兼ねるので、検知可能気体を封止空間に供給するための気体供給体を電池内に別途設ける必要がない。   If the rubber sealing member is used to hermetically seal the through hole of the battery case, and the outer sealing member described above is hermetically and annularly fixed around the hole of the battery case to form a battery, When the gas in the space in the sealed space formed between the battery case, the rubber sealing member, and the outer sealing member leaks out of the battery from the sealed space, it is distinguished from the gas components in the atmosphere. Batteries containing possible detectable gases can be manufactured. Therefore, as described above, it is possible to easily and reliably inspect the airtightness between the outer sealing member and the battery case (the peripheral portion of the hole). Further, since the rubber sealing portion of the rubber sealing member also serves as a gas supply body that supplies the organic compound gas released from itself as a detectable gas to the sealing space, the detectable gas is supplied to the sealing space. There is no need to separately provide a gas supply for the battery.

更に、上記のゴム封止部材であって、前記ゴム封止部は、前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って形成されてなるゴム封止部材とすると良い。   Further, in the rubber sealing member, the rubber sealing portion performs primary vulcanization by the peroxide vulcanization but does not perform secondary vulcanization, or the organic compound is contained in itself. A rubber sealing member formed by performing the remaining secondary vulcanization is preferable.

このようにして形成したゴム封止部は、前述のように、確実に気体供給体とすることができる。また、ゴム封止部の形成が容易で、ゴム封止部材を安価にすることができる。そして、このゴム封止部材を用いた電池も安価にすることができる。   As described above, the rubber sealing portion thus formed can be reliably used as a gas supply body. Further, the rubber sealing portion can be easily formed, and the rubber sealing member can be made inexpensive. And the battery using this rubber sealing member can also be made cheap.

更に、上記のいずれかに記載のゴム封止部材であって、前記ゴム封止部は、エチレンプロピレンジエンゴムからなるゴム封止部材とすると良い。   Furthermore, in the rubber sealing member according to any one of the above, the rubber sealing portion may be a rubber sealing member made of ethylene propylene diene rubber.

前述のように、EPDMは、耐久性や耐候性、耐熱性に優れていることから、このゴム封止部材を用いて電池を形成すれば、電池の耐久性等を良好にすることができる。   As described above, EPDM is excellent in durability, weather resistance, and heat resistance. Therefore, if a battery is formed using this rubber sealing member, the durability of the battery can be improved.

更に、前記ゴム封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着可能に構成された外側封止部材と一体化されてなる、上記のいずれかに記載のゴム封止部材とすると良い。   Furthermore, the rubber sealing member is integrated with an outer sealing member configured to be airtight and annularly fixable around an annular hole surrounding the through hole in the battery case while covering the rubber sealing member from the outside. The rubber sealing member according to any one of the above is preferable.

このように外側封止部材と一体化されたゴム封止部材は、一度に電池ケースに取り付けできるなど、取り扱いが容易である。また、部品点数を少なくでき、工数を少なくできる。   Thus, the rubber sealing member integrated with the outer sealing member can be easily attached to the battery case at one time. In addition, the number of parts can be reduced and the number of man-hours can be reduced.

また、他の態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム封止部を有するゴム封止部材と、前記ゴム封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、前記電池ケースと前記ゴム封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、前記封止空間内に存在する気体である空間内気体は、前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含み、前記ゴム封止部は、有機過酸化物を加硫剤とした過酸化物加硫により形成され、前記有機過酸化物の分解により生成した有機化合物を含んでなり、前記有機化合物のガスを、前記検知可能気体として前記封止空間へ供給する気体供給体を兼ねる電池の製造方法であって、前記過酸化物加硫により形成され前記有機化合物を含んでなる前記ゴム封止部を有する前記ゴム封止部材のうち、前記ゴム封止部で、前記電池ケースの前記外部から前記貫通孔を塞いで、前記貫通孔を気密に封止する第1封止工程と、前記第1封止工程の後、前記ゴム封止部材を前記外部から覆いつつ、前記外側封止部材を前記電池ケースの前記孔周囲部に気密かつ環状に固着し、前記封止空間を形成する第2封止工程と、を備える電池の製造方法である。   In another aspect, the battery case includes a battery case having a through hole communicating with the inside and the outside of the battery case, an electrode body accommodated in the battery case, and a rubber-like elastic body, and the through hole is formed from the outside of the battery case. A rubber sealing member having a rubber sealing portion which is hermetically sealed, and an airtight and annular shape around the annular hole surrounding the through hole in the battery case while covering the rubber sealing member from the outside An outer sealing member fixed to the battery case, and a hermetically sealed space formed between the battery case, the rubber sealing member, and the outer sealing member is defined as a sealing space. When the gas in the space, which is a gas existing in the sealed space, leaks from the sealed space to the outside of the battery, the gas contains a detectable gas that can be detected separately from the gas components in the atmosphere, and the rubber The sealing part is a peroxide using an organic peroxide as a vulcanizing agent. A method for producing a battery, which comprises an organic compound formed by sulfuration and generated by decomposition of the organic peroxide, and also serves as a gas supply body that supplies the gas of the organic compound as the detectable gas to the sealed space Among the rubber sealing members having the rubber sealing portion formed by the peroxide vulcanization and containing the organic compound, the rubber sealing portion includes the rubber sealing portion from the outside of the battery case. A first sealing step for sealing the through hole by sealing the through hole, and after the first sealing step, while covering the rubber sealing member from the outside, the outer sealing member is And a second sealing step in which the sealing space is formed in an airtight and annularly fixed manner around the hole periphery of the battery case.

この電池の製造方法では、第1封止工程において、ゴム封止部材で貫通孔を気密に封止する。このため、その後、第2封止工程までの間に、電池ケース内に収容された電解液が貫通孔を通じて電池ケースの外部(孔周囲部等)に漏れ出るのを防止できる。従って、第2封止工程の際に、貫通孔から漏れ出た電解液が外側封止部材と電池ケースの孔周囲部との間に入り込んで、封止不良が生じるのを防止でき、外側封止部材と孔周囲部とを確実に固着できる。   In this battery manufacturing method, the through hole is hermetically sealed with a rubber sealing member in the first sealing step. For this reason, it can prevent that the electrolyte solution accommodated in the battery case leaks to the exterior (hole periphery part etc.) of a battery case through a through-hole after that until a 2nd sealing process. Therefore, during the second sealing step, it is possible to prevent the electrolyte leaking from the through-hole from entering between the outer sealing member and the hole peripheral portion of the battery case, resulting in a sealing failure. The stop member and the hole periphery can be securely fixed.

また、第1封止工程では、有機過酸化物を加硫剤とした過酸化物加硫により形成され、この有機過酸化物の分解により生成した有機化合物を含んだゴム封止部を有するゴム封止部材によって、貫通孔を気密に封止する。その後、第2封止工程において、ゴム封止部材と一体化された、或いは別体とされた外側封止部材を電池ケースに固着して封止空間を形成する。このようにすることで、封止空間に臨むゴム封止部から封止空間へ有機化合物ガス(検知可能気体)が供給される。このため、検知可能気体を封止空間に供給するための気体供給体を電池内に別途設ける必要がない。そして、この第2封止工程後の電池では、ゴム封止部材で貫通孔が気密に封止されているにも拘わらず、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。即ち、ゴム封止部から封止空間に供給された有機化合物ガス(検知可能気体)が、封止空間から電池外部に漏れ出るか否かを検査することにより、外側封止部材と電池ケースとの間の気密性を容易かつ確実に検査できる。   Further, in the first sealing step, a rubber having a rubber sealing portion formed by peroxide vulcanization using an organic peroxide as a vulcanizing agent and containing an organic compound generated by decomposition of the organic peroxide. The through hole is hermetically sealed by the sealing member. Thereafter, in the second sealing step, the outer sealing member integrated with the rubber sealing member or separated from the rubber sealing member is fixed to the battery case to form a sealing space. By doing in this way, organic compound gas (detectable gas) is supplied to the sealing space from the rubber sealing part facing the sealing space. For this reason, it is not necessary to separately provide a gas supply body for supplying detectable gas to the sealed space in the battery. And in the battery after this 2nd sealing process, although a through-hole is sealed airtight with a rubber sealing member, it is between an outer side sealing member and a battery case (the hole surrounding part). Airtightness can be inspected easily and reliably. That is, by inspecting whether the organic compound gas (detectable gas) supplied from the rubber sealing portion to the sealing space leaks out of the battery from the sealing space, the outer sealing member and the battery case It is possible to easily and reliably inspect the airtightness between the two.

更に、上記の電池の製造方法であって、前記ゴム封止部は、前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って形成されてなる電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the rubber sealing portion performs primary vulcanization by the peroxide vulcanization but does not perform secondary vulcanization, or the organic compound is contained in itself. A battery manufacturing method formed by performing the remaining secondary vulcanization is preferable.

このようにして形成したゴム封止部は、前述のように、ゴム封止部を、確実に気体供給体とすることができる。   As described above, the rubber sealing portion formed in this manner can reliably be used as a gas supply body.

更に、上記のいずれかに記載の電池の製造方法であって、前記ゴム封止部は、エチレンプロピレンジエンゴムからなる電池の製造方法とすると良い。   Furthermore, in any one of the battery manufacturing methods described above, the rubber sealing portion may be a battery manufacturing method made of ethylene propylene diene rubber.

前述のように、EPDMは、耐久性や耐候性、耐熱性に優れていることから、EPDMによりゴム封止部を形成することで、耐久性等が良好な電池を製造できる。   As described above, since EPDM is excellent in durability, weather resistance, and heat resistance, a battery having excellent durability and the like can be manufactured by forming a rubber sealing portion with EPDM.

更に、上記のいずれかに記載の電池の製造方法であって、前記第2封止工程の後、前記検知可能気体が前記封止空間から電池外部に漏れ出るか否かを検査することにより、前記外側封止部材と前記電池ケースの前記孔周囲部との間の気密性を検査する気密検査工程を更に備える電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method according to any one of the above, after the second sealing step, by inspecting whether the detectable gas leaks out of the sealing space to the outside of the battery, A battery manufacturing method may further include an airtight inspection step of inspecting airtightness between the outer sealing member and the hole peripheral portion of the battery case.

この電池の製造方法では、気密検査工程において、外側封止部材と電池ケースの孔周囲部との間の気密性を検査する。そして、これらの間に封止不良が生じている電池を確実に排除できる。よって、外側封止部材と電池ケースとの間の気密性が良好な電池を製造できる。   In this battery manufacturing method, the airtightness between the outer sealing member and the hole peripheral part of the battery case is inspected in the airtightness inspection step. And the battery in which the sealing defect has arisen among these can be excluded reliably. Therefore, a battery having good airtightness between the outer sealing member and the battery case can be manufactured.

更に、上記のいずれかに記載の電池の製造方法であって、前記第1封止工程は、減圧下で行い、前記第2封止工程は、大気圧下で行う電池の製造方法とすると良い。   Furthermore, in any one of the battery manufacturing methods described above, the first sealing step may be performed under reduced pressure, and the second sealing step may be a battery manufacturing method performed under atmospheric pressure. .

第1封止工程を減圧下で行うことで、この第1封止後の電池ケース内を減圧状態(負圧)にすることができる。このため、第2封止工程後に行う初期充電の際やその後の使用において、電池ケース内に気体が発生しても、電池ケースの内圧が早期に高くなるのを防止できる。一方、溶接等を行う第2封止工程は、大気圧下で行うので、減圧下で行う場合に比して、第2封止工程を容易に行うことができる。   By performing the first sealing step under reduced pressure, the inside of the battery case after the first sealing can be brought into a reduced pressure state (negative pressure). For this reason, it is possible to prevent the internal pressure of the battery case from becoming high at an early stage even when gas is generated in the battery case during the initial charging performed after the second sealing step or during subsequent use. On the other hand, since the 2nd sealing process which performs welding etc. is performed under atmospheric pressure, compared with the case where it carries out under reduced pressure, the 2nd sealing process can be performed easily.

また、他の態様は、電池の電池ケースに設けられ、前記電池ケースの内外を連通する貫通孔を、気密に封止するゴム封止部材であって、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止するゴム封止部を有し、前記ゴム封止部は、有機過酸化物を加硫剤とした過酸化物加硫により形成され、前記有機過酸化物の分解により生成され、自身の外部にガスとして放出される有機化合物を含んでなるゴム封止部材の製造方法であって、前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って、前記ゴム封止部を形成するゴム封止部形成工程を備えるゴム封止部材の製造方法である。   Another aspect is a rubber sealing member that is provided in a battery case of a battery and hermetically seals a through hole that communicates between the inside and outside of the battery case, and is formed of a rubber-like elastic body, and the through hole A rubber sealing portion that hermetically seals the battery case from the outside, and the rubber sealing portion is formed by peroxide vulcanization using an organic peroxide as a vulcanizing agent. A method for producing a rubber sealing member comprising an organic compound produced by decomposition of a substance and released as a gas to the outside, wherein the primary vulcanization by the peroxide vulcanization is performed, but the secondary vulcanization is performed. This is a method for producing a rubber sealing member comprising a rubber sealing portion forming step in which the rubber sealing portion is formed by performing secondary vulcanization in which the organic compound remains in itself without performing vulcanization.

このようにゴム封止部形成工程を行うことで、ゴム封止部を、確実に気体供給体とすることができる。また、ゴム封止部材を、容易かつ安価に形成できる。そして、このゴム封止部材を用いた電池を安価にすることができる。   Thus, by performing a rubber sealing part formation process, a rubber sealing part can be reliably used as a gas supply body. Further, the rubber sealing member can be formed easily and inexpensively. And the battery using this rubber sealing member can be made cheap.

実施形態1に係るリチウムイオン二次電池を示す斜視図である。1 is a perspective view showing a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係るリチウムイオン二次電池を示す縦断面図である。1 is a longitudinal sectional view showing a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。FIG. 4 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the first embodiment. 実施形態1に係り、図3の上方から見た、封止部材の近傍を示す部分拡大平面図である。FIG. 4 is a partially enlarged plan view showing the vicinity of the sealing member according to the first embodiment when viewed from above in FIG. 3. 実施形態1に係り、封止部材を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on Embodiment 1 and shows a sealing member. 実施形態1に係るリチウムイオン二次電池の製造方法に関し、第1封止工程において、封止部材のうちゴム封止部材の挿入部を注液孔に圧入して、ゴム封止部材で注液孔を気密に封止する様子を示す説明図である。Regarding the method for manufacturing a lithium ion secondary battery according to Embodiment 1, in the first sealing step, an insertion portion of a rubber sealing member among the sealing members is press-fitted into a liquid injection hole, and liquid injection is performed with the rubber sealing member It is explanatory drawing which shows a mode that a hole is sealed airtightly. 実施形態2に係るハイブリッド自動車を示す説明図である。FIG. 6 is an explanatory diagram showing a hybrid vehicle according to a second embodiment. 実施形態3に係るハンマードリルを示す説明図である。It is explanatory drawing which shows the hammer drill which concerns on Embodiment 3. FIG.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態1に係るリチウムイオン二次電池100(以下、単に電池100とも言う)を示す。また、図3及び図4に、電池100のうち注液孔(貫通孔)170及び封止部材180の近傍の形態を示す。また、図5に、封止部材180を示す。なお、図1〜図3における上方を電池100の上側、下方を電池100の下側として説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a lithium ion secondary battery 100 (hereinafter also simply referred to as battery 100) according to the first embodiment. 3 and 4 show a configuration in the vicinity of the liquid injection hole (through hole) 170 and the sealing member 180 in the battery 100. FIG. FIG. 5 shows a sealing member 180. 1 to 3 will be described as the upper side of the battery 100 and the lower side as the lower side of the battery 100.

この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池100は、直方体形状の電池ケース110、この電池ケース110内に収容された捲回型の電極体120、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1及び図2参照)。また、電池ケース110内には、非水系の電解液117が保持されている。   The battery 100 is a square battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular parallelepiped battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal 150 and a negative electrode terminal 160 supported by the battery case 110 ( 1 and 2). In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

このうち電池ケース110は、金属(具体的にはアルミニウム)により形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接されたケース蓋部材113とから構成されている(図1及び図2参照)。ケース蓋部材113は、電池ケース110の内部を向く主面である内表面113cと、電池ケース110の外部を向く主面である外表面113dとを有する矩形板状をなす。   Among these, the battery case 110 is made of metal (specifically, aluminum). The battery case 110 includes a box-shaped case main body member 111 that is open only on the upper side, and a case lid member 113 that is welded so as to close the opening 111h of the case main body member 111 (see FIG. 1 and FIG. 1). (See FIG. 2). The case lid member 113 has a rectangular plate shape having an inner surface 113 c that is a main surface facing the inside of the battery case 110 and an outer surface 113 d that is a main surface facing the outside of the battery case 110.

ケース蓋部材113には、その長手方向の中央付近に、電池ケース110の内圧が所定圧力に達した際に破断する非復帰型の安全弁115が設けられている。また、この安全弁115の近傍には、ケース蓋部材113を貫通し、電池ケース110の内外を連通する後述する注液孔(貫通孔)170が設けられている。この注液孔170は、電池ケース110内が大気圧よりも減圧された状態(負圧状態)で、後述する封止部材180で気密に封止されている。
また、ケース蓋部材113には、それぞれ電池ケース110の内部から外部に延出する形態の通電端子部材151からなる正極端子150及び負極端子160が固設されている。具体的には、正極端子150及び負極端子160は、これらにバスバーや圧着端子など電池外の端子を締結するためのボルト153,153と共に、樹脂からなる絶縁部材155,155を介して、ケース蓋部材113に固設されている。
The case lid member 113 is provided with a non-returnable safety valve 115 that breaks when the internal pressure of the battery case 110 reaches a predetermined pressure near the center in the longitudinal direction. Further, near the safety valve 115, a liquid injection hole (through hole) 170, which will be described later, is provided through the case lid member 113 and communicating between the inside and outside of the battery case 110. The liquid injection hole 170 is hermetically sealed with a sealing member 180 described later in a state where the inside of the battery case 110 is depressurized from the atmospheric pressure (negative pressure state).
In addition, the case lid member 113 is fixedly provided with a positive electrode terminal 150 and a negative electrode terminal 160 each including an energization terminal member 151 configured to extend from the inside of the battery case 110 to the outside. Specifically, the positive electrode terminal 150 and the negative electrode terminal 160 are connected to the case lid via insulating members 155 and 155 made of resin, together with bolts 153 and 153 for fastening terminals outside the battery such as bus bars and crimp terminals. It is fixed to the member 113.

また、電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体119内に収容され、横倒しにした状態で電池ケース110内に収容されている(図2参照)。この電極体120は、帯状の正極板121と帯状の負極板131とを、多孔質膜からなる帯状の2枚のセパレータ141,141を介して互いに重ねて捲回し、扁平状に圧縮したものである。正極板121の幅方向の一部は、セパレータ141から軸線方向の一方側に渦巻き状をなして突出しており、前述の正極端子150と接続している。また、負極板131の幅方向の一部は、セパレータ141から軸線方向の他方側に渦巻き状をなして突出しており、前述の負極端子160と接続している。   Moreover, the electrode body 120 is accommodated in the insulating film enclosure 119 which formed the insulating film in the bag shape which only the upper side opened, and is accommodated in the battery case 110 in the state of lying down (refer FIG. 2). This electrode body 120 is obtained by winding a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 on each other via two belt-like separators 141 and 141 made of a porous film, and compressing them flatly. is there. A part of the positive electrode plate 121 in the width direction protrudes from the separator 141 in a spiral shape on one side in the axial direction, and is connected to the positive electrode terminal 150 described above. Further, a part of the negative electrode plate 131 in the width direction protrudes from the separator 141 to the other side in the axial direction in a spiral shape and is connected to the negative electrode terminal 160 described above.

次に、注液孔170及び封止部材180の近傍の構造について説明する(図3及び図4参照)。ケース蓋部材113には、その外表面113dから内表面113c側(図3、下方)に凹む平面視円形状の凹部175が形成されている。この凹部175は、円筒状をなす凹部側面175f1と、内表面113cと平行に延びる平面をなす凹部底面175f2により構成されている。   Next, the structure in the vicinity of the liquid injection hole 170 and the sealing member 180 will be described (see FIGS. 3 and 4). The case lid member 113 has a circular recess 175 that is recessed from the outer surface 113d toward the inner surface 113c (downward in FIG. 3). The recess 175 includes a cylindrical recess side surface 175f1 and a recess bottom surface 175f2 forming a plane extending in parallel with the inner surface 113c.

前述した注液孔170は、上述の凹部175の凹部底面175f2とケース蓋部材113の内表面113cとの間を貫通する形態で、凹部底面175f2の中央に設けられた軸線BX方向に延びる円孔であり、電池ケース110の内外を連通している。この注液孔170は、円筒状をなす孔側面170fで構成されている。この注液孔170は、電解液117を電池ケース110内に注入にあたって用いられる。   The liquid injection hole 170 described above is a circular hole extending in the direction of the axis BX provided at the center of the recess bottom surface 175f2 in a form that penetrates between the recess bottom surface 175f2 of the recess 175 and the inner surface 113c of the case lid member 113. The battery case 110 communicates with the inside and outside. The liquid injection hole 170 includes a cylindrical hole side surface 170f. The liquid injection hole 170 is used for injecting the electrolytic solution 117 into the battery case 110.

この注液孔170は、封止部材180で気密に封止されている。この封止部材180は、外側封止部材181と、これに接合されたゴム封止部材183とから一体的に形成されている。
このうち外側封止部材181は、電池ケース110の材質と同じ材質(具体的にはアルミニウム)からなる。この外側封止部材181は、ゴム封止部材183を外部から覆いつつ、電池ケース110の注液孔170を囲む環状の孔周囲部113mに、気密かつ環状に固着可能に構成されている。具体的には、封止部材180の軸線CX方向の内側CC(ケース蓋部材113側、図3及び図5中、下方)に位置する主面である内表面181cと、これに平行で軸線CX方向の外側CD(ケース蓋部材113とは反対側、図3及び図5中、上方)に位置する主面である外表面181dとを有し、凹部175の内径と同じ外径を有する円板状をなす。
The liquid injection hole 170 is hermetically sealed with a sealing member 180. The sealing member 180 is integrally formed from an outer sealing member 181 and a rubber sealing member 183 joined thereto.
Of these, the outer sealing member 181 is made of the same material (specifically, aluminum) as the material of the battery case 110. The outer sealing member 181 is configured to be airtight and annularly fixed to an annular hole peripheral portion 113m surrounding the liquid injection hole 170 of the battery case 110 while covering the rubber sealing member 183 from the outside. Specifically, the inner surface 181c which is a main surface located on the inner side CC (on the case lid member 113 side, the lower side in FIGS. 3 and 5) of the sealing member 180 in the axis CX direction, and the axis CX parallel to the inner surface 181c. Disc having an outer surface 181d which is a main surface located on the outer side CD (opposite side of the case lid member 113, upper side in FIGS. 3 and 5) and having the same outer diameter as the inner diameter of the recess 175 Shape.

この外側封止部材181は、注液孔170及びゴム封止部材183を電池ケース110の外部から覆いつつ、注液孔170と同軸になる形態で、凹部175内に嵌合して、電池ケース110(そのケース蓋部材113)に気密かつ環状に固着している。具体的には、外側封止部材181の外周縁に沿う円環状の周縁部181mが、ケース蓋部材113のうち注液孔170を囲む円環状の孔周囲部113mに、全周にわたり溶接されて、平面視円環状の溶接部181yを形成している。これにより、外側封止部材181(その周縁部181m)は電池ケース110の孔周囲部113mに気密に接合されている。   The outer sealing member 181 is fitted in the recess 175 so as to be coaxial with the liquid injection hole 170 while covering the liquid injection hole 170 and the rubber sealing member 183 from the outside of the battery case 110. 110 (the case lid member 113) is airtightly and annularly fixed. Specifically, an annular peripheral portion 181m along the outer peripheral edge of the outer sealing member 181 is welded over the entire periphery to an annular hole peripheral portion 113m surrounding the liquid injection hole 170 in the case lid member 113. An annular welded portion 181y is formed in plan view. As a result, the outer sealing member 181 (the peripheral portion 181m) is airtightly joined to the hole peripheral portion 113m of the battery case 110.

ゴム封止部材183は、その全体がゴム状弾性体からなり、ゴム封止部材183の全体が前述のゴム封止部に相当する。具体的には、このゴム封止部材(ゴム封止部)183は、エチレンプロピレンジエンゴム(EPDM)からなる。但し、このEPDMからなるゴム封止部材183は、後述するように、ジクミルパーオキサイド(DCP)を加硫剤とした過酸化物加硫により形成されたものであり、DCPの分解により生成した分解生成物のうち、アセトン、トルエン、アセトフェノン及びα−クミルアルコールを含んでいる。   The entire rubber sealing member 183 is made of a rubber-like elastic body, and the entire rubber sealing member 183 corresponds to the rubber sealing portion described above. Specifically, the rubber sealing member (rubber sealing portion) 183 is made of ethylene propylene diene rubber (EPDM). However, the rubber sealing member 183 made of EPDM is formed by peroxide vulcanization using dicumyl peroxide (DCP) as a vulcanizing agent, as will be described later, and is produced by decomposition of DCP. Among the decomposition products, acetone, toluene, acetophenone and α-cumyl alcohol are included.

しかも、このゴム封止部材183は、後述するように、過酸化物加硫による一次加硫のみを行い、二次加硫は行わないで形成された一次加硫品である。従って、このゴム封止部材183は、非常に多くのアセトフェノン等の前述の有機化合物を含んでおり、この有機化合物のガスを発生して、これを後述する封止空間KC内に供給する。このように、ゴム封止部材183は、アセトフェノンガス等の有機化合物ガスを後述する検知可能気体として封止空間KCへ供給する気体供給体としての機能も兼ねている。   In addition, as will be described later, the rubber sealing member 183 is a primary vulcanized product formed only by primary vulcanization by peroxide vulcanization and not by secondary vulcanization. Therefore, the rubber sealing member 183 contains a large amount of the above-described organic compound such as acetophenone, generates a gas of the organic compound, and supplies it to a sealing space KC described later. As described above, the rubber sealing member 183 also functions as a gas supply body that supplies an organic compound gas such as acetophenone gas to the sealing space KC as a detectable gas described later.

このゴム封止部材183は、注液孔170を電池ケース110の外部から気密に封止可能に構成されている。具体的には、挿入部184と環状圧接部185とから構成され、これらが一体に繋がった形態を有する。このうち挿入部184は、径小な頂面184cと径大な底面184dとこれらの間を結ぶ側面184fとを有する円錐台状をなす。このうち頂面184cは、注液孔170の内径よりも径小となっている。一方、底面184dは、頂面184c及び注液孔170の内径よりも径大となっている。   The rubber sealing member 183 is configured so that the liquid injection hole 170 can be hermetically sealed from the outside of the battery case 110. Specifically, it is composed of an insertion portion 184 and an annular pressure contact portion 185, and has a form in which these are integrally connected. Of these, the insertion portion 184 has a truncated cone shape having a small-diameter top surface 184c, a large-diameter bottom surface 184d, and a side surface 184f connecting them. Among these, the top surface 184 c is smaller in diameter than the inner diameter of the liquid injection hole 170. On the other hand, the bottom surface 184d is larger in diameter than the top surface 184c and the inner diameter of the liquid injection hole 170.

この挿入部184は、その底面184dが外側封止部材181の内表面181cの中央に接合されて、環状圧接部185と共に外側封止部材181と一体化されている。この挿入部184は、外側封止部材181の内表面181cから軸線BX,CX方向の内側BC,CC(図3及び図5中、下方)に延びて、注液孔170内に圧入されており、自身の弾性によって、注液孔170を気密に封止(密栓)している。   The insertion portion 184 has a bottom surface 184 d joined to the center of the inner surface 181 c of the outer sealing member 181, and is integrated with the outer sealing member 181 together with the annular pressure contact portion 185. The insertion portion 184 extends from the inner surface 181c of the outer sealing member 181 to the inner sides BC and CC (downward in FIGS. 3 and 5) in the directions of the axes BX and CX, and is press-fitted into the liquid injection hole 170. The liquid injection hole 170 is hermetically sealed (sealed) by its own elasticity.

また、環状圧接部185は、その断面が概略矩形状で、外径が凹部175の内径(凹部底面175f2の外径)よりも小さくされた平面視円環状をなす。この環状圧接部185は、挿入部184の周囲を囲む形態で挿入部184に繋がって挿入部184と一体化されている。この環状圧接部185は、頂面185cと底面185dと外側面185fとを有する。このうち頂面185cは、軸線BX,CX方向の内側BC,CC(図3及び図5中、下方)を向く面である。また、底面185dは、軸線BX,CX方向の外側BD,CD(図3及び図5中、上方)を向く面である。また、外側面185fは、軸線BX,CXの径方向外側を向く面である。   Further, the annular pressure contact portion 185 has a substantially rectangular shape in cross section, and has an annular shape in plan view in which the outer diameter is smaller than the inner diameter of the recess 175 (the outer diameter of the recess bottom surface 175f2). The annular pressure contact portion 185 is connected to the insertion portion 184 and integrated with the insertion portion 184 so as to surround the insertion portion 184. The annular pressure contact portion 185 has a top surface 185c, a bottom surface 185d, and an outer surface 185f. Among these, the top surface 185c is a surface facing the inside BC, CC (downward in FIGS. 3 and 5) in the directions of the axes BX, CX. Further, the bottom surface 185d is a surface facing the outer side BD, CD (upward in FIGS. 3 and 5) in the directions of the axes BX, CX. Further, the outer surface 185f is a surface facing the radially outer side of the axes BX and CX.

この環状圧接部185は、その底面185dが外側封止部材181の内表面181cに接合されて、挿入部184と共に外側封止部材181と一体化されている。また、この環状圧接部185は、外側封止部材181からの押圧により、全周にわたり厚み方向(図3中、上下方向)に圧縮されている。これにより、環状圧接部185の頂面185cは、凹部175の凹部底面175f2に密着して、環状圧接部185よりも径方向内側に位置する注液孔170を気密に封止している。前述のように、注液孔170は、挿入部184によっても気密に封止されているので、挿入部184と環状圧接部185とでそれぞれシールされている。   The bottom surface 185 d of the annular pressure contact portion 185 is joined to the inner surface 181 c of the outer sealing member 181, and is integrated with the outer sealing member 181 together with the insertion portion 184. Further, the annular pressure contact portion 185 is compressed in the thickness direction (vertical direction in FIG. 3) over the entire circumference by pressing from the outer sealing member 181. As a result, the top surface 185c of the annular pressure contact portion 185 is in close contact with the recess bottom surface 175f2 of the recess 175, and the liquid injection hole 170 positioned radially inward of the annular pressure contact portion 185 is hermetically sealed. As described above, since the liquid injection hole 170 is hermetically sealed also by the insertion portion 184, the insertion portion 184 and the annular pressure contact portion 185 are respectively sealed.

また、環状圧接部185の径方向外側、かつ、電池ケース110の外部には、気密に封止された封止空間KCが形成されている。この封止空間KCは、電池ケース110(具体的には、そのケース蓋部材113の一部である凹部側面175f1及び凹部底面175f2)と、外側封止部材181の内表面181cと、ゴム封止部材183(その環状圧接部185)の外側面185fとの間に形成された円環状の空間である。   Further, a hermetically sealed space KC is formed outside the annular pressure contact portion 185 in the radial direction and outside the battery case 110. The sealing space KC includes a battery case 110 (specifically, a concave side surface 175f1 and a concave bottom surface 175f2 which are part of the case lid member 113), an inner surface 181c of the outer sealing member 181 and a rubber seal. It is an annular space formed between the outer surface 185f of the member 183 (its annular pressure contact portion 185).

この封止空間KC内に存在する(封止空間KC内に封入された)気体である空間内気体GSは、この空間内気体GSが封止空間KCから電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含んでいる。本実施形態1では、検知可能気体は、アセトフェノンガス等の前述の有機化合物ガスであり、空間内気体GSは、この有機化合物ガスと大気との混合気体となっている。アセトフェノンガス等の有機化合物ガスは、前述のように、気体供給体としても機能するゴム封止部材(ゴム封止部)183から供給されたものである。   The space gas GS, which is a gas existing in the sealed space KC (enclosed in the sealed space KC), is in the atmosphere when the gas GS leaks from the sealed space KC to the outside of the battery. It contains a detectable gas that can be detected separately from the gas component. In the first embodiment, the detectable gas is the aforementioned organic compound gas such as acetophenone gas, and the in-space gas GS is a mixed gas of the organic compound gas and the atmosphere. As described above, the organic compound gas such as acetophenone gas is supplied from the rubber sealing member (rubber sealing portion) 183 that also functions as a gas supply body.

以上で説明したように、本実施形態1に係るゴム封止部材183を用いて形成した電池100は、注液孔170がゴム封止部材183及び外側封止部材181により二重にシールされている。しかし、この電池100では、電池ケース110とゴム封止部材183と外側封止部材181との間に形成された封止空間KC内の空間内気体GSが、大気中の気体成分と区別して検知可能なアセトフェノンガス等の有機化合物ガスを含む。このため、ゴム封止部材183で注液孔170が気密に封止されているにも拘わらず、後述するように、アセトフェノンガス等の有機化合物ガスが封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110(その孔周囲部113m)との間(溶接部181y)の気密性を容易かつ確実に検査できる。   As described above, in the battery 100 formed using the rubber sealing member 183 according to the first embodiment, the liquid injection hole 170 is double-sealed by the rubber sealing member 183 and the outer sealing member 181. Yes. However, in the battery 100, the gas GS in the sealed space KC formed between the battery case 110, the rubber sealing member 183, and the outer sealing member 181 is detected separately from the gas components in the atmosphere. Possible organic compound gas such as acetophenone gas. For this reason, whether the organic compound gas such as acetophenone gas leaks out of the battery from the sealed space KC, as will be described later, even though the liquid injection hole 170 is hermetically sealed by the rubber sealing member 183. By inspecting whether or not, the airtightness between the outer sealing member 181 and the battery case 110 (its hole peripheral portion 113m) (welded portion 181y) can be easily and reliably inspected.

更に、この電池100では、ゴム封止部材183(その全体がゴム封止部)が、後述するように、DCPを加硫剤とした過酸化物加硫により形成されており、かつ、DCPの分解により生成したアセトフェノン等の有機化合物を含んでいる。そして、ゴム封止部材(ゴム封止部)183は、このアセトフェノン等の有機化合物のガスを検知可能気体として封止空間KCへ供給する気体供給体を兼ねている。このため、検知可能気体を封止空間KCに供給するための気体供給体を電池100内に別途設ける必要がなく、しかも、ゴム封止部材(ゴム封止部)183から発生したアセトフェノンガス等の有機化合物ガスを、確実に封止空間KCに供給できる。   Further, in this battery 100, the rubber sealing member 183 (the entire rubber sealing portion) is formed by peroxide vulcanization using DCP as a vulcanizing agent, as will be described later. It contains organic compounds such as acetophenone produced by decomposition. The rubber sealing member (rubber sealing portion) 183 also serves as a gas supply body that supplies the organic compound gas such as acetophenone to the sealing space KC as a detectable gas. For this reason, it is not necessary to separately provide a gas supply body for supplying the detectable gas to the sealed space KC in the battery 100, and the acetophenone gas generated from the rubber sealing member (rubber sealing portion) 183, etc. The organic compound gas can be reliably supplied to the sealed space KC.

更に、本実施形態1では、ゴム封止部材(ゴム封止部)183は、過酸化物加硫による一次加硫のみを行った一次加硫品であり、二次加硫を行っていないので、DCPの分解生成物であるアセトフェノン等の有機化合物を特に多く含む。従って、ゴム封止部材(ゴム封止部)183は、確実に気体供給体とすることができ、多くのアセトフェノンガス等の有機化合物ガス(検知可能気体)を長期間にわたり封止空間KCに供給できる。また、ゴム封止部材(ゴム封止部)183は、一次加硫のみを行って形成するので、ゴム封止部材183の形成が容易で、ゴム封止部材183を安価にすることができ、電池100を安価にすることができる。   Furthermore, in the first embodiment, the rubber sealing member (rubber sealing portion) 183 is a primary vulcanized product obtained by performing only primary vulcanization by peroxide vulcanization, and is not subjected to secondary vulcanization. In particular, it contains a large amount of organic compounds such as acetophenone, which is a decomposition product of DCP. Therefore, the rubber sealing member (rubber sealing portion) 183 can be reliably used as a gas supply body, and supplies a large amount of organic compound gas (detectable gas) such as acetophenone gas to the sealing space KC over a long period of time. it can. Further, since the rubber sealing member (rubber sealing portion) 183 is formed by performing only primary vulcanization, the rubber sealing member 183 can be easily formed, and the rubber sealing member 183 can be made inexpensive. The battery 100 can be made inexpensive.

また、ゴム封止部材(ゴム封止部)183は、EPDMからなる。EPDMは、耐久性や耐候性、耐熱性に優れていることから、EPDMによりゴム封止部材(ゴム封止部)183を形成することで、電池100の耐久性等を良好にすることができる。
また、ゴム封止部材183と外側封止部材181は、一体化されているので、一度に電池ケース110に取り付けできるなど、取り扱いが容易である。また、部品点数を少なくでき、工数を少なくできる。
The rubber sealing member (rubber sealing portion) 183 is made of EPDM. Since EPDM is excellent in durability, weather resistance, and heat resistance, the durability and the like of the battery 100 can be improved by forming a rubber sealing member (rubber sealing portion) 183 with EPDM. .
In addition, since the rubber sealing member 183 and the outer sealing member 181 are integrated, it can be easily attached to the battery case 110 at a time. In addition, the number of parts can be reduced and the number of man-hours can be reduced.

次いで、上記電池100の製造方法について説明する。まず、外側封止部材181とゴム封止部材183とからなる封止部材180(図5参照)を形成しておく。即ち、金属板(具体的にはアルミニウム板)からなる外側封止部材181を射出成形用の金型にセットし、射出成形により、ゴム状弾性体(具体的にはEPDM)からなるゴム封止部材(ゴム封止部)183を外側封止部材181と一体に成形する。なお、外側封止部材181を圧縮成形用の金型にセットし、圧縮成形により、ゴム封止部材(ゴム封止部)183を外側封止部材181と一体に成形してもよい。   Next, a method for manufacturing the battery 100 will be described. First, a sealing member 180 (see FIG. 5) composed of an outer sealing member 181 and a rubber sealing member 183 is formed. That is, an outer sealing member 181 made of a metal plate (specifically an aluminum plate) is set in an injection molding die, and a rubber seal made of a rubber-like elastic body (specifically EPDM) is formed by injection molding. A member (rubber sealing portion) 183 is formed integrally with the outer sealing member 181. The outer sealing member 181 may be set in a compression molding die, and the rubber sealing member (rubber sealing portion) 183 may be molded integrally with the outer sealing member 181 by compression molding.

具体的には、EPDMに、有機過酸化物の加硫剤であるDCPを加え、更に、カーボンブラックやホワイトカーボンに代表される充填材、加工助剤、老化防止剤、可塑剤、オイル、架橋助剤等の配合剤を適宜加えて、例えば、ニーダ、バンバリーミキサ、オープンロール等の混練機で混練して、これらの組成物を得る。
次に、ゴム封止部形成工程において、この組成物を用いて、例えば140〜200℃で2〜30分間保持する条件にて、射出成形(または圧縮成形)によりゴム封止部材(ゴム封止部)183を成形(一次加硫)し、封止部材180を得る。
Specifically, DCP, which is a vulcanizing agent for organic peroxides, is added to EPDM, and further, fillers represented by carbon black and white carbon, processing aids, anti-aging agents, plasticizers, oils, crosslinks Additives such as auxiliaries are added as appropriate, and these compositions are obtained by kneading with a kneader such as a kneader, a Banbury mixer, or an open roll.
Next, in the rubber sealing portion forming step, a rubber sealing member (rubber sealing) is formed by injection molding (or compression molding) using this composition, for example, under conditions of holding at 140 to 200 ° C. for 2 to 30 minutes. Part) 183 is molded (primary vulcanization) to obtain the sealing member 180.

本実施形態1のゴム封止部材(ゴム封止部)183は、上記のように過酸化物加硫による一次加硫のみを行い、二次加硫は行わないで形成した一次加硫品である。このようにして形成したゴム封止部材(ゴム封止部)183は、DCPの分解により生成したアセトフェノン等の有機化合物を非常に多く含む。このため、このゴム封止部材(ゴム封止部)183は、少なくとも7日間以上にわたってアセトフェノンガス等の有機化合物ガスを発生し続ける。   The rubber sealing member (rubber sealing portion) 183 of the first embodiment is a primary vulcanized product that is formed by performing only primary vulcanization by peroxide vulcanization and not by secondary vulcanization as described above. is there. The rubber sealing member (rubber sealing portion) 183 formed in this manner contains a large amount of an organic compound such as acetophenone generated by the decomposition of DCP. For this reason, this rubber sealing member (rubber sealing part) 183 continues to generate organic compound gas such as acetophenone gas for at least 7 days or more.

なお、本実施形態1では、前述のように、二次加硫を全く行っていないゴム封止部形成工程を例示したが、これに限られない。ゴム封止部形成工程において、ゴム封止部材(ゴム封止部)183から検知可能気体となる有機化合物が全て揮発消失してしまわない(自身に有機化合物が残る)程度に二次加硫を行ってもよい。具体的には、140〜200℃で最長5時間保持する二次加硫を行うことができる。   In the first embodiment, as described above, the rubber sealing portion forming process in which the secondary vulcanization is not performed at all is exemplified, but the present invention is not limited thereto. In the rubber sealing part forming step, the secondary vulcanization is performed to such an extent that all the organic compounds that become detectable gases from the rubber sealing member (rubber sealing part) 183 are not volatilized and disappeared (the organic compounds remain in the self). You may go. Specifically, secondary vulcanization can be performed by holding at 140 to 200 ° C. for a maximum of 5 hours.

次に、安全弁115及び注液孔170等を形成したケース蓋部材113と、通電端子部材151,151と、ボルト153,153とを用意し、これらを射出成形用の金型にセットする。そして、射出成形により絶縁部材155,155を一体的に成形して、ケース蓋部材113に正極端子150及び負極端子160を固設する(図1及び図2参照)。
次に、別途形成した電極体120に、正極端子150及び負極端子160をそれぞれ接続(溶接)する。その後、ケース本体部材111及び絶縁フィルム包囲体119を用意し、ケース本体部材111内に絶縁フィルム包囲体119を介して電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、レーザ溶接によりケース本体部材111とケース蓋部材113とを溶接して、電池ケース110を形成する(図1及び図2参照)。
Next, a case lid member 113 formed with a safety valve 115 and a liquid injection hole 170, energizing terminal members 151 and 151, and bolts 153 and 153 are prepared, and these are set in an injection mold. Then, the insulating members 155 and 155 are integrally formed by injection molding, and the positive terminal 150 and the negative terminal 160 are fixed to the case lid member 113 (see FIGS. 1 and 2).
Next, the positive electrode terminal 150 and the negative electrode terminal 160 are connected (welded) to the separately formed electrode body 120. Thereafter, a case main body member 111 and an insulating film enclosure 119 are prepared, the electrode body 120 is accommodated in the case main body member 111 via the insulating film enclosure 119, and an opening 111 h of the case main body member 111 is formed in the case lid member 113. Close with. The case body member 111 and the case lid member 113 are welded by laser welding to form the battery case 110 (see FIGS. 1 and 2).

次に、この電池ケース110等の気密性を検査する(電池ケースの気密検査工程)。具体的には、この電池100をチャンバ内に入れて、チャンバ内をヘリウムガスで充満させると共に、ケース蓋部材113の注液孔170に吸引用ノズルを気密に装着して、電池ケース110の内部を減圧する。例えば、電池ケース110の接合部分(ケース本体部材111とケース蓋部材113との溶接部分)や、電池ケース110と正極端子150または負極端子160との固設部分(ケース蓋部材113と絶縁部材155との間や絶縁部材155と通電端子部材151との間)に封止不良がある場合には、電池ケース110外のヘリウムガスが電池ケース110内に侵入する。従って、電池ケース110内に侵入したヘリウムガスを検知することで、電池ケース110等の気密性を検査できる。   Next, the airtightness of the battery case 110 and the like is inspected (battery case airtightness inspection step). Specifically, the battery 100 is placed in a chamber, the chamber is filled with helium gas, and a suction nozzle is attached to the liquid injection hole 170 of the case lid member 113 in an airtight manner. The pressure is reduced. For example, a joined portion of the battery case 110 (welded portion between the case main body member 111 and the case lid member 113) or a fixed portion between the battery case 110 and the positive electrode terminal 150 or the negative electrode terminal 160 (the case lid member 113 and the insulating member 155). When there is a sealing failure between the insulating member 155 and the energizing terminal member 151), helium gas outside the battery case 110 enters the battery case 110. Therefore, the airtightness of the battery case 110 and the like can be inspected by detecting the helium gas that has entered the battery case 110.

次に、この電池100を真空チャンバ内に入れて真空チャンバ内を減圧する。そして、注液用ノズルを注液孔170内に挿入して、注液用ノズルから電池ケース110内に電解液117を注液する。その後、不織布により注液孔170の周囲(孔周囲部113mを含む)を清掃する。電解液117の注入の際、電解液117が注液孔170の周囲に付着するおそれがあるが、この清掃により注液孔170の周囲を清浄状態とすることができる。   Next, the battery 100 is placed in a vacuum chamber and the vacuum chamber is depressurized. Then, a liquid injection nozzle is inserted into the liquid injection hole 170, and the electrolytic solution 117 is injected into the battery case 110 from the liquid injection nozzle. Thereafter, the periphery of the liquid injection hole 170 (including the hole peripheral portion 113m) is cleaned with a nonwoven fabric. When the electrolytic solution 117 is injected, the electrolytic solution 117 may adhere to the periphery of the liquid injection hole 170. This cleaning can clean the periphery of the liquid injection hole 170.

次に、この減圧下において第1封止工程を行う。即ち、電池ケース110(そのケース蓋部材113)の注液孔170を、電池ケース110の外部からゴム封止部材183で塞いで、注液孔170を気密に封止する(図6参照)。具体的には、封止部材180のうちゴム封止部材(ゴム封止部)183の挿入部184を、注液孔170に電池ケース110の外部から(注液孔170の軸線BX方向の外側BDから)圧入して、挿入部184で注液孔170を気密に封止(密栓)する。   Next, the first sealing step is performed under this reduced pressure. That is, the liquid injection hole 170 of the battery case 110 (case cover member 113) is closed from the outside of the battery case 110 with the rubber sealing member 183, and the liquid injection hole 170 is hermetically sealed (see FIG. 6). Specifically, the insertion part 184 of the rubber sealing member (rubber sealing part) 183 of the sealing member 180 is inserted into the liquid injection hole 170 from the outside of the battery case 110 (the outer side of the liquid injection hole 170 in the axis BX direction). The liquid injection hole 170 is hermetically sealed (sealed) with the insertion portion 184.

第1封止後は、真空チャンバ内を大気圧に戻して、真空チャンバからこの電池100を取り出す。電池ケース110は、第1封止工程でゴム封止部材183により気密に封止されているので、電池100を大気圧下に戻しても、電池ケース110内はその減圧状態を保っている。
ところで、注液孔170が封止されていない場合には、電池ケース110内に収容された電解液117が、電池外部に漏れ出たり、電池ケース110の孔周囲部113mに付着するおそれがある。しかし、本実施形態1では、前述の第1封止工程においてゴム封止部材183(その挿入部184)で注液孔170を気密に封止している。従って、電解液117が電池外部に漏れ出るのを確実に防止できる。また、次述する第2封止工程も、電池ケース110内を減圧状態に保ったまま、大気圧下で行うことができる。
After the first sealing, the inside of the vacuum chamber is returned to atmospheric pressure, and the battery 100 is taken out from the vacuum chamber. Since the battery case 110 is hermetically sealed by the rubber sealing member 183 in the first sealing step, even if the battery 100 is returned to atmospheric pressure, the inside of the battery case 110 is kept in a reduced pressure state.
By the way, when the liquid injection hole 170 is not sealed, the electrolyte solution 117 accommodated in the battery case 110 may leak out of the battery or adhere to the hole peripheral portion 113m of the battery case 110. . However, in the first embodiment, the liquid injection hole 170 is hermetically sealed by the rubber sealing member 183 (the insertion portion 184) in the first sealing step described above. Therefore, it is possible to reliably prevent the electrolyte solution 117 from leaking outside the battery. The second sealing step described below can also be performed under atmospheric pressure while keeping the inside of the battery case 110 in a reduced pressure state.

次に、この大気圧下において第2封止工程を行う。即ち、ゴム封止部材183を電池ケース110の外部から覆いつつ、外側封止部材181を電池ケース110(そのケース蓋部材113)の孔周囲部113mに気密かつ環状に固着し、前述の封止空間KCを形成する。具体的には、封止部材180のうち、ゴム封止部材183を外部から覆う外側封止部材181を、軸線BX,CX方向の内側BC,CCに押圧して、ゴム封止部材183の環状圧接部185を凹部175の凹部底面175f2に圧接させる(図6参照)。これと共に、外側封止部材181を凹部175内に収容して、外側封止部材181の外表面181dを、ケース蓋部材113の外表面113dと面一にする。この状態で、レーザ溶接を行い、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとを全周にわたって溶接して、平面視円環状の溶接部181yを形成する。   Next, a second sealing step is performed under this atmospheric pressure. That is, while the rubber sealing member 183 is covered from the outside of the battery case 110, the outer sealing member 181 is airtightly and annularly fixed to the hole peripheral portion 113m of the battery case 110 (case cover member 113), and the above-described sealing is performed. A space KC is formed. Specifically, of the sealing member 180, the outer sealing member 181 that covers the rubber sealing member 183 from the outside is pressed against the inner sides BC and CC in the directions of the axes BX and CX, so that the annular shape of the rubber sealing member 183 is reached. The pressure contact portion 185 is pressed against the recess bottom surface 175f2 of the recess 175 (see FIG. 6). At the same time, the outer sealing member 181 is accommodated in the recess 175 so that the outer surface 181 d of the outer sealing member 181 is flush with the outer surface 113 d of the case lid member 113. In this state, laser welding is performed, and the peripheral portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 are welded over the entire circumference to form a circular welded portion 181y in plan view.

これにより、環状圧接部185(その頂面185c)が凹部底面175f2に密着するので、環状圧接部185よりも径方向内側に位置する注液孔170は気密に封止される。前述のように、注液孔170は、挿入部184によっても気密に封止されているので、挿入部184と環状圧接部185とでそれぞれシールされる。また、溶接により、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間も、気密に封止され、封止空間KCが形成される。
また、封止空間KC内には、ゴム封止部材(ゴム封止部)183の環状圧接部185が臨むので、ゴム封止部材183に含まれるアセトフェノン等の有機化合物が気化したアセトフェノンガス等の有機化合物ガスが、空間内気体GSに含まれる。従って、空間内気体GSは、この有機化合物ガスと大気との混合気体となる。
As a result, the annular pressure contact portion 185 (its top surface 185c) is in close contact with the recess bottom surface 175f2, so that the liquid injection hole 170 positioned radially inward from the annular pressure contact portion 185 is hermetically sealed. As described above, since the liquid injection hole 170 is hermetically sealed also by the insertion portion 184, it is sealed by the insertion portion 184 and the annular pressure contact portion 185, respectively. Further, the space between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 is also hermetically sealed by welding to form a sealed space KC.
Further, since the annular pressure contact portion 185 of the rubber sealing member (rubber sealing portion) 183 faces in the sealing space KC, an acetophenone gas or the like in which an organic compound such as acetophenone contained in the rubber sealing member 183 is vaporized is used. Organic compound gas is contained in the gas GS in space. Accordingly, the space gas GS is a mixed gas of the organic compound gas and the atmosphere.

次に、初期充電工程において、この電池100について初期充電を行う。その際、電池ケース110内には、水素などの気体が発生する。   Next, in the initial charging step, the battery 100 is initially charged. At that time, a gas such as hydrogen is generated in the battery case 110.

次に、この電池100について気密検査工程を行う。即ち、検知可能気体であるアセトフェノンガス等の有機化合物ガスが封止空間KCから電池外部に漏れ出るか否かを検査することにより、封止部材180のうち外側封止部材181の周縁部181mと電池ケース110(そのケース蓋部材113)の孔周囲部113mとの間(溶接部181y)の気密性を検査する。
この気密検査工程は、電池100を真空チャンバ内に置いて、真空チャンバ内を減圧する。そして、封止部材180の近傍に、アセトフェノンガス等の有機化合物ガスを大気中の気体成分と区別して検知可能な炭化水素ガス検知器(例えば、HORIBA製:APHA−370)を設置して、所定時間、アセトフェノンガス等の有機化合物ガスを検知することにより行う。
Next, an airtight inspection process is performed on the battery 100. That is, by inspecting whether an organic compound gas such as acetophenone gas, which is a detectable gas, leaks out of the battery from the sealing space KC, the peripheral portion 181m of the outer sealing member 181 of the sealing member 180 The airtightness between the battery case 110 (the case lid member 113) and the hole peripheral portion 113m (welded portion 181y) is inspected.
In this airtightness inspection process, the battery 100 is placed in a vacuum chamber, and the inside of the vacuum chamber is decompressed. Then, in the vicinity of the sealing member 180, a hydrocarbon gas detector (for example, manufactured by HORIBA: APHA-370) capable of detecting an organic compound gas such as acetophenone gas separately from a gas component in the atmosphere is installed, This is performed by detecting time and organic compound gas such as acetophenone gas.

前述のように、封止空間KC内には、アセトフェノンガス等の有機化合物ガスを含む空間内気体GSが封入されている。このため、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間(溶接部181y)に封止不良が生じている場合には、溶接部181yのうち封止不良の部位を通じて、アセトフェノンガス等の有機化合物ガスが電池ケース110の外部に漏れ出る。かくして、ガス検出器によりアセトフェノンガス等の有機化合物ガスを検知できれば、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間に封止不良が生じていることが判る。そこで、この封止不良のある電池を排除し、封止不良のない良品の電池100のみを選別する。かくして、電池100が完成する。   As described above, in the sealed space KC, the space gas GS containing an organic compound gas such as acetophenone gas is sealed. For this reason, when a sealing failure occurs between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 (welding portion 181y), the sealing failure of the welding portion 181y is poor. An organic compound gas such as acetophenone gas leaks out of the battery case 110 through the site. Thus, if an organic compound gas such as acetophenone gas can be detected by the gas detector, it can be seen that a sealing failure has occurred between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110. Therefore, the batteries with poor sealing are excluded, and only good batteries 100 without defective sealing are selected. Thus, the battery 100 is completed.

以上で説明したように、本実施形態1に係る電池100の製造方法は、第1封止工程において、ゴム封止部材183で注液孔170を気密に封止する。このため、その後、第2封止工程までの間に、電解液117が注液孔170を通じて電池ケース110の外部(孔周囲部113m等)に漏れ出るのを防止できる。従って、第2封止工程の際に、注液孔170から漏れ出た電解液117が外側封止部材181と電池ケース110の孔周囲部113mとの間に入り込んで、封止不良が生じるのを防止できる。   As described above, in the manufacturing method of the battery 100 according to the first embodiment, the liquid injection hole 170 is hermetically sealed with the rubber sealing member 183 in the first sealing step. Therefore, it is possible to prevent the electrolytic solution 117 from leaking to the outside of the battery case 110 (such as the hole surrounding portion 113m) through the liquid injection hole 170 before the second sealing step. Therefore, in the second sealing step, the electrolyte solution 117 leaking from the injection hole 170 enters between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110, resulting in poor sealing. Can be prevented.

また、第1封止工程において、アセトフェノン等の有機化合物を含んだゴム封止部(ゴム封止部材)183によって注液孔170を気密に封止し、第2封止工程において、更に外側封止部材181を電池ケース110に固着して封止空間KCを形成する。このようにすることで、封止空間KCに臨むゴム封止部(ゴム封止部材)183から封止空間KCに、アセトフェノンガス等の有機化合物ガスが検知可能気体として供給される。このため、検知可能気体を封止空間KCに供給するための気体供給体を電池100内に別途設ける必要がない。また、第2封止工程後の電池100では、外側封止部材181と電池ケース110(その孔周囲部113m)との間の気密性を容易かつ確実に検査できる。   In the first sealing step, the liquid injection hole 170 is hermetically sealed by a rubber sealing portion (rubber sealing member) 183 containing an organic compound such as acetophenone. In the second sealing step, the outer sealing is further performed. The stop member 181 is fixed to the battery case 110 to form the sealed space KC. By doing in this way, organic compound gas, such as acetophenone gas, is supplied as detectable gas from the rubber sealing part (rubber sealing member) 183 which faces the sealing space KC to the sealing space KC. For this reason, it is not necessary to separately provide a gas supply body for supplying the detectable gas to the sealed space KC in the battery 100. Further, in the battery 100 after the second sealing step, the airtightness between the outer sealing member 181 and the battery case 110 (its hole peripheral portion 113m) can be easily and reliably inspected.

更に、本実施形態1では、ゴム封止部材(ゴム封止部)183は、過酸化物加硫による一次加硫のみを行った一次加硫品であるため、アセトフェノン等の有機化合物を特に多く含む。従って、ゴム封止部材(ゴム封止部)183は、確実に気体供給体とすることができ、多くのアセトフェノンガス等の有機化合物ガス(検知可能気体)を長期間にわたり封止空間KCに供給できる。また、ゴム封止部材183の形成が容易で、ゴム封止部材183を安価にすることができるので、安価な電池100を製造できる。
また、EPDMは、耐久性や耐候性、耐熱性に優れていることから、EPDMによりゴム封止部材(ゴム封止部)183を形成することで、耐久性等が良好な電池100を製造できる。
Further, in the first embodiment, the rubber sealing member (rubber sealing portion) 183 is a primary vulcanized product obtained by performing only the primary vulcanization by peroxide vulcanization, and therefore particularly contains a large amount of organic compounds such as acetophenone. Including. Therefore, the rubber sealing member (rubber sealing portion) 183 can be reliably used as a gas supply body, and supplies a large amount of organic compound gas (detectable gas) such as acetophenone gas to the sealing space KC over a long period of time. it can. Further, since the rubber sealing member 183 can be easily formed and the rubber sealing member 183 can be made inexpensive, the inexpensive battery 100 can be manufactured.
Further, since EPDM is excellent in durability, weather resistance, and heat resistance, the battery 100 having good durability and the like can be manufactured by forming a rubber sealing member (rubber sealing portion) 183 with EPDM. .

また、本実施形態1では、気密検査工程において、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を検査する。そして、これらの間に封止不良が生じている電池を確実に排除できる。従って、外側封止部材181と電池ケース110との間の気密性が良好な電池100を製造できる。
また、本実施形態1では、第1封止工程を減圧下で行うことで、第1封止後の電池ケース110内を減圧状態(負圧)にすることができる。このため、その後に電池ケース110内に気体が発生しても、電池ケース110の内圧が早期に高くなるのを防止できる。一方、溶接を行う第2封止工程は、大気圧下で行うので、減圧下で行う場合に比して、第2封止工程を容易に行うことができる。
In the first embodiment, the airtightness between the outer sealing member 181 and the hole surrounding portion 113m of the battery case 110 is inspected in the airtightness inspection step. And the battery in which the sealing defect has arisen among these can be excluded reliably. Therefore, the battery 100 with good airtightness between the outer sealing member 181 and the battery case 110 can be manufactured.
Moreover, in this Embodiment 1, the inside of the battery case 110 after 1st sealing can be made into a pressure reduction state (negative pressure) by performing a 1st sealing process under pressure reduction. For this reason, even if gas is subsequently generated in the battery case 110, it is possible to prevent the internal pressure of the battery case 110 from increasing quickly. On the other hand, since the 2nd sealing process which performs welding is performed under atmospheric pressure, it can perform a 2nd sealing process easily compared with the case where it carries out under reduced pressure.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係るハイブリッド自動車(車両)700(以下、単に自動車700とも言う)は、実施形態1に係る電池100を搭載し、この電池100に蓄えた電気エネルギを、駆動源の駆動エネルギの全部または一部として使用するものである(図7参照)。
(Embodiment 2)
Next, a second embodiment will be described. A hybrid vehicle (vehicle) 700 (hereinafter also simply referred to as a vehicle 700) according to the second embodiment is equipped with the battery 100 according to the first embodiment, and the electric energy stored in the battery 100 is used as the drive energy of the drive source. It is used as a whole or a part (see FIG. 7).

この自動車700は、電池100を複数組み合わせた組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この自動車700は、その車体790に、エンジン740と、フロントモータ720及びリアモータ730と、組電池710(電池100)と、ケーブル750と、インバータ760とを搭載する。そして、この自動車700は、組電池710(電池100)に蓄えられた電気エネルギを用いて、フロントモータ720及びリアモータ730を駆動できるように構成されている。
前述したように、電池100は、長期間にわたり封止部材180の外側封止部材181で注液孔170を気密に封止できるので、この自動車700の耐久性を高くできる。
The automobile 700 is a hybrid automobile equipped with an assembled battery 710 in which a plurality of batteries 100 are combined and driven by using an engine 740, a front motor 720, and a rear motor 730 in combination. Specifically, the automobile 700 includes an engine 740, a front motor 720 and a rear motor 730, an assembled battery 710 (battery 100), a cable 750, and an inverter 760 on the vehicle body 790. The automobile 700 is configured to be able to drive the front motor 720 and the rear motor 730 using electrical energy stored in the assembled battery 710 (battery 100).
As described above, since the battery 100 can hermetically seal the liquid injection hole 170 with the outer sealing member 181 of the sealing member 180 for a long period of time, the durability of the automobile 700 can be increased.

(実施形態3)
次いで、第3の実施の形態について説明する。本実施形態3のハンマードリル800は、実施形態1に係る電池100を搭載した電池使用機器である(図8参照)。このハンマードリル800は、本体820の底部821に、電池100を含むバッテリパック810が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギー源として利用している。
前述したように、電池100は、長期間にわたり封止部材180の外側封止部材181で注液孔170を気密に封止できるので、このハンマードリル800の耐久性を高くできる。
(Embodiment 3)
Next, a third embodiment will be described. A hammer drill 800 according to the third embodiment is a battery-using device on which the battery 100 according to the first embodiment is mounted (see FIG. 8). In the hammer drill 800, a battery pack 810 including the battery 100 is accommodated in a bottom portion 821 of a main body 820, and the battery pack 810 is used as an energy source for driving the drill.
As described above, since the battery 100 can hermetically seal the liquid injection hole 170 with the outer sealing member 181 of the sealing member 180 for a long period of time, the durability of the hammer drill 800 can be enhanced.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1〜3に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では、電池ケースの内外を連通する「貫通孔」として、電解液117を注入するための注液孔170を例示したが、貫通孔は注液孔に限られない。貫通孔としては、例えば、電池ケース内の気体(ガス)を抜くための通気孔などが挙げられる。また、実施形態1では、「貫通孔」を、電池ケース110のうちケース蓋部材113に設けたが、貫通孔の形成位置はこれに限られない。貫通孔は、例えば、ケース本体部材111の側面や底面に設けてもよい。また、実施形態1では、「貫通孔」の形態を円孔としたが、貫通孔の形態も適宜変更できる。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first to third embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in the first embodiment, the liquid injection hole 170 for injecting the electrolytic solution 117 is exemplified as the “through hole” that communicates the inside and outside of the battery case. However, the through hole is not limited to the liquid injection hole. As a through-hole, for example, a vent hole for removing gas (gas) in the battery case can be used. In the first embodiment, the “through hole” is provided in the case lid member 113 of the battery case 110, but the formation position of the through hole is not limited to this. For example, the through hole may be provided on a side surface or a bottom surface of the case main body member 111. In the first embodiment, the form of the “through hole” is a circular hole, but the form of the through hole can be changed as appropriate.

また、実施形態1では、「電極体」として、各々帯状をなす正極板121及び負極板131をセパレータ141,141を介して互いに重ねて捲回してなる捲回型の電極体120を例示したが、電極体の形態はこれに限られない。例えば、電極体を、各々所定形状(例えば矩形状など)をなす複数の正極板及び複数の負極板をセパレータを介して交互に複数積層してなる積層型としてもよい。   In the first embodiment, as the “electrode body”, the wound-type electrode body 120 in which the positive electrode plate 121 and the negative electrode plate 131 each having a band shape are wound on each other via the separators 141 and 141 is illustrated. The form of the electrode body is not limited to this. For example, the electrode body may be a stacked type in which a plurality of positive plates and a plurality of negative plates each having a predetermined shape (for example, a rectangular shape) are alternately stacked via separators.

また、実施形態1では、「ゴム封止部材」及び「外側封止部材」として、ゴム封止部材183及び外側封止部材181が互いに接合されて一体化された封止部材180を例示したが、「ゴム封止部材」及び「外側封止部材」は、別体とすることもできる。この場合、ゴム封止部材のみを単独で、前述した射出成形や圧縮成形により形成する。   In the first embodiment, as the “rubber sealing member” and the “outer sealing member”, the sealing member 180 in which the rubber sealing member 183 and the outer sealing member 181 are joined and integrated is illustrated. The “rubber sealing member” and the “outer sealing member” may be separate bodies. In this case, only the rubber sealing member is formed alone by the above-described injection molding or compression molding.

また、実施形態1では、「ゴム封止部材」として、その全体がゴム封止部とされたゴム封止部材183を例示したが、ゴム封止部材の形態はこれに限られない。例えば、ゴム封止部材を、円錐台状等のゴム封止部に、これを外部から覆う板状等の被覆部材が接合された形態とすることもできる。このようにゴム封止部材がゴム封止部以外の部位を有する場合、ゴム封止部以外の部位は、金属など、ゴム状弾性体をなす材質以外の材質で形成することができる。   In the first embodiment, as the “rubber sealing member”, the rubber sealing member 183 whose whole is a rubber sealing portion is illustrated, but the form of the rubber sealing member is not limited thereto. For example, the rubber sealing member may be in a form in which a covering member such as a plate that covers this from the outside is joined to a rubber sealing portion such as a truncated cone. Thus, when a rubber sealing member has parts other than a rubber sealing part, parts other than a rubber sealing part can be formed with materials other than the material which makes rubber-like elastic bodies, such as a metal.

また、実施形態1では、「ゴム封止部」として、円錐台状の挿入部184と円環状の環状圧接部185とが一体に繋がったゴム封止部(ゴム封止部材)183を例示したが、ゴム封止部の形態はこれに限定されない。例えば、ゴム封止部を、実施形態1で示したような円錐台状の挿入部のみからなる形態とすることができる。このように挿入部のみからなるゴム封止部でも、自身の弾性によって貫通孔を電池ケースの外部から気密に封止できる。   In the first embodiment, as the “rubber sealing portion”, the rubber sealing portion (rubber sealing member) 183 in which the truncated cone-shaped insertion portion 184 and the annular annular pressure contact portion 185 are integrally connected is illustrated. However, the form of the rubber sealing portion is not limited to this. For example, the rubber sealing portion can be formed of only a truncated cone-shaped insertion portion as shown in the first embodiment. As described above, even with the rubber sealing portion including only the insertion portion, the through hole can be hermetically sealed from the outside of the battery case by its own elasticity.

また、実施形態1では、電池ケース110に設けた凹部175に、外側封止部材181を嵌合させた状態で、外側封止部材181を電池ケース110に固着しているが、この形態に限られない。例えば、外側封止部材の径を実施形態1の外側封止部材181よりも更に大きくして、外側封止部材の周縁部を、凹部175の周囲に電池ケース110の外部から当接させ、この状態で外側封止部材を電池ケース110に固着してもよい。
また、実施形態1では、溶接により、外側封止部材181を電池ケース110の孔周囲部113mに固着したが、固着方法はこれに限られない。例えば、ロウ材やハンダ、接着剤等を用いて、或いは、加締めや巻き締め等により、外側封止部材を電池ケースの孔周囲部に固着してもよい。
In the first embodiment, the outer sealing member 181 is fixed to the battery case 110 in a state where the outer sealing member 181 is fitted in the recess 175 provided in the battery case 110. I can't. For example, the diameter of the outer sealing member is made larger than that of the outer sealing member 181 of Embodiment 1, and the peripheral edge of the outer sealing member is brought into contact with the periphery of the recess 175 from the outside of the battery case 110. The outer sealing member may be fixed to the battery case 110 in a state.
In Embodiment 1, the outer sealing member 181 is fixed to the hole peripheral portion 113m of the battery case 110 by welding, but the fixing method is not limited thereto. For example, the outer sealing member may be fixed to the hole peripheral portion of the battery case by using brazing material, solder, adhesive, or the like, or by caulking or winding.

また、実施形態2では、本発明に係る電池100を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。本発明に係る電池を搭載する車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。   Moreover, in Embodiment 2, although the hybrid vehicle 700 was illustrated as a vehicle carrying the battery 100 which concerns on this invention, it is not restricted to this. Examples of the vehicle on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

また、実施形態3では、本発明に係る電池100を搭載する電池使用機器して、ハンマードリル800を例示したが、これに限られない。本発明に係る電池を搭載する電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   Moreover, in Embodiment 3, although the hammer drill 800 was illustrated as a battery use apparatus which mounts the battery 100 which concerns on this invention, it is not restricted to this. Examples of battery-powered devices equipped with the battery according to the present invention include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, various home appliances driven by batteries, office equipment, industrial equipment, etc. Is mentioned.

100 リチウムイオン二次電池(電池)
110 電池ケース
111 ケース本体部材
113 ケース蓋部材
113m 孔周囲部
117 電解液
120 電極体
150 正極端子
160 負極端子
170 注液孔(貫通孔)
175 凹部
180 封止部材
181 外側封止部材
181m 周縁部
181y 溶接部
183 ゴム封止部材(ゴム封止部)
184 挿入部
185 環状圧接部
700 ハイブリッド自動車(車両)
710 組電池
800 ハンマードリル(電池使用機器)
810 バッテリパック
GS 空間内気体
KC 封止空間
100 Lithium ion secondary battery (battery)
110 Battery Case 111 Case Body Member 113 Case Cover Member 113m Hole Perimeter 117 Electrolyte 120 Electrode Body 150 Positive Terminal 160 Negative Terminal 170 Injection Hole (Through Hole)
175 Concave part 180 Sealing member 181 Outer sealing member 181m Peripheral part 181y Welding part 183 Rubber sealing member (rubber sealing part)
184 Insertion portion 185 Annular pressure contact portion 700 Hybrid vehicle (vehicle)
710 battery pack 800 hammer drill (equipment using batteries)
810 Battery pack GS Gas in space KC Sealing space

Claims (13)

自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
前記貫通孔を前記電池ケースの外部から気密に封止してなり、ゴム状弾性体からなるゴム封止部を有するゴム封止部材と、
前記ゴム封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、備え、
前記電池ケースと前記ゴム封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、
前記封止空間内に存在する気体である空間内気体は、
前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含み、
前記ゴム封止部は、
有機過酸化物を加硫剤とした過酸化物加硫により形成され、
前記有機過酸化物の分解により生成した有機化合物を含んでなり、
前記有機化合物のガスを、前記検知可能気体として前記封止空間へ供給する気体供給体を兼ねる
電池。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
A rubber sealing member having a rubber sealing portion made of a rubber-like elastic body, wherein the through hole is hermetically sealed from the outside of the battery case;
An outer sealing member that is hermetically and annularly fixed to an annular hole surrounding portion surrounding the through hole in the battery case while covering the rubber sealing member from the outside,
When a hermetically sealed space formed between the battery case, the rubber sealing member, and the outer sealing member is a sealing space,
The gas in the space, which is a gas existing in the sealed space,
When leaking out of the battery from the sealed space, including a detectable gas that can be detected separately from gas components in the atmosphere,
The rubber sealing portion is
Formed by peroxide vulcanization with organic peroxide as vulcanizing agent,
Comprising an organic compound produced by decomposition of the organic peroxide,
A battery that also serves as a gas supply body that supplies the organic compound gas to the sealed space as the detectable gas.
請求項1に記載の電池であって、
前記ゴム封止部は、
前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って形成されてなる
電池。
The battery according to claim 1,
The rubber sealing portion is
A battery formed by performing primary vulcanization by the peroxide vulcanization but not by secondary vulcanization, or by performing secondary vulcanization in which the organic compound remains in itself.
請求項1または請求項2に記載の電池であって、
前記ゴム封止部は、エチレンプロピレンジエンゴムからなる
電池。
The battery according to claim 1 or 2,
The rubber sealing portion is a battery made of ethylene propylene diene rubber.
電池の電池ケースに設けられ、前記電池ケースの内外を連通する貫通孔を、気密に封止するゴム封止部材であって、
ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止可能に構成されたゴム封止部を有し、
前記ゴム封止部は、
有機過酸化物を加硫剤とした過酸化物加硫により形成され、
前記有機過酸化物の分解により生成され、自身の外部にガスとして放出される有機化合物を含んでなる
ゴム封止部材。
A rubber sealing member that is provided in a battery case of the battery and hermetically seals a through hole that communicates the inside and outside of the battery case,
A rubber sealing portion made of a rubber-like elastic body and configured so that the through-hole can be hermetically sealed from the outside of the battery case,
The rubber sealing portion is
Formed by peroxide vulcanization with organic peroxide as vulcanizing agent,
A rubber sealing member comprising an organic compound produced by decomposition of the organic peroxide and released as a gas outside itself.
請求項4に記載のゴム封止部材であって、
前記ゴム封止部は、
前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って形成されてなる
ゴム封止部材。
The rubber sealing member according to claim 4,
The rubber sealing portion is
A rubber sealing member formed by performing primary vulcanization by the peroxide vulcanization but not by secondary vulcanization or by performing secondary vulcanization in which the organic compound remains.
請求項4または請求項5に記載のゴム封止部材であって、
前記ゴム封止部は、エチレンプロピレンジエンゴムからなる
ゴム封止部材。
The rubber sealing member according to claim 4 or 5, wherein
The rubber sealing portion is a rubber sealing member made of ethylene propylene diene rubber.
前記ゴム封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着可能に構成された外側封止部材と一体化されてなる、請求項4〜請求項6のいずれか一項に記載のゴム封止部材。 The rubber sealing member is integrated with an outer sealing member configured to be airtight and annularly fixable around an annular hole surrounding the through hole in the battery case while covering the rubber sealing member from the outside. The rubber sealing member according to any one of Items 4 to 6. 自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム封止部を有するゴム封止部材と、
前記ゴム封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、
前記電池ケースと前記ゴム封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、
前記封止空間内に存在する気体である空間内気体は、
前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含み、
前記ゴム封止部は、
有機過酸化物を加硫剤とした過酸化物加硫により形成され、
前記有機過酸化物の分解により生成した有機化合物を含んでなり、
前記有機化合物のガスを、前記検知可能気体として前記封止空間へ供給する気体供給体を兼ねる
電池の製造方法であって、
前記過酸化物加硫により形成され前記有機化合物を含んでなる前記ゴム封止部を有する前記ゴム封止部材のうち、前記ゴム封止部で、前記電池ケースの前記外部から前記貫通孔を塞いで、前記貫通孔を気密に封止する第1封止工程と、
前記第1封止工程の後、前記ゴム封止部材を前記外部から覆いつつ、前記外側封止部材を前記電池ケースの前記孔周囲部に気密かつ環状に固着し、前記封止空間を形成する第2封止工程と、を備える
電池の製造方法。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
A rubber sealing member comprising a rubber-like elastic body, and having a rubber sealing portion formed by sealing the through hole from the outside of the battery case;
An outer sealing member that is airtightly and annularly fixed around an annular hole surrounding the through hole in the battery case, while covering the rubber sealing member from the outside,
When a hermetically sealed space formed between the battery case, the rubber sealing member, and the outer sealing member is a sealing space,
The gas in the space, which is a gas existing in the sealed space,
When leaking out of the battery from the sealed space, including a detectable gas that can be detected separately from gas components in the atmosphere,
The rubber sealing portion is
Formed by peroxide vulcanization with organic peroxide as vulcanizing agent,
Comprising an organic compound produced by decomposition of the organic peroxide,
A method of manufacturing a battery that also serves as a gas supply body that supplies the gas of the organic compound as the detectable gas to the sealed space,
Of the rubber sealing member having the rubber sealing portion formed by the peroxide vulcanization and including the organic compound, the through hole is closed from the outside of the battery case by the rubber sealing portion. And a first sealing step for hermetically sealing the through hole,
After the first sealing step, the outer sealing member is airtightly and annularly fixed around the hole of the battery case while covering the rubber sealing member from the outside to form the sealing space. A manufacturing method of a battery provided with a 2nd sealing process.
請求項8に記載の電池の製造方法であって、
前記ゴム封止部は、
前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って形成されてなる
電池の製造方法。
A method of manufacturing a battery according to claim 8,
The rubber sealing portion is
A method for producing a battery which is formed by performing primary vulcanization by the peroxide vulcanization but not by secondary vulcanization, or by performing secondary vulcanization in which the organic compound remains.
請求項8または請求項9に記載の電池の製造方法であって、
前記ゴム封止部は、エチレンプロピレンジエンゴムからなる
電池の製造方法。
A method of manufacturing a battery according to claim 8 or claim 9,
The rubber sealing portion is a battery manufacturing method made of ethylene propylene diene rubber.
請求項8〜請求項10のいずれか一項に記載の電池の製造方法であって、
前記第2封止工程の後、前記検知可能気体が前記封止空間から電池外部に漏れ出るか否かを検査することにより、前記外側封止部材と前記電池ケースの前記孔周囲部との間の気密性を検査する気密検査工程を更に備える
電池の製造方法。
It is a manufacturing method of the battery according to any one of claims 8 to 10,
After the second sealing step, by inspecting whether the detectable gas leaks from the sealing space to the outside of the battery, between the outer sealing member and the hole peripheral portion of the battery case A method for manufacturing a battery, further comprising an airtight inspection step for inspecting airtightness of the battery.
請求項8〜請求項11のいずれか一項に記載の電池の製造方法であって、
前記第1封止工程は、減圧下で行い、
前記第2封止工程は、大気圧下で行う
電池の製造方法。
It is a manufacturing method of the battery according to any one of claims 8 to 11,
The first sealing step is performed under reduced pressure,
The second sealing step is a battery manufacturing method performed under atmospheric pressure.
電池の電池ケースに設けられ、前記電池ケースの内外を連通する貫通孔を、気密に封止するゴム封止部材であって、
ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止するゴム封止部を有し、
前記ゴム封止部は、
有機過酸化物を加硫剤とした過酸化物加硫により形成され、
前記有機過酸化物の分解により生成され、自身の外部にガスとして放出される有機化合物を含んでなる
ゴム封止部材の製造方法であって、
前記過酸化物加硫による一次加硫は行うが、二次加硫は行わないで、または、自身に前記有機化合物が残る二次加硫を行って、前記ゴム封止部を形成するゴム封止部形成工程を備える
ゴム封止部材の製造方法。
A rubber sealing member that is provided in a battery case of the battery and hermetically seals a through hole that communicates the inside and outside of the battery case,
Made of a rubber-like elastic body, and having a rubber sealing portion that hermetically seals the through hole from the outside of the battery case,
The rubber sealing portion is
Formed by peroxide vulcanization with organic peroxide as vulcanizing agent,
A method for producing a rubber sealing member comprising an organic compound produced by decomposition of the organic peroxide and released as a gas to the outside of the organic peroxide,
A rubber seal that forms the rubber sealing portion by performing primary vulcanization by the peroxide vulcanization but not by secondary vulcanization or by performing secondary vulcanization in which the organic compound remains in itself. A manufacturing method of a rubber sealing member provided with a stop part formation process.
JP2011260171A 2011-11-29 2011-11-29 Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method Active JP5675564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260171A JP5675564B2 (en) 2011-11-29 2011-11-29 Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260171A JP5675564B2 (en) 2011-11-29 2011-11-29 Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method

Publications (2)

Publication Number Publication Date
JP2013114910A JP2013114910A (en) 2013-06-10
JP5675564B2 true JP5675564B2 (en) 2015-02-25

Family

ID=48710265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260171A Active JP5675564B2 (en) 2011-11-29 2011-11-29 Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method

Country Status (1)

Country Link
JP (1) JP5675564B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181593B2 (en) * 2014-04-16 2017-08-16 トヨタ自動車株式会社 Sealed battery and method for manufacturing sealed battery
JP6601116B2 (en) * 2014-10-14 2019-11-06 株式会社豊田自動織機 Terminal structure, power storage cell, and power storage module
US11251509B2 (en) 2017-07-14 2022-02-15 Gs Yuasa International Ltd. Energy storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190689A (en) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd Sealed type battery
JP2009087659A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery

Also Published As

Publication number Publication date
JP2013114910A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5969356B2 (en) Sealed battery manufacturing method, sealed battery sealing member and sealed battery
JP5814000B2 (en) Sealed battery
WO2013046322A1 (en) Battery
JP5146110B2 (en) Battery, vehicle and battery-equipped equipment
JP5690924B2 (en) Battery pack and single battery
JP2012038529A (en) Battery, and vehicle and electrical device equipped with the same
JP5675564B2 (en) Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method
JP5754280B2 (en) Battery and manufacturing method thereof
KR20110035859A (en) Manufacturing method of sealed battery
US8178235B2 (en) Battery with cap plate having inclined edge
JP5821442B2 (en) Battery and battery manufacturing method
JP6864853B2 (en) Temporary sealing plug for sealed batteries
JP2013084480A (en) Method of manufacturing battery
JP2013182722A (en) Battery and manufacturing method of the same
JP2014041769A (en) Manufacturing process of sealed battery
JP2013084481A (en) Method of manufacturing battery, and battery
JP5742610B2 (en) Battery and battery manufacturing method
JP5724696B2 (en) Battery manufacturing method
JP5672042B2 (en) Sealed battery and method for manufacturing sealed battery
JP5772348B2 (en) Battery and battery manufacturing method
JP5949130B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
JP5742644B2 (en) Battery manufacturing method and battery
JP2016096065A (en) Fuel battery case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R151 Written notification of patent or utility model registration

Ref document number: 5675564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250