JP5674084B2 - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method Download PDF

Info

Publication number
JP5674084B2
JP5674084B2 JP2009238297A JP2009238297A JP5674084B2 JP 5674084 B2 JP5674084 B2 JP 5674084B2 JP 2009238297 A JP2009238297 A JP 2009238297A JP 2009238297 A JP2009238297 A JP 2009238297A JP 5674084 B2 JP5674084 B2 JP 5674084B2
Authority
JP
Japan
Prior art keywords
polishing
polished
substrate
polishing pad
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009238297A
Other languages
Japanese (ja)
Other versions
JP2011083856A5 (en
JP2011083856A (en
Inventor
上田 武彦
武彦 上田
弘 東道
弘 東道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009238297A priority Critical patent/JP5674084B2/en
Publication of JP2011083856A publication Critical patent/JP2011083856A/en
Publication of JP2011083856A5 publication Critical patent/JP2011083856A5/en
Application granted granted Critical
Publication of JP5674084B2 publication Critical patent/JP5674084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、例えば半導体ウェハ等の基板や各種光学素子を研磨する研磨装置、およびこの装置を用いた研磨方法に関する。 The present invention relates to a polishing apparatus for polishing a substrate such as a semiconductor wafer and various optical elements , and a polishing method using the apparatus .

半導体ウェハ等の被研磨物の表面を平坦研磨する加工装置として、半導体ウェハを保持する対象物保持機構と、半導体ウェハの被研磨面に当接して研磨を行うシート状の研磨パッドおよびこの研磨パッドを平面状に貼付保持する貼付面を有した研磨支持体とからなる研磨ヘッドとを備え、この研磨ヘッドを対象物保持機構に保持された半導体ウェハの被研磨面に当接させながら、対象物保持機構と研磨ヘッドとを相対移動させて半導体ウェハの被研磨面の研磨を行うように構成された研磨装置が知られている(例えば、特許文献1を参照)。また、このような機械的研磨に加え、研磨パッドと半導体ウェハとの接触面に研磨剤(スラリー)を供給して研磨剤の化学的作用により上記研磨を促進させる化学機械研磨を行うCMP装置も知られている。   As a processing apparatus for flatly polishing the surface of an object to be polished such as a semiconductor wafer, an object holding mechanism for holding the semiconductor wafer, a sheet-like polishing pad for polishing while contacting the surface to be polished of the semiconductor wafer, and the polishing pad And a polishing head having a polishing support having an application surface for attaching and holding the substrate in a flat shape, and the object while contacting the polishing head with the surface to be polished of the semiconductor wafer held by the object holding mechanism There is known a polishing apparatus configured to polish a surface to be polished of a semiconductor wafer by relatively moving a holding mechanism and a polishing head (see, for example, Patent Document 1). In addition to such mechanical polishing, there is also a CMP apparatus that performs chemical mechanical polishing that promotes the polishing by the chemical action of the abrasive by supplying an abrasive (slurry) to the contact surface between the polishing pad and the semiconductor wafer. Are known.

特開2000−200747号公報JP 2000-200747 A

ところで、上記のような研磨装置を用いて行う半導体ウェハの研磨プロセスにおいては、被研磨面の平坦性および研磨量の均一性に対する所定の要求が満たされる必要がある。このような半導体ウェハの研磨状態には、研磨パッドの材料硬軟が大きく影響し、研磨パッドが硬質である場合と軟質である場合とで、その研磨特性が大きく異なることが知られている。例えば、研磨パッドが軟質材料からなる場合には、半導体ウェハの表面の凹凸形状に倣い易く研磨量の均一性は向上するが、被研磨面の平坦性(平坦度)は低下するという問題がある。一方、研磨パッドが硬質材料からなる場合には、被研磨面の平坦性(平坦度)は向上するが、半導体ウェハ表面の凹凸形状に倣い難く研磨量の均一性は低下してしまうという問題があった。つまり、研磨加工において平坦性および均一性の確保はトレードオフの関係となるため、平坦性および均一性に対する所定の要求を共に確保するのが困難であった。   By the way, in the semiconductor wafer polishing process performed using the polishing apparatus as described above, it is necessary to satisfy predetermined requirements for the flatness of the surface to be polished and the uniformity of the polishing amount. It is known that the polishing state of such a semiconductor wafer is greatly affected by the hardness and softness of the material of the polishing pad, and the polishing characteristics differ greatly depending on whether the polishing pad is hard or soft. For example, when the polishing pad is made of a soft material, it is easy to follow the uneven shape of the surface of the semiconductor wafer, and the uniformity of the polishing amount is improved, but the flatness (flatness) of the surface to be polished is reduced. . On the other hand, when the polishing pad is made of a hard material, the flatness (flatness) of the surface to be polished is improved, but it is difficult to follow the uneven shape of the surface of the semiconductor wafer and the uniformity of the polishing amount is reduced. there were. That is, in the polishing process, ensuring flatness and uniformity has a trade-off relationship, and it is difficult to ensure both predetermined requirements for flatness and uniformity.

本発明は、このような課題に鑑みてなされたものであり、研磨加工における平坦性および均一性に対する要求を充分な精度で満たすことが可能な構成の研磨装置、およびこの装置を用いた研磨方法を提供することを目的とする。 The present invention has been made in view of such problems, and a polishing apparatus having a configuration capable of satisfying requirements for flatness and uniformity in polishing processing with sufficient accuracy, and a polishing method using the apparatus The purpose is to provide.

本発明を例示する第1の態様に従えば、被研磨面を有する研磨対象物を研磨する研磨装置であって、前記被研磨面に接触する研磨面を有し、前記研磨面を前記被研磨面に接触させながら前記研磨対象物と相対移動することにより前記被研磨面を研磨する研磨部材と、前記研磨面を前記被研磨面に接触した状態において前記研磨部材から前記研磨対象物に接触加圧力を作用させる加圧機構と、前記研磨部材と前記研磨対象物との接触面内の複数の位置において、前記複数の位置のそれぞれに対応する部分の前記研磨部材の見かけ上の硬さを個別に制御する制御部とを備え、前記制御部は、前記研磨部材の厚さもしくは硬さの経時的変化に基づいて、前記研磨部材の見かけ上の硬さを制御するように構成される。 According to a first aspect illustrating the present invention, a polishing apparatus for polishing an object to be polished having a surface to be polished, the polishing apparatus having a polishing surface in contact with the surface to be polished, the polishing surface being the surface to be polished A polishing member that polishes the surface to be polished by moving relative to the object to be polished while being in contact with the surface; and the polishing member that contacts the object to be polished while the polishing surface is in contact with the surface to be polished. In a plurality of positions within a contact surface between the pressure mechanism for applying pressure and the polishing member and the object to be polished, the apparent hardness of the polishing member corresponding to each of the plurality of positions is individually determined. And a control unit configured to control the apparent hardness of the polishing member based on a change over time in the thickness or hardness of the polishing member .

本発明を例示する第2の態様に従えば、上記構成の研磨装置を用いて、接触面内の複数の点における研磨部材の見かけ上の硬さを個別に制御することにより、研磨部材により研磨対象物を研磨することを特徴とする研磨方法が提供される。
According to the second aspect exemplifying the present invention, by using the polishing apparatus configured as described above , the apparent hardness of the polishing member at a plurality of points in the contact surface is individually controlled, thereby polishing by the polishing member. A polishing method characterized by polishing an object is provided.

本発明によれば、研磨対象物の表面加工の平坦性および均一性に対する要求を充分な精度で満たすことが可能な研磨装置、およびこの装置を用いた研磨方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the grinding | polishing apparatus which can satisfy | fill the request | requirement with respect to the flatness and uniformity of surface processing of a grinding | polishing target object with sufficient precision, and the grinding | polishing method using this apparatus can be provided.

本発明の適用例として示す第1の実施形態に係る研磨装置の構成図である。It is a lineblock diagram of the polish device concerning a 1st embodiment shown as an example of application of the present invention. 軟質の研磨パッドを用いて基板を押圧したときの面圧分布を示す図である。It is a figure which shows surface pressure distribution when a board | substrate is pressed using a soft polishing pad. 軟質の研磨パッドを用いて研磨したときの基板の径方向と研磨量との関係を示すグラフである。It is a graph which shows the relationship between the radial direction of a board | substrate when grind | polishing using a soft polishing pad, and polishing amount. 軟質の研磨パッドが基板表面に倣った状態を説明するための図である。It is a figure for demonstrating the state in which the soft polishing pad followed the substrate surface. 硬質の研磨パッドを用いて基板を押圧したときの面圧分布を示す図である。It is a figure which shows the surface pressure distribution when a board | substrate is pressed using a hard polishing pad. 硬質の研磨パッドを用いて研磨したときの基板の径方向と研磨量との関係を示すグラフである。It is a graph which shows the relationship between the radial direction of a board | substrate when grind | polishing using a hard polishing pad, and polishing amount. 硬質の研磨パッドが基板表面に倣い難い状態を説明するための図である。It is a figure for demonstrating the state where a hard polishing pad does not follow a substrate surface easily. 機能性材料を利用して基板表面を研磨する方法を説明するための図である。It is a figure for demonstrating the method of grind | polishing the substrate surface using a functional material. 上記研磨装置の要部構成図である。It is a principal part block diagram of the said polishing apparatus. 上記研磨装置を用いて研磨パッドと基板とを接触させたときの面圧分布の変化を説明するための図である。It is a figure for demonstrating the change of surface pressure distribution when a polishing pad and a board | substrate are made to contact using the said polishing apparatus. 第2の実施形態に係る研磨装置を示す要部構成図である。It is a principal part block diagram which shows the grinding | polishing apparatus which concerns on 2nd Embodiment. (A)は均一系電気粘性流体の特性を示すグラフであり、(B)は分散系電気粘性流体の特性を示すグラフである。(A) is a graph which shows the characteristic of a homogeneous electrorheological fluid, (B) is a graph which shows the characteristic of a dispersion system electrorheological fluid. 第3の実施形態に係る研磨装置を示す要部構成図である。It is a principal part block diagram which shows the grinding | polishing apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る研磨装置を示す要部構成図である。It is a principal part block diagram which shows the grinding | polishing apparatus which concerns on 4th Embodiment.

以下、図面を参照して本発明の好ましい実施形態について説明する。本発明を適用した第1の実施形態に係る研磨装置の概略構成を図1に示している。この研磨装置1は、半導体ウェハやガラス基板等からなる研磨対象物たる基板Wをその上面側に着脱自在に保持する基板保持機構10と、基板保持機構10の上方に対向して設けられ下面側において研磨パッド22が装着される研磨ヘッド20と、研磨パッド22の中心部から研磨剤を供給する研磨剤供給装置40と、研磨パッド22を下向きに加圧する加圧機構50と、基板Wや研磨パッド22の回転、基板Wに対する研磨パッド22の昇降および揺動、研磨加工部への研磨剤の供給、研磨パッド22の加圧等、研磨装置1の作動を統括的に制御する制御装置60とを主体に構成される。この研磨装置1では、研磨パッド22の寸法は基板Wの寸法よりも小さく、研磨パッド22を基板Wに接触させた状態で双方を相対移動させることにより、基板Wの被研磨面(上面)全体を研磨できるようになっている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a polishing apparatus according to a first embodiment to which the present invention is applied. The polishing apparatus 1 includes a substrate holding mechanism 10 that detachably holds a substrate W, which is a polishing object made of a semiconductor wafer, a glass substrate, or the like, on its upper surface side, and a lower surface side provided above the substrate holding mechanism 10. , The polishing head 20 to which the polishing pad 22 is mounted, the polishing agent supply device 40 for supplying the polishing agent from the center of the polishing pad 22, the pressurizing mechanism 50 for pressing the polishing pad 22 downward, the substrate W and the polishing A control device 60 for comprehensively controlling the operation of the polishing apparatus 1, such as rotation of the pad 22, raising and lowering and swinging of the polishing pad 22 with respect to the substrate W, supply of an abrasive to the polishing processing unit, pressurization of the polishing pad 22, etc. It is composed mainly of. In this polishing apparatus 1, the size of the polishing pad 22 is smaller than the size of the substrate W, and the polishing pad 22 is moved relative to the substrate W in contact with the substrate W, whereby the entire surface to be polished (upper surface) of the substrate W is moved. Can be polished.

基板保持機構10は、基板Wを保持可能な保持テーブル11と、この保持テーブル11の下部から鉛直下方に延びるスピンドル12とを備えており、図示しない電動モータを有して構成される基板回転機構13によりスピンドル12に回転駆動力を伝達して保持テーブル11が図1に矢印Rで示すように垂直軸まわりに回転駆動させるようになっている。保持テーブル11は、セラミック等の高剛性材料を用いて、その上面の形状を基板Wの形状に合わせた平面度の高い定盤状に形成され、この保持テーブル11上に保持された基板Wの研磨対象面(すなわち被研磨面)が上向きの水平姿勢で保持される。   The substrate holding mechanism 10 includes a holding table 11 that can hold a substrate W and a spindle 12 that extends vertically downward from the lower portion of the holding table 11 and includes an electric motor (not shown). 13, the rotational driving force is transmitted to the spindle 12 so that the holding table 11 is rotationally driven around the vertical axis as shown by an arrow R in FIG. The holding table 11 is made of a highly rigid material such as ceramic and is formed into a platen shape having a high flatness in which the shape of the upper surface is matched to the shape of the substrate W, and the holding table 11 is formed on the holding table 11. The surface to be polished (that is, the surface to be polished) is held in an upward horizontal posture.

研磨ヘッド20は、保持テーブル11と同様の高剛性材料を用いて平面度の高い円板状に形成されたヘッド部材21と、このヘッド部材21の下面に取り付けられた研磨パッド22(研磨布)と、ヘッド部材21を支持して鉛直上方に延びるスピンドル23とを備えている。研磨パッド22は、全体として円状のフィルム状に形成されヘッド部材21の下面に貼り付けられて研磨面が下向きの水平姿勢で保持される。研磨パッド22は研磨によって経時的に劣化していく消耗品であるため、ヘッド部材21の下面(研磨パッド取付面)に着脱可能に取り付け可能にして(例えば、接着剤による)、交換作業を容易にしている。また、研磨パッド22を研磨パッド支持体に接着剤で固定し、この研磨パッド支持体をヘッド部材21に真空吸着により取り付けることにより、研磨パッド22をヘッド部材21から着脱可能としてもよい。   The polishing head 20 includes a head member 21 formed in a disk shape with high flatness using a high-rigidity material similar to the holding table 11, and a polishing pad 22 (polishing cloth) attached to the lower surface of the head member 21. And a spindle 23 that supports the head member 21 and extends vertically upward. The polishing pad 22 is formed in a circular film shape as a whole and is affixed to the lower surface of the head member 21 so that the polishing surface is held in a horizontal posture with the downward direction. Since the polishing pad 22 is a consumable item that deteriorates over time due to polishing, it can be removably attached to the lower surface (polishing pad mounting surface) of the head member 21 (for example, with an adhesive) to facilitate replacement work. I have to. Further, the polishing pad 22 may be detachable from the head member 21 by fixing the polishing pad 22 to the polishing pad support with an adhesive and attaching the polishing pad support to the head member 21 by vacuum suction.

スピンドル23は、図示しない電動モータを有して構成されるヘッド回転機構30を用いて図1に矢印R′で示すように垂直軸まわりに回転駆動されるようになっており、これにより研磨ヘッド20全体を回転させて研磨パッド22を水平面内で回転させることができる。また、スピンドル23は、複数の図示しない電動モータを有して構成されるヘッド移動機構31を用いて三次元的に平行移動可能に構成されており、これにより研磨ヘッド20全体を垂直姿勢のまま三次元的、すなわち、上下、左右および前後方向に平行移動させることができる。   The spindle 23 is rotationally driven around a vertical axis as shown by an arrow R ′ in FIG. 1 using a head rotating mechanism 30 having an electric motor (not shown), whereby the polishing head The entire pad 20 can be rotated to rotate the polishing pad 22 in a horizontal plane. In addition, the spindle 23 is configured to be three-dimensionally movable using a head moving mechanism 31 having a plurality of electric motors (not shown), thereby allowing the entire polishing head 20 to remain in a vertical posture. It can be translated in three dimensions, that is, up and down, left and right, and front and rear.

研磨剤供給装置40は、図示しない配管を通じて、スピンドル23、ヘッド部材21および研磨パッド22の中心部に上下に貫通して形成された研磨剤供給通路24から研磨パッド22の中心部(研磨パッド22と基板Wとの当接部)に研磨剤を供給する。   The polishing agent supply device 40 is connected to a central portion of the polishing pad 22 (polishing pad 22) from a polishing agent supply passage 24 formed vertically through the central portion of the spindle 23, the head member 21 and the polishing pad 22 through a pipe (not shown). And the substrate W).

加圧機構50は、研磨ヘッド20の内部に形成された加圧室(図示せず)にエアを供給して研磨パッド22を下向きに加圧する、いわゆるエアバッグ式のパッド加圧機構により構成されており、ヘッド部材21に保持された研磨パッド22の研磨面(下面)を基板Wの被研磨面(上面)に当接させた状態で加圧室の圧力を制御することにより、基板Wと研磨パッド22との接触圧力、すなわち研磨圧力を全体的に調節可能になっている。   The pressurizing mechanism 50 includes a so-called airbag-type pad pressurizing mechanism that supplies air to a pressurizing chamber (not shown) formed inside the polishing head 20 to pressurize the polishing pad 22 downward. By controlling the pressure in the pressurizing chamber while the polishing surface (lower surface) of the polishing pad 22 held by the head member 21 is in contact with the surface to be polished (upper surface) of the substrate W, The contact pressure with the polishing pad 22, that is, the polishing pressure can be adjusted as a whole.

制御装置60は、例えば、CPU(中央演算処理装置)、ROM(リード・オン・メモリ)、RAM(ランダム・アクセス・メモリ)等からなる所謂マイクロコンピュータを有して構成されており、予め設定記憶された制御プログラムや、研磨対象に応じて読み込まれた加工プログラムに基づいて、基板保持機構10、研磨ヘッド20、研磨剤供給装置40、加圧機構50等の各作動を制御する。   The control device 60 includes, for example, a so-called microcomputer including a CPU (Central Processing Unit), a ROM (Read On Memory), a RAM (Random Access Memory), and the like. Each operation of the substrate holding mechanism 10, the polishing head 20, the abrasive supply device 40, the pressurizing mechanism 50, and the like is controlled based on the control program that has been read and the processing program that has been read according to the polishing target.

このような構成の研磨装置1を用いて基板Wの研磨を行うには、まず、保持テーブル11の上面側に研磨対象となる基板Wが取り付けられ(このとき基板Wの中心は保持テーブル11の回転中心に一致させる)、制御装置50から出力される基板回転信号により基板回転機構13が作動して保持テーブル11が矢印R方向へ回転駆動される。次に、制御装置50がヘッド移動機構31にヘッド移動信号を出力することで研磨ヘッド20が基板Wの上方位置に移動し、ヘッド回転機構30にヘッド回転信号を出力することで研磨ヘッド21が矢印R′方向へ回転駆動する。続いて、制御装置60がヘッド移動機構31にヘッド移動信号を出力することで研磨ヘッド20が下方へ移動し、研磨パッド22の研磨面(下面)が基板Wの被研磨面(上面)に当接する。   In order to polish the substrate W using the polishing apparatus 1 having such a configuration, first, the substrate W to be polished is attached to the upper surface side of the holding table 11 (at this time, the center of the substrate W is the center of the holding table 11). The substrate rotation mechanism 13 is actuated by the substrate rotation signal output from the control device 50 to rotate the holding table 11 in the direction of arrow R). Next, the control device 50 outputs a head movement signal to the head movement mechanism 31 to move the polishing head 20 to a position above the substrate W, and outputs a head rotation signal to the head rotation mechanism 30 to cause the polishing head 21 to move. It is driven to rotate in the direction of arrow R ′. Subsequently, the control device 60 outputs a head movement signal to the head moving mechanism 31 to move the polishing head 20 downward, so that the polishing surface (lower surface) of the polishing pad 22 contacts the surface to be polished (upper surface) of the substrate W. Touch.

次に、制御装置60が加圧機構50にエア供給信号を出力することで研磨ヘッド20の圧力室内にエア圧が供給され、この圧力室内のエア圧を受けて研磨パッド22が所定の研磨荷重(研磨圧力)で基板Wを押圧する。そして、制御装置60がヘッド移動機構31にヘッド移動信号を出力することで研磨ヘッド20が略水平面内(研磨パッド22と基板Wとの接触面の面内方向)で揺動する。このとき同時に、制御装置60が研磨剤供給装置40に研磨剤供給信号を出力することで研磨剤供給装置40より研磨剤(例えば、シリカ粒を含んだ液状のスラリー)が圧送され、研磨パッド22の下面側に研磨剤が供給される。これにより基板Wの被研磨面は、研磨剤の供給を受けつつ基板W自身の回転運動と、研磨ヘッド20の(すなわち研磨パッド22の)回転および揺動運動とにより研磨される。   Next, when the control device 60 outputs an air supply signal to the pressurizing mechanism 50, air pressure is supplied into the pressure chamber of the polishing head 20, and the polishing pad 22 receives a predetermined polishing load by receiving the air pressure in the pressure chamber. The substrate W is pressed with (polishing pressure). Then, when the control device 60 outputs a head movement signal to the head moving mechanism 31, the polishing head 20 swings in a substantially horizontal plane (in the in-plane direction of the contact surface between the polishing pad 22 and the substrate W). At the same time, the control device 60 outputs a polishing agent supply signal to the polishing agent supply device 40, whereby the polishing agent (for example, liquid slurry containing silica particles) is pumped from the polishing agent supply device 40, and the polishing pad 22. An abrasive is supplied to the lower surface side of the substrate. As a result, the surface to be polished of the substrate W is polished by the rotational motion of the substrate W itself and the rotational and swinging motion of the polishing head 20 (that is, the polishing pad 22) while being supplied with the abrasive.

ところで、このような研磨装置1を用いて行う基板Wの研磨プロセスに際しては、被研磨面の平坦性および当該面内での研磨量の均一性に対する所定の要求が満たされる必要がある。基板Wの研磨状態には、研磨パッド22の材料硬軟が大きく影響しており、研磨パッド22が軟らかい場合と硬い場合とでその研磨特性が大きく異なることが知られている。   By the way, in the polishing process of the substrate W performed using such a polishing apparatus 1, it is necessary to satisfy predetermined requirements for the flatness of the surface to be polished and the uniformity of the polishing amount in the surface. It is known that the hardness of the material of the polishing pad 22 greatly affects the polishing state of the substrate W, and the polishing characteristics differ greatly depending on whether the polishing pad 22 is soft or hard.

ここで、研磨パッド22において硬質材料を用いた場合と軟質材料を用いた場合とでの一般的な研磨特性を比較する。まず、軟質材料の研磨パッド22を用いて面圧測定および研磨量測定を行った結果を以下に例示する。ここでは、内径4mm、外径266mmのバフ用研磨布に厚さ0.5mmのポロン層を貼り付けた二層構造の研磨布(研磨パッド22)をヘッド部材21に取り付けており、この研磨パッド22としては、例えば、東レコーテックス社製[シーガル(スエードタイプ発泡ウレタン)]等が例示される。研磨パッド22と基板Wとの間に、圧電素子をマトリクス状に並設した図示しないタクタイルセンサ(面圧分布センサ)を挿入し、加圧機構50によって研磨パッド22を基板Wに対して3psiの圧力で加圧して得られた、研磨パッド22と基板Wとの間に生じる圧力分布(接触圧力分布)を図2に示している。図2については、白色に近く色の薄い部分が高圧、黒色に近く色の濃い部分が低圧というように、色の濃淡によって圧力の高低がわかるようになっている(以下に示す、図5および図10においても同様とする)。この図から、研磨パッド22と基板Wとの間には、その接触面内において全体的に均一な圧力がかかっていることがわかる。   Here, the general polishing characteristics in the case of using a hard material and the case of using a soft material in the polishing pad 22 will be compared. First, the results of surface pressure measurement and polishing amount measurement using a soft material polishing pad 22 are exemplified below. Here, a polishing cloth (polishing pad 22) having a two-layer structure in which a poron layer having a thickness of 0.5 mm is attached to a buffing polishing cloth having an inner diameter of 4 mm and an outer diameter of 266 mm is attached to the head member 21. Examples of 22 include Toray Cortex [Seagull (suede type urethane foam)] and the like. A tactile sensor (surface pressure distribution sensor) (not shown) in which piezoelectric elements are arranged in a matrix is inserted between the polishing pad 22 and the substrate W, and the pressing mechanism 50 moves the polishing pad 22 to the substrate W at 3 psi. FIG. 2 shows a pressure distribution (contact pressure distribution) generated between the polishing pad 22 and the substrate W obtained by pressurization with pressure. In FIG. 2, the level of pressure can be determined by the color shading, such that the portion near white and light in color is high pressure, and the portion close to black and dark in color is low pressure (shown below in FIG. 5 and FIG. 5). The same applies to FIG. 10). From this figure, it can be seen that a uniform pressure is generally applied between the polishing pad 22 and the substrate W within the contact surface.

さらに、この加圧状態を維持したまま、研磨パッド回転数100rpm、基板回転数101rpmとし、研磨パッド22を基板Wに対して所定の水平方向に25mmだけ揺動させて、基板Wとして直径300mmの酸化膜ウェハを研磨した結果を図3に示す。この図3は、基板Wの直径方向に対して被研磨面内での研磨量をプロットしたグラフである。この図からも、基板Wの被研磨面内(ウェハ面内)において均一な研磨量で研磨されていることがわかる。   Further, while maintaining this pressurized state, the rotation speed of the polishing pad is 100 rpm and the rotation speed of the substrate is 101 rpm, the polishing pad 22 is swung by 25 mm in a predetermined horizontal direction with respect to the substrate W, and the substrate W has a diameter of 300 mm. The result of polishing the oxide film wafer is shown in FIG. FIG. 3 is a graph in which the polishing amount in the surface to be polished is plotted with respect to the diameter direction of the substrate W. Also from this figure, it can be seen that the substrate W is polished with a uniform polishing amount within the surface to be polished (within the wafer surface).

このように、軟質の研磨パッド22を用いた場合には、基板Wに均一な圧力(研磨圧力)がかかるため、研磨量の均一性が確保できることがわかる。ところが、基板W表面に図4に示すような凹凸形状がある場合、軟質の研磨パッド22を使用して研磨を行うと、研磨パッド22が基板W表面に倣ってその形状が大きく変形するため、平坦化したい部分(凸部分)を選択的に研磨できず(この場合でも被研磨面全体を一様な研磨量で研磨することとなるため)、基板Wの被研磨面の平坦性(平坦度)を確保するのが困難である。   Thus, it can be seen that when the soft polishing pad 22 is used, a uniform pressure (polishing pressure) is applied to the substrate W, so that the uniformity of the polishing amount can be secured. However, when the surface of the substrate W has an uneven shape as shown in FIG. 4, when the polishing is performed using the soft polishing pad 22, the shape of the polishing pad 22 is greatly deformed following the surface of the substrate W. The portion to be flattened (the convex portion) cannot be selectively polished (even in this case, the entire surface to be polished is polished with a uniform polishing amount), and the flatness (flatness) of the surface to be polished of the substrate W ) Is difficult to secure.

続いて、硬質材料の研磨パッド22を用いて面圧測定および研磨量測定を行った結果を以下に例示する。ここでは、内径4mm、外径266mmの連続発泡ポリウレタンに厚さ0.5mmのポロン層を貼り付けた二層構造の研磨布(研磨パッド22)をヘッド部材21に取り付けている。基板Wには直径300mmの酸化膜ウェハを用いて保持テーブル11に固定保持(例えば、真空吸着等)している。研磨パッド22と基板Wとの間に、圧電素子をマトリクス状に並設した図示しないタクタイルセンサ(面圧分布センサ)を挿入し、加圧機構50によって研磨パッド22を基板Wに対して3psiの圧力で加圧して得られた、研磨パッド22と基板Wとの間に生じる圧力分布(接触圧力分布)を図5に示している。この硬質の研磨パッド22では、研磨パッド22が基板Wの表面に適切に倣わず、また、パッドコンディションによる影響が大きく、例えば、研磨パッド22の表面凹凸ムラ、研磨パッド22の厚みムラ、接着層の厚みムラ、ヘッド部材21への張りムラ(研磨パッド22とヘッド部材21との間に侵入した気泡による)などの影響により、研磨パッド22と基板Wとが均一な接触圧力とはならないことがわかる。   Subsequently, the results of surface pressure measurement and polishing amount measurement using a hard material polishing pad 22 are exemplified below. Here, a double-layered polishing cloth (polishing pad 22) in which a 0.5 mm-thick poron layer is bonded to continuous foamed polyurethane having an inner diameter of 4 mm and an outer diameter of 266 mm is attached to the head member 21. An oxide film wafer having a diameter of 300 mm is fixedly held on the holding table 11 (for example, vacuum suction or the like) on the substrate W. A tactile sensor (surface pressure distribution sensor) (not shown) in which piezoelectric elements are arranged in a matrix is inserted between the polishing pad 22 and the substrate W, and the pressing mechanism 50 moves the polishing pad 22 to the substrate W at 3 psi. FIG. 5 shows a pressure distribution (contact pressure distribution) generated between the polishing pad 22 and the substrate W obtained by pressurization with pressure. In this hard polishing pad 22, the polishing pad 22 does not appropriately follow the surface of the substrate W, and the influence of the pad condition is large. For example, uneven surface unevenness of the polishing pad 22, uneven thickness of the polishing pad 22, adhesion The contact pressure between the polishing pad 22 and the substrate W does not become uniform due to the influence of uneven layer thickness, uneven tension on the head member 21 (due to bubbles entering between the polishing pad 22 and the head member 21), and the like. I understand.

さらに、この加圧状態を維持したまま、先ほどと同じ加工条件で基板W(酸化膜ウェハ)を研磨し、この基板Wの直径方向に対して被研磨面内での研磨量をプロットしたグラフを図6に示す。この場合、研磨圧力(接触圧力)が均一とはならないため、ウェハ中心部とその周辺部での研磨量が大きく異なり、基板W表面全体に亘って研磨量の均一性を確保するのが困難となる。一方、基板W表面に図7に示すような凹凸形状がある場合に硬質のパッド22を使用して研磨を行うと、研磨パッド22が基板W表面に倣い難いため被研磨面の平坦性は向上する。ただし、硬質の研磨パッド22では、前述したように研磨パッド22の各種ムラの影響を強く受け易いため、高い面精度での研磨パッド22の維持管理が必要になるとともに、硬質の研磨パッド22には傷が入り易いという欠点もあるため、パッドコンディションを最適に維持するのが困難であるという問題がある。   Further, while maintaining this pressure state, a graph in which the substrate W (oxide film wafer) is polished under the same processing conditions as before, and the amount of polishing in the surface to be polished with respect to the diameter direction of the substrate W is plotted. As shown in FIG. In this case, since the polishing pressure (contact pressure) is not uniform, the polishing amount at the wafer central portion and its peripheral portion are greatly different, and it is difficult to ensure the uniformity of the polishing amount over the entire surface of the substrate W. Become. On the other hand, when the surface of the substrate W has an uneven shape as shown in FIG. 7, if polishing is performed using the hard pad 22, the flatness of the surface to be polished is improved because the polishing pad 22 is difficult to follow the surface of the substrate W. To do. However, since the hard polishing pad 22 is easily affected by various irregularities of the polishing pad 22 as described above, it is necessary to maintain and manage the polishing pad 22 with high surface accuracy. Has a drawback that it is easy to be damaged, so that it is difficult to maintain the pad condition optimally.

ここで、次式(1)にプレストン(Preston)の式を示す。
Q=K×P×V …(1)
なお、Qを研磨速度とし、Kをプレストン係数とし、Pを研磨パッド22と基板Wとの接触圧力(研磨圧力)とし、Vを研磨パッド22と基板Wとの相対移動速度(剪断速度)とする。
Here, the following equation (1) shows a Preston equation.
Q = K × P × V (1)
Q is the polishing rate, K is the Preston coefficient, P is the contact pressure between the polishing pad 22 and the substrate W (polishing pressure), and V is the relative moving speed (shear rate) between the polishing pad 22 and the substrate W. To do.

このプレストンの式によれば、研磨速度は研磨パッド22と基板Wとの相対移動速度と研磨圧力とに比例することがわかる。一般に、被研磨面内での相対移動速度(剪断速度)は当該面内の位置によらずほぼ一定であることから(相対移動速度が被研磨面内で常時一定となるような加工条件を採用するため)、被研磨面全体に亘って均一な研磨を行うためには(研磨量の均一性を確保するためには)、被研磨面上の各点において均一な研磨圧力が作用するように調節して、被研磨面上の各点において研磨速度を等しくすればよい。   According to the Preston equation, it can be seen that the polishing rate is proportional to the relative moving speed between the polishing pad 22 and the substrate W and the polishing pressure. Generally, the relative movement speed (shear rate) in the surface to be polished is almost constant regardless of the position in the surface (processing conditions are used so that the relative movement speed is always constant in the surface to be polished). In order to perform uniform polishing over the entire surface to be polished (to ensure the uniformity of the polishing amount), a uniform polishing pressure is applied to each point on the surface to be polished. The polishing rate may be made equal by adjusting each point on the surface to be polished.

一方、被研磨面の平坦性を確保するためには、平坦化したい領域もしくは修正したい領域に作用する研磨圧力が他の領域よりも相対的に高くなるように調節して、当該領域における研磨速度を他の領域よりも相対的に高くすればよい。ところが従来、基板Wに作用する研磨圧力の制御は、加圧機構50により研磨パッド22全体に対して一様な研磨荷重が加わるような制御であったため、被研磨面の各点に対して研磨圧力を個別に制御することができなかった。   On the other hand, in order to ensure the flatness of the surface to be polished, the polishing pressure acting on the region to be flattened or the region to be corrected is adjusted to be relatively higher than other regions, and the polishing rate in the region is adjusted. Should be relatively higher than other regions. However, conventionally, the control of the polishing pressure acting on the substrate W has been such that a uniform polishing load is applied to the entire polishing pad 22 by the pressurizing mechanism 50, so that polishing is performed on each point of the surface to be polished. The pressure could not be controlled individually.

そこで、本実施形態に係る研磨装置1では、軟質な研磨パッド22を用いてパッド表面を被研磨面に倣わせつつ、可逆的に物理的特性が変化する機能性材料を用いて研磨パッド22と基板Wとの接触面の各点に対して研磨圧力を個別に制御することにより、基板Wの表面研磨に対する均一性および平坦性の両立を図ることを可能としている。それでは、以下に、図8を追加参照して、研磨圧力を制御する方法について基本的な概念から説明する。   Therefore, in the polishing apparatus 1 according to the present embodiment, the soft pad 22 is used to make the pad surface follow the surface to be polished, while using the functional material whose physical characteristics reversibly change with the polishing pad 22. By individually controlling the polishing pressure for each point on the contact surface with the substrate W, it is possible to achieve both uniformity and flatness for surface polishing of the substrate W. Now, a method of controlling the polishing pressure will be described from the basic concept with reference to FIG. 8 additionally.

まず、図8(A)に示すように、研磨対象物である基板Wを例えば可撓性の容器内に封入された機能性材料Fの上に載置する。このとき軟質の研磨パッド22を用いて基板Wを押圧することで、基板Wの被研磨面(上面)全体に対して均一な圧力(接触圧力)が作用していると仮定する。ここで用いられる機能性材料Fとしては、比較的低温度で固体から液体に相転移する低融点合金や、電場の有無によってレオロジー特性が変化する電気粘性流体、磁場の有無によってレオロジー特性が変化する磁気粘性流体などが例示される。   First, as shown in FIG. 8A, a substrate W, which is an object to be polished, is placed on a functional material F sealed in, for example, a flexible container. At this time, it is assumed that a uniform pressure (contact pressure) is applied to the entire surface to be polished (upper surface) of the substrate W by pressing the substrate W using the soft polishing pad 22. The functional material F used here includes a low melting point alloy that undergoes a phase transition from a solid to a liquid at a relatively low temperature, an electrorheological fluid whose rheological properties change depending on the presence or absence of an electric field, and a rheological property that changes depending on the presence or absence of a magnetic field. Examples include a magnetorheological fluid.

この機能性材料Fを利用して、その物理的特性(例えば電気粘性流体においては弾粘性)を変化させた場合を図8(B)を追加参照して考えてみる。機能性材料Fにおける物理的特性が軟化した領域E1においては、基板Wを介して研磨パッド22からの研磨圧力が印加されることで下方に変形するため、その領域E1においては上部に位置する基板Wおよび研磨パッド22も下地に倣って下方に変形する。そのため、機能性材料Fにおける物理的特性が軟化した領域E1では、研磨パッド22と基板Wとの間の研磨圧力が一部解放されて低下することとなる。そのため、物理的特性を変化(軟化)させた領域E1と変化させていない領域E2とで、基板Wと研磨パッド22との間に生じる研磨圧力に違いを生じさせることができる。よって、このようにターゲットとなる領域ごとに機能性材料Fの物理的特性を変化させることで、研磨パッド22と基板Wとの間に生じる研磨圧力を任意に制御することが可能になる。 Consider the case where the physical characteristics (for example, elastic viscosity in the case of an electrorheological fluid) are changed using this functional material F with reference to FIG. 8B. In the region E 1 where the physical characteristics of the functional material F are softened, the polishing material is deformed downward by applying the polishing pressure from the polishing pad 22 through the substrate W, and therefore, the region E 1 is located at the upper part. The substrate W and the polishing pad 22 to be deformed downward along the base. For this reason, in the region E 1 where the physical characteristics of the functional material F are softened, the polishing pressure between the polishing pad 22 and the substrate W is partially released and decreases. Therefore, in a region E 2 that is not physical property changes by changing the area E 1 obtained by (softened) can result in a difference in polishing pressure generated between the substrate W and the polishing pad 22. Therefore, the polishing pressure generated between the polishing pad 22 and the substrate W can be arbitrarily controlled by changing the physical characteristics of the functional material F for each target region.

また、上記で例示したように、基板W表面に凹凸形状が存在する場合には、まず、研磨したい凸部分以外の平坦な領域に対して機能性材料の物理的特性を軟化させることで、凸部分以外の領域に作用する研磨圧力を相対的に低くする。これにより、凸部分に作用する研磨圧力が相対的に高くなる。よって、凸部分に対する研磨速度が他よりも高くなるため、凸部分が大きく除去されていき、基板W表面が平坦化される。その後、機能性材料の物理的特性を元に戻す(物理的特性を全領域で均一に戻す)ことで、研磨パッド22の研磨面と基板Wの被研磨面との接触面全面に均一な研磨圧力が作用することになり、基板Wの表面全面を均一な研磨量で研磨することができる。なお、基板Wの局所的な凹凸部分を選択的に研磨する、いわゆる修正研磨にも適用することができ、この場合には、凹凸部分を研磨除去して被研磨面が平坦化した時点で研磨を終了させることもできる。   In addition, as illustrated above, when an uneven shape is present on the surface of the substrate W, first, the physical characteristics of the functional material are softened with respect to a flat region other than the convex portion to be polished, thereby forming a convex shape. The polishing pressure acting on the region other than the portion is relatively lowered. Thereby, the polishing pressure acting on the convex portion becomes relatively high. Therefore, since the polishing rate for the convex portion is higher than the others, the convex portion is largely removed, and the surface of the substrate W is flattened. Thereafter, the physical characteristics of the functional material are restored to their original values (the physical characteristics are uniformly restored in the entire region), so that the entire contact surface between the polishing surface of the polishing pad 22 and the surface to be polished of the substrate W is polished uniformly. The pressure acts, and the entire surface of the substrate W can be polished with a uniform polishing amount. Note that it can also be applied to so-called correction polishing in which local uneven portions of the substrate W are selectively polished. In this case, polishing is performed when the uneven surface is removed by polishing and the surface to be polished is flattened. Can also be terminated.

なお、上記のように基板Wに作用する研磨圧力を制御するには、軟質性を有する研磨パッド22を用いることが必要であり、例えば、JIS規格K6301で規定される研磨布硬度40未満を使用することが望ましい。これは、研磨パッド22を基板Wに沿って倣わせることを前提として、ベースとなる機能性材料の物理的変化(例えば硬軟変化)に対応して、研磨パッド22と基板Wとの間の研磨圧力(接触圧力)を変化させるからである。   In addition, in order to control the polishing pressure acting on the substrate W as described above, it is necessary to use the polishing pad 22 having flexibility, for example, using a polishing cloth hardness of less than 40 defined in JIS standard K6301. It is desirable to do. This is based on the assumption that the polishing pad 22 is made to follow the substrate W, and between the polishing pad 22 and the substrate W in accordance with a physical change (for example, a change in hardness) of the functional material serving as a base. This is because the polishing pressure (contact pressure) is changed.

次に、研磨装置1において機能性材料を用いて研磨圧力を制御可能な具体的構成について図9を追加参照して説明する。なお、ここでは基板保持機構10により保持される研磨対象物たる基板Wとしては、いわゆる6025レクチル(縦152mm×横152mm×厚6.35mm)を例示している。   Next, a specific configuration in which the polishing pressure can be controlled using a functional material in the polishing apparatus 1 will be described with reference to FIG. Here, as the substrate W that is a polishing object held by the substrate holding mechanism 10, a so-called 6025 reticle (length 152 mm × width 152 mm × thickness 6.35 mm) is illustrated.

基板保持機構10において、保持テーブル11の上面側には機能性材料として特定温度の融点を有する低融点合金F1が2つの可撓性容器14(14a,14b)にそれぞれ封入されて配設されている。低融点合金F1としては、例えば大阪アサヒメタル製[U−Alloy47]が例示され、これはビスマス(Bi)、インジウム(In)、錫(Sn)、カドミウム(Cd)、鉛(Pb)からなる五元共晶合金を用いており、その融点が47℃程度に調整されている。可撓性容器14には、例えば、厚さ0.1mmのポリプロピンフィルムを裁断し、レクチルマスク(基板W)に対応した大きさ(縦152.0mm×横76.0mm)に熱融着させた袋状の容器が例示され、この容器内に低融点合金が200g程度だけ封入されている。この可撓性容器14は、気密性を有するとともに、被接触物(被保持物)の外形に対応する柔軟性を有している。 In the substrate holding mechanism 10, the upper surface side of the holding table 11 is a low melting point alloy F 1 has two flexible container 14 (14a, 14b) to be sealed respectively disposed with a melting point of a specific temperature as a functional material ing. As the low melting point alloy F 1 , for example, [U-Alloy 47] manufactured by Osaka Asahi Metal is exemplified, which is composed of bismuth (Bi), indium (In), tin (Sn), cadmium (Cd), and lead (Pb). A quinary eutectic alloy is used, and its melting point is adjusted to about 47 ° C. For example, a 0.1 mm-thick polypropine film is cut into the flexible container 14 and heat-sealed to a size corresponding to the reticle mask (substrate W) (vertical 152.0 mm × horizontal 76.0 mm). A bag-shaped container is illustrated, and about 200 g of a low melting point alloy is sealed in the container. The flexible container 14 has airtightness and flexibility corresponding to the outer shape of the contacted object (held object).

可撓性容器14と保持テーブル11との間には、各可撓性容器14に対応して電熱ヒータ15,15がそれぞれ配設されている。電熱ヒータ15は電源装置16に電気的に接続されており、制御装置60から送られてくる制御信号に応じて電源装置16から電力供給を受けることで駆動制御されている。よって、可撓性容器14内の低融点合金F1は、特定温度よりも低温状態では固相状態に維持され、電熱ヒータ15からの加熱を受けて特定温度以上に達することで溶融することとなる。 Between the flexible container 14 and the holding table 11, electric heaters 15, 15 are disposed corresponding to the flexible containers 14, respectively. The electric heater 15 is electrically connected to the power supply device 16 and is driven and controlled by receiving power supply from the power supply device 16 in accordance with a control signal sent from the control device 60. Therefore, the low melting point alloy F 1 in the flexible container 14 is maintained in a solid state in a state lower than the specific temperature, and melts by receiving the heating from the electric heater 15 and reaching the specific temperature or higher. Become.

このような構成において、低融点合金F1の相転移を利用して研磨パッド22と基板Wとの間の研磨圧力を部分的に制御可能であることを検証(シミュレーション)した結果を以下に示す。はじめに電熱ヒータ15を駆動させて低融点合金F1の温度が融点(47℃)以上に達するまで加熱し、両可撓性容器14中の低融点合金F1を液相状態にそれぞれ保持した状態を想定する。低融点合金F1が液相状態において、両可撓性容器14(低融点合金F1)の上面に基板Wを載置し、更にその上に圧電素子をマトリクス上に並設した図示しないタクタイルセンサ(面圧分布センサ)を挿入し、加圧機構50によって研磨ヘッド20を基板Wに対して3psiの一様な圧力で加圧した場合を考えてみる。このような条件において、研磨パッド22と基板Wとの間の圧力分布を厳密に計算した結果を図10(A)に示している。各可撓性容器14内の低融点合金F1は共に液相状態であるため、研磨パッド22と基板Wとの接触面全面に亘ってほぼ一様な研磨圧力となっているのがわかる。 The result of verification (simulation) that it is possible to partially control the polishing pressure between the polishing pad 22 and the substrate W by using the phase transition of the low melting point alloy F 1 in such a configuration is shown below. . First , the electric heater 15 is driven and heated until the temperature of the low-melting point alloy F 1 reaches the melting point (47 ° C.) or higher, and the low-melting point alloy F 1 in both flexible containers 14 is held in a liquid phase state. Is assumed. In the low melting point alloy F 1 is the liquid phase, not shown placing the substrate W on the top surface of both the flexible container 14 (low-melting alloy F 1), and further arranged piezoelectric elements thereon in a matrix Tactile Consider a case where a sensor (surface pressure distribution sensor) is inserted, and the polishing head 20 is pressed against the substrate W with a uniform pressure of 3 psi by the pressing mechanism 50. FIG. 10A shows the result of strictly calculating the pressure distribution between the polishing pad 22 and the substrate W under such conditions. It can be seen that the low melting point alloy F 1 in each flexible container 14 is in a liquid phase state, so that the polishing pressure is almost uniform over the entire contact surface between the polishing pad 22 and the substrate W.

このとき、一方の電熱ヒータ15(図9において左側の電熱ヒータ15)による加熱のみを中断して、当該一方側の可撓性容器14a中に封入された低融点合金F1の温度を融点(47℃)よりも低く調節した場合を想定すると、その低融点合金F1が液相状態から固相状態に転移すると考えられる。そのときの研磨パッド22と基板Wとの間の圧力分布を厳密に計算した結果を図10(B)に示す。低融点合金F1が固体化した状態の領域(図10(B)に示す下部領域)において圧力が強く作用しているのがわかる。これは、他方側(図9において右側)の可撓性容器14b中に封入された液層状態の低融点合金F1上に載置された基板W部分が、研磨パッド22からの押圧力を受けて可撓性容器14b(低融点合金F1)とともに相対的に下方に変形し、研磨パッド22自体もこれに倣って変形することで、その実効圧力が低下したからである。 At this time, only the heating by one electric heater 15 (left electric heater 15 in FIG. 9) is interrupted, and the temperature of the low melting point alloy F 1 enclosed in the flexible container 14a on the one side is changed to the melting point ( Assuming the case where the temperature is adjusted to be lower than 47 ° C., the low melting point alloy F 1 is considered to transition from the liquid phase state to the solid phase state. FIG. 10B shows the result of strictly calculating the pressure distribution between the polishing pad 22 and the substrate W at that time. It can be seen that the pressure acts strongly in the region where the low melting point alloy F 1 is solidified (the lower region shown in FIG. 10B). This is because the portion of the substrate W placed on the low-melting-point alloy F 1 in the liquid layer state sealed in the flexible container 14b on the other side (the right side in FIG. 9) exerts a pressing force from the polishing pad 22. This is because the effective pressure is reduced by receiving and deforming relatively downward together with the flexible container 14b (low melting point alloy F 1 ), and the polishing pad 22 itself deforming in accordance with this.

このように、機能性材料の物理的特性(低融点合金F1の固液相状態)を変化させ、基板Wおよび研磨パッド22を機能性材料に倣わせることにより、狙い通りに研磨圧力に差が生じることが検証できた。 Thus, by changing the physical characteristics of the functional material (solid-liquid phase state of the low melting point alloy F 1 ) and making the substrate W and the polishing pad 22 follow the functional material, the polishing pressure can be adjusted as intended. It was verified that a difference occurred.

このように構成される本実施形態の研磨装置1によれば、機能性材料の物理的特性(低融点合金F1の温度を変化させて固液相状態)を制御することで、研磨パッド22と基板Wとの接触面内の各点において研磨圧力を個別に制御することが可能になる。そのため、研磨パッド22と基板Wとの間の研磨圧力を全体的に均一に調整することにより研磨量・研磨レート等の均一性を確保することができ、また、当該研磨圧力を局所的に変化させることにより基板W上の所望の部分をピンポイントで研磨することができるため被研磨面の平坦化も可能になる。すなわち、研磨装置1によれば、研磨パッド22と基板Wとの接触面内の各点において研磨圧力を所望の大きさに変化させて、被研磨面の平坦性と研磨の均一性の両方を向上させることができる。 According to the polishing apparatus 1 of this embodiment configured as described above, the polishing pad 22 is controlled by controlling the physical characteristics of the functional material (the solid-liquid phase state by changing the temperature of the low melting point alloy F 1 ). The polishing pressure can be individually controlled at each point in the contact surface between the substrate W and the substrate W. Therefore, by uniformly adjusting the polishing pressure between the polishing pad 22 and the substrate W as a whole, uniformity such as the polishing amount and polishing rate can be ensured, and the polishing pressure can be locally changed. By doing so, a desired portion on the substrate W can be polished at a pinpoint, so that the surface to be polished can be flattened. That is, according to the polishing apparatus 1, the polishing pressure is changed to a desired magnitude at each point in the contact surface between the polishing pad 22 and the substrate W, so that both the flatness of the surface to be polished and the uniformity of the polishing are achieved. Can be improved.

次に、第2の実施形態に係る研磨装置について説明する。この第2の実施形態に係る研磨装置101の要部構成を図11に示している。なお、この実施形態においては、第1の実施形態と同一態様の要素構成については同一の符号を付して重複説明を省略し、第1の実施形態との相違点を中心に説明する。   Next, a polishing apparatus according to the second embodiment will be described. FIG. 11 shows a main configuration of the polishing apparatus 101 according to the second embodiment. In this embodiment, the same components as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted, and differences from the first embodiment will be mainly described.

本実施形態が上記第1の実施形態と異なるところは、上記第1の実施形態では基板保持機構10に機能性材料(低融点合金F1)が設けられているのに対し、本実施形態では研磨ヘッド120に機能性材料(電気粘性流体F2)が設けられている点である。 This embodiment is different from the first embodiment in that the functional material (low melting point alloy F 1 ) is provided in the substrate holding mechanism 10 in the first embodiment, whereas in the present embodiment, the substrate holding mechanism 10 is provided. A functional material (electrorheological fluid F 2 ) is provided on the polishing head 120.

第2の実施形態の研磨ヘッド120は、セラミック等の高剛性材料を用いて円板状に形成されたヘッド部材121と、ヘッド部材21を支持して鉛直上方に延びるスピンドル123と、ヘッド部材121の下面側に設けられた複数の可撓性容器125と、可撓性容器125の下面側に設けられた複数の研磨パッド122とを備えている。   The polishing head 120 according to the second embodiment includes a head member 121 formed in a disk shape using a high-rigidity material such as ceramic, a spindle 123 that supports the head member 21 and extends vertically upward, and the head member 121. A plurality of flexible containers 125 provided on the lower surface side of the flexible container 125, and a plurality of polishing pads 122 provided on the lower surface side of the flexible container 125.

ヘッド部材121と複数の研磨パッド122との間には、各可撓性容器125を上下から挟み込むようにして共通電極126および複数の制御基板127が設けられている。共通電極126は1枚の電極からなり、各制御電極127は複数の研磨パッド122および可撓性容器125に対応して分割された電極からなる。共通電極126および複数の制御電極127は電源装置128に電気的に接続されており、制御装置60から送られてくる制御信号に応じて電源装置128から電力供給を受けることで、両電極126,127間に位置する後述の電気粘性流体F2に電場(電圧)が印加される。 A common electrode 126 and a plurality of control substrates 127 are provided between the head member 121 and the plurality of polishing pads 122 so as to sandwich the flexible containers 125 from above and below. The common electrode 126 is composed of one electrode, and each control electrode 127 is composed of an electrode divided corresponding to the plurality of polishing pads 122 and the flexible container 125. The common electrode 126 and the plurality of control electrodes 127 are electrically connected to the power supply device 128, and are supplied with power from the power supply device 128 according to a control signal sent from the control device 60. An electric field (voltage) is applied to an electrorheological fluid F 2, which will be described later, positioned between 127.

可撓性容器125には、機能性材料として外部から電圧(電場)を印加することによって粘弾性が可逆的に変化する電気粘性流体(ER流体)F2が封入されている。また、この可撓性容器125は、気密性を有するとともに、被接触物(被保持物)の外形に対応する柔軟性を有している。ここで、電気粘性流体F2は2種類あり、均一系電気粘性流体と分散系電気粘性流体とに分類される。均一系電気粘性流体は、図12(A)に示す物理的特性を有しており、外部から電場が印加されることで、この電気粘性流体が受ける剪断速度(ずり速度)に応じて剪断応力(ずり応力)が非線形的且つ可逆的に変化する非ニュートン流体である。一方、分散系電気粘性流体は、図12(B)に示す物理的特性を有しており、電場が印加されると降伏値を持つビンガム流体である。本実施形態の電気粘性流体F2としては、均一系電気粘性流体を採用し、この均一系電気粘性流体F2に作用する剪断速度と電場とを制御することによって生じる物理的特性の変化を利用することとする。なお、この研磨装置101で基板Wの研磨を行った場合、均一系電気粘性流体F2に発生する剪断速度(ずり速度)は、研磨パッド122と基板Wとの相対移動速度に一致する。 The flexible container 125 contains an electrorheological fluid (ER fluid) F 2 whose viscoelasticity is reversibly changed by applying a voltage (electric field) from the outside as a functional material. The flexible container 125 has airtightness and flexibility corresponding to the outer shape of the contacted object (held object). Here, there are two types of electrorheological fluids F 2, which are classified into homogeneous electrorheological fluids and dispersed electrorheological fluids. The homogeneous electrorheological fluid has the physical characteristics shown in FIG. 12A. When an electric field is applied from the outside, the shearing stress is applied to the electrorheological fluid according to the shear rate (shear rate). It is a non-Newtonian fluid whose (shear stress) changes nonlinearly and reversibly. On the other hand, the dispersed electrorheological fluid has the physical characteristics shown in FIG. 12B, and is a Bingham fluid having a yield value when an electric field is applied. As the electrorheological fluid F 2 of this embodiment, a homogeneous electrorheological fluid is employed, and a change in physical characteristics caused by controlling the shear rate and electric field acting on the homogeneous electrorheological fluid F 2 is used. I decided to. When the polishing apparatus 101 polishes the substrate W, the shear rate (shear rate) generated in the homogeneous electrorheological fluid F 2 matches the relative movement speed of the polishing pad 122 and the substrate W.

このように構成される研磨装置101において、均一系電気粘性流体F2として液晶ポリシロキサンをベースとしたものを利用して研磨を行った場合に、研磨パッド122と基板Wとの間に生じる圧力分布を厳密に計算した結果を以下に示す。ここで研磨条件として、研磨パッド122と基板Wとを所定の圧力で均一に接触させつつ回転数200rpmでともに回転させ、水平方向に25mmの相対揺動をさせた場合を考える。このような条件で研磨を行うと約200s-1のずり速度が均一系電気粘性流体F2に発生する。このとき、電源装置128より両電極126,127を介して均一系電気粘性流体F2に3kV/mの直流電場を印加した場合を想定すると、電場を印加しない場合と比較して約1psiの圧力差(剪断応力差)が生じることが計算結果から得られる。すなわち、複数の可撓性容器125のうちで、電場を印加した容器125中の電気粘性流体と、電場を印加しなかった容器125中の電気粘性流体とでは、約1psiの圧力差が生じることがわかる。よって、均一系電気粘性流体F2に印加する電場(電圧)の強度を制御装置60によって調節することで、0psi〜1psiの圧力領域において剪断応力(この場合は研磨パッド122と基板Wとの間の研磨圧力が変化することになる)を制御することが可能になる。研磨パッド122と基板Wとの相対移動速度を高めれば、更に制御可能な圧力範囲が広がることは図12(A)からも明らかである。 In the polishing apparatus 101 configured as described above, when polishing is performed using a uniform electrorheological fluid F 2 based on liquid crystal polysiloxane, the pressure generated between the polishing pad 122 and the substrate W The result of strictly calculating the distribution is shown below. Here, as a polishing condition, a case is considered in which the polishing pad 122 and the substrate W are rotated together at a rotation speed of 200 rpm while being uniformly contacted with a predetermined pressure, and a relative oscillation of 25 mm is performed in the horizontal direction. When polishing is performed under such conditions, a shear rate of about 200 s −1 is generated in the homogeneous electrorheological fluid F 2 . At this time, assuming that a DC electric field of 3 kV / m is applied from the power supply device 128 to the homogeneous electrorheological fluid F 2 via both electrodes 126 and 127, the pressure is about 1 psi compared to the case where no electric field is applied. It can be obtained from the calculation results that a difference (shear stress difference) occurs. That is, among the plurality of flexible containers 125, a pressure difference of about 1 psi occurs between the electrorheological fluid in the container 125 to which an electric field is applied and the electrorheological fluid in the container 125 to which no electric field is applied. I understand. Therefore, by adjusting the strength of the electric field (voltage) applied to the homogeneous electrorheological fluid F 2 by the control device 60, the shear stress (in this case, between the polishing pad 122 and the substrate W) in the pressure range of 0 psi to 1 psi. It is possible to control the polishing pressure of the substrate. It is also clear from FIG. 12A that if the relative movement speed between the polishing pad 122 and the substrate W is increased, the controllable pressure range is expanded.

また、均一系電気粘性流体は分散系電気粘性流体と比べて、電場の有無によって変化する剪断応力の値が10倍以上大きいため、分散系電気粘性流体を用いた場合と比較して基板Wの表面研磨において広い圧力範囲で制御可能であることがわかる。   In addition, the uniform electrorheological fluid has a shear stress value that changes by the presence or absence of an electric field more than 10 times larger than that of the dispersion electrorheological fluid. It can be seen that the surface polishing can be controlled over a wide pressure range.

このように構成される第2の実施形態の研磨装置101によれば、均一系電気粘性流体F2に印加する電場と剪断速度とを変化させてこの流体の物理的特性(剪断応力、粘弾性)を制御することにより、研磨パッド122と基板Wとの接触面内の各点において研磨圧力を個別に制御することが可能になる。そのため、研磨パッド122と基板Wとの間の研磨圧力を全体的に均一に調整することにより研磨量・研磨レート等の均一性を確保することができ、また、当該研磨圧力を局所的に変化させることにより基板W上の所望の部分をピンポイントで研磨することができるため被研磨面の平坦化も可能になる。そのため、第1の実施形態と同様に、研磨パッド122と基板Wとの接触面内の各点において研磨圧力を所望の大きさに変化させて、被研磨面の平坦性と研磨の均一性の両方を向上させることができる。 According to the polishing apparatus 101 of the second embodiment configured as described above, the physical characteristics (shear stress, viscoelasticity) of the fluid are changed by changing the electric field applied to the homogeneous electrorheological fluid F 2 and the shear rate. ), The polishing pressure can be individually controlled at each point in the contact surface between the polishing pad 122 and the substrate W. Therefore, by uniformly adjusting the polishing pressure between the polishing pad 122 and the substrate W as a whole, uniformity such as the polishing amount and polishing rate can be secured, and the polishing pressure can be locally changed. By doing so, a desired portion on the substrate W can be polished at a pinpoint, so that the surface to be polished can be flattened. Therefore, as in the first embodiment, the polishing pressure is changed to a desired magnitude at each point in the contact surface between the polishing pad 122 and the substrate W, so that the flatness of the surface to be polished and the uniformity of the polishing can be improved. Both can be improved.

ところで、研磨加工においては長時間の使用等によって研磨パッド122が経時的変化を起こし、そのパッド表面が磨耗して厚みが薄くなるとともに、同時に軟質層の硬化が生じるおそれがある。また、研磨パッド122が研磨剤による侵食によって変形し難くなったり、研磨剤(薬液)の影響によりヘタリを起こして消耗するおそれもある。このため、研磨パッド122は初期の状態よりも硬く作用するとともに変形し難くなって(すなわち、基板表面に倣い難くなって)、研磨初期の状態と比較して研磨特性(研磨レートなど)が変化し、研磨後の基板Wの実寸法が製造規格値を逸脱するような不具合が発生するおそれがある。   By the way, in the polishing process, the polishing pad 122 may change over time due to long-time use or the like, and the pad surface may be worn and thinned, and at the same time, the soft layer may be cured. Further, the polishing pad 122 may become difficult to deform due to erosion by the polishing agent, or may be worn out due to the influence of the polishing agent (chemical solution). For this reason, the polishing pad 122 acts harder than the initial state and becomes difficult to deform (that is, difficult to follow the substrate surface), and the polishing characteristics (polishing rate, etc.) change compared to the initial state of polishing. In addition, there is a possibility that a problem occurs that the actual dimension of the substrate W after polishing deviates from the manufacturing standard value.

この研磨装置101によれば、研磨パッド122とヘッド部材120との間に機能性材料(均一系電気粘性流体)F2が設けられているため、この均一系電気粘性流体F2の粘弾性(剪断応力)を変化させることで、研磨パッド122を所望の硬軟状態で用いることができる。例えば、研磨初期の研磨パッド122は変質が生じていないため、電気粘性流体F2に印加する電場の強度を強めて、基板Wに対して研磨パッド122本来の硬さで作用させる。基板Wの研磨によって研磨パッド122の磨耗等が進行した場合には、その分研磨パッド122の厚みが薄くなり(さらに軟質層の硬化が生じることもあり)、研磨パッド122が変形し難くなるため、研磨パッド122が本来の硬度よりも硬く作用することになるが、その場合には、電気粘性流体F2に印加する電場の強度を弱め、研磨パッド122に対して適度なクッション性を持たせることで、研磨パッド122を初期と同様の硬さで作用させることができる。このように研磨パッド122の見かけ上の硬さ(変形量)を制御することで、研磨パッド122の性能を長時間にわたって一定に保つことができ、長寿命化を実現することができる。 According to this polishing apparatus 101, since the functional material (homogeneous electrorheological fluid) F 2 is provided between the polishing pad 122 and the head member 120, the viscoelasticity of the homogeneous electrorheological fluid F 2 ( By changing the shear stress, the polishing pad 122 can be used in a desired hard and soft state. For example, since the polishing pad 122 in the initial stage of polishing has not deteriorated, the strength of the electric field applied to the electrorheological fluid F 2 is increased, and the substrate W is caused to act with the original hardness of the polishing pad 122. When abrasion of the polishing pad 122 proceeds due to polishing of the substrate W, the thickness of the polishing pad 122 is reduced by that amount (and the soft layer may be hardened), and the polishing pad 122 is difficult to deform. The polishing pad 122 acts harder than the original hardness. In this case, the strength of the electric field applied to the electrorheological fluid F 2 is weakened to give the polishing pad 122 an appropriate cushioning property. Thus, the polishing pad 122 can be operated with the same hardness as in the initial stage. By controlling the apparent hardness (deformation amount) of the polishing pad 122 in this way, the performance of the polishing pad 122 can be kept constant over a long period of time, and a long life can be realized.

なお、研磨圧力の制御において、第1の実施形態でも示したような面圧分布センサにより計測した結果(圧力分布)を反映させて研磨パッド122と基板Wとの接触面内の各点の研磨圧力を制御してもよいし、研磨パッド122表面のドレッシングを行うパッドコンディション時のトルク変動や、膜厚計や終点検出器(End Point Detection)による研磨量変化をトリガにして接触面内の各点の研磨圧力を制御してもよい。   In controlling the polishing pressure, each point in the contact surface between the polishing pad 122 and the substrate W is polished by reflecting the result (pressure distribution) measured by the surface pressure distribution sensor as shown in the first embodiment. The pressure may be controlled, and torque fluctuations during pad conditions for dressing the surface of the polishing pad 122, and changes in the polishing amount by a film thickness meter and an end point detection (End Point Detection) are used as triggers. The point polishing pressure may be controlled.

次に、第3の実施形態に係る研磨装置について説明する。この第3の実施形態に係る研磨装置201の要部構成を図13に示している。なお、この実施形態においては、第1の実施形態と同一態様の要素構成については同一の符号を付して重複説明を省略し、第1の実施形態との相違点を中心に説明する。   Next, a polishing apparatus according to the third embodiment will be described. The principal part structure of the grinding | polishing apparatus 201 which concerns on this 3rd Embodiment is shown in FIG. In this embodiment, the same components as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted, and differences from the first embodiment will be mainly described.

本実施形態が上記第1の実施形態と異なるところは、上記第1の実施形態ではウェハ保持機構10に機能性材料として低融点合金F1が設けられているのに対し、本実施形態では基板保持機構に機能性材料として電気粘性流体F3が設けられている点である。 This embodiment differs from the first embodiment in that the low melting point alloy F 1 is provided as the functional material in the wafer holding mechanism 10 in the first embodiment, whereas the substrate in the present embodiment. The electrorheological fluid F 3 is provided as a functional material in the holding mechanism.

第3の実施形態の基板保持機構210は、セラミック等の高剛性材料を用いて定盤状に形成された保持テーブル211と、保持テーブル211の上面側に配設された可撓性容器214と、可撓性容器214を挟み込むようにして上下に対向配置された電極215,216とを備えている。   The substrate holding mechanism 210 according to the third embodiment includes a holding table 211 formed in a surface plate shape using a high-rigidity material such as ceramic, and a flexible container 214 disposed on the upper surface side of the holding table 211. The electrodes 215 and 216 are provided so as to be opposed to each other in a vertical direction so as to sandwich the flexible container 214.

共通電極215および複数の制御電極216は電源装置217に電気的にそれぞれ接続されており、制御装置60から送られてくる制御信号に応じて電源装置217から電力供給を受けることで、両電極215,216間に位置する後述の電気粘性流体F3に電場(電圧)が印加される。なお、各制御電極216は、例えば半径方向に沿って等間隔に設けられている。 The common electrode 215 and the plurality of control electrodes 216 are electrically connected to the power supply device 217, respectively, and are supplied with power from the power supply device 217 according to a control signal sent from the control device 60, whereby both electrodes 215 are received. , 216, an electric field (voltage) is applied to an electrorheological fluid F 3 described later. The control electrodes 216 are provided at regular intervals along the radial direction, for example.

可撓性容器214には、機能性材料として外部から電圧(電場)を印加することによって粘弾性が可逆的に変化する電気粘性流体(ER流体)F3が封入されている。また、この可撓性容器214は、気密性を有するとともに、被接触物(被保持物)の外形に対応する柔軟性を有している。ここで、上述したように電気粘性流体F3は均一系電気粘性流体と分散系電気粘性流体とに分類されるが、本実施形態では、分散系電気粘性流体を用いることが望ましい。これは、基板Wを基板保持機構10(チャック)側に真空吸着等により固定保持するための手段が設けられていない場合では、基板Wと研磨パッド22との間に発生する剪断速度(相対移動速度)が効率よく電気粘性流体F3へ伝達されないため、剪断速度に応じて剪断応力が非線形に変化する均一系電気粘性流体を効率よく利用することができないからである。したがって、この場合には、降伏値(剪断速度ゼロにおいて電場の有無により剪断応力が異なる)を持つ分散系電気粘性流体を利用することで、剪断速度の大きさに拘らず、外部からの電場印加の有無によってのみでも剪断応力(この場合は研磨パッドと基板との間の研磨圧力)を大きく変化させることができる。つまり、剪断速度によらず分散系電気粘性流体F3に電場を印加すれば、降伏値以下の応力では分散系電気粘性流体F3をほぼ固体状態とみなして利用することができる。 The flexible container 214 encloses an electrorheological fluid (ER fluid) F 3 whose viscoelasticity is reversibly changed by applying a voltage (electric field) from the outside as a functional material. The flexible container 214 is airtight and has flexibility corresponding to the outer shape of the contacted object (held object). Here, as described above, the electrorheological fluid F 3 is classified into a homogeneous electrorheological fluid and a dispersed electrorheological fluid. In this embodiment, it is desirable to use a distributed electrorheological fluid. This is because the shear rate (relative movement) generated between the substrate W and the polishing pad 22 in the case where means for fixing and holding the substrate W on the substrate holding mechanism 10 (chuck) side by vacuum suction or the like is not provided. This is because the uniform electrorheological fluid in which the shear stress changes nonlinearly according to the shear rate cannot be efficiently used because the (speed) is not efficiently transmitted to the electrorheological fluid F 3 . Therefore, in this case, by using a dispersed electrorheological fluid having a yield value (shear stress varies depending on the presence or absence of an electric field at zero shear rate), an external electric field can be applied regardless of the shear rate. The shear stress (in this case, the polishing pressure between the polishing pad and the substrate) can be greatly changed only by the presence / absence of this. In other words, by applying an electric field to the dispersion electrorheological fluid F 3 regardless of the shear rate, the yield value less stress can utilize considers dispersion electrorheological fluid F 3 substantially solid state.

このように構成される研磨装置201において、分散系電気粘性流体F3としてスルホン化ポリマー粒子をフッ素系分散溶媒に分散させたものを利用して研磨を行った場合に、研磨パッド22と基板Wとの間に生じる圧力分布を厳密に計算した結果を以下に示す。ここで研磨条件として、研磨パッド22と基板Wとを所定の圧力で一様に接触させつつ回転数200rpmでともに回転させ、水平方向に25mmの相対揺動をさせた場合を考える。このとき、電源装置217より両電極215,216を介して分散系電気粘性流体F3に3kV/mの直流電場を印加した場合を想定すると、電場を印加しない場合と比較して約0.5psiの応力差が生じることが計算結果から得られる。すなわち、可撓性容器214中で両電極215,216を介して電場が印加された分散系電気粘性流体F3の収容部分と、電場が印加されていない分散系電気粘性流体F3の収容部分では約0.5psiの応力差が生じることがわかる。 In the polishing apparatus 201 configured in this manner, when polishing is performed using a dispersion electrorheological fluid F 3 in which sulfonated polymer particles are dispersed in a fluorine dispersion solvent, the polishing pad 22 and the substrate W The following shows the result of strictly calculating the pressure distribution generated between Here, as a polishing condition, a case is considered in which the polishing pad 22 and the substrate W are rotated together at a rotation speed of 200 rpm while being uniformly contacted with a predetermined pressure, and a relative oscillation of 25 mm is performed in the horizontal direction. At this time, assuming a case where a DC electric field of 3 kV / m is applied to the dispersed electrorheological fluid F 3 from both the electrodes 215 and 216 from the power supply device 217, it is about 0.5 psi compared to the case where no electric field is applied. It is obtained from the calculation result that a stress difference of That is, the accommodation part of the dispersed electrorheological fluid F 3 to which an electric field is applied through the electrodes 215 and 216 in the flexible container 214 and the accommodation part of the dispersed electrorheological fluid F 3 to which no electric field is applied. It can be seen that a stress difference of about 0.5 psi occurs.

このように構成される第3の実施形態の研磨装置201によれば、分散系電気粘性流体F3に印加する電場を変化させてこの流体の物理的特性(剪断応力、粘弾性)を制御することにより、研磨パッド22と基板Wとの接触面内の各点において研磨圧力を個別に制御することが可能になる。そのため、研磨パッド22と基板Wとの間の研磨圧力を全体的に均一に調整することにより研磨量・研磨レート等の均一性を確保することができ、また、当該研磨圧力を局所的に変化させることにより基板W上の所望の部分をピンポイントで研磨することができるため被研磨面の平坦化も可能になる。そのため、第1の実施形態と同様に、研磨パッド22と基板Wとの接触面内の各点において研磨圧力を所望の大きさに変化させて、被研磨面の平坦性と研磨の均一性の両方を向上させることができる。また、研磨パッド22と基板Wとの間に剪断速度(相対移動速度)が生じていない場合でも、電場の印加の有無によってのみでも分散系電気粘性流体F3の物理的特性を的確に変化させることができるため、その制御が簡単になり好ましい。 According to the polishing apparatus 201 of the third embodiment configured as described above, the physical characteristics (shear stress, viscoelasticity) of the fluid are controlled by changing the electric field applied to the dispersion electrorheological fluid F 3. Thus, the polishing pressure can be individually controlled at each point in the contact surface between the polishing pad 22 and the substrate W. Therefore, by uniformly adjusting the polishing pressure between the polishing pad 22 and the substrate W as a whole, uniformity such as the polishing amount and polishing rate can be ensured, and the polishing pressure can be locally changed. By doing so, a desired portion on the substrate W can be polished at a pinpoint, so that the surface to be polished can be flattened. Therefore, as in the first embodiment, the polishing pressure is changed to a desired magnitude at each point in the contact surface between the polishing pad 22 and the substrate W, so that the flatness of the surface to be polished and the uniformity of the polishing can be improved. Both can be improved. Further, even when no shear rate (relative movement speed) is generated between the polishing pad 22 and the substrate W, the physical characteristics of the dispersed electrorheological fluid F 3 are accurately changed only by the presence / absence of application of an electric field. This is preferable because the control is simple.

次に、第4の実施形態に係る研磨装置について説明する。この第4の実施形態に係る研磨装置301の要部構成を図14に示している。なお、この実施形態においては、第1の実施形態と同一態様の要素構成については同一の符号を付して重複説明を省略し、第1の実施形態との相違点を中心に説明する。   Next, a polishing apparatus according to the fourth embodiment will be described. FIG. 14 shows the main configuration of a polishing apparatus 301 according to the fourth embodiment. In this embodiment, the same components as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted, and differences from the first embodiment will be mainly described.

本実施形態が上記第1の実施形態と異なるところは、上記第1の実施形態では基板保持機構10に機能性材料(低融点合金F1)が設けられているのに対し、本実施形態では研磨ヘッド320に機能性材料(電気粘性流体F4)が設けられている点である。 This embodiment is different from the first embodiment in that the functional material (low melting point alloy F 1 ) is provided in the substrate holding mechanism 10 in the first embodiment, whereas in the present embodiment, the substrate holding mechanism 10 is provided. The polishing head 320 is provided with a functional material (electrorheological fluid F 4 ).

第4の実施形態の研磨ヘッド320は、セラミック等の高剛性材料を用いて円板状に形成されたヘッド部材321と、ヘッド部材321の下面側に設けられた可撓性容器325と、可撓性容器325の下面側に設けられた研磨パッド322と、ヘッド部材321を支持して鉛直上方に延びるスピンドル323とを備えている。   The polishing head 320 of the fourth embodiment includes a head member 321 formed in a disk shape using a highly rigid material such as ceramic, a flexible container 325 provided on the lower surface side of the head member 321, A polishing pad 322 provided on the lower surface side of the flexible container 325 and a spindle 323 that supports the head member 321 and extends vertically upward are provided.

ヘッド部材321と研磨パッド322との間には、可撓性容器325を上下から挟みこむようにして共通電極326と複数の制御電極327とが設けられている。共通電極326は1枚の電極からなり、複数の制御電極327は例えば半径方向に沿って複数に分割された電極からなる。共通電極326および複数の制御電極327は電源装置328に電気的に接続されており、制御装置60から送られてくる制御信号に応じて電源装置328から電力供給を受けることで、両電極326,327間に位置する後述の電気粘性流体F4に電場(電圧)が印加される。 A common electrode 326 and a plurality of control electrodes 327 are provided between the head member 321 and the polishing pad 322 so as to sandwich the flexible container 325 from above and below. The common electrode 326 includes one electrode, and the plurality of control electrodes 327 include, for example, electrodes divided into a plurality along the radial direction. The common electrode 326 and the plurality of control electrodes 327 are electrically connected to the power supply device 328, and are supplied with power from the power supply device 328 in response to a control signal sent from the control device 60, whereby both electrodes 326 An electric field (voltage) is applied to an electrorheological fluid F 4 (described later) located between 327.

可撓性容器325には、機能性材料として外部から電場を印加することによって粘弾性が可逆的に変化する電気粘性流体F4が封入されている。また、この可撓性容器325は、気密性を有するとともに、被接触物(被保持物)の外形に対応する柔軟性を有している。ここでは電気粘性流体F4として、上述した均一系電気粘性流体および分散系電気粘性流体のいずれを用いてもよい。 The flexible container 325 contains an electrorheological fluid F 4 whose viscoelasticity is reversibly changed by applying an electric field from the outside as a functional material. The flexible container 325 has airtightness and flexibility corresponding to the outer shape of the contacted object (held object). Here, any of the above-described homogeneous electrorheological fluid and dispersed electrorheological fluid may be used as the electrorheological fluid F 4 .

本実施形態においては、共通基板326と各制御基板327との間で、相互に電場の強度を変更したり、電場をオンオフ切り換えたりすることで、各制御基板327近傍に収容された部分の電気粘性流体Fの物理的特性を変化させ、研磨パッド322の見かけ上の硬さを全体的または部分的に変更することができる。これにより、基板Wの研磨において、研磨パッド322と基板Wとの接触面内での各点の研磨圧力を任意に制御することができる。 In the present embodiment, the electric field of the portion accommodated in the vicinity of each control board 327 can be changed between the common board 326 and each control board 327 by mutually changing the electric field strength or switching the electric field on and off. The physical properties of the viscous fluid F 4 can be changed to change the apparent hardness of the polishing pad 322 in whole or in part. Thereby, in polishing the substrate W, the polishing pressure at each point in the contact surface between the polishing pad 322 and the substrate W can be arbitrarily controlled.

このように構成される第4の実施形態の研磨装置301によれば、電気粘性流体F4に印加する剪断速度や電場を変化させてこの流体の物理的特性(剪断応力、粘弾性)を制御することにより、研磨パッド322と基板Wとの接触面内の各点において研磨圧力を個別に制御することが可能になる。そのため、研磨パッド322と基板Wとの間の研磨圧力を全体的に均一に調整することにより研磨量・研磨レート等の均一性を確保することができ、また、当該研磨圧力を局所的に変化させることにより基板W上の所望の部分をピンポイントで研磨することができるため被研磨面の平坦化も可能になる。そのため、第1の実施形態と同様に、研磨パッド322と基板Wとの接触面内の各点において研磨圧力を所望の大きさに変化させて、被研磨面の平坦性と研磨の均一性の両方を向上させることができる。 According to the polishing apparatus 301 of the fourth embodiment configured as described above, the physical characteristics (shear stress, viscoelasticity) of the fluid are controlled by changing the shear rate and the electric field applied to the electrorheological fluid F 4. This makes it possible to individually control the polishing pressure at each point in the contact surface between the polishing pad 322 and the substrate W. Therefore, by uniformly adjusting the polishing pressure between the polishing pad 322 and the substrate W as a whole, uniformity such as the polishing amount and polishing rate can be secured, and the polishing pressure can be locally changed. By doing so, a desired portion on the substrate W can be polished at a pinpoint, so that the surface to be polished can be flattened. Therefore, as in the first embodiment, the polishing pressure is changed to a desired magnitude at each point in the contact surface between the polishing pad 322 and the substrate W, so that the flatness of the surface to be polished and the uniformity of the polishing can be improved. Both can be improved.

また、研磨パッド322の見かけ上の硬さ(変形量)を制御することで、この研磨パッド322の性能を長時間にわたって一定に保つことができ、長寿命化を実現することができる。なお、本実施形態では、電気粘性流体F4を封入する可撓性容器325を1つのみで構成しているため、第2の実施形態の研磨装置101と比較して、研磨パッド322と基板Wとの接触面内での各点の研磨圧力を個別に制御する上では、その制御精度が劣ることになり兼ねないが、研磨パッド322の長寿命化に重点をおいて研磨圧力を制御する観点で使用する場合には、本実施形態の研磨装置301の構成でも十分であり、これにより装置構成が簡便化されコストを抑えることが可能になる。 Further, by controlling the apparent hardness (deformation amount) of the polishing pad 322, the performance of the polishing pad 322 can be kept constant over a long period of time, and a longer life can be realized. In the present embodiment, since only one flexible container 325 enclosing the electrorheological fluid F 4 is formed, the polishing pad 322 and the substrate are compared with the polishing apparatus 101 of the second embodiment. In controlling the polishing pressure at each point in the contact surface with W individually, the control accuracy may be inferior, but the polishing pressure is controlled with emphasis on extending the life of the polishing pad 322. When used from the viewpoint, the configuration of the polishing apparatus 301 of the present embodiment is sufficient, and thereby the apparatus configuration is simplified and the cost can be reduced.

これまで本発明の好ましい実施形態について説明したが、本発明はこの実施形態に限定されるものではない。例えば、上述の実施形態では、図1等に示すように、研磨パッド22の下方において基板保持機構10により基板Wが保持される研磨装置について説明したが、これに限られるものではなく、研磨パッドの上方において基板保持装置により基板が保持される構成の研磨装置にも適用することができる。   Although the preferred embodiment of the present invention has been described so far, the present invention is not limited to this embodiment. For example, in the above-described embodiment, the polishing apparatus in which the substrate W is held by the substrate holding mechanism 10 below the polishing pad 22 as illustrated in FIG. 1 and the like is not limited to this. It can also be applied to a polishing apparatus having a configuration in which a substrate is held by a substrate holding device above the substrate.

また、上述の実施形態において、研磨パッド22は基板Wよりも小さくなっているが、これに限られるものではなく、研磨パッド(研磨面)が基板(被研磨面)よりも大きくなるように(コンベンショナルの研磨装置として)構成されてもよい。   In the above-described embodiment, the polishing pad 22 is smaller than the substrate W. However, the present invention is not limited to this, and the polishing pad (polishing surface) is larger than the substrate (surface to be polished) ( As a conventional polishing apparatus).

なお、上述した実施形態では、加工装置の一例として研磨装置に適用した場合を例示して説明したが、これに限定されるものではなく、平面研削装置や切削加工機等の他の加工装置に適用してもよい。   In the above-described embodiment, the case where the present invention is applied to a polishing apparatus has been described as an example of a processing apparatus. However, the present invention is not limited to this, and other processing apparatuses such as a surface grinding apparatus and a cutting machine may be used. You may apply.

1 研磨装置(加工装置) 10 基板保持機構(対象物保持機構)
14 可撓性容器 20 研磨ヘッド(加工ヘッド)
21 研磨パッド(加工部材) 60 制御装置(可変制御部)
101 研磨装置(第2実施形態) 110 基板保持機構
120 研磨ヘッド 121 研磨パッド
125 可撓性容器
201 研磨装置(第3実施形態) 210 基板保持機構
214 可撓性容器 220 研磨ヘッド
221 研磨パッド
301 研磨装置(第4実施形態) 310 基板保持機構
320 研磨ヘッド 321 研磨パッド
325 可撓性容器
W 基板(加工対象物)
F 機能性材料
1 Polishing device (processing device) 10 Substrate holding mechanism (object holding mechanism)
14 Flexible container 20 Polishing head (processing head)
21 Polishing pad (working member) 60 Control device (variable control unit)
DESCRIPTION OF SYMBOLS 101 Polishing apparatus (2nd Embodiment) 110 Substrate holding mechanism 120 Polishing head 121 Polishing pad 125 Flexible container 201 Polishing apparatus (3rd Embodiment) 210 Substrate holding mechanism 214 Flexible container 220 Polishing head 221 Polishing pad 301 Polishing Apparatus (Fourth Embodiment) 310 Substrate holding mechanism 320 Polishing head 321 Polishing pad 325 Flexible container W Substrate (object to be processed)
F Functional materials

Claims (7)

被研磨面を有する研磨対象物を研磨する研磨装置であって、
前記被研磨面に接触する研磨面を有し、前記研磨面を前記被研磨面に接触させながら前記研磨対象物と相対移動することにより前記被研磨面を研磨する研磨部材と、
前記研磨面を前記被研磨面に接触した状態において前記研磨部材から前記研磨対象物に接触加圧力を作用させる加圧機構と、
前記研磨部材と前記研磨対象物との接触面内の複数の位置において、前記複数の位置のそれぞれに対応する部分の前記研磨部材の見かけ上の硬さを個別に制御する制御部とを備え、
前記制御部は、前記研磨部材の厚さもしくは硬さの経時的変化に基づいて、前記研磨部材の見かけ上の硬さを制御することを特徴とする研磨装置。
A polishing apparatus for polishing a polishing object having a surface to be polished,
A polishing member having a polishing surface in contact with the surface to be polished, and polishing the surface to be polished by moving relative to the object to be polished while the polishing surface is in contact with the surface to be polished;
A pressure mechanism that applies a contact pressure from the polishing member to the object to be polished in a state where the polishing surface is in contact with the surface to be polished;
A plurality of positions in the contact surface between the polishing member and the object to be polished, and a controller that individually controls the apparent hardness of the polishing member at a portion corresponding to each of the plurality of positions ,
The said control part controls the apparent hardness of the said polishing member based on the time-dependent change of the thickness or hardness of the said polishing member .
前記研磨対象物を保持する保持部材を有する対象物保持機構と、
前記対象物保持機構に保持された前記研磨対象物と対向するように前記研磨部材を保持する研磨ヘッドと、
前記研磨ヘッドに設けられ、可逆的に物理的特性を可変とする機能性材料が封入された可撓性容器とを備え、
前記制御部は、前記機能性材料の物理的特性を制御することにより前記研磨部材の見かけ上の硬さを制御し、前記研磨部材を前記研磨対象物に接触させたときに前記研磨対象物と前記研磨部材との間に生じる研磨圧力を調節することを特徴とする請求項1に記載の研磨装置。
An object holding mechanism having a holding member for holding the polishing object ;
A polishing head for holding the polishing member so as to face the polishing object held by the object holding mechanism;
A flexible container provided in the polishing head and encapsulating a functional material that reversibly changes physical properties;
The control unit controls the apparent hardness of the polishing member by controlling physical properties of the functional material, and the polishing object is brought into contact with the polishing object when the polishing member is brought into contact with the polishing object. The polishing apparatus according to claim 1 , wherein a polishing pressure generated between the polishing member and the polishing member is adjusted.
前記機能性材料が、電気粘性流体、磁気粘性流体、低融点合金のうちのいずれかであることを特徴とする請求項2に記載の研磨装置。 The polishing apparatus according to claim 2 , wherein the functional material is one of an electrorheological fluid, a magnetorheological fluid, and a low melting point alloy. 前記研磨部材が、前記研磨対象物を研磨する研磨布を有しており、
前記研磨布の硬度が、JIS規格K6301で規定される研磨布硬度40未満であることを特徴とする請求項1〜3のいずれかに記載の研磨装置。
The polishing member has a polishing cloth for polishing the object to be polished;
The polishing apparatus according to claim 1 , wherein the polishing cloth has a hardness of less than 40 as defined in JIS standard K6301.
前記研磨部材の前記研磨面を前記研磨対象物の前記被研磨面に接触させたときの前記研磨部材と前記研磨対象物との間の前記研磨圧力を計測可能な測定器を設けて構成したことを特徴とする請求項1〜4のいずれかに記載の研磨装置。 A measuring instrument capable of measuring the polishing pressure between the polishing member and the polishing object when the polishing surface of the polishing member is brought into contact with the surface to be polished of the polishing object is provided. The polishing apparatus according to any one of claims 1 to 4 . 請求項1〜5のいずれかに記載の研磨装置を用いて、前記接触面内の複数の位置における前記研磨部材の見かけ上の硬さを個別に制御することにより、前記研磨部材により前記研磨対象物を研磨することを特徴とする研磨方法。 The polishing object is controlled by the polishing member by individually controlling apparent hardness of the polishing member at a plurality of positions in the contact surface using the polishing apparatus according to claim 1. A polishing method comprising polishing an object. 前記研磨対象物における前記被研磨面内の表面形状に応じて、前記被研磨面内を選択的に研磨することを特徴とする請求項6に記載の研磨方法。 The polishing method according to claim 6 , wherein the inside of the surface to be polished is selectively polished according to a surface shape in the surface to be polished in the object to be polished.
JP2009238297A 2009-10-15 2009-10-15 Polishing apparatus and polishing method Active JP5674084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238297A JP5674084B2 (en) 2009-10-15 2009-10-15 Polishing apparatus and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238297A JP5674084B2 (en) 2009-10-15 2009-10-15 Polishing apparatus and polishing method

Publications (3)

Publication Number Publication Date
JP2011083856A JP2011083856A (en) 2011-04-28
JP2011083856A5 JP2011083856A5 (en) 2013-01-17
JP5674084B2 true JP5674084B2 (en) 2015-02-25

Family

ID=44077200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238297A Active JP5674084B2 (en) 2009-10-15 2009-10-15 Polishing apparatus and polishing method

Country Status (1)

Country Link
JP (1) JP5674084B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879777B2 (en) * 2011-07-04 2016-03-08 トヨタ自動車株式会社 Polishing pad, polishing apparatus, polishing method
JP6643258B2 (en) * 2015-01-19 2020-02-12 株式会社荏原製作所 Simulation method of polishing amount in buff polishing process and buff polishing apparatus
JP6500764B2 (en) * 2015-12-10 2019-04-17 信越半導体株式会社 Method of evaluating polishing head and method of polishing wafer
US10195713B2 (en) 2016-08-11 2019-02-05 3M Innovative Properties Company Lapping pads and systems and methods of making and using the same
JP7033960B2 (en) * 2018-03-07 2022-03-11 株式会社東京精密 Polishing equipment
JP7033972B2 (en) * 2018-03-20 2022-03-11 株式会社東京精密 Polishing equipment
JP7116645B2 (en) 2018-09-12 2022-08-10 キオクシア株式会社 Polishing equipment
CN115535335B (en) * 2022-10-27 2024-06-14 重庆大学 Preparation device and method of giant electrorheological fluid variable-rigidity elastic ball group

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219369A (en) * 2000-02-08 2001-08-14 Sumitomo Metal Ind Ltd Polishing shape predicting method, and polishing method and device
KR100506934B1 (en) * 2003-01-10 2005-08-05 삼성전자주식회사 Polishing apparatus and the polishing method using the same
US6935929B2 (en) * 2003-04-28 2005-08-30 Micron Technology, Inc. Polishing machines including under-pads and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces

Also Published As

Publication number Publication date
JP2011083856A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5674084B2 (en) Polishing apparatus and polishing method
US9144878B2 (en) Polishing apparatus and wear detection method
JP3724869B2 (en) Polishing apparatus and method
JP2004142083A (en) Wafer polishing device and wafer polishing method
JPH11165256A (en) Chemical mechanical polishing method and its device
JP2001338901A (en) Process method and equipment for planarization, and method for manufacturing semiconductor device
TWI300023B (en) Systems and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
US20110256811A1 (en) Polishing method
JP2015039742A (en) Polishing head and polishing apparatus
KR20140049951A (en) Damper for polishing pad conditioner
JP2011083856A5 (en) Polishing apparatus and polishing method
JP2002046059A (en) Base polishing apparatus
JP2011201015A (en) Apparatus and method for polishing
JP7315332B2 (en) Surface height measurement method using dummy disk and dummy disk
JP6239396B2 (en) Manufacturing method of SOI composite substrate
JP2018171670A (en) Polishing head and polishing device
JP2016159384A (en) Polishing device and polishing method
US20140273767A1 (en) Polishing pad conditioner pivot point
JP5528520B2 (en) Polishing apparatus having pressure distribution adjustment function
KR20090038502A (en) Method for polishing of wafer
JP2016049606A (en) Polishing device
JPH11221753A (en) Workpiece polishing method and polishing device
JP2008006555A (en) Polisher
JP2006159380A (en) Method for manufacturing polishing pad and semiconductor device
JPH0945642A (en) Method and device for grinding semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5674084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250