JP5672042B2 - Sealed battery and method for manufacturing sealed battery - Google Patents

Sealed battery and method for manufacturing sealed battery Download PDF

Info

Publication number
JP5672042B2
JP5672042B2 JP2011028443A JP2011028443A JP5672042B2 JP 5672042 B2 JP5672042 B2 JP 5672042B2 JP 2011028443 A JP2011028443 A JP 2011028443A JP 2011028443 A JP2011028443 A JP 2011028443A JP 5672042 B2 JP5672042 B2 JP 5672042B2
Authority
JP
Japan
Prior art keywords
hole
battery
battery case
insertion portion
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011028443A
Other languages
Japanese (ja)
Other versions
JP2012169111A (en
Inventor
隆洋 渡邉
隆洋 渡邉
裕明 今西
裕明 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011028443A priority Critical patent/JP5672042B2/en
Publication of JP2012169111A publication Critical patent/JP2012169111A/en
Application granted granted Critical
Publication of JP5672042B2 publication Critical patent/JP5672042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、自身の内外を連通する貫通孔を有する電池ケースと、この電池ケース内に収容された電極体及び電解液と、電池ケースの貫通孔を封止してなる封止部材とを備える密閉型電池、及び、この密閉型電池の製造方法に関する。   The present invention includes a battery case having a through-hole communicating with the inside and the outside of the battery case, an electrode body and an electrolytic solution accommodated in the battery case, and a sealing member formed by sealing the through-hole of the battery case. The present invention relates to a sealed battery and a method for manufacturing the sealed battery.

従来より、電解液を注入するための注液孔などの貫通孔を有する電池ケースと、この電池ケースに収容された電極体及び電解液と、電池ケースの貫通孔を封止してなる封止部材とを備える密閉型電池が知られている。封止部材としては、例えば、樹脂からなる樹脂栓部と、金属からなる金属蓋部とが接合されたものがある。このうち樹脂栓部は、電池ケースの貫通孔に圧入されており、貫通孔を気密に封止している。   Conventionally, a battery case having a through hole such as a liquid injection hole for injecting an electrolytic solution, an electrode body and an electrolytic solution accommodated in the battery case, and a sealing formed by sealing the through hole of the battery case A sealed battery including a member is known. As the sealing member, for example, there is a member in which a resin plug portion made of resin and a metal lid portion made of metal are joined. Among these, the resin plug portion is press-fitted into the through hole of the battery case, and the through hole is hermetically sealed.

一方、金属蓋部は、樹脂栓部を電池外部から覆いつつ、樹脂栓部を電池内部に向けて押圧した状態で、電池ケースに接合されている。このようにすることで、樹脂栓部による貫通孔の封止をより確実なものとすることができる。
なお、樹脂栓部と金属蓋部とを有する封止部材で貫通孔を封止する形態の密閉型電池として、例えば下記の特許文献1〜4に開示された密閉型電池が挙げられる。
On the other hand, the metal lid part is joined to the battery case while covering the resin plug part from the outside of the battery and pressing the resin plug part toward the inside of the battery. By doing in this way, sealing of the through-hole by a resin stopper part can be made more reliable.
In addition, as a sealed battery of the form which seals a through-hole with the sealing member which has a resin stopper part and a metal cover part, the sealed battery disclosed by the following patent documents 1-4 is mentioned, for example.

特開2009−87659号公報JP 2009-87659 A 特開2008−41548号公報JP 2008-41548 A 特開2005−190689号公報JP 2005-190689 A 特開2001−313022号公報JP 2001-313022 A

従来の密閉型電池では、前述のように、貫通孔の封止は樹脂栓部で行えば足りると考えられていたため、金属蓋部と電池ケースとの間の気密性まで厳密に要求されることはなかった。しかしながら、樹脂栓部は、樹脂でできており経時的に劣化するため、樹脂栓部と貫通孔との間の気密性も経時的に低下する。特に、ハイブリッド自動車や電気自動車などの車載用の密閉型電池は、例えば10年以上の長期間にわたって使用されるため、この経時劣化による気密性の低下が懸念される。   In the conventional sealed battery, as described above, since it was considered that sealing of the through hole was sufficient with the resin plug portion, it is strictly required to have an airtightness between the metal lid portion and the battery case. There was no. However, since the resin plug portion is made of resin and deteriorates with time, the airtightness between the resin plug portion and the through hole also decreases with time. In particular, in-vehicle sealed batteries such as hybrid vehicles and electric vehicles are used for a long period of time, for example, 10 years or longer, and there is a concern that the airtightness may decrease due to deterioration with time.

樹脂栓部が劣化して樹脂栓部と貫通孔との間が気密性が低下すると、電池ケース内に収容されていた電解液が、樹脂栓部と貫通孔との間に入り込み、更に、金属蓋部と電池ケースとの間の気密性も低い場合には、その電解液が金属蓋部と電池ケースとの間を通じて電池外部まで漏れ出てしまうことがある。すると、電池ケース内の電解液が不足して、電池特性が低下するおそれがある。また逆に、金属蓋部と電池ケースとの間、及び、樹脂栓部と貫通孔との間を通じて、大気中の水分が電池ケース内に入り込み、電池特性が低下するおそれもある。   When the resin plug part deteriorates and the airtightness between the resin plug part and the through hole decreases, the electrolyte contained in the battery case enters between the resin plug part and the through hole, and further, the metal When the airtightness between the lid and the battery case is low, the electrolyte may leak to the outside of the battery through the metal lid and the battery case. As a result, the electrolyte in the battery case is insufficient, and the battery characteristics may deteriorate. Conversely, moisture in the atmosphere may enter the battery case between the metal lid part and the battery case and between the resin plug part and the through hole, and the battery characteristics may be deteriorated.

この問題を解決するためには、樹脂栓部が劣化して樹脂栓部と貫通孔との間の気密性が低下しても、電池ケースの内部と外部が連通しないように、金属蓋部と電池ケースとの間を確実に気密に接合しておくことが考えられる。
しかしながら、このようにした密閉型電池は、製造直後には樹脂栓部がまだ劣化しておらず、樹脂栓部と貫通孔との間が気密に封止されている。つまり、この密閉型電池は、樹脂栓部と貫通孔との密着、及び、金属蓋部と電池ケースとの接合により、二重に封止されている。このため、金属蓋部と電池ケースとの接合の不具合で封止不良が生じたとしても、この封止不良が生じた密閉型電池を検査により判別するのが難しい。従って、金属蓋部と電池ケースとの間の気密信頼性が高く、長期間にわたり封止部材で貫通孔を気密に封止できる密閉型電池を製造するのが困難であった。
In order to solve this problem, even if the resin plug portion deteriorates and the airtightness between the resin plug portion and the through hole is reduced, the metal lid portion and It is conceivable to securely and airtightly connect the battery case.
However, in such a sealed battery, the resin plug portion has not yet deteriorated immediately after production, and the gap between the resin plug portion and the through hole is hermetically sealed. That is, this sealed battery is double-sealed by the close contact between the resin plug portion and the through hole and the joining between the metal lid portion and the battery case. For this reason, even if a sealing failure occurs due to a bonding failure between the metal lid portion and the battery case, it is difficult to determine the sealed battery in which the sealing failure has occurred by inspection. Therefore, it is difficult to manufacture a sealed battery in which the hermetic reliability between the metal lid portion and the battery case is high and the through hole can be hermetically sealed with the sealing member for a long period of time.

本発明は、かかる現状に鑑みてなされたものであって、電池ケースの貫通孔を封止する封止部材の蓋部と電池ケースとの間の気密性を容易かつ確実に検査できる密閉型電池、及び、この密閉型電池の製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and is a sealed battery that can easily and reliably inspect the airtightness between the lid of the sealing member that seals the through hole of the battery case and the battery case. And it aims at providing the manufacturing method of this sealed type battery.

上記課題を解決するための本発明の一態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、前記電池ケース内に収容された電解液と、前記貫通孔を封止してなる封止部材であって、前記貫通孔に挿入されてなり、少なくとも前記貫通孔に当接または近接する対向部が熱可塑性樹脂を含む材質からなる挿入部、及び、前記挿入部を前記電池ケースの外部から覆いつつ、前記電池ケースのうち前記貫通孔の周囲を囲む環状の孔周囲部に気密かつ環状に接合してなる蓋部、を有する封止部材と、を備え、前記挿入部と前記貫通孔との間は、気体が流通可能であり、前記蓋部と前記孔周囲部との前記接合により、前記封止部材で前記貫通孔を気密に封止してなる密閉型電池の製造方法であって、前記挿入部を、前記電解液が収容された前記電池ケースの前記貫通孔に前記電池ケースの外部から圧入し、前記対向部を前記貫通孔に圧接させて、前記挿入部で前記貫通孔を気密に仮封止する仮封止工程と、前記仮封止工程の後、前記挿入部を前記電池ケースの外部から覆いつつ、前記蓋部を前記電池ケースの前記孔周囲部に気密かつ環状に接合する本封止工程と、前記本封止工程の後または前記本封止工程と同時に、前記挿入部を加熱して前記対向部と前記貫通孔との間の気密性を消失させて、前記挿入部と前記貫通孔との間を気体が流通可能な状態とする加熱工程と、を備える密閉型電池の製造方法である。   One aspect of the present invention for solving the above problems is a battery case having a through-hole communicating with the inside and outside of the battery, an electrode body housed in the battery case, and an electrolyte solution housed in the battery case. A sealing member that seals the through-hole, and is an insertion portion that is inserted into the through-hole, and at least a facing portion that is in contact with or close to the through-hole is made of a material containing a thermoplastic resin. And a lid member that is airtightly and annularly joined to an annular hole surrounding portion surrounding the through hole in the battery case while covering the insertion portion from the outside of the battery case. A gas can flow between the insertion portion and the through hole, and the through hole is hermetically sealed by the sealing member by the joining of the lid portion and the peripheral portion of the hole. A closed battery manufacturing method comprising the steps of: The insertion portion is press-fitted from the outside of the battery case into the through-hole of the battery case in which the electrolytic solution is stored, the opposing portion is pressed into the through-hole, and the through-hole is temporarily sealed in the insertion portion. A temporary sealing step for sealing, and after the temporary sealing step, the lid portion is hermetically and annularly joined to the hole peripheral portion of the battery case while covering the insertion portion from the outside of the battery case. After the sealing step and after the main sealing step or simultaneously with the main sealing step, the insertion portion is heated to eliminate airtightness between the facing portion and the through hole, and the insertion portion And a heating step for allowing a gas to flow between the through-holes.

この密閉型電池の製造方法では、仮封止工程において、挿入部で電池ケースの貫通孔を封止(仮封止)するので、その後の工程において、電池ケース内に収容された電解液が貫通孔を通じて外部(孔周囲部等)に漏れ出るのを防止できる。従って、本封止工程の際に、貫通孔から漏れ出た電解液が蓋部と電池ケースの孔周囲部との間に入り込んで、封止不良が生じるのを防止でき、蓋部と孔周囲部とを確実に接合できる。   In this sealed battery manufacturing method, in the temporary sealing step, the through hole of the battery case is sealed (temporarily sealed) at the insertion portion, so that the electrolyte contained in the battery case penetrates in the subsequent step. Leakage to the outside (such as around the hole) can be prevented through the hole. Therefore, during the main sealing step, it is possible to prevent the electrolyte leaking from the through-hole from entering between the lid portion and the hole peripheral portion of the battery case, resulting in poor sealing. The part can be securely joined.

更に加熱工程では、挿入部を加熱して挿入部の対向部と貫通孔との間の気密性を消失させて、挿入部と貫通孔との間を気体が流通可能な状態としている。このため、加熱工程後の密閉型電池では、電池ケース内の気体が挿入部と貫通孔との間を流通できる。かくして、電池ケース内の気体が電池ケースの外部に漏れ出ないか否かを検査することにより、蓋部と電池ケース(孔周囲部)との間の気密性を容易かつ確実に検査できる密閉型電池を製造できる。   Further, in the heating step, the insertion portion is heated to eliminate the airtightness between the opposing portion of the insertion portion and the through hole, so that gas can flow between the insertion portion and the through hole. For this reason, in the sealed battery after the heating step, the gas in the battery case can flow between the insertion portion and the through hole. Thus, by checking whether the gas in the battery case does not leak out of the battery case, the sealed type can easily and reliably inspect the airtightness between the lid and the battery case (hole peripheral part). A battery can be manufactured.

更に、上記の密閉型電池の製造方法であって、前記加熱工程の後、前記封止部材の前記蓋部と前記電池ケースの前記孔周囲部との間の気密性を検査する気密検査工程を更に備える密閉型電池の製造方法とすると良い。   Further, in the above-described sealed battery manufacturing method, after the heating step, an airtight inspection step of inspecting an airtightness between the lid portion of the sealing member and the hole peripheral portion of the battery case Further, a method for manufacturing a sealed battery is preferable.

この密閉型電池の製造方法では、加熱工程の後、気密検査工程において、封止部材の蓋部と電池ケースの孔周囲部との間の気密性を検査する。従って、蓋部と孔周囲部との間に封止不良が生じた密閉型電池を確実に排除できる。従って、封止部材の蓋部と電池ケース(孔周囲部)との間の気密信頼性が高く、長期間にわたり封止部材で貫通孔を気密に封止できる密閉型電池を製造できる。   In this sealed battery manufacturing method, the airtightness between the lid portion of the sealing member and the hole peripheral portion of the battery case is inspected in the airtightness inspection step after the heating step. Therefore, it is possible to reliably eliminate a sealed battery in which a sealing failure has occurred between the lid portion and the hole peripheral portion. Therefore, a hermetic reliability between the lid portion of the sealing member and the battery case (hole peripheral portion) is high, and a sealed battery that can hermetically seal the through hole with the sealing member for a long period can be manufactured.

更に、上記のいずれかに記載の密閉型電池の製造方法であって、前記熱可塑性樹脂を含む材質は、ゴム弾性を有する樹脂をも含む材質である密閉型電池の製造方法とすると良い。   Furthermore, in any of the above-described methods for manufacturing a sealed battery, the material including the thermoplastic resin may be a method for manufacturing a sealed battery that includes a resin having rubber elasticity.

この密閉型電池の製造方法では、挿入部の少なくとも対向部をなす、前述の熱可塑性樹脂を含む材質を、ゴム弾性を有する樹脂をも含む材質としている。これにより、仮封止工程において、挿入部の対向部と貫通孔とを密着性を高くでき、挿入部よる貫通孔の気密封止をより確実なものとすることができる。   In this sealed battery manufacturing method, the material including the above-described thermoplastic resin that forms at least the opposing portion of the insertion portion is also a material including a resin having rubber elasticity. Thereby, in a temporary sealing process, adhesiveness of the opposing part and through-hole of an insertion part can be made high, and the airtight sealing of the through-hole by an insertion part can be made more reliable.

更に、上記のいずれかに記載の密閉型電池の製造方法であって、前記仮封止工程を減圧下で行い、前記本封止工程を大気圧下で行う密閉型電池の製造方法とすると良い。   Further, it is a method for manufacturing a sealed battery according to any one of the above, wherein the temporary sealing step is performed under reduced pressure and the main sealing step is performed at atmospheric pressure. .

この密閉型電池の製造方法では、仮封止工程を減圧下で行っているので、通常使用時の電池ケース内を減圧状態にすることができる。このため、コンディショニング(初期充放電)の際やその後の使用において電池ケース内にガスが発生しても、電池ケース内の内圧が早期に高くなるのを抑制できる。また、挿入部で貫通孔を仮封止していない場合には、減圧下から大気圧下に戻す際に、電池ケース内の電解液が貫通孔を通じて電池ケースの外部に漏れ易い。しかし、前述のように、仮封止工程において挿入部で貫通孔を気密に仮封止しているので、減圧下から大気圧下に戻す際に電解液が電池ケースの外部に漏れ出るのを確実に防止できる。
一方、本封止工程は、大気圧下で行うので、減圧下で行う場合に比して、本封止工程を容易に行うことができる。
In this sealed battery manufacturing method, since the temporary sealing step is performed under reduced pressure, the inside of the battery case during normal use can be in a reduced pressure state. For this reason, even if gas is generated in the battery case during conditioning (initial charge / discharge) or in subsequent use, it is possible to suppress the internal pressure in the battery case from increasing quickly. In addition, when the through hole is not temporarily sealed at the insertion portion, the electrolyte solution in the battery case tends to leak to the outside of the battery case through the through hole when returning from the reduced pressure to the atmospheric pressure. However, as described above, since the through hole is temporarily sealed in the insertion portion in the temporary sealing process, the electrolyte solution leaks out of the battery case when returning from the reduced pressure to the atmospheric pressure. It can be surely prevented.
On the other hand, since the main sealing step is performed under atmospheric pressure, the main sealing step can be performed more easily than when performed under reduced pressure.

更に、上記のいずれかに記載の密閉型電池の製造方法であって、前記蓋部及び前記電池ケースは、それぞれ金属からなり、前記蓋部と前記電池ケースの前記孔周囲部との前記接合を、溶接で行うと共に、前記溶接の際に発生する熱で、前記挿入部を加熱することにより、前記本封止工程と前記加熱工程とを同時に行う密閉型電池の製造方法とすると良い。   Furthermore, in the method for manufacturing a sealed battery according to any one of the above, the lid part and the battery case are each made of metal, and the joining between the lid part and the hole peripheral part of the battery case is performed. In addition to performing by welding, the insertion portion is heated with heat generated during the welding, so that a method for manufacturing a sealed battery in which the main sealing step and the heating step are performed simultaneously is preferable.

この密閉型電池の製造方法では、溶接を利用して、本封止工程における蓋部と電池ケース(孔周囲部)との接合と、加熱工程における挿入部の加熱とを同時に行うので、工程が簡単になり、工数を減らすことができる。   In this sealed battery manufacturing method, since welding is used to join the lid portion and the battery case (hole peripheral portion) in the main sealing step and the heating of the insertion portion in the heating step at the same time, It becomes easy and man-hours can be reduced.

また、他の態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、前記電池ケース内に収容された電解液と、前記貫通孔を封止してなる封止部材であって、前記貫通孔に挿入されてなり、少なくとも前記貫通孔に当接または近接する対向部が熱可塑性樹脂を含む材質からなる挿入部、及び、前記挿入部を前記電池ケースの外部から覆いつつ、前記電池ケースのうち前記貫通孔の周囲を囲む環状の孔周囲部に気密かつ環状に接合してなる蓋部、を有する封止部材と、を備え、前記挿入部と前記貫通孔との間は、気体が流通可能であり、前記蓋部と前記孔周囲部との前記接合により、前記封止部材で前記貫通孔を気密に封止してなる密閉型電池である。   In another aspect, a battery case having a through hole communicating with the inside and the outside of the battery case, an electrode body accommodated in the battery case, an electrolytic solution accommodated in the battery case, and the through hole are sealed. A sealing member formed by being inserted into the through-hole, and at least an opposing portion that is in contact with or close to the through-hole is made of a material containing a thermoplastic resin, and the insertion portion A sealing member having a lid portion that is airtightly and annularly joined to an annular hole surrounding portion surrounding the through hole in the battery case while covering from the outside of the battery case, and the insertion A sealed battery in which gas can flow between the part and the through hole, and the through hole is hermetically sealed by the sealing member by the joining of the lid part and the peripheral part of the hole. It is.

この密閉型電池では、封止部材の挿入部と電池ケースの貫通孔との間が、気体が流通可能な状態とされている。このため、電池ケース内の気体が電池ケースの外部に漏れ出ないか否かを検査することにより、封止部材の蓋部と電池ケースの孔周囲部との間の気密性を容易に検査できる。   In this sealed battery, gas can flow between the insertion portion of the sealing member and the through hole of the battery case. For this reason, the airtightness between the lid portion of the sealing member and the hole peripheral portion of the battery case can be easily inspected by inspecting whether or not the gas in the battery case leaks to the outside of the battery case. .

更に、上記の密閉型電池であって、前記電池ケース内が減圧されてなる密閉型電池とすると良い。   Furthermore, it is preferable to use a sealed battery in which the inside of the battery case is decompressed.

この密閉型電池では、電池ケース内が減圧されているので、使用(充放電)に伴い電池ケース内にガスが発生した場合でも、電池ケース内の内圧が早期に高くなるのを抑制できる。従って、安全性の高い密閉型電池とすることができる。   In this sealed battery, since the inside of the battery case is depressurized, even when gas is generated in the battery case during use (charging / discharging), the internal pressure in the battery case can be prevented from increasing quickly. Therefore, a highly safe sealed battery can be obtained.

実施形態1に係るリチウムイオン二次電池を示す縦断面図である。1 is a longitudinal sectional view showing a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係り、電極体を示す斜視図である。1 is a perspective view showing an electrode body according to Embodiment 1. FIG. 実施形態1に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す部分平面図である。FIG. 3 is a partial plan view illustrating a state in which the positive electrode plate and the negative electrode plate are overlapped with each other via a separator according to the first embodiment. 実施形態1に係り、ケース蓋部材、正極端子及び負極端子等を示す分解斜視図である。FIG. 3 is an exploded perspective view illustrating a case lid member, a positive electrode terminal, a negative electrode terminal, and the like according to the first embodiment. 実施形態1に係り、注液孔及び封止部材の近傍を示す部分拡大断面図である。FIG. 4 is a partial enlarged cross-sectional view illustrating the vicinity of a liquid injection hole and a sealing member according to the first embodiment. 実施形態1に係り、封止部材の近傍を示す部分拡大平面図である。FIG. 4 is a partially enlarged plan view showing a vicinity of a sealing member according to the first embodiment. 実施形態1に係り、封止部材を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on Embodiment 1 and shows a sealing member. 実施形態1に係るリチウムイオン二次電池の製造方法に関し、仮封止工程において、封止部材の挿入部を注液孔に圧入して、挿入部で注液孔を気密に仮封止する様子を示す説明図である。Regarding the method for manufacturing a lithium ion secondary battery according to Embodiment 1, in the temporary sealing step, the insertion part of the sealing member is press-fitted into the liquid injection hole, and the liquid injection hole is temporarily sealed airtight at the insertion part. It is explanatory drawing which shows. 実施形態2に係る車両を示す説明図である。FIG. 6 is an explanatory diagram showing a vehicle according to a second embodiment. 実施形態3に係る電池使用機器を示す説明図である。It is explanatory drawing which shows the battery using apparatus which concerns on Embodiment 3. FIG.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池(密閉型電池)100(以下、単に電池100とも言う)を示す。また、図2及び図3に、この電池100を構成する捲回型の電極体120及びこれを展開した状態を示す。また、図4に、ケース蓋部材113、正極端子150及び負極端子160等の詳細を示す。また、図5及び図6に、注液孔113e及び封止部材170の近傍の形態を示す。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium ion secondary battery (sealed battery) 100 (hereinafter also simply referred to as battery 100) according to the first embodiment. 2 and 3 show a wound electrode body 120 constituting the battery 100 and a state in which the electrode body 120 is developed. FIG. 4 shows details of the case lid member 113, the positive terminal 150, the negative terminal 160, and the like. 5 and 6 show the form in the vicinity of the liquid injection hole 113e and the sealing member 170. FIG.

この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池100は、角型の電池ケース110、この電池ケース110内に収容された捲回型の電極体120、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1参照)。また、電池ケース110内には、非水系の電解液117が保持されている。   The battery 100 is a square battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal 150 and a negative electrode terminal 160 supported by the battery case 110 ( (See FIG. 1). In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

このうち電池ケース110は、金属、具体的にはアルミニウムから形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接された矩形板状のケース蓋部材113とから構成されている。ケース蓋部材113には、電池ケース110の内圧が所定圧力に達した際に破断する安全弁113jが設けられている(図1及び図4参照)。また、このケース蓋部材113には、後述する注液孔(貫通孔)113eが設けられ、電池ケース110内が減圧された状態で、後述する封止部材170で気密に封止されている。   Of these, the battery case 110 is made of metal, specifically aluminum. The battery case 110 includes a box-shaped case main body member 111 opened only on the upper side, and a rectangular plate-shaped case cover member 113 welded in a form to close the opening 111h of the case main body member 111. . The case lid member 113 is provided with a safety valve 113j that breaks when the internal pressure of the battery case 110 reaches a predetermined pressure (see FIGS. 1 and 4). The case lid member 113 is provided with a liquid injection hole (through hole) 113e described later, and is hermetically sealed with a sealing member 170 described later in a state where the inside of the battery case 110 is decompressed.

また、ケース蓋部材113には、それぞれ3つの端子金具151,152,153により構成される正極端子150及び負極端子160が、それぞれ3つの絶縁部材155,156,157を介して固設されている(図1及び図4参照)。電池ケース110内において、正極端子150は電極体120の正極板121(その正極集電部121m)に接続され、負極端子160は電極体120の負極板131(その負極集電部131m)に接続されている(図1参照)。   In addition, the case lid member 113 is fixedly provided with a positive terminal 150 and a negative terminal 160 each composed of three terminal fittings 151, 152, and 153 via three insulating members 155, 156, and 157, respectively. (See FIGS. 1 and 4). In the battery case 110, the positive terminal 150 is connected to the positive plate 121 (its positive current collecting part 121 m) of the electrode body 120, and the negative terminal 160 is connected to the negative plate 131 (its negative current collecting part 131 m) of the electrode body 120. (See FIG. 1).

次に、電極体120について説明する。電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体115内に収容され、横倒しにした状態で電池ケース110内に収容されている(図1参照)。この電極体120は、正極板121と負極板131とを有する。具体的には、電極体120は、帯状の正極板121と帯状の負極板131とを、通気性を有する帯状のセパレータ141を介して互いに重ねて(図3参照)、軸線AX周りに捲回し、扁平状に圧縮したものである(図2参照)。   Next, the electrode body 120 will be described. The electrode body 120 is accommodated in an insulating film enclosure 115 formed in a bag shape having an insulating film opened only on the upper side, and is accommodated in the battery case 110 in a laid state (see FIG. 1). The electrode body 120 includes a positive electrode plate 121 and a negative electrode plate 131. Specifically, in the electrode body 120, a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 are overlapped with each other via a breathable belt-like separator 141 (see FIG. 3) and wound around an axis AX. , Compressed into a flat shape (see FIG. 2).

正極板121は、芯材として、帯状のアルミニウム箔からなる正極集電箔122を有する。この正極集電箔122の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ正極活物質層123,123が長手方向(図3中、左右方向)に帯状に設けられている。これらの正極活物質層123,123は、正極活物質、導電剤及び結着剤から形成されている。   The positive electrode plate 121 has a positive electrode current collector foil 122 made of a strip-shaped aluminum foil as a core material. On both main surfaces of the positive electrode current collector foil 122, the positive electrode active material layers 123 and 123 are strip-shaped in the longitudinal direction (left and right direction in FIG. 3) on a part extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These positive electrode active material layers 123 and 123 are formed of a positive electrode active material, a conductive agent, and a binder.

正極板121のうち、自身の厚み方向に正極集電箔122及び正極活物質層123,123が存在する帯状の部位が、正極部121wである。この正極部121wは、電極体120を構成した状態において、その全域がセパレータ141を介して負極板131の後述する負極部131wと対向している(図3参照)。また、正極板121に正極部121wを設けたことに伴い、正極集電箔122のうち、幅方向の片方の端部(図3中、上方)は、長手方向に帯状に延び、自身の厚み方向に正極活物質層123が存在しない正極集電部121mとなっている。この正極集電部121mの幅方向の一部は、セパレータ141から軸線AX方向の一方側SAに渦巻き状をなして突出しており、前述の正極端子150と接続している。   In the positive electrode plate 121, a belt-like portion where the positive electrode current collector foil 122 and the positive electrode active material layers 123 and 123 exist in the thickness direction of the positive electrode plate 121 is the positive electrode portion 121 w. In the state where the electrode body 120 is configured, the entire area of the positive electrode portion 121w is opposed to a later-described negative electrode portion 131w of the negative electrode plate 131 via the separator 141 (see FIG. 3). In addition, with the provision of the positive electrode part 121w on the positive electrode plate 121, one end part in the width direction (upward in FIG. 3) of the positive electrode current collector foil 122 extends in a band shape in the longitudinal direction, and has its own thickness. The positive electrode current collector portion 121m has no positive electrode active material layer 123 in the direction. A part of the positive electrode current collector 121m in the width direction protrudes from the separator 141 in a spiral shape to one side SA in the axis AX direction, and is connected to the positive electrode terminal 150 described above.

また、負極板131は、芯材として、帯状の銅箔からなる負極集電箔132を有する。この負極集電箔132の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ負極活物質層133,133が長手方向(図3中、左右方向)に帯状に設けられている。これらの負極活物質層133,133は、負極活物質、結着剤及び増粘剤から形成されている。   Moreover, the negative electrode plate 131 has the negative electrode current collection foil 132 which consists of strip | belt-shaped copper foil as a core material. On both main surfaces of the negative electrode current collector foil 132, negative electrode active material layers 133 and 133 are band-like in the longitudinal direction (left and right direction in FIG. 3) on a portion extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These negative electrode active material layers 133 and 133 are formed of a negative electrode active material, a binder, and a thickener.

負極板131のうち、自身の厚み方向に負極集電箔132及び負極活物質層133,133が存在する帯状の部位が、負極部131wである。この負極部131wは、電極体120を構成した状態において、その全域がセパレータ141と対向している。また、負極板131に負極部131wを設けたことに伴い、負極集電箔132のうち、幅方向の片方の端部(図3中、下方)は、長手方向に帯状に延び、自身の厚み方向に負極活物質層133が存在しない負極集電部131mとなっている。この負極集電部131mの幅方向の一部は、セパレータ141から軸線AX方向の他方側SBに渦巻き状をなして突出しており、前述の負極端子160と接続している。   In the negative electrode plate 131, a strip-shaped portion where the negative electrode current collector foil 132 and the negative electrode active material layers 133 and 133 are present in the thickness direction of the negative electrode plate 131 is the negative electrode portion 131w. The entire area of the negative electrode portion 131 w faces the separator 141 in a state where the electrode body 120 is configured. In addition, as a result of providing the negative electrode portion 131w on the negative electrode plate 131, one end portion (downward in FIG. 3) in the width direction of the negative electrode current collector foil 132 extends in a band shape in the longitudinal direction and has its own thickness. The negative electrode current collector portion 131m has no negative electrode active material layer 133 in the direction. A part of the negative electrode current collector 131m in the width direction protrudes from the separator 141 in a spiral shape to the other side SB in the axis AX direction, and is connected to the negative electrode terminal 160 described above.

また、セパレータ141は、樹脂、具体的にはポリプロピレン(PP)とポリエチレン(PE)からなる多孔質膜であり、帯状をなす。   The separator 141 is a porous film made of resin, specifically, polypropylene (PP) and polyethylene (PE), and has a strip shape.

次に、注液孔113e及び封止部材170について説明する(図5〜図7参照)。
注液孔113eは、電解液117を電池ケース110内に注入するために、電池ケース110のケース蓋部材113に形成された孔であり、電池ケース110の内外を連通している。この注液孔113eは、ケース蓋部材113の内壁面113fによって構成されており、ケース蓋部材113の厚み方向のほぼ中央に段差を有する大小2つの円孔がつながった形状をなす。
Next, the liquid injection hole 113e and the sealing member 170 will be described (see FIGS. 5 to 7).
The liquid injection hole 113 e is a hole formed in the case lid member 113 of the battery case 110 in order to inject the electrolytic solution 117 into the battery case 110, and communicates the inside and outside of the battery case 110. The liquid injection hole 113e is configured by an inner wall surface 113f of the case lid member 113, and has a shape in which two large and small circular holes having a step are connected to each other in the thickness direction of the case lid member 113.

具体的には、注液孔113eは、電池ケース110の内側(図5中、下方)に位置して円筒状をなす内側円筒面113f1と、電池ケース110の外側(図5中、上方)に位置して円筒状をなす外側円筒面113f2と、内側円筒面113f1と外側円筒面113f2との間に位置してこれらを結ぶ円環状の段差面113f3により構成されている。この注液孔113eのうち、内側円筒面113f1がなす径小な内側注液孔113e1の大きさは、直径が1.2mm、高さが0.5mmであり、外側円筒面113f2がなす径大な外側注液孔113e2の大きさは、直径が2.0mm、高さが0.3mmである。   Specifically, the liquid injection hole 113e is located on the inner side (lower side in FIG. 5) of the battery case 110 and has a cylindrical inner cylindrical surface 113f1 and on the outer side (upper side in FIG. 5) of the battery case 110. The outer cylindrical surface 113f2 that is positioned and has a cylindrical shape, and an annular step surface 113f3 that is positioned between and connects the inner cylindrical surface 113f1 and the outer cylindrical surface 113f2. Among the liquid injection holes 113e, the small diameter inner liquid injection hole 113e1 formed by the inner cylindrical surface 113f1 has a diameter of 1.2 mm and a height of 0.5 mm, and the outer cylindrical surface 113f2 has a large diameter. The outer injection hole 113e2 has a diameter of 2.0 mm and a height of 0.3 mm.

一方、封止部材170は、挿入部171と蓋部173とから構成されている。このうち挿入部171は、後述する当接部(対向部)171tを含む全体が、ゴム弾性を有する樹脂と熱可塑性樹脂とを含む材質からなる。具体的には、挿入部171は、ゴム弾性を有する樹脂であるエチレンプロピレンゴム(EPDM)と、熱可塑性樹脂であるポリプロピレン(PP)とを80:20(重量比)の割合で混合した樹脂からなる。この挿入部171は、径大な底面171cと径小な上面171dとこれらの間を結ぶ側面171fとを有する円錐台状をなす。その大きさは、底面171cの直径が1.6mm、上面171dの直径が1.0mm、高さが0.9mmである。   On the other hand, the sealing member 170 includes an insertion portion 171 and a lid portion 173. Of these, the entire insertion portion 171 including a contact portion (opposing portion) 171t, which will be described later, is made of a material including a rubber-elastic resin and a thermoplastic resin. Specifically, the insertion portion 171 is made of a resin in which ethylene propylene rubber (EPDM), which is a resin having rubber elasticity, and polypropylene (PP), which is a thermoplastic resin, are mixed at a ratio of 80:20 (weight ratio). Become. The insertion portion 171 has a truncated cone shape having a large-diameter bottom surface 171c, a small-diameter upper surface 171d, and a side surface 171f connecting them. The bottom surface 171c has a diameter of 1.6 mm, the top surface 171d has a diameter of 1.0 mm, and a height of 0.9 mm.

また、蓋部173は、電池ケース110の材質と同じ材質、具体的には、アルミニウムからなる。この蓋部173は、第1主面173c及び第2主面173dを有する円板状をなす。その大きさは、直径が3.0mm、厚みが0.3mmである。蓋部173の第2主面173dの中央には、挿入部171の底面171cが接合されて、蓋部173と挿入部171とが一体化されている。   The lid 173 is made of the same material as that of the battery case 110, specifically, aluminum. The lid portion 173 has a disk shape having a first main surface 173c and a second main surface 173d. The size is 3.0 mm in diameter and 0.3 mm in thickness. The bottom surface 171c of the insertion portion 171 is joined to the center of the second main surface 173d of the lid portion 173, and the lid portion 173 and the insertion portion 171 are integrated.

この封止部材170のうち挿入部171は、注液孔113eに挿入されている。具体的には、挿入部171の側面171fが、注液孔113eを構成する内側円筒面113f1と段差面113f3とがなす角部113faに当接する形態で、挿入部171が注液孔113eに挿入されている。   The insertion portion 171 of the sealing member 170 is inserted into the liquid injection hole 113e. Specifically, the insertion portion 171 is inserted into the liquid injection hole 113e in such a form that the side surface 171f of the insertion portion 171 abuts on a corner portion 113fa formed by the inner cylindrical surface 113f1 and the step surface 113f3 constituting the liquid injection hole 113e. Has been.

但し、本実施形態1では、挿入部171の側面171fと、注液孔113eの角部113faとが接触しているものの、挿入部171と注液孔113eとの間は、気密ではなく、気体が流通可能な状態となっている。即ち、この挿入部171は、後述する電池の製造過程で加熱処理がなされているために、挿入部171のうち、注液孔113eの角部113faに当接した部分である当接部(対向部)171tは、弾性変形ではなく、塑性変形しており、角部113faに圧接していない。このため、挿入部171(当接部171t)は、注液孔113eをなす内壁面113fに気密に密着しておらず、挿入部171と注液孔113eとの間が、気体が流通可能な状態となっている。   However, in the first embodiment, the side surface 171f of the insertion portion 171 and the corner portion 113fa of the liquid injection hole 113e are in contact with each other, but the space between the insertion portion 171 and the liquid injection hole 113e is not airtight, and gas Is ready for distribution. That is, since the insertion portion 171 is heat-treated in the battery manufacturing process described later, the insertion portion 171 is a contact portion that is a portion that is in contact with the corner portion 113fa of the liquid injection hole 113e. (Portion) 171t is not elastically deformed but plastically deformed, and is not pressed against the corner 113fa. For this reason, the insertion part 171 (contact part 171t) is not airtightly adhered to the inner wall surface 113f forming the liquid injection hole 113e, and gas can flow between the insertion part 171 and the liquid injection hole 113e. It is in a state.

また、封止部材170のうち、蓋部173は、挿入部171を電池ケース110(そのケース蓋部材113)の外部から覆う形態で、ケース蓋部材113に接合されている。具体的には、蓋部173の外周縁に沿う円環状の周縁部173mと、ケース蓋部材113のうち注液孔113eの周囲を囲む円環状の孔周囲部113mとが接合(本実施形態1では溶接)されて、円環状の溶接部175を形成している。これにより、蓋部173の周縁部173mと電池ケース110(そのケース蓋部材113)の孔周囲部113mとの間が気密に封止されている。かくして、注液孔113eは、封止部材170で気密に封止されている。   Of the sealing member 170, the lid portion 173 is joined to the case lid member 113 so as to cover the insertion portion 171 from the outside of the battery case 110 (the case lid member 113). Specifically, an annular peripheral portion 173m along the outer peripheral edge of the lid portion 173 and an annular hole peripheral portion 113m surrounding the liquid injection hole 113e in the case cover member 113 are joined (this embodiment 1). Is welded) to form an annular welded portion 175. Thereby, the space between the peripheral edge portion 173m of the lid portion 173 and the hole peripheral portion 113m of the battery case 110 (the case lid member 113) is hermetically sealed. Thus, the liquid injection hole 113e is hermetically sealed with the sealing member 170.

以上で説明したように、本実施形態1に係る電池100は、自身の内外を連通する注液孔(貫通孔)113eを有する電池ケース110と、電池ケース110内に収容された電極体120と、電池ケース110内に収容された電解液117と、注液孔113eを封止してなる封止部材170とを備える。   As described above, the battery 100 according to the first embodiment includes the battery case 110 having the liquid injection hole (through hole) 113e communicating with the inside and the outside of the battery 100, and the electrode body 120 accommodated in the battery case 110. And an electrolytic solution 117 accommodated in the battery case 110 and a sealing member 170 formed by sealing the liquid injection hole 113e.

このうち封止部材170は、注液孔113eに挿入されてなり、少なくとも注液孔113eに当接または近接する当接部(対向部)171tが熱可塑性樹脂を含む材質からなる挿入部171と、挿入部171を電池ケース110の外部から覆いつつ、電池ケース110のうち注液孔113eの周囲を囲む環状の孔周囲部113mに気密かつ環状に接合してなる蓋部173とを有する。そして、挿入部171と注液孔113eとの間は、気体が流通可能であり、蓋部173と孔周囲部113mとの接合により、封止部材170で注液孔113eを気密に封止してなる。   Among them, the sealing member 170 is inserted into the liquid injection hole 113e, and at least a contact part (opposing part) 171t that comes into contact with or close to the liquid injection hole 113e and an insertion part 171 made of a material containing a thermoplastic resin. The lid portion 173 is formed to be airtight and annularly joined to an annular hole peripheral portion 113m surrounding the liquid injection hole 113e in the battery case 110 while covering the insertion portion 171 from the outside of the battery case 110. Gas can flow between the insertion portion 171 and the liquid injection hole 113e, and the liquid injection hole 113e is hermetically sealed by the sealing member 170 by joining the lid portion 173 and the hole peripheral portion 113m. It becomes.

この電池100では、封止部材170の挿入部171と電池ケース110の注液孔113eとの間が、気体が流通可能な状態とされているので、後述するように電池ケース110内の気体が電池ケース110の外部に漏れ出ないか否かを検査することにより、封止部材170の蓋部173と電池ケース110の孔周囲部113mとの間の気密性を容易に検査できる。
そしてこれにより、蓋部173と電池ケース110の孔周囲部113mとの間に封止不良が生じている電池を容易に排除できる。従って、封止部材170の蓋部173と電池ケース110(孔周囲部113m)との間の気密信頼性が高く、長期間にわたり封止部材170で注液孔113eを気密に封止できる電池100とすることができる。
In this battery 100, gas can flow between the insertion portion 171 of the sealing member 170 and the liquid injection hole 113 e of the battery case 110, so that the gas in the battery case 110 flows as described later. By inspecting whether or not the battery case 110 leaks outside, the airtightness between the lid 173 of the sealing member 170 and the hole peripheral portion 113m of the battery case 110 can be easily inspected.
As a result, it is possible to easily eliminate a battery in which a sealing failure has occurred between the lid 173 and the hole peripheral portion 113m of the battery case 110. Therefore, the battery 100 has high hermetic reliability between the lid portion 173 of the sealing member 170 and the battery case 110 (hole peripheral portion 113m), and the liquid injection hole 113e can be hermetically sealed with the sealing member 170 for a long period of time. It can be.

また、本実施形態1では、電池ケース110内が減圧されているので、使用(充放電)に伴い電池ケース110内にガスが発生した場合でも、電池ケース110内の内圧が早期に高くなるのを抑制できる。従って、安全性の高い電池100とすることができる。   Further, in the first embodiment, since the inside of the battery case 110 is depressurized, even when gas is generated in the battery case 110 due to use (charging / discharging), the internal pressure in the battery case 110 increases early. Can be suppressed. Therefore, the battery 100 with high safety can be obtained.

次いで、上記電池100の製造方法について説明する。
まず、別途形成した帯状の正極板121及び負極板131を、帯状のセパレータ141を介して互いに重ね(図3参照)、巻き芯を用いて軸線AX周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する(図2参照)。
Next, a method for manufacturing the battery 100 will be described.
First, a separately formed belt-like positive electrode plate 121 and negative electrode plate 131 are overlapped with each other via a belt-like separator 141 (see FIG. 3) and wound around an axis AX using a winding core. Thereafter, this is compressed into a flat shape to form the electrode body 120 (see FIG. 2).

また、安全弁113j及び注液孔113eを形成したケース蓋部材113を用意し、3種類の端子金具151,152,153と、3種類の絶縁部材155,156,157とを用いて、このケース蓋部材113に正極端子150及び負極端子160を固設する(図4参照)。その後、正極端子150と電極体120の正極集電部121mとを接続すると共に、負極端子160と電極体120の負極集電部131mとを接続する。   Further, a case lid member 113 having a safety valve 113j and a liquid injection hole 113e is prepared, and this case lid is formed using three types of terminal fittings 151, 152, 153 and three types of insulating members 155, 156, 157. The positive electrode terminal 150 and the negative electrode terminal 160 are fixed to the member 113 (see FIG. 4). Thereafter, the positive electrode terminal 150 and the positive electrode current collector 121m of the electrode body 120 are connected, and the negative electrode terminal 160 and the negative electrode current collector 131m of the electrode body 120 are connected.

次に、ケース本体部材111及び絶縁フィルム包囲体115を用意し、ケース本体部材111内に絶縁フィルム包囲体115を介して電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、レーザ溶接により、ケース本体部材111とケース蓋部材113とを溶接して、電池ケース110を形成する。   Next, a case main body member 111 and an insulating film enclosure 115 are prepared, the electrode body 120 is accommodated in the case main body 111 via the insulating film enclosure 115, and the opening 111h of the case main body member 111 is formed as a case lid member. Close with 113. The case body member 111 and the case lid member 113 are welded by laser welding to form the battery case 110.

次に、ケース本体部材111とケース蓋部材113との間の気密性を検査する。具体的には、この電池100をチャンバ内に入れて、チャンバ内をヘリウムガスで充満させると共に、ケース蓋部材113の注液孔113eに吸引用ノズルを気密に装着して、電池ケース110の内部を減圧する。ケース本体部材111とケース蓋部材113との間に封止不良がある場合には、電池ケース110外のヘリウムガスが電池ケース110内に侵入するので、この侵入したヘリウムガスを検知することで、ケース本体部材111とケース蓋部材113との間の気密性を検査する。   Next, the airtightness between the case main body member 111 and the case lid member 113 is inspected. Specifically, the battery 100 is placed in the chamber, the chamber is filled with helium gas, and a suction nozzle is airtightly attached to the liquid injection hole 113e of the case lid member 113 so that the inside of the battery case 110 is filled. The pressure is reduced. When there is a sealing failure between the case main body member 111 and the case lid member 113, the helium gas outside the battery case 110 enters the battery case 110. By detecting this invading helium gas, The airtightness between the case main body member 111 and the case lid member 113 is inspected.

次に、この電池を、真空チャンバ内に入れて、真空チャンバ内を減圧する(具体的にはゲージ圧:−60KPa)。そして、注液工程において、注液用ノズルを注液孔113e内に挿入して、注液用ノズルから電池ケース110内に電解液117を注液する。このように減圧下で電解液117の注液を行うことで、電解液117を電極体120の内部にまで確実に注液できる。   Next, this battery is put in a vacuum chamber, and the inside of the vacuum chamber is depressurized (specifically, gauge pressure: −60 KPa). In the liquid injection step, a liquid injection nozzle is inserted into the liquid injection hole 113e, and the electrolytic solution 117 is injected into the battery case 110 from the liquid injection nozzle. Thus, by injecting the electrolyte solution 117 under reduced pressure, the electrolyte solution 117 can be reliably injected even into the electrode body 120.

次に、清掃工程において、注液孔113eの周囲(孔周囲部113mを含む)を清掃する。具体的には、不織布により、注液孔113eの周囲を拭く。前述した電解液117の注入の際に、電解液117が注液孔113eの周囲に付着するおそれがあるが、この清掃工程で注液孔113eの周囲を清掃するので、注液孔113eの周囲を清浄状態とすることができる。   Next, in the cleaning step, the periphery of the liquid injection hole 113e (including the hole peripheral portion 113m) is cleaned. Specifically, the periphery of the liquid injection hole 113e is wiped with a nonwoven fabric. When the electrolyte solution 117 is injected, the electrolyte solution 117 may adhere to the periphery of the injection hole 113e. Since the periphery of the injection hole 113e is cleaned in this cleaning process, the periphery of the injection hole 113e is removed. Can be in a clean state.

また別途、挿入部171と蓋部173とからなる封止部材170(図7参照)を、例えば射出成形により形成しておく。挿入部171は、前述のように、ゴム弾性を有する樹脂と熱可塑性樹脂とを含む材質により形成する。具体的には、ゴム弾性を有する樹脂であるエチレンプロピレンゴム(EPDM)と、熱可塑性樹脂であるポリプロピレン(PP)とを80:20(重量比)の割合で混合した樹脂により、挿入部171を形成する。   Separately, a sealing member 170 (see FIG. 7) including the insertion portion 171 and the lid portion 173 is formed by, for example, injection molding. As described above, the insertion portion 171 is formed of a material including a resin having rubber elasticity and a thermoplastic resin. Specifically, the insertion portion 171 is made of a resin obtained by mixing ethylene propylene rubber (EPDM), which is a resin having rubber elasticity, and polypropylene (PP), which is a thermoplastic resin, at a ratio of 80:20 (weight ratio). Form.

そして、引き続き減圧下で仮封止工程を行う。即ち、この封止部材170のうちの挿入部171を、電池ケース110(ケース蓋部材113)の外部から注液孔113eに圧入し、当接部171tを注液孔113eに圧接させると共に、封止部材170のうちの蓋部173の周縁部173mを、電池ケース110のうちケース蓋部材113の孔周囲部113mに当接させる(図8参照)。これにより、挿入部171で注液孔113eを気密に封止(仮封止)すると共に、蓋部173により挿入部171を電池ケース110の外部から覆う。この仮封止の状態では、挿入部171のうち、注液孔113eの角部113faに当接した当接部171tは、主に弾性変形して、注液孔113eの角部113faに密着している。このため、挿入部171と注液孔113eとの間が気密に封止されている。   Then, a temporary sealing process is performed under reduced pressure. That is, the insertion portion 171 of the sealing member 170 is press-fitted into the liquid injection hole 113e from the outside of the battery case 110 (case lid member 113), and the contact portion 171t is pressed into the liquid injection hole 113e and sealed. A peripheral edge portion 173m of the lid portion 173 of the stopper member 170 is brought into contact with a hole peripheral portion 113m of the case lid member 113 of the battery case 110 (see FIG. 8). Thus, the injection hole 113e is hermetically sealed (temporarily sealed) by the insertion portion 171 and the insertion portion 171 is covered from the outside of the battery case 110 by the lid portion 173. In the temporarily sealed state, the contact portion 171t of the insertion portion 171 that contacts the corner portion 113fa of the liquid injection hole 113e is mainly elastically deformed and is in close contact with the corner portion 113fa of the liquid injection hole 113e. ing. For this reason, the space between the insertion portion 171 and the liquid injection hole 113e is hermetically sealed.

その後、真空チャンバ内を大気圧に戻して、真空チャンバから電池を取り出す。これにより、電池ケース110内が減圧された状態となる。その際、注液孔113eが仮封止されていない場合には、電池ケース110内に収容された電解液117が、電池外部に漏れ出るおそれがある。しかし、本実施形態1では、前述の仮封止工程において、挿入部171で注液孔113eを仮封止しているので、電解液117が電池外部に漏れ出るのを確実に防止できる。   Thereafter, the inside of the vacuum chamber is returned to atmospheric pressure, and the battery is removed from the vacuum chamber. Thereby, the inside of battery case 110 will be in the pressure-reduced state. At that time, if the liquid injection hole 113e is not temporarily sealed, the electrolyte 117 contained in the battery case 110 may leak out of the battery. However, in the first embodiment, since the liquid injection hole 113e is temporarily sealed by the insertion portion 171 in the temporary sealing step described above, the electrolyte 117 can be reliably prevented from leaking outside the battery.

次に、本封止工程と加熱工程とを同時に行う(図5参照)。即ち、封止部材170の蓋部173を電池ケース110の孔周囲部113mに気密かつ環状に接合する(本封止工程)。またこれと共に、挿入部171を加熱して、当接部171tと注液孔113eとの間の気密性を消失させて、挿入部171と注液孔113eとの間を気体が流通可能な状態とする(加熱工程)。   Next, the main sealing step and the heating step are performed simultaneously (see FIG. 5). That is, the lid portion 173 of the sealing member 170 is airtightly and annularly joined to the hole peripheral portion 113m of the battery case 110 (main sealing step). At the same time, the insertion portion 171 is heated to eliminate the airtightness between the contact portion 171t and the liquid injection hole 113e, and the gas can flow between the insertion portion 171 and the liquid injection hole 113e. (Heating process).

具体的には、レーザ溶接により、蓋部173の周縁部173mと電池ケース110の孔周囲部113mとを溶接して円環状の溶接部175を形成することにより、蓋部173の周縁部173mと電池ケース110の孔周囲部113mとの間を気密に封止する。その際、レーザ溶接で発生する熱が、挿入部171にも伝わり、挿入部171が加熱される。この熱により、挿入部171をなす熱可塑性樹脂(本実施形態1では、PP)は軟化して可塑性を示すので、挿入部171の当接部171tに生じていた弾性変形が無くなり、冷却後の当接部171tは、塑性変形のみが生じた状態となる。これにより、挿入部171と注液孔113eとの間が、気体が流通可能な状態となる。   Specifically, by welding the peripheral portion 173m of the lid portion 173 and the hole peripheral portion 113m of the battery case 110 by laser welding to form an annular welded portion 175, the peripheral portion 173m of the lid portion 173 The space between the hole periphery 113m of the battery case 110 is hermetically sealed. At that time, heat generated by laser welding is also transmitted to the insertion portion 171 and the insertion portion 171 is heated. Due to this heat, the thermoplastic resin forming the insertion portion 171 (PP in the first embodiment) is softened and exhibits plasticity, so that the elastic deformation that has occurred in the abutting portion 171t of the insertion portion 171 is eliminated, and after the cooling, The contact portion 171t is in a state where only plastic deformation has occurred. Thereby, between the insertion part 171 and the liquid injection hole 113e will be in the state which can distribute | circulate gas.

次に、コンディショニング工程(初期充放電工程)において、この電池100の充放電を行う。その際、電池ケース110内には、水素などのガスが発生にする。
更に、本実施形態1では、気密検査工程において、封止部材170の蓋部173と電池ケース110の孔周囲部113mとの間の気密性を検査する。具体的には、この電池100を真空チャンバ内に置いて、真空チャンバ内を減圧する(具体的には、ゲージ圧:−90KPa)。そして、封止部材170の近傍に、水素ガス検知器(Hydrogen Leak Detector H2000:センシスター社製)を設置して、120秒間、水素ガスを検知する。
Next, the battery 100 is charged / discharged in a conditioning process (initial charge / discharge process). At that time, gas such as hydrogen is generated in the battery case 110.
Further, in the first embodiment, in the airtightness inspection process, the airtightness between the lid portion 173 of the sealing member 170 and the hole surrounding portion 113m of the battery case 110 is inspected. Specifically, the battery 100 is placed in a vacuum chamber, and the inside of the vacuum chamber is depressurized (specifically, gauge pressure: −90 KPa). A hydrogen gas detector (Hydrogen Leak Detector H2000: manufactured by Sensister Co., Ltd.) is installed in the vicinity of the sealing member 170 to detect hydrogen gas for 120 seconds.

前述のように、電池ケース110内には、初期充放電の際に発生した水素ガスが存在するので、蓋部173の周縁部173mと電池ケース110の孔周囲部113mとの間に封止不良が生じている場合には、この水素ガスが、気体が流通可能な状態とされている挿入部171と注液孔113eとの間を通じ、更に、蓋部173の周縁部173mと電池ケース110の孔周囲部113mとの間を通じて、電池ケース110の外部に漏れ出る。従って、水素ガス検知器により水素ガスが検知できれば、蓋部173の周縁部173mと電池ケース110の孔周囲部113mとの間に封止不良が生じていることが判るので、このような封止不良のある電池を排除できる。かくして、電池100が完成する。   As described above, since the hydrogen gas generated during the initial charge / discharge is present in the battery case 110, the sealing failure between the peripheral portion 173m of the lid portion 173 and the hole peripheral portion 113m of the battery case 110 is poor. When this occurs, the hydrogen gas passes between the insertion portion 171 and the liquid injection hole 113e in which the gas can flow, and further, the peripheral portion 173m of the lid portion 173 and the battery case 110 It leaks out of the battery case 110 through the space around the hole 113m. Therefore, if hydrogen gas can be detected by the hydrogen gas detector, it can be seen that a sealing failure has occurred between the peripheral portion 173m of the lid 173 and the hole peripheral portion 113m of the battery case 110. A defective battery can be eliminated. Thus, the battery 100 is completed.

以上で説明したように、本実施形態1に係る電池100の製造方法は、挿入部171を、電解液117が収容された電池ケース110の注液孔(貫通孔)113eに電池ケース110の外部から圧入し、当接部(対向部)171tを注液孔113eに圧接させて、挿入部171で注液孔113eを気密に仮封止する仮封止工程と、仮封止工程の後、挿入部171を電池ケース110の外部から覆いつつ、蓋部173を電池ケース110の孔周囲部113mに気密かつ環状に接合する本封止工程と、本封止工程の後または本封止工程と同時に、挿入部171を加熱して当接部171tと注液孔113eとの間の気密性を消失させて、挿入部171と注液孔113eとの間を気体が流通可能な状態とする加熱工程とを備える。   As described above, in the method of manufacturing the battery 100 according to the first embodiment, the insertion portion 171 is inserted into the liquid injection hole (through hole) 113e of the battery case 110 in which the electrolytic solution 117 is accommodated. After the temporary sealing step, the contact portion (opposing portion) 171t is press-contacted to the liquid injection hole 113e, and the liquid injection hole 113e is temporarily sealed in the insertion portion 171; A main sealing step in which the lid portion 173 is airtightly and annularly joined to the hole peripheral portion 113m of the battery case 110 while covering the insertion portion 171 from the outside of the battery case 110; At the same time, the insertion portion 171 is heated to eliminate the airtightness between the abutting portion 171t and the liquid injection hole 113e, so that the gas can flow between the insertion portion 171 and the liquid injection hole 113e. A process.

この電池100の製造方法では、仮封止工程において、挿入部171で電池ケース110の注液孔113eを封止(仮封止)するので、その後の工程において、電池ケース110内に収容された電解液117が注液孔113eを通じて外部(孔周囲部113m等)に漏れ出るのを防止できる。従って、本封止工程の際に、注液孔113eから漏れ出た電解液117が蓋部173と電池ケース110の孔周囲部113mとの間に入り込んで、封止不良が生じるのを防止でき、蓋部173と孔周囲部113mとを確実に接合できる。   In the manufacturing method of the battery 100, since the injection hole 113e of the battery case 110 is sealed (temporarily sealed) by the insertion portion 171 in the temporary sealing step, the battery case 110 is accommodated in the battery case 110 in the subsequent step. It is possible to prevent the electrolytic solution 117 from leaking to the outside (such as the hole surrounding portion 113m) through the injection hole 113e. Therefore, in the main sealing step, it is possible to prevent the electrolyte solution 117 leaking from the liquid injection hole 113e from entering between the lid portion 173 and the hole peripheral portion 113m of the battery case 110 to cause a sealing failure. The lid portion 173 and the hole surrounding portion 113m can be reliably joined.

更に加熱工程では、挿入部171を加熱して、その当接部171tと注液孔113eとの間の気密性を消失させて、挿入部171と注液孔113eとの間を気体が流通可能な状態としている。このため、加熱工程後の電池では、電池ケース110内の気体が挿入部171と注液孔113eとの間を流通できるので、電池ケース110内の気体が電池ケース110の外部に漏れ出ないか否かを検査することにより、蓋部173と電池ケース110(孔周囲部113m)との間の気密性を容易かつ確実に検査できる。   Further, in the heating step, the insertion portion 171 is heated to eliminate the airtightness between the contact portion 171t and the liquid injection hole 113e, and gas can flow between the insertion portion 171 and the liquid injection hole 113e. State. For this reason, in the battery after the heating process, the gas in the battery case 110 can flow between the insertion portion 171 and the liquid injection hole 113e, so that the gas in the battery case 110 does not leak out of the battery case 110. By inspecting whether or not, the airtightness between the lid portion 173 and the battery case 110 (the hole surrounding portion 113m) can be easily and reliably inspected.

更に、本実施形態1では、加熱工程の後、封止部材170の蓋部173と電池ケース110の孔周囲部113mとの間の気密性を検査する気密検査工程を備える。
これにより、封止部材170の蓋部173と電池ケース110の孔周囲部113mとの間に封止不良が生じた電池100を確実に排除できる。従って、封止部材170の蓋部173と電池ケース110(孔周囲部113m)との間の気密信頼性が高く、長期間にわたり封止部材170で注液孔113eを気密に封止できる電池100を製造できる。
Furthermore, the first embodiment includes an airtight inspection process for inspecting the airtightness between the lid 173 of the sealing member 170 and the hole peripheral part 113m of the battery case 110 after the heating process.
Thereby, the battery 100 in which a sealing failure has occurred between the lid portion 173 of the sealing member 170 and the hole peripheral portion 113m of the battery case 110 can be reliably removed. Therefore, the battery 100 has high hermetic reliability between the lid portion 173 of the sealing member 170 and the battery case 110 (hole peripheral portion 113m), and the liquid injection hole 113e can be hermetically sealed with the sealing member 170 for a long period of time. Can be manufactured.

更に、本実施形態1では、挿入部171の少なくとも当接部171tをなす、熱可塑性樹脂を含む材質は、ゴム弾性を有する樹脂をも含む材質である。
このため、仮封止工程において、挿入部171の当接部171tと注液孔113eとを密着性を高くでき、挿入部171よる注液孔113eの気密封止(仮封止)をより確実なものとすることができる。
Furthermore, in the first embodiment, the material including the thermoplastic resin that forms at least the abutting portion 171t of the insertion portion 171 is a material including a resin having rubber elasticity.
For this reason, in the temporary sealing process, the contact part 171t of the insertion part 171 and the liquid injection hole 113e can be made highly adhesive, and the liquid injection hole 113e by the insertion part 171 can be more securely sealed (temporary sealing). Can be.

更に、本実施形態1では、仮封止工程を減圧下で行い、本封止工程を大気圧下で行う。
仮封止工程を減圧下で行っているので、通常使用時の電池ケース110内を減圧状態にすることができる。このため、コンディショニング(初期充放電)の際やその後の使用において、電池ケース110内にガスが発生しても、電池ケース110内の内圧が早期に高くなるのを抑制できる。また、挿入部171で注液孔113eを仮封止していない場合には、減圧下から大気圧下に戻す際に、電池ケース110内の電解液117が注液孔113eを通じて電池ケース110の外部に漏れ易い。しかし、前述のように、仮封止工程において挿入部171で注液孔113eを気密に仮封止しているので、減圧下から大気圧下に戻す際に電解液117が電池ケース110の外部に漏れ出るのを確実に防止できる。
一方、本封止工程は、大気圧下で行うので、減圧下で行う場合に比して、本封止工程を容易に行うことができる。
Furthermore, in this Embodiment 1, a temporary sealing process is performed under pressure reduction and this sealing process is performed under atmospheric pressure.
Since the temporary sealing process is performed under reduced pressure, the inside of the battery case 110 during normal use can be put into a reduced pressure state. For this reason, even if gas is generated in the battery case 110 during conditioning (initial charge / discharge) or in subsequent use, it is possible to suppress the internal pressure in the battery case 110 from increasing early. In addition, when the injection hole 113e is not temporarily sealed by the insertion portion 171, the electrolyte solution 117 in the battery case 110 passes through the injection hole 113e when the pressure is reduced from the reduced pressure to the atmospheric pressure. Easy to leak outside. However, as described above, the liquid injection hole 113e is temporarily sealed airtightly by the insertion portion 171 in the temporary sealing step, so that the electrolytic solution 117 is outside the battery case 110 when returning from the reduced pressure to the atmospheric pressure. It is possible to reliably prevent leakage.
On the other hand, since the main sealing step is performed under atmospheric pressure, the main sealing step can be performed more easily than when performed under reduced pressure.

更に、本実施形態1では、蓋部173及び電池ケース110は、それぞれ金属からなり、蓋部173と電池ケース110の孔周囲部113mとの接合を、溶接で行うと共に、溶接の際に発生する熱で、挿入部171を加熱することにより、本封止工程と加熱工程とを同時に行う。
このように溶接を利用して、本封止工程における蓋部173と電池ケース110(孔周囲部113m)との接合と、加熱工程における挿入部171の加熱とを同時に行うことで、工程が簡単になり、工数を減らすことができる。
Furthermore, in the first embodiment, the lid portion 173 and the battery case 110 are each made of metal, and the lid portion 173 and the hole peripheral portion 113m of the battery case 110 are joined by welding and are generated during welding. By heating the insertion portion 171 with heat, the main sealing step and the heating step are performed simultaneously.
Thus, the process is simplified by simultaneously joining the lid portion 173 and the battery case 110 (hole peripheral portion 113m) in the main sealing step and heating the insertion portion 171 in the heating step using welding. Therefore, man-hours can be reduced.

(試験結果)
次いで、本発明の効果を確認するために行った試験結果について説明する。この試験では、試験を容易かつ確実に行うために、電極体、絶縁フィルム包囲体及び電解液を電池ケース内に収容することなく、電池ケース、正極端子、負極端子及び封止部材のみにより試験用電池を作製した。また、電池外部から電池ケース内にエアを供給できるように、電池ケースのケース本体部材に配管を取り付けた。
(Test results)
Next, the results of tests conducted to confirm the effects of the present invention will be described. In this test, in order to easily and reliably perform the test, the electrode body, the insulating film enclosure, and the electrolytic solution are not accommodated in the battery case, but only for the battery case, the positive electrode terminal, the negative electrode terminal, and the sealing member. A battery was produced. Moreover, piping was attached to the case main body member of the battery case so that air could be supplied into the battery case from the outside of the battery.

試験用電池1として、上記実施形態1と同様の電池ケース110、正極端子150、負極端子160及び封止部材170により試験用電池を作製した。但し、本封止工程では、封止部材170の蓋部173のうち周縁部173mの全周を、電池ケース110の孔周囲部113mに円環状に溶接するのではなく、周縁部173mのうち周方向の90%の部分を溶接して、孔周囲部113mにC字状の溶接部を形成した。従って、この試験用電池1は、蓋部173と孔周囲部113mとの間に気体が流通可能な状態となっており、溶接時に蓋部173と孔周囲部113mとの間に封止不良が生じた状態に相当する。   As the test battery 1, a test battery was manufactured using the same battery case 110, positive electrode terminal 150, negative electrode terminal 160, and sealing member 170 as in the first embodiment. However, in this sealing step, the entire periphery of the peripheral portion 173m of the lid portion 173 of the sealing member 170 is not welded to the hole peripheral portion 113m of the battery case 110 in an annular shape, but the peripheral portion of the peripheral portion 173m. 90% of the direction was welded to form a C-shaped weld around the hole periphery 113m. Therefore, this test battery 1 is in a state where gas can flow between the lid portion 173 and the hole surrounding portion 113m, and there is a sealing failure between the lid portion 173 and the hole surrounding portion 113m during welding. Corresponds to the resulting state.

また、試験用電池2として、蓋部の大きさを直径3.0mmから6.0mmに変更し、それ以外は上記実施形態1と同様とした封止部材を用いて、また、電池ケース110、正極端子150及び負極端子160は上記実施形態1と同様として、試験用電池を作製した。但し、本封止工程では、試験用電池1と同様に、封止部材の蓋部のうち、周縁部の周方向90%の部分を溶接して、電池ケースの孔周囲部にC字状の溶接部を形成した。従って、この試験用電池2も、蓋部と孔周囲部との間に気体が流通可能な状態(封止不良に相当する)となっている。   Further, as the test battery 2, the size of the lid portion was changed from 3.0 mm to 6.0 mm, and other than that, a sealing member similar to that of the first embodiment was used, and the battery case 110, The positive electrode terminal 150 and the negative electrode terminal 160 were the same as in the first embodiment, and a test battery was produced. However, in the present sealing step, as in the test battery 1, a 90% circumferential portion of the peripheral portion of the lid portion of the sealing member is welded to form a C-shape around the hole of the battery case. A weld was formed. Therefore, this test battery 2 is also in a state in which gas can flow between the lid portion and the hole peripheral portion (corresponding to a sealing failure).

また、試験用電池3として、挿入部の材質を、EPDM:PP=80:20から、EPDM100%に変更し、それ以外は上記実施形態1と同様とした封止部材を用いて、また、電池ケース110、正極端子150及び負極端子160は上記実施形態1と同様として、試験用電池を作製した。この試験用電池3では、本封止工程において、上記実施形態1と同様に、封止部材の蓋部のうち周縁部の全周を、電池ケースの孔周囲部に円環状に溶接した。従って、この試験用電池3は、試験用電池1,2とは異なり、蓋部と孔周囲部と
の間が気密に封止されている。
Further, as the test battery 3, the material of the insertion portion was changed from EPDM: PP = 80: 20 to EPDM 100%, and other than that, a sealing member similar to that in the first embodiment was used, and the battery Case 110, positive electrode terminal 150, and negative electrode terminal 160 were the same as in the first embodiment, and a test battery was produced. In this test battery 3, in the main sealing step, the entire periphery of the peripheral portion of the lid portion of the sealing member was welded in an annular shape to the hole peripheral portion of the battery case in the same manner as in the first embodiment. Therefore, unlike the test batteries 1 and 2, the test battery 3 is hermetically sealed between the lid and the hole periphery.

また、試験用電池4として、試験用電池3と同様の各部材を用いて、試験用電池を作製した。但し、本封止工程では、試験用電池1,2と同様に、封止部材の蓋部のうち、周縁部の周方向90%の部分を溶接して、電池ケースの孔周囲部にC字状の溶接部を形成した。従って、この試験用電池4は、試験用電池3とは異なり、蓋部と孔周囲部との間に気体が流通可能な状態(封止不良に相当する)となっている。   In addition, as the test battery 4, a test battery was manufactured using the same members as the test battery 3. However, in this sealing step, as in the case of the test batteries 1 and 2, 90% of the circumferential direction of the peripheral portion of the lid portion of the sealing member is welded, and a C-shape is formed around the hole of the battery case. A shaped weld was formed. Therefore, unlike the test battery 3, the test battery 4 is in a state (corresponding to a sealing failure) in which gas can flow between the lid and the hole periphery.

Figure 0005672042
Figure 0005672042

次に、これらの試験用電池1〜4について気密性試験を行った。具体的には、これらの試験用電池1〜4を水中に完全に沈めた後、電池ケース内にエアを送り込み、封止部材近傍からのエア漏れの有無を、目視にてそれぞれ確認した。その結果、試験用電池1ではエア漏れが確認され、試験用電池2〜4ではエア漏れが確認されなかった。   Next, an airtightness test was performed on these test batteries 1 to 4. Specifically, after these test batteries 1 to 4 were completely submerged in water, air was fed into the battery case, and the presence or absence of air leakage from the vicinity of the sealing member was visually confirmed. As a result, air leakage was confirmed in the test battery 1, and no air leakage was confirmed in the test batteries 2 to 4.

またその後、これらの試験用電池1〜4について、挿入部を加熱する追加の加熱処理を行った。具体的には、120℃に加熱したヒータを、電池外部から封止部材の蓋部に当接させて、間接的に挿入部を加熱した。その後、これらの試験用電池1〜4について、上述の気密性試験を再び行った。その結果、試験用電池1,2ではエア漏れが確認され、試験用電池3,4ではエア漏れが確認されなかった。   Thereafter, an additional heat treatment for heating the insertion portion was performed on these test batteries 1 to 4. Specifically, a heater heated to 120 ° C. was brought into contact with the lid portion of the sealing member from the outside of the battery, and the insertion portion was indirectly heated. Then, the above-mentioned airtightness test was performed again about these test batteries 1-4. As a result, air leakage was confirmed in the test batteries 1 and 2, and no air leakage was confirmed in the test batteries 3 and 4.

このような試験結果を生じる理由は、以下の通りある。即ち、試験用電池1では、上記実施形態1で説明したように、本封止工程でレーザ溶接を行う際に、加熱工程も同時に行われる。即ち、試験用電池1では、レーザ溶接で発生した熱により挿入部が加熱されて、挿入部の当接部と注液孔との間の気密性が失われ、挿入部と注液孔との間に気体が流通可能な状態となっている。加えて、この試験用電池1は、前述のように、蓋部と孔周囲部との間に気体が流通可能な状態(封止不良に相当)となっている。従って、本封止後の最初の気密性試験において、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通り、更に、蓋部と孔周囲部との間を通って、電池外部に漏れ出るので、エア漏れが確認される。
このように、試験用電池1は、挿入部と注液孔との間に気体が流通可能であるので、蓋部と孔周囲部との間に気体が流通可能(封止不良に相当)であることを容易かつ確実に検査できる。
The reason for producing such a test result is as follows. That is, in the test battery 1, as described in the first embodiment, when laser welding is performed in the main sealing process, the heating process is also performed at the same time. That is, in the test battery 1, the insertion portion is heated by the heat generated by laser welding, and the airtightness between the contact portion of the insertion portion and the liquid injection hole is lost. The gas can be circulated between them. In addition, as described above, the test battery 1 is in a state in which gas can flow between the lid portion and the hole peripheral portion (corresponding to poor sealing). Therefore, in the first airtightness test after the main sealing, the air sent into the battery case passes between the insertion portion and the liquid injection hole, and further passes between the lid portion and the hole surrounding portion. Since it leaks outside the battery, air leakage is confirmed.
As described above, the test battery 1 allows gas to flow between the insertion portion and the liquid injection hole, so that gas can flow between the lid portion and the hole peripheral portion (corresponding to a sealing failure). You can easily and reliably inspect something.

なお、この試験用電池1では、追加の加熱処理後の気密性試験でも、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通り、更に、蓋部と孔周囲部との間を通って、電池外部に漏れ出る。従って、追加の加熱処理後の気密性試験でも、エア漏れが確認される。   In this test battery 1, even in the airtightness test after the additional heat treatment, the air sent into the battery case passes between the insertion portion and the liquid injection hole, and further, the lid portion and the hole surrounding portion. Leaks out of the battery. Therefore, air leakage is also confirmed in the airtightness test after the additional heat treatment.

試験用電池2では、封止部材の蓋部の直径が大きくなっているために、本封止工程でレーザ溶接を行っても、本発明に係る加熱工程までは行われない。即ち、試験用電池2では、レーザ溶接で発生する熱により挿入部が若干加熱されるものの、挿入部をなす熱可塑性樹脂(具体的にはPP)が軟化する程には加熱されないので、挿入部(当接部)に生じている弾性変形が保たれて、挿入部と注液孔との間の気密性が十分に維持される。従って、本封止後の最初の気密性試験において、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通過できないので、電池外部に漏れ出ない。このため、蓋部と孔周囲部との間に気体が流通可能(封止不良に相当)であるにも拘わらず、この気密性試験ではエア漏れを確認できない。つまり、挿入部と注液孔との間が気密に封止されているために、蓋部と孔周囲部との間に気体が流通可能(封止不良に相当)であることを、この気密性試験で確認できない。   In the test battery 2, since the diameter of the lid portion of the sealing member is large, even if laser welding is performed in the main sealing step, the heating step according to the present invention is not performed. That is, in the test battery 2, although the insertion portion is slightly heated by the heat generated by laser welding, the insertion portion is not heated to such an extent that the thermoplastic resin (specifically PP) forming the insertion portion is softened. The elastic deformation occurring in the (contact portion) is maintained, and the airtightness between the insertion portion and the liquid injection hole is sufficiently maintained. Therefore, in the first airtightness test after the main sealing, the air sent into the battery case cannot pass between the insertion portion and the liquid injection hole, and therefore does not leak out of the battery. For this reason, in spite of the fact that gas can flow between the lid portion and the hole peripheral portion (corresponding to sealing failure), air leakage cannot be confirmed in this airtightness test. That is, since the space between the insertion portion and the liquid injection hole is hermetically sealed, it is confirmed that the gas can flow between the lid portion and the peripheral portion of the hole (corresponding to sealing failure). It cannot be confirmed by sex test.

これに対し、追加の加熱処理後の気密性試験でエア漏れが確認できるのは、以下の通りである。即ち、追加の加熱処理を行うと、挿入部が加熱されて、挿入部をなす熱可塑性樹脂(具体的にはPP)が軟化するので、挿入部(当接部)と注液孔との間の気密性が失われ、挿入部と注液孔との間に気体が流通可能な状態となる。このため、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通り、更に、蓋部と孔周囲部との間を通って、電池外部に漏れ出る。従って、追加の加熱処理後の気密性試験では、エア漏れが確認される。このように、挿入部と注液孔との間を気体が流通可能な状態とすれば、蓋部と孔周囲部との間に気体が流通可能(封止不良に相当)であることを容易かつ確実に検査できる。   On the other hand, it is as follows that an air leak can be confirmed by the airtightness test after additional heat processing. That is, when the additional heat treatment is performed, the insertion portion is heated and the thermoplastic resin (specifically, PP) forming the insertion portion is softened, so that there is a gap between the insertion portion (contact portion) and the liquid injection hole. Airtightness is lost, and the gas can flow between the insertion portion and the liquid injection hole. For this reason, the air sent into the battery case passes between the insertion part and the liquid injection hole, and further passes between the lid part and the hole peripheral part and leaks out of the battery. Therefore, air leakage is confirmed in the airtightness test after the additional heat treatment. In this way, if the gas can flow between the insertion portion and the liquid injection hole, it is easy for the gas to flow between the lid portion and the hole peripheral portion (corresponding to a sealing failure). And can be inspected reliably.

試験用電池3では、封止部材のうち挿入部の材質が異なっているために、本封止工程でレーザ溶接を行っても、そもそも本発明に係る加熱工程が行われない。即ち、試験用電池3では、レーザ溶接で発生する熱により挿入部が加熱されるものの、この挿入部は熱可塑性樹脂を含まず、加熱により軟化する可塑性を示さないために、挿入部(当接部)に生じている弾性変形が保たれて、挿入部と注液孔との間の気密性が十分に維持される。従って、本封止後の最初の気密性試験において、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通過できないので、電池外部に漏れ出ない。このように、挿入部と注液孔との間が気密に封止されていると、蓋部と孔周囲部との間の気密性を検査できない。   In the test battery 3, since the material of the insertion portion of the sealing member is different, even if laser welding is performed in the main sealing step, the heating step according to the present invention is not performed in the first place. That is, in the test battery 3, although the insertion portion is heated by heat generated by laser welding, the insertion portion does not contain thermoplastic resin and does not exhibit plasticity that is softened by heating. The elastic deformation occurring in the portion) is maintained, and the airtightness between the insertion portion and the liquid injection hole is sufficiently maintained. Therefore, in the first airtightness test after the main sealing, the air sent into the battery case cannot pass between the insertion portion and the liquid injection hole, and therefore does not leak out of the battery. Thus, if the space between the insertion portion and the liquid injection hole is hermetically sealed, the airtightness between the lid portion and the hole surrounding portion cannot be inspected.

また更に、追加の加熱処理後の気密性試験でも、エア漏れが確認できないのは、以下の通りである。即ち、追加の加熱処理で挿入部が加熱されても、上述のように、挿入部は熱可塑性樹脂を含まず、軟化しないために、挿入部と注液孔との間の気密性が十分に維持される。このため、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通過できないので、電池外部に漏れ出ない。   Furthermore, it is as follows that air leakage cannot be confirmed even in the airtightness test after the additional heat treatment. That is, even if the insertion portion is heated by additional heat treatment, as described above, the insertion portion does not contain a thermoplastic resin and does not soften, so that the airtightness between the insertion portion and the injection hole is sufficiently high. Maintained. For this reason, since the air sent into the battery case cannot pass between the insertion portion and the liquid injection hole, it does not leak out of the battery.

試験用電池4は、試験用電池3と同様に、封止部材のうち挿入部の材質が異なっているために、試験用電池3と同様に、本封止工程でレーザ溶接を行っても、そもそも本発明に係る加熱工程が行われない。このため、本封止後の最初の気密性試験において、電池ケース内に送り込まれたエアは、挿入部と注液孔との間が気密に封止されているために、挿入部と注液孔との間を通過できない。従って、蓋部と孔周囲部との間の気密性までは検査できない。
また更に、追加の加熱処理後の気密性試験でも、エア漏れが確認できないのは、試験用電池3と同様に、挿入部と注液孔との間の気密性が保たれたままであるために、電池ケース内に送り込まれたエアは、挿入部と注液孔との間を通過できないからである。
Similarly to the test battery 3, the test battery 4 is different in the material of the insertion portion of the sealing member. Therefore, similarly to the test battery 3, even if laser welding is performed in this sealing process, In the first place, the heating step according to the present invention is not performed. For this reason, in the first airtightness test after the main sealing, the air sent into the battery case is hermetically sealed between the insertion portion and the liquid injection hole. Cannot pass between holes. Therefore, the airtightness between the lid and the hole periphery cannot be inspected.
Furthermore, in the airtightness test after the additional heat treatment, the reason why the air leakage cannot be confirmed is that the airtightness between the insertion portion and the liquid injection hole is maintained as in the case of the test battery 3. This is because the air sent into the battery case cannot pass between the insertion portion and the liquid injection hole.

以上、試験用電池1〜4についての試験結果から判るように、挿入部と注液孔との間を気体が流通可能な状態とすることで、蓋部と孔周囲部との間の気密性を容易かつ確実に検査できる。従って、封止不良のある電池を容易に排除でき、蓋部と孔周囲部との間の気密信頼性が高く、長期間にわたり封止部材で貫通孔を気密に封止できる電池とすることができる。   As described above, as can be seen from the test results for the test batteries 1 to 4, the gas tightness between the lid portion and the hole surrounding portion is achieved by allowing the gas to flow between the insertion portion and the liquid injection hole. Can be easily and reliably inspected. Therefore, a battery with poor sealing can be easily eliminated, and a battery with high airtight reliability between the lid portion and the hole peripheral portion and capable of sealing the through hole with a sealing member over a long period of time is provided. it can.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係る車両700は、上記実施形態1に係るリチウムイオン二次電池100を有する組電池710を搭載し、この組電池710(電池100)に蓄えた電気エネルギを、駆動源の駆動エネルギの全部または一部として使用するものである(図9参照)。
(Embodiment 2)
Next, a second embodiment will be described. The vehicle 700 according to the second embodiment includes the assembled battery 710 having the lithium ion secondary battery 100 according to the first embodiment, and the electric energy stored in the assembled battery 710 (battery 100) is driven by a drive source. It is used as all or part of energy (see FIG. 9).

この車両700は、組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この車両700は、車体790、エンジン740、これに取り付けられたフロントモータ720、リアモータ730、ケーブル750、インバータ760を備える。更に、この車両700は、複数の電池100,100,…を自身の内部に有する組電池710を備え、この組電池710(電池100)に蓄えられた電気エネルギを、フロントモータ720及びリアモータ730の駆動に利用している。
前述したように、電池100は、長期間にわたり封止部材170で注液孔113eを気密に封止できるので、この車両700の耐久性を高くできる。
The vehicle 700 is a hybrid vehicle on which an assembled battery 710 is mounted and driven using an engine 740, a front motor 720, and a rear motor 730 in combination. Specifically, the vehicle 700 includes a vehicle body 790, an engine 740, a front motor 720, a rear motor 730, a cable 750, and an inverter 760 attached thereto. Further, the vehicle 700 includes an assembled battery 710 having a plurality of batteries 100, 100,... Inside thereof, and the electric energy stored in the assembled battery 710 (battery 100) is transferred to the front motor 720 and the rear motor 730. It is used for driving.
As described above, since the battery 100 can hermetically seal the liquid injection hole 113e with the sealing member 170 for a long period of time, the durability of the vehicle 700 can be enhanced.

(実施形態3)
次いで、第3の実施の形態について説明する。本実施形態3に係る電池使用機器800は、上記実施形態1に係るリチウムイオン二次電池100を搭載し、このリチウムイオン二次電池100をエネルギ源の少なくとも1つとして使用するものである(図10参照)。
(Embodiment 3)
Next, a third embodiment will be described. A battery using device 800 according to the third embodiment is equipped with the lithium ion secondary battery 100 according to the first embodiment, and uses the lithium ion secondary battery 100 as at least one energy source (see FIG. 10).

この電池使用機器800は、上記実施形態1に係る電池100を含むバッテリパック810を搭載したハンマードリルである。この電池使用機器800は、本体820の底部821に、バッテリパック810が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギ源として利用している。前述したように、電池100は、長期間にわたり封止部材170で注液孔113eを気密に封止できるので、この電池使用機器800の耐久性を高くできる。   The battery using device 800 is a hammer drill equipped with a battery pack 810 including the battery 100 according to the first embodiment. In the battery using device 800, a battery pack 810 is accommodated in a bottom 821 of a main body 820, and the battery pack 810 is used as an energy source for driving a drill. As described above, since the battery 100 can hermetically seal the liquid injection hole 113e with the sealing member 170 for a long period of time, the durability of the battery using device 800 can be increased.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1〜3に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、上記実施形態1では、電池ケースの内外を連通する「貫通孔」として、電解液117を注入するための注液孔113eを例示したが、これに限られない。「貫通孔」として、例えば、電池ケース内の気体を抜くための空気孔などが挙げられる。また、「貫通孔」を設ける位置や「貫通孔」の形状も適宜変更できる。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first to third embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in Embodiment 1 described above, the liquid injection hole 113e for injecting the electrolytic solution 117 is illustrated as the “through hole” that communicates the inside and outside of the battery case, but is not limited thereto. Examples of the “through hole” include an air hole for venting gas in the battery case. In addition, the position where the “through hole” is provided and the shape of the “through hole” can be changed as appropriate.

また、上記実施形態1では、「封止部材」として、挿入部171と蓋部173とが一体化されたものと例示したが、挿入部171と蓋部173とを別体とすることもできる。また、挿入部171の大きさや形状、蓋部173の大きさや形状は適宜変更できる。   In the first embodiment, the “sealing member” is exemplified as the one in which the insertion portion 171 and the lid portion 173 are integrated. However, the insertion portion 171 and the lid portion 173 may be separated. . Further, the size and shape of the insertion portion 171 and the size and shape of the lid portion 173 can be changed as appropriate.

また、挿入部171を、EPDM:PP=80:20(重量比)からなる材質により形成しているが、材質はこれに限定されない。また、熱可塑性樹脂としてPPを用いているが、これに限定されず、また、ゴム弾性を有する樹脂としてEPDMを用いているが、これに限定されない。例えば、熱可塑性樹脂として、PPに代えて、或いはPPと共に、ポリエチレン(PE)などを用いることができる。また、ゴム弾性を有する樹脂として、EPDMに代えて、或いはEPDMと共に、スチレンブタジエンゴム(SBR)などを用いることができる。   Moreover, although the insertion part 171 is formed with the material which consists of EPDM: PP = 80: 20 (weight ratio), a material is not limited to this. Although PP is used as the thermoplastic resin, the invention is not limited to this, and EPDM is used as the resin having rubber elasticity, but the invention is not limited thereto. For example, polyethylene (PE) or the like can be used as the thermoplastic resin instead of PP or together with PP. As the resin having rubber elasticity, styrene butadiene rubber (SBR) or the like can be used instead of or together with EPDM.

また、ゴム弾性を有する樹脂と熱可塑性樹脂との配合比も適宜変更できるが、ゴム弾性を有する樹脂:熱可塑性樹脂を、90:10〜70:30(重量比)とするのが好ましい。熱可塑性樹脂の配合量を10wt%以上とすることで、加熱工程において、加熱により挿入部171の当接部171tと注液孔113eとの間の気密性が消失し易くなり、挿入部171と注液孔113eとの間を気体が流通可能な状態とするのが容易となる。
一方、ゴム弾性を有する樹脂の配合量を70wt%以上とすることで、仮封止工程において、挿入部171と注液孔113eの角部113faとの密着性が高くなるので、挿入部171による注液孔113eの仮封止をより確実に行うことができる。
Moreover, the compounding ratio of the resin having rubber elasticity and the thermoplastic resin can be appropriately changed, but the resin having rubber elasticity: thermoplastic resin is preferably 90:10 to 70:30 (weight ratio). By setting the blending amount of the thermoplastic resin to 10 wt% or more, in the heating step, the airtightness between the contact portion 171t of the insertion portion 171 and the liquid injection hole 113e is easily lost by heating, and the insertion portion 171 It becomes easy to make a gas flowable between the liquid injection hole 113e.
On the other hand, by setting the blending amount of the resin having rubber elasticity to 70 wt% or more, in the temporary sealing process, the adhesion between the insertion portion 171 and the corner portion 113fa of the liquid injection hole 113e is increased. Temporary sealing of the liquid injection hole 113e can be performed more reliably.

また、上記実施形態1では、挿入部171の全体を、熱可塑性樹脂を含む材質により形成しているが、挿入部171のうち、少なくとも当接部171tを熱可塑性樹脂を含む材質により形成すればよい。例えば、挿入部171のうち、当接部171tのみを熱可塑性樹脂を含む材質により形成し、それ以外の部分を熱可塑性樹脂を含まない樹脂や金属、セラミックなどの材質により形成してもよい。
また、上記実施形態1では、蓋部173を電池ケース110と同じ材質(アルミニウム)により形成しているが、材質は適宜変更できる。
In the first embodiment, the entire insertion portion 171 is formed of a material including a thermoplastic resin. However, if at least the contact portion 171t of the insertion portion 171 is formed of a material including a thermoplastic resin. Good. For example, in the insertion portion 171, only the contact portion 171t may be formed of a material including a thermoplastic resin, and the other portions may be formed of a material such as a resin, metal, or ceramic that does not include a thermoplastic resin.
In the first embodiment, the lid 173 is formed of the same material (aluminum) as the battery case 110, but the material can be changed as appropriate.

また、上記実施形態1では、蓋部173と電池ケース110の孔周囲部113mとの「接合」を、溶接により行っているが、これに限定されない。例えば、両者の「接合」をロウ材や接着剤を用いて行ってもよい。
また、上記実施形態1では、電池100の製造後においても、挿入部171(当接部171t)と注液孔113eとが当接しているものを例示したが、挿入部171と注液孔113eとが隙間を介して近接する形態としてもよい。
In the first embodiment, the “joining” of the lid portion 173 and the hole peripheral portion 113m of the battery case 110 is performed by welding, but is not limited thereto. For example, the “joining” of both may be performed using a brazing material or an adhesive.
In the first embodiment, the example in which the insertion portion 171 (the contact portion 171t) and the liquid injection hole 113e are in contact with each other even after the battery 100 is manufactured is illustrated. However, the insertion portion 171 and the liquid injection hole 113e are illustrated. It is good also as a form which adjoins through a clearance gap.

また、上記実施形態1では、減圧下において「注液工程」、「清掃工程」及び「仮封止工程」を行っているが、これらの各工程を大気圧下で行うこともできる。
また、上記実施形態1では、電池100の製造時に「気密検査工程」を行っているが、気密検査を電池の製造時以外に行ってもよい。例えば、電池100を実施形態2に係る車両700や実施形態3に係る電池使用機器800に搭載する直前に、気密検査を行ってもよい。
In the first embodiment, the “liquid injection process”, “cleaning process”, and “temporary sealing process” are performed under reduced pressure. However, these processes can be performed under atmospheric pressure.
In the first embodiment, the “airtight inspection process” is performed when the battery 100 is manufactured. However, the airtight inspection may be performed at a time other than when the battery is manufactured. For example, an airtight inspection may be performed immediately before the battery 100 is mounted on the vehicle 700 according to the second embodiment or the battery using device 800 according to the third embodiment.

また、上記実施形態1では、「本封止工程」と「加熱工程」とを同時に行っているが、「本封止工程」のみを行った後に別途「加熱工程」を行うようにしてもよいし、或いは、「本封止工程」と「加熱工程」とを同時に行った後に、更に別途「加熱工程」を行うようにしてもよい。この場合、「本封止工程」とは別に行う「加熱工程」としては、例えば、加熱したヒータを、電池外部から封止部材170の蓋部173に当接させて、挿入部171を加熱する手法が挙げられる。
また、上記実施形態1では、「気密検査工程」として、減圧下でガス検知器を用いて気体の漏れを検知しているが、これに限られない。例えば、電池100を水没させて、気体の漏れを目視等により確認してもよい。
In the first embodiment, the “main sealing step” and the “heating step” are performed at the same time. However, after only the “main sealing step” is performed, the “heating step” may be performed separately. Alternatively, after the “main sealing step” and the “heating step” are performed at the same time, a separate “heating step” may be performed. In this case, as the “heating step” performed separately from the “main sealing step”, for example, a heated heater is brought into contact with the lid portion 173 of the sealing member 170 from the outside of the battery to heat the insertion portion 171. A method is mentioned.
In the first embodiment, as the “air tightness inspection process”, gas leakage is detected using a gas detector under reduced pressure, but is not limited thereto. For example, the battery 100 may be submerged and the gas leakage may be confirmed visually.

また、上記実施形態2では、本発明に係る電池100を搭載する車両700として、ハイブリッド自動車を例示したが、これに限られない。本発明に係る電池を搭載する車両700としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。   Moreover, in the said Embodiment 2, although the hybrid vehicle was illustrated as the vehicle 700 carrying the battery 100 which concerns on this invention, it is not restricted to this. Examples of the vehicle 700 on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

また、上記実施形態3では、本発明に係る電池100を搭載する電池使用機器800として、ハンマードリルを例示したが、これに限られない。本発明に係る電池を搭載する電池使用機器800としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   In the third embodiment, the hammer drill is exemplified as the battery using device 800 on which the battery 100 according to the present invention is mounted. However, the embodiment is not limited thereto. Examples of the battery using device 800 equipped with the battery according to the present invention include various home appliances, office devices, and industrial devices driven by batteries, such as personal computers, mobile phones, battery-powered electric tools, and uninterruptible power supplies. Etc.

100 リチウムイオン二次電池(密閉型電池)
110 電池ケース
111 ケース本体部材
113 ケース蓋部材
113e 注液孔(貫通孔)
113m 孔周囲部
117 電解液
120 電極体
121 正極板
131 負極板
141 セパレータ
150 正極端子
160 負極端子
170 封止部材
171 挿入部
173 蓋部
173m 周縁部
175 溶接部
700 車両
710 組電池
800 電池使用機器
810 バッテリパック
100 Lithium ion secondary battery (sealed battery)
110 Battery case 111 Case body member 113 Case lid member 113e Injection hole (through hole)
113 m Hole peripheral portion 117 Electrolytic solution 120 Electrode body 121 Positive electrode plate 131 Negative electrode plate 141 Separator 150 Positive electrode terminal 160 Negative electrode terminal 170 Sealing member 171 Insertion portion 173 Lid portion 173 m Peripheral portion 175 Welding portion 700 Vehicle 710 Assembly battery 800 Battery use device 810 Battery pack

Claims (7)

自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
前記電池ケース内に収容された電解液と、
前記貫通孔を封止してなる封止部材であって、
前記貫通孔に挿入されてなり、少なくとも前記貫通孔に当接または近接する対向部が熱可塑性樹脂を含む材質からなる挿入部、及び、
前記挿入部を前記電池ケースの外部から覆いつつ、前記電池ケースのうち前記貫通孔の周囲を囲む環状の孔周囲部に気密かつ環状に接合してなる蓋部、を有する封止部材と、を備え、
前記挿入部と前記貫通孔との間は、気体が流通可能であり、前記蓋部と前記孔周囲部との前記接合により、前記封止部材で前記貫通孔を気密に封止してなる
密閉型電池の製造方法であって、
前記挿入部を、前記電解液が収容された前記電池ケースの前記貫通孔に前記電池ケースの外部から圧入し、前記対向部を前記貫通孔に圧接させて、前記挿入部で前記貫通孔を気密に仮封止する仮封止工程と、
前記仮封止工程の後、前記挿入部を前記電池ケースの外部から覆いつつ、前記蓋部を前記電池ケースの前記孔周囲部に気密かつ環状に接合する本封止工程と、
前記本封止工程の後または前記本封止工程と同時に、前記挿入部を加熱して前記対向部と前記貫通孔との間の気密性を消失させて、前記挿入部と前記貫通孔との間を気体が流通可能な状態とする加熱工程と、を備える
密閉型電池の製造方法。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
An electrolyte contained in the battery case;
A sealing member formed by sealing the through hole,
An insertion portion that is inserted into the through hole, and at least an opposing portion that is in contact with or close to the through hole is made of a material containing a thermoplastic resin, and
A sealing member having a lid portion that is airtightly and annularly joined to an annular hole peripheral portion surrounding the periphery of the through hole in the battery case while covering the insertion portion from the outside of the battery case. Prepared,
Gas can flow between the insertion portion and the through hole, and the sealing member is formed by sealing the through hole with the sealing member by the bonding between the lid portion and the hole peripheral portion. Type battery manufacturing method,
The insertion portion is press-fitted from the outside of the battery case into the through-hole of the battery case in which the electrolytic solution is stored, the opposing portion is pressed into the through-hole, and the through-hole is sealed in the insertion portion. A temporary sealing step of temporarily sealing,
After the temporary sealing step, the sealing step of airtightly and annularly joining the lid portion to the hole peripheral portion of the battery case while covering the insertion portion from the outside of the battery case;
After the main sealing step or simultaneously with the main sealing step, the insertion portion is heated to eliminate the airtightness between the facing portion and the through hole, and the insertion portion and the through hole And a heating step for allowing a gas to flow between them.
請求項1に記載の密閉型電池の製造方法であって、
前記加熱工程の後、前記封止部材の前記蓋部と前記電池ケースの前記孔周囲部との間の気密性を検査する気密検査工程を更に備える
密閉型電池の製造方法。
It is a manufacturing method of the sealed battery according to claim 1,
A method of manufacturing a sealed battery, further comprising an airtight inspection step of inspecting an airtightness between the lid portion of the sealing member and the hole peripheral portion of the battery case after the heating step.
請求項1または請求項2に記載の密閉型電池の製造方法であって、
前記熱可塑性樹脂を含む材質は、ゴム弾性を有する樹脂をも含む材質である
密閉型電池の製造方法。
It is a manufacturing method of the sealed battery according to claim 1 or 2,
The method for manufacturing a sealed battery, wherein the material including the thermoplastic resin is a material including a resin having rubber elasticity.
請求項1〜請求項3のいずれか一項に記載の密閉型電池の製造方法であって、
前記仮封止工程を減圧下で行い、前記本封止工程を大気圧下で行う
密閉型電池の製造方法。
It is a manufacturing method of the sealed type battery according to any one of claims 1 to 3,
A method for producing a sealed battery, wherein the temporary sealing step is performed under reduced pressure, and the main sealing step is performed under atmospheric pressure.
請求項1〜請求項4のいずれか一項に記載の密閉型電池の製造方法であって、
前記蓋部及び前記電池ケースは、それぞれ金属からなり、
前記蓋部と前記電池ケースの前記孔周囲部との前記接合を、溶接で行うと共に、前記溶接の際に発生する熱で、前記挿入部を加熱することにより、前記本封止工程と前記加熱工程とを同時に行う
密閉型電池の製造方法。
It is a manufacturing method of the sealed type battery according to any one of claims 1 to 4,
The lid and the battery case are each made of metal,
The joining between the lid portion and the hole peripheral portion of the battery case is performed by welding, and the insertion portion is heated by heat generated during the welding, thereby the main sealing step and the heating. The manufacturing method of the sealed battery which performs a process simultaneously.
自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
前記電池ケース内に収容された電解液と、
前記貫通孔を封止してなる封止部材であって、
前記貫通孔に挿入されてなり、少なくとも前記貫通孔に当接または近接する対向部が熱可塑性樹脂を含む材質からなる挿入部、及び、
前記挿入部を前記電池ケースの外部から覆いつつ、前記電池ケースのうち前記貫通孔の周囲を囲む環状の孔周囲部に気密かつ環状に接合してなる蓋部、を有する封止部材と、を備え、
前記挿入部と前記貫通孔との間は、気体が流通可能であり、前記蓋部と前記孔周囲部との前記接合により、前記封止部材で前記貫通孔を気密に封止してなる
密閉型電池。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
An electrolyte contained in the battery case;
A sealing member formed by sealing the through hole,
An insertion portion that is inserted into the through hole, and at least an opposing portion that is in contact with or close to the through hole is made of a material containing a thermoplastic resin, and
A sealing member having a lid portion that is airtightly and annularly joined to an annular hole peripheral portion surrounding the periphery of the through hole in the battery case while covering the insertion portion from the outside of the battery case. Prepared,
Gas can flow between the insertion portion and the through hole, and the sealing member is formed by sealing the through hole with the sealing member by the bonding between the lid portion and the hole peripheral portion. Type battery.
請求項6に記載の密閉型電池であって、
前記電池ケース内が減圧されてなる
密閉型電池。
The sealed battery according to claim 6,
A sealed battery in which the inside of the battery case is decompressed.
JP2011028443A 2011-02-14 2011-02-14 Sealed battery and method for manufacturing sealed battery Active JP5672042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028443A JP5672042B2 (en) 2011-02-14 2011-02-14 Sealed battery and method for manufacturing sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028443A JP5672042B2 (en) 2011-02-14 2011-02-14 Sealed battery and method for manufacturing sealed battery

Publications (2)

Publication Number Publication Date
JP2012169111A JP2012169111A (en) 2012-09-06
JP5672042B2 true JP5672042B2 (en) 2015-02-18

Family

ID=46973088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028443A Active JP5672042B2 (en) 2011-02-14 2011-02-14 Sealed battery and method for manufacturing sealed battery

Country Status (1)

Country Link
JP (1) JP5672042B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017873B2 (en) 2012-07-27 2016-11-02 トヨタ自動車株式会社 Sealed battery
JP5969356B2 (en) 2012-11-05 2016-08-17 トヨタ自動車株式会社 Sealed battery manufacturing method, sealed battery sealing member and sealed battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128648B2 (en) * 1998-03-19 2008-07-30 株式会社東芝 Sealed battery and manufacturing method thereof
JP4290633B2 (en) * 2004-11-04 2009-07-08 Necトーキン株式会社 Sealed battery
JP2011086382A (en) * 2009-10-13 2011-04-28 Toshiba Corp Sealed battery

Also Published As

Publication number Publication date
JP2012169111A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5969356B2 (en) Sealed battery manufacturing method, sealed battery sealing member and sealed battery
JP5814000B2 (en) Sealed battery
JP5780308B2 (en) battery
JP5690308B2 (en) Pouch type secondary battery and manufacturing method thereof
JP5754280B2 (en) Battery and manufacturing method thereof
KR101936058B1 (en) The sealing method of pouch type secondary battery
JP5821442B2 (en) Battery and battery manufacturing method
JP2013084480A (en) Method of manufacturing battery
JP5672042B2 (en) Sealed battery and method for manufacturing sealed battery
JP5724696B2 (en) Battery manufacturing method
JP2013084481A (en) Method of manufacturing battery, and battery
JP2013182722A (en) Battery and manufacturing method of the same
JP5742610B2 (en) Battery and battery manufacturing method
JP5675564B2 (en) Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method
KR20160076608A (en) Method for Manufacturing Battery Cell by Device for Eliminating Gas from Battery Cell
JP5949130B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
JP5772348B2 (en) Battery and battery manufacturing method
KR20150143683A (en) Production method for sealed batteries
JP5742644B2 (en) Battery manufacturing method and battery
KR101583409B1 (en) Apparatus of inspecting leakage of cap-assembly and inspecting method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R151 Written notification of patent or utility model registration

Ref document number: 5672042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250