JP2001219369A - Polishing shape predicting method, and polishing method and device - Google Patents

Polishing shape predicting method, and polishing method and device

Info

Publication number
JP2001219369A
JP2001219369A JP2000031019A JP2000031019A JP2001219369A JP 2001219369 A JP2001219369 A JP 2001219369A JP 2000031019 A JP2000031019 A JP 2000031019A JP 2000031019 A JP2000031019 A JP 2000031019A JP 2001219369 A JP2001219369 A JP 2001219369A
Authority
JP
Japan
Prior art keywords
polishing
pressing force
sample
force distribution
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000031019A
Other languages
Japanese (ja)
Other versions
JP2001219369A5 (en
Inventor
Takashi Fujita
隆 藤田
Meii Dan
明偉 談
Yuzo Kozai
雄三 香西
Motoyuki Obara
基之 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000031019A priority Critical patent/JP2001219369A/en
Publication of JP2001219369A publication Critical patent/JP2001219369A/en
Publication of JP2001219369A5 publication Critical patent/JP2001219369A5/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To predict the polishing shape in actual polishing with high accuracy and to obtain the desired polishing shape on the basis of the predicted polishing shape. SOLUTION: This polishing shape predicting method comprises a process for measuring the distribution of pressure force between a sample and an abrasive pad by using a distribution of pressing force measuring device for measuring thee pressing force to press an abrasive pad to a surface to be polished of a sample at plural points between the sample and the abrasive pad, a process for predicting the polishing shape in actual grinding on the basis of the measured distribution of pressure force, a process for judging whether the polishing can be started or not on the basis of the prediction, and a process for executing the polishing with pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体デバイスウェ
ハ等の試料の被研磨面を研磨パッドに押付けて研磨する
実研磨での研磨形状を予測する研磨形状予測方法及び研
磨方法並びに研磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing shape prediction method, a polishing method, and a polishing apparatus for predicting a polishing shape in actual polishing in which a surface to be polished of a sample such as a semiconductor device wafer is pressed against a polishing pad for polishing.

【0002】[0002]

【従来の技術】円板形の試料の研磨方法は表1に示す如
く大きく分けて平面創成研磨方式と全面均等研磨方式と
がある。
2. Description of the Related Art As shown in Table 1, polishing methods for a disk-shaped sample are roughly classified into a planar generating polishing method and a uniform polishing method over the entire surface.

【0003】[0003]

【表1】 [Table 1]

【0004】平面創成研磨方式は、元々平面度が悪い試
料に高精度の平面度を有する研磨定盤及び研磨パッドを
当てて研磨し、研磨定盤及び研磨パッドの平面度を試料
に転写することにより試料の平面度を強制的に創成する
研磨方法である。この研磨方法は、高精度な厚み制御が
必要であるシリコン試料研磨、石英試料研磨等のプロセ
スに適用される。
[0004] In the flat surface generating polishing method, a sample having originally poor flatness is polished with a polishing platen and a polishing pad having high precision flatness, and the flatness of the polishing platen and the polishing pad is transferred to the sample. This is a polishing method in which the flatness of the sample is forcibly created by the method. This polishing method is applied to processes such as silicon sample polishing and quartz sample polishing that require highly accurate thickness control.

【0005】全面均等研磨方式は、半導体デバイスウェ
ハ等の試料の層間膜等を研磨する化学機械研磨(CM
P)において、未研磨の試料がどのような被研磨面状態
を有している場合でも、その被研磨面状態に倣って被研
磨面状態を保ちつつ全面を等分量に研磨除去する方法で
ある。
[0005] The uniform polishing method is a chemical mechanical polishing (CM) for polishing an interlayer film of a sample such as a semiconductor device wafer.
In P), even if the unpolished sample has any polished surface state, the entire surface is polished and removed in equal amounts while maintaining the polished surface state according to the polished surface state. .

【0006】平面創成研磨方式は、高精度な厚み精度を
確保するために厚み寸法が大きい部分を選択的に研磨除
去し、全面を平坦化するのに対し、全面均等研磨方式
は、試料の被研磨面状態に関わらず被研磨面状態を保ち
つつ全面を等分量に研磨除去し、未研磨の被研磨面状態
と近似した被研磨面状態が保たれる。
[0006] In the flat surface generation polishing method, a portion having a large thickness is selectively polished and removed and the entire surface is flattened in order to secure high thickness accuracy. Regardless of the polished surface state, the entire surface is polished and removed in equal amounts while maintaining the polished surface state, and the polished surface state similar to the unpolished polished surface state is maintained.

【0007】この全面均等研磨方式では、比較的軟質の
研磨パッドを使用することが望ましい。これは、研磨パ
ッドの表面が試料の被研磨面に倣うことにより、全面が
均等に接触し、全面均等に研磨することが可能であると
考えられるためである。しかし、デバイス層間膜の研磨
では、上述の全面均等に研磨することに加えて、局所的
に微小な凹凸を平らにする性能も要求されている。この
局所的な部分を平らにするには、比較的硬質な研磨パッ
ドが良いと考えられる。
In this overall uniform polishing method, it is desirable to use a relatively soft polishing pad. This is because when the surface of the polishing pad follows the surface to be polished of the sample, it is considered that the entire surface is in uniform contact and the entire surface can be polished uniformly. However, in the polishing of the device interlayer film, in addition to the above-mentioned uniform polishing of the entire surface, the ability to locally flatten minute irregularities is also required. It is considered that a relatively hard polishing pad is good for flattening this localized portion.

【0008】この二つの性能を同時に満たす研磨方法と
して従来2層パッドなるものが使用されてきた。この2
層パッドは、試料の被研磨面に接触する表面部が比較的
硬質の材料で構成され、局所的には、凹凸を平らにする
平坦化が可能なようになっており、研磨パッドの内部
は、比較的軟質の材料を使用することで被研磨面の形状
に関わらず、試料の被研磨面を均等に研磨することが可
能に構成されている。
Conventionally, a two-layer pad has been used as a polishing method for simultaneously satisfying these two performances. This 2
The layer pad is made of a relatively hard material at the surface portion that comes into contact with the surface to be polished of the sample, and locally, it is possible to flatten the unevenness locally, and the inside of the polishing pad is By using a relatively soft material, it is possible to uniformly polish the polished surface of the sample regardless of the shape of the polished surface.

【0009】また、3層の研磨パッドを有する研磨装置
も知られている。3層の研磨パッドは、試料の被研磨面
に当る表面部は比較的硬質であり、研磨剤の搬送性がよ
い発泡性のポリウレタンからなる合成樹脂材料で構成さ
れ、裏面はエポキシ樹脂、グラスファイバー等の比較的
硬質の硬質合成樹脂板により裏打ちされ、研磨パッドの
表面硬度を上げて局所的な平坦化が可能なように構成さ
れている。また、前記硬質合成樹脂板の裏面には、スポ
ンジ等の比較的軟質の材料が敷かれており、硬質合成樹
脂板のクッション的な役割を果たすようになっている。
これによって研磨パッドの表面は硬度が高いながらも試
料の被研磨面の凹凸に追従するような働きを有するた
め、平坦化研磨及び均等研磨を両立することが可能であ
る。
[0009] A polishing apparatus having a three-layer polishing pad is also known. The three-layer polishing pad has a relatively hard surface corresponding to the surface to be polished of the sample and is made of a synthetic resin material made of foamable polyurethane, which has a good abrasive transportability, and an epoxy resin, glass fiber on the back surface. The polishing pad is backed by a relatively hard hard synthetic resin plate, and is configured to increase the surface hardness of the polishing pad to enable local flattening. Also, a relatively soft material such as a sponge is spread on the back surface of the hard synthetic resin plate, and plays a cushion-like role of the hard synthetic resin plate.
Thus, the surface of the polishing pad has a function of following the irregularities of the surface to be polished of the sample while having a high hardness, so that both flattening polishing and uniform polishing can be achieved.

【0010】特開平5−285825号公報に示される
研磨パッドにあっても上述したところと同様に表面部
は、研磨の局所的な平坦化に寄与し、研磨パッドの裏面
の板部材がクッションの役割を果たしている。
In the polishing pad disclosed in Japanese Patent Application Laid-Open No. 5-285825, the surface portion contributes to the local flattening of polishing similarly to the above, and the plate member on the back surface of the polishing pad serves as a cushion. Plays a role.

【0011】また、特開平9−29622号公報では、
直径寸法が異なる複数が同心的に配され、夫々が独立し
て回転可能な円環部材を有する研磨定盤が設けられてお
り、前記円環部材の回転数を変化させることにより研磨
形状の制御を可能とした研磨装置が開示されている。
In Japanese Patent Application Laid-Open No. 9-29622,
A plurality of polishing plates each having a different diameter dimension are concentrically arranged, and each has a polishing platen having an independently rotatable annular member. The polishing shape is controlled by changing the number of revolutions of the annular member. There is disclosed a polishing apparatus that enables the above.

【0012】また、特開平9−232261号公報で
は、試料の被研磨面と反対の裏面側に複数の押付力検出
素子を配設して押付力を測定し、夫々の押付力検出素子
間の押付力の差が所定値以上になったときに研磨を終了
するようにした研磨方法が開示されている。
In Japanese Patent Application Laid-Open No. 9-232261, a plurality of pressing force detecting elements are arranged on the back side opposite to the polished surface of the sample to measure the pressing force. There is disclosed a polishing method in which polishing is terminated when a difference in pressing force becomes equal to or more than a predetermined value.

【0013】また、特開平9−260316号公報で
は、試料の被研磨面と反対の裏面側又は研磨パッドの裏
面側若しくはこれらの両方に、押付力検出素子群と局所
押付機構群とを配設し、押付力分布を調整するようにし
た研磨方法が開示されている。
In Japanese Patent Application Laid-Open No. 9-260316, a pressing force detecting element group and a local pressing mechanism group are provided on the back surface opposite to the surface to be polished of a sample, the back surface of a polishing pad, or both. In addition, a polishing method that adjusts the distribution of the pressing force is disclosed.

【0014】[0014]

【発明が解決しようとする課題】ところが上述したよう
な従来の研磨方法及び研磨装置は、試料の被研磨面状態
に合わせて研磨パッドの表面を倣わせ、被研磨面状態を
保ちつつ全ての試料を研磨しているため、研磨した後の
研磨形状が許容されない試料についても研磨されること
になる。
However, in the conventional polishing method and polishing apparatus as described above, the surface of the polishing pad is copied according to the state of the surface to be polished of the sample, and all of the sample is maintained while maintaining the state of the surface to be polished. Is polished, so that a sample whose polished shape after polishing is not allowed is polished.

【0015】本発明は斯かる事情に鑑みてなされたもの
であり、試料と研磨パッドとの間の押付力分布に基づい
て実研磨での研磨形状を予測することができ、また、こ
の予測結果に基づいて研磨開始の可否を判定し、研磨す
ることができる研磨形状予測方法及び研磨方法並びに研
磨装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to predict a polishing shape in actual polishing based on a distribution of a pressing force between a sample and a polishing pad. It is an object of the present invention to provide a polishing shape prediction method, a polishing method, and a polishing apparatus capable of judging whether or not to start polishing based on the above, and performing polishing.

【0016】また、予め準備されている複数の研磨基板
の一つを前記予測結果に基づいて選択し、この選択した
研磨基板に取り替えたり、又は、直径寸法が異なる複数
が同心的に配され、夫々が独立して研磨パッドの方向へ
の移動が可能な円環部材を有する研磨定盤の前記円環部
材を前記予測結果に基づいて夫々移動させることによ
り、前記押付力分布を補正したりすることができる研磨
形状予測方法及び研磨方法並びに研磨装置を提供するこ
とを目的とする。
Further, one of a plurality of polishing substrates prepared in advance is selected on the basis of the prediction result, and the selected polishing substrate is replaced or a plurality of polishing substrates having different diameters are concentrically arranged. The pressing force distribution is corrected by moving the annular members of the polishing platen each having an annular member capable of independently moving in the direction of the polishing pad based on the prediction result. It is an object of the present invention to provide a polishing shape prediction method, a polishing method, and a polishing apparatus that can perform the polishing.

【0017】[0017]

【課題を解決するための手段】第1発明に係る研磨形状
予測方法は、円板形の試料を回転させつつその被研磨面
を研磨パッドに押付けて研磨する実研磨での研磨形状を
予測する方法であって、前記試料と研磨パッドとの間の
第1の押付力分布を測定し、測定した第1の押付力分布
に基づいて前記被研磨面をその直径方向に区分した複数
の試料区分域に加わる第2の押付力分布を算出し、この
算出した第2の押付力分布に基づいて実研磨での研磨形
状を予測することを特徴とする。
According to a first aspect of the present invention, there is provided a polishing shape estimating method for estimating a polishing shape in actual polishing in which a disk-shaped sample is rotated and a surface to be polished is pressed against a polishing pad and polished. A method, comprising: measuring a first pressing force distribution between the sample and a polishing pad; and dividing the surface to be polished in the diameter direction based on the measured first pressing force distribution. The method is characterized in that a second pressing force distribution applied to the region is calculated, and a polishing shape in actual polishing is predicted based on the calculated second pressing force distribution.

【0018】第2発明に係る研磨形状予測方法は、円板
形の試料を回転させつつその被研磨面を研磨パッドに押
付けて研磨する実研磨での研磨形状を予測する方法であ
って、前記試料と研磨パッドとの間の第1の押付力分布
を測定し、測定した第1の押付力分布に基づいて前記被
研磨面をその直径方向に区分した複数の試料区分域に加
わる第3の押付力分布を算出し、この算出した第3の押
付力分布及び該第3の押付力分布で実研磨したときの研
磨形状の相関関係を予め求めてあり、前記試料と研磨パ
ッドとの間の第1の押付力分布を測定し、測定した第1
の押付力分布に基づいて前記被研磨面をその直径方向に
区分した複数の試料区分域に加わる第2の押付力分布を
算出し、この算出した第2の押付力分布の形状と、予め
求められた相関関係とを比較して実研磨での研磨形状を
予測することを特徴とする。
A polishing shape predicting method according to a second aspect of the present invention is a method for predicting a polishing shape in actual polishing in which a disk-shaped sample is rotated and a surface to be polished is pressed against a polishing pad and polished. Measuring a first pressing force distribution between the sample and the polishing pad, and applying a third pressing force applied to a plurality of sample sections in which the surface to be polished is divided in the diameter direction based on the measured first pressing force distribution. The pressing force distribution is calculated, and the correlation between the calculated third pressing force distribution and the polishing shape when actual polishing is performed with the third pressing force distribution is obtained in advance, and the correlation between the sample and the polishing pad is determined. Measuring the first pressing force distribution and measuring the measured first pressing force distribution;
Calculating a second pressing force distribution applied to a plurality of sample sections in which the surface to be polished is divided in the diameter direction based on the pressing force distribution, and calculating the shape of the calculated second pressing force distribution in advance. It is characterized in that a polishing shape in actual polishing is predicted by comparing with the obtained correlation.

【0019】第3発明に係る研磨形状予測方法は、前記
第1の押付力分布の測定は、前記研磨パッド及び試料を
相対移動させて研磨パッド上の複数の位置で行うことを
特徴とする。
In the polishing shape prediction method according to a third aspect of the present invention, the measurement of the first pressing force distribution is performed at a plurality of positions on the polishing pad by relatively moving the polishing pad and the sample.

【0020】第4発明に係る研磨形状予測方法は、前記
第2及び第3の押付力分布は、前記研磨パッドの被研磨
面との接触域を前記試料区分域と同数に区分したパッド
区分域ごとの平均押付力と、前記試料が一回転する間で
前記試料区分域が前記パッド区分域を通過する割合とに
基づいて算出することを特徴とする。
According to a fourth aspect of the present invention, in the method for predicting a polishing shape, the second and third pressing force distributions may be arranged such that a contact area between the polishing pad and a surface to be polished is divided into the same number as the sample section areas. The calculation is based on the average pressing force of each sample and the rate at which the sample section passes through the pad section while the sample makes one rotation.

【0021】第5発明に係る研磨方法は、円板形の試料
を回転させつつその被研磨面を研磨パッドに押付けて研
磨する研磨方法において、請求項1乃至4記載の研磨形
状予測方法を実行する予測工程と、予測結果に基づいて
研磨開始の可否を判定する研磨開始可否判定工程と、判
定結果に基づいて研磨する研磨工程とからなることを特
徴とする。
A polishing method according to a fifth aspect of the present invention is a polishing method in which a polished surface is pressed against a polishing pad while polishing a disk-shaped sample while rotating the disk-shaped sample. And a polishing start determination step of determining whether or not to start polishing based on the prediction result, and a polishing step of performing polishing based on the determination result.

【0022】第6発明に係る研磨方法は、円板形の試料
を回転させつつその被研磨面を、研磨基板を介して研磨
定盤に取付けられた研磨パッドに押付けて研磨する研磨
方法において、前記研磨基板は前記研磨パッドに加える
押付力分布が異なる複数の種類を備えており、請求項1
乃至4記載の研磨形状予測方法を実行する予測工程と、
予測結果に基づいて前記研磨基板の一つを選択する選択
工程と、前記研磨基板を選択した研磨基板に取り替えて
研磨する研磨工程とからなることを特徴とする。
A polishing method according to a sixth aspect of the present invention is a polishing method for polishing by pressing a surface to be polished against a polishing pad attached to a polishing platen via a polishing substrate while rotating a disk-shaped sample. 2. The polishing substrate includes a plurality of types having different distributions of pressing force applied to the polishing pad, and 2.
A prediction step of executing the polishing shape prediction method according to any one of claims 4 to 4,
The method is characterized by comprising a selection step of selecting one of the polishing substrates based on a prediction result, and a polishing step of replacing the polishing substrate with the selected polishing substrate and polishing.

【0023】第7発明に係る研磨方法は、円板形の試料
を回転させつつその被研磨面を、研磨定盤に取付けられ
た研磨パッドに押付けて研磨する研磨方法において、前
記研磨定盤は直径寸法が異なる複数が同心的に配され、
夫々が独立して前記研磨パッドの方向への移動が可能な
円環部材を備えており、請求項1乃至4記載の研磨形状
予測方法を実行する予測工程と、予測結果に基づいて前
記円環部材を夫々移動させ、これら円環部材の位置を調
整する位置調整工程と、研磨する研磨工程とからなるこ
とを特徴とする。
A polishing method according to a seventh aspect of the present invention is a polishing method in which a polished surface is pressed against a polishing pad attached to a polishing plate while the disk-shaped sample is being rotated, and the polishing plate is polished. Plurality of different diameters are arranged concentrically,
5. A polishing step for performing the polishing shape prediction method according to claim 1, further comprising a ring member capable of independently moving in the direction of the polishing pad, and the ring based on a prediction result. The method is characterized by comprising a position adjusting step of adjusting the positions of the annular members by moving the members, and a polishing step of polishing.

【0024】第8発明に係る研磨方法は、試料の被研磨
面を研磨定盤に取付けられた研磨パッドに押付けて研磨
する研磨方法において、前記研磨定盤は直径寸法が異な
る複数が同心的に配され、夫々が独立して前記研磨パッ
ドの方向への移動が可能な円環部材を備えており、前記
試料の被研磨面と反対側の裏面又は研磨パッドの裏面に
押付力を複数の位置で測定する押付力分布測定器を配し
て押付力分布を測定する測定工程と、測定した押付力分
布に基づいて実研磨での研磨形状を予測する予測工程
と、予測結果に基づいて前記円環部材を夫々移動させ、
これら円環部材の位置を調整する位置調整工程と、研磨
する研磨工程とからなることを特徴とする。
In a polishing method according to an eighth aspect of the present invention, in the polishing method, the surface to be polished of the sample is pressed against a polishing pad attached to the polishing table, and the polishing table has a plurality of concentrically different diameters. An annular member, each of which is independently movable in the direction of the polishing pad, and applies a pressing force to the back surface opposite to the surface to be polished of the sample or the back surface of the polishing pad at a plurality of positions. A measuring step of measuring a pressing force distribution by arranging a pressing force distribution measuring device to be measured in, a predicting step of predicting a polishing shape in actual polishing based on the measured pressing force distribution, and the circle based on a predicted result. Move each ring member,
The method is characterized by comprising a position adjusting step of adjusting the positions of these annular members and a polishing step of polishing.

【0025】第9発明に係る研磨装置は、試料の被研磨
面を研磨パッドに押付けて研磨する研磨装置において、
前記研磨パッドへの押付力を前記試料と研磨パッドとの
間の複数の位置で測定する押付力分布測定器を前記試料
と研磨パッドとの間に配する配置手段と、前記押付力分
布測定器が測定した押付力分布に基づいて実研磨での研
磨形状を予測する研磨形状予測手段とを備えることを特
徴とする。
According to a ninth aspect of the present invention, there is provided a polishing apparatus for polishing a sample by pressing a surface to be polished against a polishing pad.
An arranging means for arranging a pressing force distribution measuring device for measuring a pressing force to the polishing pad at a plurality of positions between the sample and the polishing pad between the sample and the polishing pad, and the pressing force distribution measuring device And polishing shape prediction means for predicting a polishing shape in actual polishing based on the measured pressing force distribution.

【0026】第10発明に係る研磨装置は、実研磨した
ときの研磨形状を予め設定する設定手段と、前記予測し
た研磨形状と予め設定された研磨形状とを比較する比較
手段と、比較した試料の研磨開始の可否を判定する研磨
開始可否判定手段とを備えることを特徴とする。
A polishing apparatus according to a tenth aspect of the present invention comprises a setting means for presetting a polishing shape when actual polishing is performed, a comparing means for comparing the predicted polishing shape with a preset polishing shape, and a sample for comparison. And a polishing start determination unit for determining whether the polishing can be started.

【0027】第11発明に係る研磨装置は、前記研磨定
盤は直径寸法が異なる複数が同心的に配され、夫々が独
立して前記研磨パッドの方向への移動が可能な円環部材
を備えており、前記研磨形状予測手段が予測した研磨形
状に基づいて前記円環部材を夫々移動させ、これら円環
部材の位置を調整する位置調整手段を備えることを特徴
とする。
A polishing apparatus according to an eleventh aspect of the present invention is characterized in that the polishing platen is provided with a plurality of concentrically arranged polishing plates having different diameters, each of which is independently movable in the direction of the polishing pad. And a position adjusting means for moving the annular members based on the polishing shape predicted by the polishing shape predicting means and adjusting the positions of the annular members.

【0028】第12発明に係る研磨装置は、試料の被研
磨面を研磨定盤に取付けられた研磨パッドに押付けて研
磨する研磨装置において、前記研磨定盤は直径寸法が異
なる複数が同心的に配され、夫々が独立して前記研磨パ
ッドの方向への移動が可能な円環部材を備えており、前
記試料の被研磨面と反対側の裏面又は研磨パッドの裏面
に配され、前記研磨パッドへの押付力を複数の位置で測
定する押付力分布測定器と、該押付力分布測定器が測定
した押付力分布に基づいて実研磨での研磨形状を予測す
る研磨形状予測手段と、該研磨形状予測手段が予測した
研磨形状に基づいて前記円環部材を夫々移動させ、これ
ら円環部材の位置を調整する位置調整手段とを備えるこ
とを特徴とする。
A polishing apparatus according to a twelfth aspect of the present invention is a polishing apparatus for polishing by pressing a surface to be polished of a sample against a polishing pad attached to a polishing table, wherein a plurality of polishing tables having different diameters are concentric. The polishing pad, each of which is provided with an annular member capable of independently moving in the direction of the polishing pad, and disposed on the back surface opposite to the surface to be polished of the sample or the back surface of the polishing pad. Pressing force distribution measuring device for measuring pressing force at a plurality of positions, polishing shape predicting means for predicting a polishing shape in actual polishing based on the pressing force distribution measured by the pressing force distribution measuring device, The apparatus further comprises a position adjusting means for moving the annular members based on the polishing shape predicted by the shape predicting means and adjusting the positions of the annular members.

【0029】本発明の研磨方法は上述したところの平面
創成研磨方式ではなく、全面均等研磨方式である。即
ち、試料の被研磨面状態に関わらずその被研磨面状態に
倣って被研磨面状態を保ちつつ全面を等分量に研磨除去
することを目的とするものである。
The polishing method of the present invention is not a flat surface generation polishing system as described above, but is an entire surface uniform polishing system. That is, it is an object of the present invention to polish and remove the entire surface in equal amounts while maintaining the polished surface state irrespective of the polished surface state of the sample.

【0030】ここで、まず研磨の現象を被研磨面の全体
で考えるのでなく、一つの点で起こる現象を考える。次
に、この現象を被研磨面の全体でどのように均等に作用
させるかを、即ち、被研磨面の全体で制御する方法を見
出す。
Here, first, a phenomenon that occurs at one point is considered, instead of considering the polishing phenomenon on the entire surface to be polished. Next, a method for controlling how this phenomenon is uniformly applied to the entire surface to be polished, that is, a method for controlling the entire surface to be polished will be found.

【0031】一般に研磨量に比較的大きく影響する要因
として試料の研磨パッドへの押付力があり、この押付力
は殆ど研磨量に対して比例関係にある。この押付力を円
板形の試料の被研磨面をその直径方向に区分した複数の
試料区分域ごとに制御することができれば被研磨面を任
意の形状に研磨することが可能となり、また、均一に研
磨することが可能となる。従来の上述したところの2層
パッド等の研磨パッド構成とした場合、研磨パッドの裏
面側にある軟質部材が試料の被研磨面に追従するという
効果により均等に研磨されると云うように考えられてい
たが、これはとりもなおさず、被研磨面の全面に研磨パ
ッドが均等に押付力を及ぼすことによるものであるとい
っていることに外ならない。
Generally, a factor that relatively largely affects the polishing amount is a pressing force of the sample against the polishing pad, and this pressing force is almost proportional to the polishing amount. If this pressing force can be controlled for each of a plurality of sample sections in which the surface to be polished of the disk-shaped sample is divided in the diameter direction, the surface to be polished can be polished to an arbitrary shape and the uniformity can be obtained. Can be polished. In the case of a conventional polishing pad structure such as a two-layer pad described above, it is considered that the soft member on the back side of the polishing pad is evenly polished by the effect of following the polished surface of the sample. However, this is not to say that this is due to the fact that the polishing pad exerts a uniform pressing force on the entire surface to be polished.

【0032】本発明はこの均等に押付力を及ぼす方法に
ついて、実際に押付力の分布を測定し、測定した第1の
押付力分布の形態を独自の手法により解析して被研磨面
の複数の試料区分域に加わる第2の押付力分布を算出
し、この算出した第2の押付力分布に基づいて実研磨で
の研磨形状を予測する。
According to the present invention, a method of uniformly applying the pressing force is to actually measure the distribution of the pressing force and analyze the form of the measured first pressing force distribution by a unique method to analyze a plurality of the polished surfaces. A second pressing force distribution applied to the sample section is calculated, and a polishing shape in actual polishing is predicted based on the calculated second pressing force distribution.

【0033】しかして、第1発明乃至第4発明及び第9
発明にあっては、実研磨の前工程として試料と研磨パッ
ドとの間の第1の押付力分布を測定し、測定した第1の
押付力分布に基づいて被研磨面をその直径方向に区分し
た複数の試料区分域に加わる第2の押付力分布を算出す
ることにより、実研磨での研磨形状を高精度に予測する
ことができる。従って、この予測した研磨形状が所望の
研磨形状に対し許容されない試料が実研磨されることを
防止でき、予測した研磨形状が所望の研磨形状に対し許
容される試料についてのみ実研磨することができる。ま
た、請求項3にあっては、試料と研磨パッドとの間の押
付力分布評価の評価域を研磨に寄与する接触域にできる
限り近づけることができるため、第2の押付力分布の形
状から実研磨での研磨形状をより一層精度よく予測する
ことができる。
Thus, the first to fourth inventions and the ninth invention
In the present invention, the first pressing force distribution between the sample and the polishing pad is measured as a pre-process of actual polishing, and the surface to be polished is divided in the diameter direction based on the measured first pressing force distribution. By calculating the second distribution of the pressing force applied to the plurality of sample sections, it is possible to accurately predict the polishing shape in actual polishing. Therefore, it is possible to prevent actual polishing of a sample whose predicted polishing shape is not permissible for a desired polishing shape, and to perform actual polishing only for a sample whose predicted polishing shape is permissible for a desired polishing shape. . According to the third aspect, the evaluation area of the pressing force distribution evaluation between the sample and the polishing pad can be made as close as possible to the contact area contributing to polishing. The polishing shape in actual polishing can be more accurately predicted.

【0034】第5発明及び第10発明にあっては、実研
磨での研磨形状を予測した後、この予測結果に基づいて
研磨開始の可否を自動的に判定することができ、研磨開
始が可能な試料の全てを所望の研磨形状に研磨すること
が可能である。
According to the fifth and tenth aspects of the present invention, after the polishing shape in actual polishing is predicted, it is possible to automatically determine whether or not polishing is to be started based on the prediction result. It is possible to polish all of the various samples into a desired polish shape.

【0035】第6発明にあっては、予測した研磨形状に
基づいて複数の研磨基板の一つを選択し、この研磨基板
を取り替えるため、研磨パッドに加わる押付力分布を予
測した研磨形状に最適な押付力分布に変えることがで
き、試料を所望の研磨形状に研磨することができる。
According to the sixth aspect of the present invention, one of a plurality of polishing substrates is selected based on the predicted polishing shape, and since this polishing substrate is replaced, the distribution of the pressing force applied to the polishing pad is optimized for the predicted polishing shape. And the sample can be polished to a desired polishing shape.

【0036】第7発明及び第8発明と、第11発明及び
第12発明とにあっては、予測した研磨形状に基づいて
研磨定盤の円環部材を独立して夫々移動させるため、研
磨パッドに加わる押付力分布を予測した研磨形状に最適
な押付力分布に補正することができ、試料を予め定めた
研磨形状に研磨することができる。
In the seventh and eighth inventions and the eleventh and twelfth inventions, the polishing pad is used for independently moving the annular members of the polishing platen based on the predicted polishing shape. Can be corrected to a pressing force distribution optimal for the predicted polishing shape, and the sample can be polished to a predetermined polishing shape.

【0037】[0037]

【発明の実施の形態】以下本発明をその実施の形態を示
す図面に基づいて詳述する。 実施の形態1 図1は本発明に係る研磨装置の要部の構成を示す縦断面
図である。この研磨装置は、その表面が下向きとなる研
磨パッド2を有し、鉛直線の回りを回転が可能であり、
鉛直線の長手方向に昇降が可能な平面視円形の研磨定盤
1と、該研磨定盤1の下側に前記研磨パッド2と向き合
うように複数が配され、鉛直線の回りを回転が可能な平
面視円形の試料保持器3と、これら試料保持器3を支持
し、鉛直線の回りを回転が可能な支持定盤4と、前記研
磨パッド2の中央部にシリカ等の研磨粒子が含有された
研磨液(研磨剤)を供給する管状の研磨剤供給部5とを
備え、前記試料保持器3が保持する円板形の試料Aを研
磨パッド2に押付けた状態で研磨定盤1、試料保持器3
及び支持定盤4を夫々回転させ、前記研磨剤供給部5か
ら研磨定盤1の中央部へ研磨剤を供給しつつ前記試料A
の被研磨面aを研磨し、該被研磨面aを平坦化すること
が可能としてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. Embodiment 1 FIG. 1 is a longitudinal sectional view showing a configuration of a main part of a polishing apparatus according to the present invention. This polishing apparatus has a polishing pad 2 whose surface faces downward, can rotate around a vertical line,
A polishing platen 1 having a circular shape in a plan view and capable of ascending and descending in the longitudinal direction of a vertical line, and a plurality of polishing plates 2 are arranged below the polishing platen 1 so as to face the polishing pad 2 and can rotate around the vertical line. A sample holder 3 having a circular shape in a plan view, a supporting platen 4 supporting the sample holder 3 and rotatable around a vertical line, and containing abrasive particles such as silica in the center of the polishing pad 2. And a tubular polishing agent supply section 5 for supplying a polishing liquid (polishing agent). The polishing platen 1 is pressed while the disk-shaped sample A held by the sample holder 3 is pressed against the polishing pad 2. Sample holder 3
And the supporting platen 4 is rotated to supply the polishing agent from the polishing agent supply unit 5 to the center of the polishing platen 1 while the sample A
Is polished, and the polished surface a can be planarized.

【0038】試料保持器3は研磨パッド2と向き合う面
に負圧によって前記試料Aを吸着保持することが可能な
吸着保持部3aを有している。試料保持器3は研磨定盤
1の半径寸法よりも小さい直径寸法であり、研磨定盤1
の回転中心に対し偏倚した位置に回転が可能に複数が配
されており、研磨定盤1の下降により研磨パッド2を試
料Aに押付けて接触させ、該試料Aに適宜の研磨圧を加
えることができるようにしてある。
The sample holder 3 has, on a surface facing the polishing pad 2, a suction holding portion 3a capable of holding the sample A by suction under a negative pressure. The sample holder 3 has a diameter smaller than the radius of the polishing table 1, and the polishing table 1
The polishing pad 2 is pressed against the sample A by lowering the polishing table 1 to apply a suitable polishing pressure to the sample A. I can do it.

【0039】図2は研磨装置が用いられる研磨システム
を模式的に示す平面図である。前記研磨装置が収容され
た研磨室Bと、該研磨室B及びクリーンルーム室Cの間
に中間室Dを介して配され、前記試料Aが搬出入される
ロード室Eと、前記研磨室B及びロード室Eの境界部の
側方に配され、研磨された試料Aを洗浄する洗浄室Fと
を備えており、クリーンルーム室Cからロード室Eへ搬
入された試料カセット10内の試料Aを中間室Dを介し
て研磨室Bへ搬送し、研磨された後の試料Aが洗浄室F
へ搬送され、自動で洗浄された後の試料Aがロード室E
の元の試料カセット10に回収できるシステムになって
いる。
FIG. 2 is a plan view schematically showing a polishing system using the polishing apparatus. A polishing chamber B in which the polishing apparatus is housed; a load chamber E disposed between the polishing chamber B and the clean room chamber C via an intermediate chamber D to which the sample A is carried in and out; A cleaning chamber F for cleaning the polished sample A, which is disposed on the side of the boundary portion of the load chamber E, and intermediate the sample A in the sample cassette 10 carried into the load chamber E from the clean room chamber C; The sample A after being transported to the polishing chamber B through the chamber D and polished is
The sample A after being transported to the
Of the original sample cassette 10.

【0040】ロード室Eにはクリーンルーム室Cから搬
出入ゲートを経て搬入された試料カセット10内の試料
Aを移送ゲートから中間室Dへ搬入する搬送アーム11
と、洗浄室F内の試料Aを移送ゲートから搬入する搬入
アーム12と、試料ステージ13とが設けられている。
The transfer arm 11 for loading the sample A in the sample cassette 10 loaded from the clean room C through the loading / unloading gate into the intermediate chamber D through the loading / unloading gate.
, A loading arm 12 for loading the sample A in the cleaning chamber F from the transfer gate, and a sample stage 13.

【0041】中間室Dには前記搬送アーム11が搬送し
た試料Aを支持する試料ステージ14と、該試料ステー
ジ14上の試料Aを移送ゲートを介して研磨室Bへ搬送
する搬送アーム15が設けられている。
The intermediate chamber D is provided with a sample stage 14 for supporting the sample A transferred by the transfer arm 11 and a transfer arm 15 for transferring the sample A on the sample stage 14 to the polishing chamber B via a transfer gate. Have been.

【0042】研磨室Bには、前記搬送アーム15が搬送
した試料Aを受け取るロードリフト16と、該ロードリ
フト16上の試料Aを前記試料保持器3に移載する移載
アーム17と、夫々の試料保持器3に保持された試料A
及び研磨パッド2の間の測定位置と待機位置とに移動が
可能であり、試料A及び研磨パッド2に当接して押付力
分布を測定するセンサーシート6と、試料保持器3と一
次洗浄部18との間にて試料Aを移載する移載アーム1
9と、研磨された試料Aを前記試料保持器3からアンロ
ードリフト20に移載する移載アーム21と、アンロー
ドリフト20上の試料Aを試料カセット22に一枚ごと
に搬送する搬送アーム23とを備えている。
In the polishing chamber B, a load lift 16 for receiving the sample A transported by the transport arm 15, and a transfer arm 17 for transferring the sample A on the load lift 16 to the sample holder 3, respectively. A held in the sample holder 3
And a sensor sheet 6 that can move to a measurement position and a standby position between the polishing pad 2 and the sample sheet 3 for measuring the pressing force distribution by contacting the sample A and the polishing pad 2, the sample holder 3, and the primary cleaning unit 18. Transfer arm 1 for transferring sample A between
9, a transfer arm 21 for transferring the polished sample A from the sample holder 3 to the unload lift 20, a transfer arm 23 for transferring the sample A on the unload lift 20 to the sample cassette 22 one by one, It has.

【0043】洗浄室Fには、前記搬送アーム11と同様
に構成された搬送アーム、洗浄手段、乾燥手段等が設け
られており、洗浄した後の試料Aは前記搬入アーム12
によってロード室Eの試料ステージ13に移載される。
The cleaning chamber F is provided with a transfer arm, a washing means, a drying means, etc., which are constructed in the same manner as the transfer arm 11.
Is transferred to the sample stage 13 in the load chamber E.

【0044】センサーシート6には、該センサーシート
6が測定した押付力分布を表示することが可能な第1の
情報処理装置24と、センサーシート6が測定した第1
の押付力分布の測定値に基づいて押付力分布積算値及び
押付力分布積算値均一性を求める第2の情報処理装置2
5とが夫々接続されている。押付力分布積算値及び押付
力分布積算値均一性の説明は後述する。
The sensor sheet 6 has a first information processing device 24 capable of displaying the distribution of the pressing force measured by the sensor sheet 6, and a first information processing device 24 capable of displaying the distribution of the pressing force measured by the sensor sheet 6.
Second information processing apparatus 2 for obtaining a pressing force distribution integrated value and a pressing force distribution integrated value uniformity based on the measured value of the pressing force distribution of FIG.
5 are connected to each other. The description of the pressing force distribution integrated value and the uniformity of the pressing force distribution integrated value will be described later.

【0045】次に押付力分布の測定システムについて説
明する。押付力分布測定器を構成するセンサーシート6
は、導電性の液体が格子状の複数の室に封入されてお
り、その格子の交点で押付力を検知する。センサーシー
ト6に押付力が加わるとその押付力に応じて格子状の室
に封入された液体が押しつぶされ、この液体の断面積が
小さくなることに付随する電気抵抗値の変化により押付
力の大小を検知する。また、センサーシート6は前記試
料Aの大きさによりも若干大きく形成されており、例え
ば44行44列の格子の室を有する。即ち、一つの試料
Aの被研磨面aを44×44等分した各点の押付力を測
定することができるようにしてある。この被研磨面aの
全面を含む44×44の押付力の配列からなるマトリッ
クスを押付力分布と呼ぶ。
Next, a system for measuring the distribution of pressing force will be described. Sensor sheet 6 constituting the pressing force distribution measuring device
In the (2), a conductive liquid is sealed in a plurality of lattice-shaped chambers, and a pressing force is detected at an intersection of the lattice. When a pressing force is applied to the sensor sheet 6, the liquid sealed in the lattice-shaped chamber is crushed in accordance with the pressing force, and the magnitude of the pressing force is changed due to a change in electric resistance value accompanying a decrease in the cross-sectional area of the liquid. Is detected. The sensor sheet 6 is formed slightly larger than the size of the sample A, and has, for example, a 44 × 44 lattice chamber. That is, the pressing force at each point obtained by equally dividing the polished surface a of one sample A by 44 × 44 can be measured. A matrix composed of an array of 44 × 44 pressing forces including the entire surface to be polished a is called a pressing force distribution.

【0046】図3は押付力分布の測定方法を示す断面
図、図4は押付力分布を測定する過程を示す説明図であ
る。押付力分布の測定方法は、全ての試料保持器3に試
料Aを保持した状態で、夫々の試料Aの上に前記センサ
ーシート6を配置する(図4の#1)。これらセンサー
シート6には、コネクターを通して前記第1の情報処理
装置24が接続されている。
FIG. 3 is a sectional view showing a method of measuring the pressing force distribution, and FIG. 4 is an explanatory diagram showing a process of measuring the pressing force distribution. The method of measuring the pressing force distribution is such that the sensor sheet 6 is arranged on each sample A while holding the sample A in all the sample holders 3 (# 1 in FIG. 4). The first information processing device 24 is connected to these sensor sheets 6 through connectors.

【0047】そして、センサーシート6の上側から研磨
パッド2が設けられた研磨定盤1を回転させることなく
下降し、実研磨時に用いる押付力で研磨パッド2をセン
サーシート6に押付ける(図4の#2)。この押付けに
よりセンサーシート6が押付力分布を測定する。即ち、
研磨パッド2の押付けにより該研磨パッド2と試料Aと
の間に挟まれたセンサーシート6の夫々の格子の交点で
の押付力が測定され(図4の#3)、この測定された複
数箇所での押付力が第1の押付力分布として第1の情報
処理装置24に表示される。この測定した第1の押付力
分布を一つの測定値として前記第2の情報処理装置25
に保存する。
Then, the polishing platen 1 provided with the polishing pad 2 is lowered from the upper side of the sensor sheet 6 without rotating, and the polishing pad 2 is pressed against the sensor sheet 6 by a pressing force used in actual polishing (FIG. 4). # 2). By this pressing, the sensor sheet 6 measures the pressing force distribution. That is,
By pressing the polishing pad 2, the pressing force at the intersections of the respective grids of the sensor sheet 6 sandwiched between the polishing pad 2 and the sample A is measured (# 3 in FIG. 4), and the measured plural positions are measured. Is displayed on the first information processing device 24 as a first pressing force distribution. The measured first pressing force distribution is regarded as one measured value, and the second information processing device 25 is used as the measured value.
To save.

【0048】図5は押付力分布を測定する箇所について
の説明図である。第1の押付力分布を測定する箇所は、
試料保持器3に保持された試料Aの上に置いたセンサー
シート6及び試料Aの位置はそのままの状態とし、押付
けを解除した状態で研磨パッド2を1/8回転させて上
述したところと同様の手順で押付力分布を測定し、さら
に、研磨パッド2を1/8回転させて上述したところと
同様の手順で押付力分布を測定するという要領で、これ
を最初から数えて8回行い、これら測定した押付力分布
を前記第2の情報処理装置25に保存する。この8回と
いう測定回数については、前記研磨装置において、試料
Aと研磨パッド2との間の押付力分布評価の評価域が、
研磨パッド2の研磨に寄与する接触域の半分以上となる
ためである(図6参照)。
FIG. 5 is an explanatory diagram of a portion where the pressing force distribution is measured. The place where the first pressing force distribution is measured is as follows:
The positions of the sensor sheet 6 and the sample A placed on the sample A held by the sample holder 3 are left as they are, and the polishing pad 2 is rotated by 1/8 of a turn in a state where the pressing is released. The pressing force distribution was measured by the procedure described above, and the pressing force distribution was measured by the same procedure as that described above by rotating the polishing pad 2 by 1/8. The measured pressing force distribution is stored in the second information processing device 25. With respect to the number of measurements of eight times, in the polishing apparatus, the evaluation range of the pressing force distribution evaluation between the sample A and the polishing pad 2 is:
This is because it is more than half of the contact area that contributes to polishing of the polishing pad 2 (see FIG. 6).

【0049】もしも試料Aと研磨パッド2との間の押付
力分布評価の評価域が研磨に寄与する接触域の半分未満
であった場合、複数回測定して得られた第1の押付力分
布の形状から実研磨での研磨形状を精度良く予測するこ
とが困難になる。逆に、試料Aと研磨パッド2との間の
押付力分布評価の評価域を研磨に寄与する接触域にでき
る限り近づけることにより、複数回測定して得られた第
1の押付力分布の形状から実研磨での研磨形状を精度よ
く予測することが可能となる。
If the evaluation area of the evaluation of the pressing force distribution between the sample A and the polishing pad 2 is less than half of the contact area contributing to polishing, the first pressing force distribution obtained by performing a plurality of measurements is obtained. It becomes difficult to accurately predict the polishing shape in actual polishing from the shape of the polishing. Conversely, by making the evaluation area of the pressing force distribution evaluation between the sample A and the polishing pad 2 as close as possible to the contact area contributing to polishing, the shape of the first pressing force distribution obtained by performing a plurality of measurements is obtained. From this, it is possible to accurately predict the polishing shape in actual polishing.

【0050】上述したように取得した8つの第1の押付
力分布は、研磨に関与する研磨パッド2の表面が、一つ
の試料Aの被研磨面aに与える全ての押付力分布を示し
ている。
The eight first pressing force distributions obtained as described above show all the pressing force distributions that the surface of the polishing pad 2 involved in polishing gives to the polished surface a of one sample A. .

【0051】図6は測定された押付力分布を処理する方
法についての説明図、図7は押付力帯と押付力帯に加わ
る平均押付力との関係を示す押付力分布区分図、図8は
研磨形状を予測する過程を示す説明図である。測定され
た第1の押付力分布の処理は、前記被研磨面aをその直
径方向に区分して複数の試料区分域とし、さらに上述し
たように取得した8つの第1の押付力分布を平面視円形
の研磨パッド2の中心と同心上に前記試料区分域と同数
に区分けする(図8の#4)(図6及び図7参照)。
FIG. 6 is an explanatory diagram of a method of processing the measured pressing force distribution, FIG. 7 is a pressing force distribution division diagram showing a relationship between a pressing force band and an average pressing force applied to the pressing force band, and FIG. It is explanatory drawing which shows the process of estimating a grinding | polishing shape. The processing of the measured first pressing force distribution is such that the surface to be polished a is divided in the diameter direction into a plurality of sample division areas, and the eight first pressing force distributions obtained as described above are converted into planes. The polishing pad 2 is divided into the same number as that of the sample division areas concentrically with the center of the circular polishing pad 2 (# 4 in FIG. 8) (see FIGS. 6 and 7).

【0052】この区分けされた夫々の接触域をパッド区
分域(以下押付力帯という)とし(図8の#5)、夫々
の押付力帯について、その接触域にある押付力の平均値
を算出する(図8の#6)。この算出した平均値をその
押付力帯の平均押付力と定義する。
Each of the divided contact areas is defined as a pad divided area (hereinafter referred to as a pressing force band) (# 5 in FIG. 8), and for each pressing force band, an average value of the pressing force in the contact area is calculated. (# 6 in FIG. 8). The calculated average value is defined as the average pressing force of the pressing force band.

【0053】この平均押付力とは、指定の押付力帯が被
研磨面aの任意の点を通過するときに、研磨パッド2が
試料Aに与える平均押付力のことである。この平均押付
力を夫々の押付力帯ごとに並べてグラフ化したものを押
付力分布区分図とする(図7参照)。
The average pressing force is an average pressing force applied to the sample A by the polishing pad 2 when a specified pressing force band passes an arbitrary point on the surface a to be polished. A graph in which the average pressing force is arranged for each pressing force band and plotted is referred to as a pressing force distribution division diagram (see FIG. 7).

【0054】実研磨での研磨形状について、研磨装置の
剛性が十分にある状態では、試料保持器3に保持された
試料Aは自転しているため、研磨の対称性は保たれ、試
料Aの円周方向での研磨量はほぼ同等であると仮定する
ことができる。よって試料Aの被研磨面aでの研磨量形
状評価は、試料Aの直径方向の研磨量の形状で評価す
る。
Regarding the shape of the actual polishing, when the rigidity of the polishing apparatus is sufficient, the sample A held in the sample holder 3 rotates, so that the symmetry of polishing is maintained and the sample A The amount of polishing in the circumferential direction can be assumed to be approximately equal. Therefore, the shape evaluation of the polishing amount on the polished surface a of the sample A is performed based on the shape of the polishing amount in the diameter direction of the sample A.

【0055】研磨パッド2が試料Aに及ぼす押付力分布
の形状についても同様に、主として試料Aの円周方向は
試料Aが自転していることにより同等に圧力が加わるも
のと仮定し、押付力分布の形状評価も試料Aの直径方向
の押付力分布形状の評価を考えることとする。
Similarly, regarding the shape of the distribution of the pressing force exerted on the sample A by the polishing pad 2, it is assumed that the pressure is applied equally in the circumferential direction of the sample A due to the rotation of the sample A. The shape evaluation of the distribution also considers the evaluation of the pressing force distribution shape in the diameter direction of the sample A.

【0056】図9は被研磨面の任意の半径寸法の円周が
受ける押付力分布積算値を算出する方法の説明図であ
る。上述で得られた押付力分布区分図(図7参照)に基
づいて、被研磨面aの任意の半径寸法rの円周が受ける
押付力分布積算値を算出し(図8の#7)、この押付力
分布積算値を前記試料区分域の夫々に加わる第2の押付
力分布とする。この押付力分布積算値を算出するには、
前記被研磨面aの任意の半径寸法rの円周が、1周(2
π)に対して夫々の前記押付力帯を通過する割合、換言
すれば試料が一回転する間で試料区分域が前記押付力帯
を通過する割合を算出する。この通過する割合と前記押
付力帯の平均押付力とを乗算する。この平均押付力を全
ての前記押付力帯について計算し、これらを全て積算し
て半径寸法rの押付力分布積算値とする。
FIG. 9 is an explanatory diagram of a method of calculating the integrated value of the distribution of the pressing force applied to the circumference having an arbitrary radius of the polished surface. Based on the pressing force distribution section diagram obtained above (see FIG. 7), a pressing force distribution integrated value received on the circumference of an arbitrary radius r of the polished surface a is calculated (# 7 in FIG. 8), The integrated value of the pressing force distribution is defined as a second pressing force distribution applied to each of the sample division areas. To calculate the accumulated value of the pressing force distribution,
The circumference of the polished surface a having an arbitrary radius dimension r is one circumference (2
For π), the ratio of passing the pressing force band in each of the pressing force bands, in other words, the ratio of the sample divided area passing the pressing force band during one rotation of the sample is calculated. This passing ratio is multiplied by the average pressing force of the pressing force band. This average pressing force is calculated for all the pressing force bands, and these are all integrated to obtain a pressing force distribution integrated value of the radius dimension r.

【0057】例えば、押付力帯P3について考えれば、
半径寸法rの被研磨面aの円周1周分(2π)に対し
て、区分域が2回だけθ3程通過している。従って、半
径寸法rの円周が押付力帯P3から受ける押付力は、 Pr3=P(3) *(2*θ3/2*π) (1−1) P(3) :P3の押付力帯が与える平均押付力 Pr3:半径寸法rの円周が押付力帯P3から受ける押
付力
For example, considering the pressing force zone P3,
The sectioned area has passed twice about θ3 for one circumference (2π) of the surface to be polished a with the radius dimension r. Accordingly, the pressing force received by the circumference of the radius dimension r from the pressing force band P3 is: Pr3 = P (3) * (2 * θ3 / 2 * π) (1-1) P (3): The pressing force band of P3. Pressing force given by the pressure Pr3: pressing force that the circumference of the radius dimension r receives from the pressing force band P3

【0058】このように半径寸法rの円周が、押付力帯
P1からP12まで夫々の押付力帯から受ける平均押付
力を計算する。 Pri=P(i) *(2*θi/2*π) (1−2) (i=1,2,3,4,……,12) これら平均押付力を全て積算して半径寸法rの円周が受
ける押付力分布積算値Prを算出する。 Pr= Pr1 + Pr2 + Pr3 + Pr4 + ………+ Pr12 (1−3) ∴Pr=P(1)*(2* θ1/2*π)+P(2)*(2*θ2/2*π)+………+P(12)*(2*12/2* π)
As described above, the average pressing force received by the circumference of the radius dimension r from the pressing force bands P1 to P12 is calculated. Pri = P (i) * (2 * θi / 2 * π) (1-2) (i = 1, 2, 3, 4,..., 12) These average pressing forces are all integrated and the radius dimension r is calculated. Calculate the pressing force distribution integrated value Pr received by the circumference. Pr = Pr1 + Pr2 + Pr3 + Pr4 + ……… + Pr12 (1-3) ∴Pr = P (1) * (2 * θ1 / 2 * π) + P (2) * (2 * θ2 / 2 * π) + ……… + P (12) * (2 * 12/2 * π)

【0059】以上では半径寸法rを被研磨面aの半径寸
法以下の任意の半径寸法rとしているが、8インチ試料
Aの場合、半径寸法rは0mmから100mmまでとること
ができる。たとえば半径寸法rを2mm刻みで0mmから1
00mmまで計算すると、51個の押付力分布積算値を求
めることができる。これら51個の押付力分布積算値の
ばらつきから押付力分布積算値均一性を算出する(図8
の#8)。ここで押付力分布積算値均一性を次のように
定義する。 PD(%) =StDev.(Pr1〜51)/Average(Pr1 〜51)*100 (1−4) PD:押付力分布積算値均一性StDev.(Pr1〜51) :押付力
分布積算値の標準偏差Average(Pr1 〜51) :押付力分布
積算値の平均値
In the above description, the radius r is an arbitrary radius r smaller than the radius of the surface a to be polished. However, in the case of the 8-inch sample A, the radius r can be from 0 mm to 100 mm. For example, the radius dimension r is changed from 0 mm to 1 in increments of 2 mm.
By calculating up to 00 mm, 51 pressing force distribution integrated values can be obtained. From the dispersion of the 51 pressing force distribution integrated values, the uniformity of the pressing force distribution integrated values is calculated (FIG. 8).
# 8). Here, the pressing force distribution integrated value uniformity is defined as follows. PD (%) = StDev. (Pr1 to 51) / Average (Pr1 to 51) * 100 (1-4) PD: Uniformity of accumulated value of pressing force distribution StDev. (Pr1 to 51): Standard of accumulated value of pushing force distribution Deviation Average (Pr1 to 51): Average value of accumulated push force distribution

【0060】次に研磨均一性を算出する(図8の#
9)。この研磨均一性を算出するには、以下の48パー
トの研磨量の測定を行い、そのばらつきを評価すること
で求める。48パートの測定点は、以下の様にとる。 試料Aはオリフラ方向を270°の方向にする。 半径寸法方向(0、20、40、60、80、90、95) 単位(mm) 円周方向(0、45、90、135、180、225、270、315) 単位( °) を満たす夫々の点とする。ただし、オリフラ方向の半径
寸法95mmの点は削除する。ここで研磨均一性は次のよ
うに定義する。 PU(%) =StDev(PA1 〜48)/Average(PA1 〜48)*100 (1−5) PU:研磨均一性 StDev(PA1 〜48) :研磨量の標準偏差 Average(PA1 〜48) :研磨量の平均値
Next, the polishing uniformity is calculated (# in FIG. 8).
9). In order to calculate the polishing uniformity, the polishing amount is measured for the following 48 parts, and the polishing amount is determined by evaluating the variation. The measurement points for 48 parts are as follows. The orientation of the sample A is 270 °. Radial dimension direction (0, 20, 40, 60, 80, 90, 95) Unit (mm) Circumferential direction (0, 45, 90, 135, 180, 225, 270, 315) Unit (°) Point. However, a point with a radius of 95 mm in the orientation flat direction is deleted. Here, the polishing uniformity is defined as follows. PU (%) = StDev (PA1 to 48) / Average (PA1 to 48) * 100 (1-5) PU: Polishing uniformity StDev (PA1 to 48): Standard deviation of polishing amount Average (PA1 to 48): Polishing Average value of quantity

【0061】ここで、(1−4)の数式により求めた押
付力分布積算値均一性と、この押付力分布積算値均一性
を有する状態で研磨した時に得られた研磨均一性(1−
5の数式に基づく)とを比較することにより実研磨での
研磨形状を予測する(図8の#9)。図10は押付力分
布積算値均一性と研磨均一性とを比較した一つの例を示
す説明図、図11は押付力分布積算値均一性と研磨均一
性とを比較した他の例を示す説明図であり、この2例の
場合の研磨条件は表2に示す。
Here, the pressing force distribution integrated value uniformity obtained by the equation (1-4) and the polishing uniformity (1-1-) obtained when polishing is performed in a state having the pressing force distribution integrated value uniformity.
Then, the polishing shape in actual polishing is predicted (# 9 in FIG. 8). FIG. 10 is an explanatory view showing one example in which the pressing force distribution integrated value uniformity and the polishing uniformity are compared, and FIG. 11 is an explanatory view showing another example in which the pressing force distribution integrated value uniformity and the polishing uniformity are compared. It is a figure, and the polishing conditions in these two examples are shown in Table 2.

【0062】[0062]

【表2】 [Table 2]

【0063】この結果から、押付力分布積算値均一性に
よって得られた押付力分布積算値形状と研磨均一性によ
って得られた研磨形状とはほぼ同等の形状であることが
分かる。
From this result, it can be seen that the shape of the integrated value of the pressing force distribution obtained by the uniformity of the integrated value of the pressing force distribution and the polishing shape obtained by the polishing uniformity are almost the same.

【0064】図12は押付力分布積算値均一性と研磨均
一性との相関をとった結果の説明図である。上述したと
ころの条件下で測定回数を多くとり、押付力分布積算値
均一性と研磨均一性との相関を調べたところ、図12に
示すように押付力分布積算値均一性及び研磨均一性に対
し良い相関が得られた。
FIG. 12 is an explanatory diagram of a result obtained by correlating the uniformity of the integrated value of the pressing force distribution and the polishing uniformity. Under the conditions described above, the number of measurements was increased, and the correlation between the pressing force distribution integrated value uniformity and the polishing uniformity was examined. As shown in FIG. 12, the pressing force distribution integrated value uniformity and the polishing uniformity were reduced. Good correlation was obtained.

【0065】ここで研磨均一性、押付力分布積算値均一
性の符号は次式で定義する。 研磨均一性 PA(0〜50mm)/PA(51 〜100mm)<1→ - (センタースロー
形状) PA(0〜50mm)/PA(51 〜100mm)>1→ + (センターファー
スト形状) PA(0〜50mm) :半径寸法0mm 〜50mmの平均研磨量 PA(51 〜100mm):半径寸法51mm〜100mm の平均研磨量 押付力分布積算値均一性 PD(0〜50mm)/PD(51 〜100mm)<1→ - (センタースロー
形状) PD(0〜50mm)/PD(51 〜100mm)>1→ + (センターファー
スト形状) PD(0〜50mm) :半径寸法0mm 〜50mmの平均押付力分布積
算値均一性 PD(51 〜100mm):半径寸法51mm〜100mm の平均押付力分
布積算値均一性
Here, the signs of the polishing uniformity and the pressing force distribution integrated value uniformity are defined by the following equations. Polishing uniformity PA (0-50mm) / PA (51-100mm) <1 →-(Center slow shape) PA (0-50mm) / PA (51-100mm)> 1 → + (Center first shape) PA (0 ): Average polishing amount of radius 0 mm to 50 mm PA (51 to 100 mm): Average polishing amount of radius 51 mm to 100 mm Pressing force distribution integrated value uniformity PD (0 to 50 mm) / PD (51 to 100 mm) < 1 →-(Center slow shape) PD (0 to 50 mm) / PD (51 to 100 mm)> 1 → + (Center first shape) PD (0 to 50 mm): Uniform average pressing force distribution integrated value of radial dimension 0 mm to 50 mm PD (51 to 100mm): Uniformity of average pressing force distribution integrated value of radius dimension 51mm to 100mm

【0066】これにより、測定時の押付力分布積算値均
一性から研磨均一性、換言すれば測定時の押付力分布積
算値(第2の押付力分布)から実研磨での研磨形状を図
10、図11に基づいて精度よく予測することができ、
また、異なる試料を用いて押付力分布積算値の算出と同
じ方法で予め算出された第3の押付力分布とを比較して
実研磨での研磨形状を精度よく予測することができ、ま
た、次の数式により容易に予測することができる。 Y=0.9011*X+2.0311 (1−6) Y:研磨均一性 X:押付力分布積算値均一性
As a result, the polishing shape in actual polishing is determined from the uniformity of the pressing force distribution integrated value at the time of measurement to the polishing uniformity, in other words, the integrated value of the pressing force distribution (second pressing force distribution) at the time of measurement. , And can be accurately predicted based on FIG.
Further, it is possible to accurately predict the polishing shape in actual polishing by comparing the third pressing force distribution calculated in advance by the same method as the calculation of the pressing force distribution integrated value using different samples, and It can be easily predicted by the following formula. Y = 0.9011 * X + 2.0311 (1-6) Y: Polishing uniformity X: Pressing force distribution integrated value uniformity

【0067】この(1−6)の数式は、研磨均一性が押
付力分布積算値均一性と比較して約2%だけセンターフ
ァースト形状になることを示している。例えば、−3.
5%の押付力分布積算値均一性が得られた場合、表2の
研磨条件下では、研磨均一性は(1−6)の数式に代入
すると−1.123%となることから、研磨均一性は
1.123%のセンタースロー形状が得られると予測さ
れる。
The equation (1-6) indicates that the polishing uniformity has a center-first shape by about 2% as compared with the pressing force distribution integrated value uniformity. For example, -3.
When the pressing force distribution integrated value uniformity of 5% is obtained, the polishing uniformity becomes −1.123% when substituted into the mathematical expression of (1-6) under the polishing conditions in Table 2, so that the polishing uniformity is obtained. The properties are expected to give a center throw shape of 1.123%.

【0068】以上説明した方法は、次に示す3つのタイ
プの研磨装置においても適用することができる。図13
は研磨装置の別の構成を示す縦断面図、図14は図13
で示す研磨装置の研磨パッド及び試料の間の押付力分布
評価領域を示す説明図である。この研磨装置は、上向き
の研磨パッド2を有する回転が可能な研磨定盤1の上側
に、研磨パッド2と向き合う試料保持部aを有する回転
が可能な複数の試料保持器3及びこれら試料保持器3を
支持する回転が可能な支持定盤4を配したものである。
The method described above can also be applied to the following three types of polishing apparatuses. FIG.
Is a longitudinal sectional view showing another configuration of the polishing apparatus, and FIG.
It is explanatory drawing which shows the pressing force distribution evaluation area | region between a polishing pad and a sample of the polishing apparatus shown by. This polishing apparatus comprises a plurality of rotatable sample holders 3 having a sample holder a facing a polishing pad 2 above a rotatable polishing platen 1 having an upwardly facing polishing pad 2 and these sample holders. 3 is provided with a rotatable support platen 4 for supporting 3.

【0069】この研磨装置においても、上述したところ
の方法と同様に8箇所程度の第1の押付力分布を測定
し、上述したところの方法と同様に押付力帯の平均押付
力、押付力分布積算値(第2の押付力分布)、押付力分
布積算値均一性を算出する。この実施の形態では、研磨
パッド2及び試料A間の押付力分布の評価領域は、8箇
所を測定することによって、研磨に寄与する接触域の約
80%以上の接触域を占めている。尚、前記押付力分布
の評価領域は、研磨パッド2の接触域の半分以上の接触
域を占めれば、実研磨での研磨形状を精度よく予測する
ことができる。
Also in this polishing apparatus, the first pressing force distribution at about eight places was measured in the same manner as in the method described above, and the average pressing force and the pressing force distribution in the pressing force band were measured in the same manner as in the method described above. The integrated value (second pressing force distribution) and the pressing force distribution integrated value uniformity are calculated. In this embodiment, the evaluation area of the distribution of the pressing force between the polishing pad 2 and the sample A occupies about 80% or more of the contact area contributing to polishing by measuring eight locations. In addition, if the evaluation area of the pressing force distribution occupies half or more of the contact area of the polishing pad 2, the polishing shape in actual polishing can be accurately predicted.

【0070】その他の構成及び作用は図1乃至図3で示
した研磨装置と同じであるため、同様の部品については
同じ符号を付し、その詳細な説明及び作用の説明を省略
する。
Since other configurations and operations are the same as those of the polishing apparatus shown in FIGS. 1 to 3, the same components are denoted by the same reference numerals, and the detailed description and the description of the operations are omitted.

【0071】図15はベルト式の研磨装置の構成を示す
模式的正面図、図16は接触域と、研磨パッド及び試料
の間の押付力分布評価領域との関係を示す説明図、図1
7は被研磨面の任意の半径寸法の円周が受ける押付力分
布積算値を算出する方法の説明図である。この研磨装置
は、離間するローラ間に順回転を可能として張設された
無端状の研磨パッド2aを有する研磨定盤1の上側に、
研磨パッド2aと向き合う試料保持部3aを有する回転
が可能な試料保持器3を配したものである。
FIG. 15 is a schematic front view showing the structure of a belt-type polishing apparatus. FIG. 16 is an explanatory view showing the relationship between a contact area and a pressing force distribution evaluation area between a polishing pad and a sample.
FIG. 7 is an explanatory diagram of a method of calculating an integrated value of a pressing force distribution received on a circumference having an arbitrary radius dimension of the polished surface. This polishing apparatus is provided above a polishing platen 1 having an endless polishing pad 2a stretched so as to enable forward rotation between separated rollers,
A rotatable sample holder 3 having a sample holder 3a facing a polishing pad 2a is provided.

【0072】この研磨装置においては、被研磨面aと接
触する部分の研磨パッド2aは直線運動となるため、研
磨パッド2aの押付力帯はその研磨パッド2aの運動方
向に沿った平行線となる。研磨パッド2aと試料Aとの
間の押付力分布を図16、図17に示すように研磨パッ
ド2aの1周分について順次複数回測定し、第1の押付
力分布を求める。研磨パッド2aの運動方向に沿って区
分した夫々の押付力帯の平均押付力及び被研磨面aの任
意の半径寸法rの円周が夫々の押付力帯を通過する割合
(図中θの回数)は図16、図17に示すような形で求
めることができ、また、押付力分布積算値(第2の押付
力分布)、押付力分布積算値均一性は上述したところの
方法と同様に算出することができる。
In this polishing apparatus, the portion of the polishing pad 2a in contact with the surface to be polished a moves linearly, so that the pressing force band of the polishing pad 2a is a parallel line along the direction of movement of the polishing pad 2a. . The pressing force distribution between the polishing pad 2a and the sample A is sequentially measured a plurality of times for one round of the polishing pad 2a as shown in FIGS. 16 and 17, and a first pressing force distribution is obtained. The average pressing force of each pressing force band divided along the movement direction of the polishing pad 2a and the ratio of the circumference of an arbitrary radius r of the polished surface a passing through each pressing force band (the number of times θ in the figure) ) Can be obtained in a form as shown in FIGS. 16 and 17, and the pressing force distribution integrated value (second pressing force distribution) and the pressing force distribution integrated value uniformity are the same as in the method described above. Can be calculated.

【0073】その他の構成及び作用は図1乃至図3で示
した研磨装置と同じであるため、同様の部品については
同じ符号を付し、その詳細な説明及び作用の説明を省略
する。
Since other configurations and operations are the same as those of the polishing apparatus shown in FIGS. 1 to 3, the same reference numerals are given to the same parts, and the detailed description and the description of the operations are omitted.

【0074】図18は揺動式の研磨装置の構成を示す一
部を切欠いた斜視図、図19は接触域と、研磨パッド及
び試料の間の押付力分布評価領域との関係を示す説明
図、図20は被研磨面の任意の半径寸法の円周が受ける
押付力分布積算値を算出する方法の説明図である。この
研磨装置は、鉛直線の回りを回転が可能な研磨定盤1a
(又は研磨パッド2bのみ)が試料Aの直径寸法の2倍
に満たない研磨装置であり、研磨定盤1a(又は研磨パ
ッド2bのみ)が、鉛直線の回りを前記研磨定盤1a
(又は研磨パッド2bのみ)と反対方向へ回転が可能な
試料保持器3に対し直線状に一方向及び他方向へ移動
(揺動)することで研磨形状を制御するようにしたもの
である。この研磨装置においては、研磨パッド2bの直
径寸法が小さいため、研磨パッド2b上に規定する押付
力帯ではなく、研磨作用分布W(x) というものを上述し
たところの押付力帯の平均押付力に代用する。これは研
磨パッド2b上に規定するパッド区分域の他に研磨パッ
ド2bの周速の影響を加味したものであり、パッド区分
域にその地点の研磨パッドの半径寸法を乗算して夫々の
パッド区分域の平均押付力を算出することができる。
FIG. 18 is a partially cutaway perspective view showing the configuration of an oscillating polishing apparatus, and FIG. 19 is an explanatory view showing the relationship between a contact area and a pressing force distribution evaluation area between a polishing pad and a sample. FIG. 20 is an explanatory diagram of a method of calculating an integrated value of a pressing force distribution received on a circumference having an arbitrary radius dimension of the surface to be polished. This polishing apparatus comprises a polishing platen 1a capable of rotating around a vertical line.
(Or only the polishing pad 2b) is a polishing apparatus that is less than twice the diameter of the sample A, and the polishing platen 1a (or only the polishing pad 2b) moves around a vertical line.
The polishing shape is controlled by moving (swinging) linearly in one direction and the other direction with respect to the sample holder 3 rotatable in the opposite direction to (or only the polishing pad 2b). In this polishing apparatus, since the diameter of the polishing pad 2b is small, not the pressing force band defined on the polishing pad 2b, but the average pressing force of the pressing force band described above using the polishing action distribution W (x). Substitute for This takes into account the influence of the peripheral speed of the polishing pad 2b in addition to the pad section area defined on the polishing pad 2b, and multiplies the pad section area by the radius dimension of the polishing pad at that point to obtain each pad section. The average pressing force of the area can be calculated.

【0075】W(x) =P(x) *r P(x) :パッド区分域の(x) 位置から受ける押付力W (x) = P (x) * r P (x): pressing force received from the (x) position of the pad division area

【0076】この研磨作用分布W(x) と試料Aの被研磨
面aの任意の半径寸法rの円周が研磨作用分布W(x) を
通過する割合(図20中θの割合)により、上述したと
ころの押付力分布積算値(第2の押付力分布)を算出す
ることができ、また、押付力分布積算値均一性は上述し
たところの方法と同様に算出することができる。
The ratio (the ratio of θ in FIG. 20) of the polishing action distribution W (x) and the ratio of the circumference of an arbitrary radius r of the polished surface a of the sample A to pass through the polishing action distribution W (x). The integrated pressing force distribution value (second pressing force distribution) described above can be calculated, and the uniformity of the integrated pressing force distribution value can be calculated in the same manner as the method described above.

【0077】実施の形態2 実施の形態2の研磨装置は、研磨定盤1と研磨パッド2
との間に研磨基板7が配されている。この研磨基板7は
図3に記載されている如く両面が高平面精度に加工さ
れ、その一面が研磨定盤1に接触する環状の平面板7a
の他面に平面状の弾性部材7bが積層、接着され、該弾
性部材7bの平面板7aと反対側の表面に前記研磨パッ
ド2が積層された構成となっている。
Embodiment 2 A polishing apparatus according to Embodiment 2 comprises a polishing table 1 and a polishing pad 2.
And the polishing substrate 7 is disposed between them. As shown in FIG. 3, this polishing substrate 7 is processed on both sides with high flatness accuracy, and one side thereof is in contact with the polishing platen 1 in an annular flat plate 7a.
A planar elastic member 7b is laminated and adhered to the other surface of the polishing pad, and the polishing pad 2 is laminated on the surface of the elastic member 7b opposite to the flat plate 7a.

【0078】弾性部材7bには、研磨パッド2を試料A
に押付ける方向への押付力が加えられたときに複数の部
所が独立して変形するように格子状の溝又はそれに類似
する溝が縦横に交差して刻まれている。この研磨基板7
は、研磨定盤1に複数本のねじ体(図示せず)の締付け
によって取付けができるようになっており、これらねじ
体を取外すことにより弾性値が異なる別の研磨基板7と
簡易に交換することができるようになっている。
The polishing pad 2 is attached to the elastic member 7b with the sample A.
A lattice-like groove or a similar groove is formed so as to intersect vertically and horizontally so that a plurality of portions are independently deformed when a pressing force in a pressing direction is applied. This polishing substrate 7
Can be attached to the polishing platen 1 by tightening a plurality of screws (not shown). By removing these screws, the polishing substrate 7 can be easily replaced with another polishing substrate 7 having a different elasticity value. You can do it.

【0079】研磨定盤1の平面度及び研磨基板7の平面
度は、両方とも十分精度よく確保されているため、ねじ
体の締付けによる取付けであっても互いに歪みがなく取
付けることができるようになっている。
The flatness of the polishing platen 1 and the flatness of the polishing substrate 7 are both sufficiently accurate, so that even if the screws are attached by tightening, they can be attached without distortion. Has become.

【0080】弾性部材7bとしては、NBRゴム、シリ
コンゴム等JISK6301でのゴム硬度で10乃至7
0程度のゴム硬度を有し、研磨による繰り返し応力下で
ゴムの反発弾性が変化しないものが望ましい。例えば、
スポンジゴム、不織布等は、内部に空隙を有しているた
め、繰り返し応力下では、ゴムの反発弾性が変化し、そ
れに伴って研磨特性も変化し、実用的ではない。
The elastic member 7b is made of NBR rubber, silicon rubber, or the like having a rubber hardness of 10 to 7 according to JIS K6301.
Desirably, the rubber has a rubber hardness of about 0 and does not change the rebound resilience of the rubber under repeated stress caused by polishing. For example,
Sponge rubber, nonwoven fabric, and the like have voids inside, so that under repetitive stress, the resilience of the rubber changes, and the polishing characteristics change accordingly, which is not practical.

【0081】研磨パッド2は環状に形成されており、そ
の内縁部及び外縁部が夫々一対のパッドリング27,2
7に挾着され、これらパッドリング27,27を研磨定
盤1の周縁部に設けられた金具に取付け、研磨基板7の
表面上で一定の張力を保った状態で締め上げることによ
り、研磨パッド2は研磨基板7の表面形状に倣って取付
けられる。このとき、研磨パッド2の表面形状は、研磨
基板7の表面形状を映し出した形になり、研磨パッド2
と試料Aとの間の押付力分布が一意に決定されることを
意味する。この研磨基板7を表面形状が異なる他の研磨
基板7に変えることにより、その交換された新しい研磨
基板7によって研磨パッド2の表面形状が決まり、研磨
パッド2と試料Aとの間の押付力分布が一意に決まるこ
とになる。
The polishing pad 2 is formed in an annular shape, and its inner edge and outer edge are formed by a pair of pad rings 27, 2 respectively.
7, the pad rings 27, 27 are attached to metal fittings provided on the peripheral portion of the polishing platen 1, and tightened on the surface of the polishing substrate 7 while maintaining a constant tension. 2 is attached according to the surface shape of the polishing substrate 7. At this time, the surface shape of the polishing pad 2 reflects the surface shape of the polishing substrate 7, and the polishing pad 2
Means that the distribution of the pressing force between the sample and the sample A is uniquely determined. By changing the polishing substrate 7 to another polishing substrate 7 having a different surface shape, the surface shape of the polishing pad 2 is determined by the replaced new polishing substrate 7, and the pressing force distribution between the polishing pad 2 and the sample A is determined. Will be uniquely determined.

【0082】この研磨基板7の表面形状をさまざまな形
状に変えたものを予め何段階かに分けて準備することに
より、研磨パッド2と試料Aとの間の押付力分布を様々
に変化させることが可能となる。実施の形態2では、実
施の形態1が有する押付力分布積算値均一性と研磨均一
性の相関に基づいて予め様々な押付力分布を有する研磨
基板7を準備する。
By changing the surface shape of the polishing substrate 7 into various shapes and preparing it in several stages in advance, the pressing force distribution between the polishing pad 2 and the sample A can be variously changed. Becomes possible. In the second embodiment, polishing substrates 7 having various pressing force distributions are prepared in advance based on the correlation between the integrated pressing force distribution integrated value and the polishing uniformity of the first embodiment.

【0083】所望の研磨形状の研磨均一性を得るのに必
要な押付力分布を求め、その押付力分布に最も近い研磨
基板7を選択し、この選択した研磨基板7を研磨定盤1
に上述したように取付ける。
A distribution of pressing force necessary to obtain polishing uniformity of a desired polishing shape is obtained, a polishing substrate 7 closest to the pressing force distribution is selected, and the selected polishing substrate 7 is polished to a polishing platen 1.
Attach as described above.

【0084】この研磨基板7を選択する基準を図12に
示す。予めこの研磨基板7は−7%センタースローから
1%おきに−1%センタースローまでの7種類と、+1
%センターファストから1%おきに+5%センターファ
ストまでの5種類との合計12種類が準備されている。
FIG. 12 shows the criteria for selecting the polishing substrate 7. The polishing substrate 7 has seven types, from -7% center throw to -1% center throw every 1%, and +1
A total of 12 types are prepared, including 5 types from% Center Fast to + 5% Center Fast every 1%.

【0085】例えば、研磨均一性が3%のセンタースロ
ーの研磨形状を得たい場合、実施の形態1で示した数式
(1−6)にY=−3を代入する。この結果、X=−
5.583という値を得る。ここで、予め準備した研磨
基板7から押付力分布積算値均一性が−5.583%の
ものに最も近いものを選ぶ。ここでは、予め準備してい
る様々な押付力分布積算値均一性を有する研磨基板7の
中から−6%のものを選ぶ。
For example, when it is desired to obtain a polished shape having a center throw with a polishing uniformity of 3%, Y = −3 is substituted into the equation (1-6) shown in the first embodiment. As a result, X = −
We get the value 5.583. Here, from the previously prepared polishing substrates 7, a polishing substrate having a pressing force distribution integrated value uniformity closest to that of −5.583% is selected. Here, -6% is selected from among the polishing substrates 7 having various pressing force distribution integrated value uniformities prepared in advance.

【0086】その他の構成及び作用は実施の形態1と同
じであるため、同様の部品については同じ符号を付し、
その詳細な説明及び作用の説明を省略する。
[0086] Since other configurations and operations are the same as those of the first embodiment, the same components are denoted by the same reference numerals.
The detailed description and the description of the operation will be omitted.

【0087】実施の形態3 図21は研磨装置が用いられる研磨システムを模式的に
示す平面図である。この研磨システムは基本的に図2の
研磨システムと同じであるが、図21においては、前記
センサーシート6を自動的に試料Aと研磨パッド2との
間に配して、研磨パッド2を試料Aに押付け、自動的に
押付力分布を測定し、測定した押付力分布を基に自動的
に押付力分布を解析し、この解析した第2の押付力分
布、換言すれば上述したところの押付力分布積算値に基
づいて実研磨での研磨形状を予測し、試料保持器3に試
料Aを保持したまま研磨を開始するか又は中止するかを
判断するように構成されている。
Embodiment 3 FIG. 21 is a plan view schematically showing a polishing system using a polishing apparatus. This polishing system is basically the same as the polishing system of FIG. 2, but in FIG. 21, the sensor sheet 6 is automatically arranged between the sample A and the polishing pad 2, and the polishing pad 2 is A, the pressing force distribution is automatically measured, the pressing force distribution is automatically analyzed based on the measured pressing force distribution, and the analyzed second pressing force distribution, in other words, the pressing described above. The polishing shape in the actual polishing is predicted based on the force distribution integrated value, and it is determined whether to start or stop the polishing while holding the sample A in the sample holder 3.

【0088】研磨装置は、図3に示したものと基本的に
同じであるが、図21においては、前記センサーシート
6を研磨定盤1の側方に配される搬送アーム28に保持
して、該搬送アーム28を鉛直線の方向及び鉛直線と直
交する方向へ動作させることによりセンサーシート6を
試料保持器3に保持された試料A及び研磨パッド2の間
の測定位置と待機位置とに配することができるようにし
てある。
The polishing apparatus is basically the same as that shown in FIG. 3, but in FIG. 21, the sensor sheet 6 is held by a transfer arm 28 arranged on the side of the polishing platen 1 in FIG. By moving the transfer arm 28 in the direction of the vertical line and the direction perpendicular to the vertical line, the sensor sheet 6 is moved to the measurement position and the standby position between the sample A and the polishing pad 2 held by the sample holder 3. It can be arranged.

【0089】センサーシート6は、鉛直線と直交する方
向に配しても撓まないように合成樹脂製の枠体内に設け
られている。センサーシート6には、図2の研磨システ
ムと同じくセンサーシート6が測定した第1の押付力分
布を表示することが可能な第1の情報処理装置24と、
センサーシート6が測定した第1の押付力分布に基づい
て押付力分布積算値及び押付力分布積算値均一性を算出
する第2の情報処理装置25とが夫々接続されている。
The sensor sheet 6 is provided in a synthetic resin frame so as not to bend even if it is arranged in a direction perpendicular to the vertical line. A first information processing device 24 capable of displaying the first pressing force distribution measured by the sensor sheet 6 as in the polishing system of FIG.
The second information processing devices 25 that calculate the integrated pressing force distribution and the uniformity of the integrated pressing force distribution based on the first pressing force distribution measured by the sensor sheet 6 are connected respectively.

【0090】図22は自動的に押付力分布を測定し、測
定した押付力分布に基づいて次の研磨するかどうかの判
断を研磨装置が行う場合のフローチャートである。一回
目の研磨作業が終了し、二階目の研磨作業を行う際に、
自動的に搬送アーム28が動作し、待機位置に配されて
いるセンサーシート6が測定位置へ搬送され(S1)、
試料Aが保持されている夫々の位置で試料Aと研磨パッ
ド2との間の第1の押付力分布を測定する(S2)。測
定する方法は実施の形態1に記載されている通りである
が、この測定を研磨装置が自動的に行う。測定した第1
の押付力分布に基づいて押付力分布積算値均一性を算出
し(S3)、研磨均一性を予測する(S4)。この予測
された研磨均一性が、予め定められている研磨均一性許
容値内であるか、研磨均一性許容値を外れているかを比
較し(S5)、研磨均一性許容値内であるときはそのま
ま連続研磨処理を開始することができ(S6)、また、
研磨均一性許容値を外れている場合は、研磨処理を行う
ことなくアラームを出してオペレータに押付力分布の不
良を知らせるようになっている。
FIG. 22 is a flow chart in the case where the pressing force distribution is automatically measured, and the polishing apparatus determines whether or not to perform the next polishing based on the measured pressing force distribution. When the first polishing operation is completed and the second floor polishing operation is performed,
The transfer arm 28 automatically operates, and the sensor sheet 6 arranged at the standby position is transferred to the measurement position (S1).
The first pressing force distribution between the sample A and the polishing pad 2 is measured at each position where the sample A is held (S2). The measuring method is as described in Embodiment Mode 1, but this measurement is automatically performed by the polishing apparatus. First measured
Is calculated based on the pressing force distribution (S3), and the polishing uniformity is predicted (S4). It is compared whether the predicted polishing uniformity is within a predetermined polishing uniformity allowable value or out of the polishing uniformity allowable value (S5), and when it is within the polishing uniformity allowable value, The continuous polishing process can be started as it is (S6).
When the polishing uniformity is out of the allowable range, an alarm is issued without performing the polishing process to notify the operator of the pressing force distribution failure.

【0091】この押付力分布の測定は、全ての試料Aに
対して行うのであるが、例えば図15で示すベルト式の
研磨装置等においては所定の周期で測定するようにして
もよい。その他の構成及び作用は実施の形態1,2と同
じであるため、同様の部品については同じ符号を付し、
その詳細な説明及び作用の説明を省略する。
The measurement of the distribution of the pressing force is performed for all the samples A. For example, in a belt-type polishing apparatus shown in FIG. 15, the measurement may be performed at a predetermined cycle. Since other configurations and operations are the same as those of the first and second embodiments, the same components are denoted by the same reference numerals.
The detailed description and the description of the operation will be omitted.

【0092】実施の形態4 図23は研磨装置の構成を示す縦断面図、図24は研磨
装置の別の構成を示す縦断面図である。この実施の形態
4は試料Aと研磨パッド2との間の押付力分布を自動的
に測定する研磨装置の別の実施の形態を示すものであ
り、図23の研磨装置は、前記研磨パッド2の裏面側、
詳しくは、図3に示した研磨パッド2と研磨基板7の弾
性部材7bとの間に前記センサーシート6等の押付力分
布測定器を設けてあり、また、図24の研磨装置は、前
記試料保持器3の試料保持部3a、換言すれば試料保持
部3aに保持される試料Aの裏面側に前記センサーシー
ト6等の押付力分布測定器を設けてある。
Fourth Embodiment FIG. 23 is a longitudinal sectional view showing the structure of a polishing apparatus, and FIG. 24 is a longitudinal sectional view showing another structure of a polishing apparatus. Embodiment 4 shows another embodiment of the polishing apparatus for automatically measuring the pressing force distribution between the sample A and the polishing pad 2. The polishing apparatus shown in FIG. Back side of
Specifically, a pressing force distribution measuring device such as the sensor sheet 6 is provided between the polishing pad 2 shown in FIG. 3 and the elastic member 7b of the polishing substrate 7, and the polishing apparatus shown in FIG. A pressing force distribution measuring device such as the sensor sheet 6 is provided on the back side of the sample holding section 3a of the holder 3, that is, the sample A held by the sample holding section 3a.

【0093】この押付力分布測定器は、前記センサーシ
ート6である他、複数の圧電素子等の押付力測定器を用
い、これら圧電素子を研磨パッド2の裏面側又は試料保
持部3aに埋込んでもよく、同様に第1の押付力分布を
測定することができるものであればよい。
This pressing force distribution measuring device uses not only the sensor sheet 6 but also a plurality of pressing force measuring devices such as piezoelectric elements, and these piezoelectric elements are embedded in the back side of the polishing pad 2 or the sample holder 3a. Any method may be used as long as the first pressing force distribution can be measured.

【0094】実施の形態4において、試料保持部3aに
保持された試料Aが研磨パッド2に接触して押付力が加
えられたときの第1の押付力分布が例えば前記第1の情
報処理装置24に表示されるようになっている。
In the fourth embodiment, the first pressing force distribution when the sample A held by the sample holding section 3a comes into contact with the polishing pad 2 and a pressing force is applied is, for example, the first information processing apparatus. 24.

【0095】図23の如く研磨パッド2の裏面側に押付
力分布測定器6が設けられた研磨装置、及び図24の如
く試料の被研磨面と反対側の裏面、換言すれば試料保持
器3の試料保持部3aに押付力分布測定器6が設けられ
た研磨装置においては、夫々の研磨パッド2と試料Aと
の間の押付力分布の状態を研磨パッド2及び試料保持器
3が回転中であっても、研磨定盤1内又は試料保持器3
内で測定した第1の押付力分布を電圧に変換し、研磨定
盤1又は試料保持器3(支持定盤4)に搭載される発信
器28から信号を発信し、この信号を図21で示す研磨
システムの外部で受信器29に受信させることにより、
研磨システムの外部で押付力分布の状態を把握すること
が可能にしてある。
A polishing apparatus in which a pressing force distribution measuring device 6 is provided on the back side of a polishing pad 2 as shown in FIG. 23, and a back side opposite to a polished surface of a sample as shown in FIG. 24, in other words, a sample holder 3 In the polishing apparatus in which the pressing force distribution measuring device 6 is provided on the sample holding unit 3a, the state of the pressing force distribution between each polishing pad 2 and the sample A is determined while the polishing pad 2 and the sample holder 3 are rotating. Even in the polishing platen 1 or the sample holder 3
The first pressing force distribution measured in the above is converted into a voltage, and a signal is transmitted from a transmitter 28 mounted on the polishing platen 1 or the sample holder 3 (supporting platen 4). By having the receiver 29 receive it outside the polishing system shown,
The state of the pressing force distribution can be grasped outside the polishing system.

【0096】例えば、研磨定盤1が60rpmで回転し
ている場合、1sec間に試料保持器3が一周するよう
に設定された研磨装置において、押付力分布の取り込み
を0.125secごとに複数回行うように設定する
と、実施の形態1と同様に研磨パッド2と試料Aとの相
対位置に応じて8つの押付力分布を得ることができる。
この後は実施の形態1、実施の形態2に応じた手法で押
付力分布の形状を求め、上述したところの方法と同様に
押付力帯の平均押付力、押付力分布積算値(第2の押付
力分布)、押付力分布積算値均一性を求めることによ
り、実研磨での研磨形状を精度よく予測することができ
る。
For example, when the polishing table 1 is rotating at 60 rpm, the pressing force distribution is taken in a plurality of times every 0.125 sec in a polishing apparatus in which the sample holder 3 is set to make one round in one second. When the setting is performed, eight pressing force distributions can be obtained according to the relative positions of the polishing pad 2 and the sample A as in the first embodiment.
Thereafter, the shape of the pressing force distribution is obtained by a method according to the first and second embodiments, and the average pressing force in the pressing force band and the integrated pressing force distribution value (second By determining the uniformity of the pressing force distribution and the integrated value of the pressing force distribution, the polishing shape in actual polishing can be accurately predicted.

【0097】その他の構成及び作用は実施の形態1,2
と同じであるため、同様の部品については同じ符号を付
し、その詳細な説明及び作用の説明を省略する。
Other configurations and operations are the same as those of the first and second embodiments.
Therefore, the same reference numerals are given to the same components, and the detailed description and the description of the operation are omitted.

【0098】実施の形態5 図25は研磨装置の構成を示す縦断面図である。この実
施の形態5は前記研磨定盤1が一体物でなく、直径寸法
が異なる複数が実施の形態1で示した複数の押付力帯に
応じて同心的に配され、夫々が独立して前記研磨パッド
2の方向への移動が可能な円環部材1b…と、これら円
環部材1b…を夫々移動させる複数の流体圧シリンダ1
c…とを備え、これら流体圧シリンダ1c…が電磁開閉
弁1d…を介してエアー、油圧等の流体圧源に接続され
ている。
Embodiment 5 FIG. 25 is a longitudinal sectional view showing the structure of a polishing apparatus. In the fifth embodiment, the polishing platen 1 is not an integral body, and a plurality of polishing plates having different diameters are arranged concentrically in accordance with a plurality of pressing force bands shown in the first embodiment, and each of the polishing plates 1 is independently formed of the polishing plate. An annular member 1b that can move in the direction of the polishing pad 2, and a plurality of fluid pressure cylinders 1 that respectively move these annular members 1b
c, and these fluid pressure cylinders 1c are connected to a fluid pressure source such as air, hydraulic pressure, etc., via an electromagnetic on-off valve 1d.

【0099】実施の形態5において、解析用の前記押付
力帯が12等分されている場合、円環部材1b…も12
等分される。これら円環部材1b…は前記流体圧シリン
ダ1c…のピストンに夫々独立して直結されており、前
記流体圧シリンダ1c…に封入するエアー等の流体圧力
を調節することにより、夫々の流体圧シリンダ1c…の
ピストンが移動し、夫々の円環部材1b…を独立して移
動させ、相対的に円環部材1b…の位置を調整すること
ができる。各押付力帯の押付力分布は図9と同様にな
る。これにより、実施の形態1で述べた方法により押付
力分布積算値及び押付力分布積算値均一性を求め、実研
磨での研磨形状を予測することが可能である。
In the fifth embodiment, when the pressing force band for analysis is divided into twelve, the annular members 1b are also divided into twelve.
Divided equally. These annular members 1b are directly and independently connected to the pistons of the fluid pressure cylinders 1c, respectively. The fluid members of the fluid pressure cylinders 1c are adjusted by controlling the fluid pressure of air or the like. The pistons 1c move, and the respective ring members 1b can be moved independently to adjust the position of the ring members 1b relatively. The pressing force distribution of each pressing force band is the same as in FIG. Thus, the integrated pressing force distribution value and the uniformity of the pressing force distribution integrated value can be obtained by the method described in the first embodiment, and the polishing shape in actual polishing can be predicted.

【0100】また、実研磨での研磨形状を変化させたい
時は、所望の研磨形状に相当する押付力分布積算値均一
性を予め前記第2の情報処理装置25に設定し、この所
望の研磨形状の押付力分布積算値均一性と同じに研磨す
るべく夫々の押付力帯の押付力分布を変化させるように
夫々の円環部材1b…に加える流体圧力を調整すること
により、実研磨での研磨形状を自由に調整することが可
能となる。
When it is desired to change the polishing shape in actual polishing, the pressing force distribution integrated value uniformity corresponding to the desired polishing shape is set in advance in the second information processing device 25, and the desired polishing is performed. By adjusting the fluid pressure applied to each annular member 1b so as to change the pressing force distribution of each pressing force band in order to polish the same as the pressing force distribution integrated value uniformity of the shape, the actual polishing in actual polishing is performed. The polishing shape can be freely adjusted.

【0101】この円環部材1b…を移動させる機構とし
ては、流体圧力である他、夫々の円環部材1b…に鉛直
線の方向に長いボールネジを取付けて、これらボールネ
ジを回転させることにより円環部材1b…を夫々独立し
て移動させ、独立して相対的に円環部材1b…の位置を
調整することができるようにしてもよい。何れにしても
移動方向に夫々の円環部材1b…が独立して移動する機
構であれば、何れの方法でもよい。
As a mechanism for moving the ring members 1b, in addition to the fluid pressure, a long ball screw is attached to each of the ring members 1b in the vertical direction, and the ring screws are rotated to rotate the ring members. The members 1b may be moved independently so that the position of the annular members 1b can be relatively adjusted independently. In any case, any method may be used as long as each ring member 1b moves independently in the movement direction.

【0102】夫々の円環部材1b…の研磨パッド2と向
き合う面には、弾性部材1eが貼着されている。これ
は、隣り合う円環部材1b…の境界に生ずる押付力差を
緩和させて押付力分布をなだらかにし、また一つの円環
部材1bにおいても押付力を均等に配分するために取付
けられている。
An elastic member 1e is attached to a surface of each of the annular members 1b facing the polishing pad 2. This is provided in order to alleviate the difference in pressing force generated at the boundary between the adjacent annular members 1b to make the distribution of pressing force gentle, and to evenly distribute the pressing force in one annular member 1b. .

【0103】[0103]

【発明の効果】以上詳述した如く第1発明乃至第3発明
及び第8発明によれば、実研磨の前工程として試料と研
磨パッドとの間の第1の押付力分布を測定し、測定した
第1の押付力分布に基づいて被研磨面をその直径方向に
区分した複数の試料区分域に加わる第2の押付力分布を
算出することにより、実研磨での研磨形状を高精度に予
測することができるため、予測した研磨形状が所望の研
磨形状に対し許容されない試料が実研磨されることを防
止でき、予測した研磨形状が所望の研磨形状に対し許容
される試料についてのみ実研磨することができる。ま
た、請求項3によれば、第2の押付力分布の形状から実
研磨での研磨形状をより一層精度よく予測することがで
きる。
As described in detail above, according to the first to third and eighth aspects of the present invention, the first pressing force distribution between the sample and the polishing pad is measured as a pre-process of actual polishing, and the measurement is performed. Based on the first pressing force distribution obtained, the second pressing force distribution applied to the plurality of sample sections in which the surface to be polished is divided in the diameter direction is calculated, thereby accurately predicting the polishing shape in actual polishing. Therefore, it is possible to prevent a sample whose predicted polishing shape is not acceptable for a desired polishing shape from being actually polished, and perform actual polishing only for a sample whose predicted polishing shape is allowable for a desired polishing shape. be able to. According to the third aspect, the shape of the actual polishing can be more accurately predicted from the shape of the second pressing force distribution.

【0104】第4発明及び第9発明によれば、実研磨で
の研磨形状を予測した後、この予測結果に基づいて研磨
開始の可否を自動的に判定することができるとともに、
研磨開始が可能な試料の全てを予め定めた研磨形状に研
磨することが可能である。
According to the fourth and ninth aspects of the present invention, after the polishing shape in actual polishing is predicted, it is possible to automatically determine whether or not to start polishing based on the prediction result.
It is possible to polish all of the samples from which polishing can be started to a predetermined polishing shape.

【0105】第5発明によれば、予測した研磨形状に基
づいて複数の研磨基板の一つを選択し、この研磨基板を
取り替えることにより、研磨パッドに加わる押付力分布
を予測した研磨形状に最適な押付力分布に変えることが
でき、試料を所望の研磨形状に研磨することができる。
According to the fifth aspect, one of the plurality of polishing substrates is selected based on the predicted polishing shape, and by replacing this polishing substrate, the distribution of the pressing force applied to the polishing pad is optimized for the predicted polishing shape. And the sample can be polished to a desired polishing shape.

【0106】第6発明及び第7発明と、第10発明及び
第11発明とによれば、予測した研磨形状に基づいて研
磨定盤の円環部材を独立して移動させることにより、研
磨パッドに加わる押付力分布を予測した研磨形状に最適
な押付力分布に調整することができ、試料を所望の研磨
形状に研磨することができる。
According to the sixth and seventh inventions and the tenth and eleventh inventions, by independently moving the annular member of the polishing platen based on the predicted polishing shape, the polishing pad The distribution of the applied pressing force can be adjusted to the optimum pressing force distribution for the predicted polishing shape, and the sample can be polished to a desired polishing shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る研磨装置の要部の構成を示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing a configuration of a main part of a polishing apparatus according to the present invention.

【図2】本発明に係る研磨装置が用いられる研磨システ
ムを模式的に示す平面図である。
FIG. 2 is a plan view schematically showing a polishing system in which the polishing apparatus according to the present invention is used.

【図3】押付力分布の測定方法を示す断面図である。FIG. 3 is a sectional view showing a method for measuring a pressing force distribution.

【図4】押付力分布を測定する過程を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a process of measuring a pressing force distribution.

【図5】押付力分布を測定する箇所についての説明図で
ある。
FIG. 5 is an explanatory diagram of a place where a pressing force distribution is measured.

【図6】測定された押付力分布を処理する方法について
の説明図である
FIG. 6 is an explanatory diagram of a method for processing a measured pressing force distribution.

【図7】押付力帯と押付力帯に加わる平均押付力との関
係を示す押付力分布区分図である。
FIG. 7 is a distribution diagram of a pressing force distribution showing a relationship between a pressing force band and an average pressing force applied to the pressing force band.

【図8】研磨形状を予測する過程を示す説明図である。FIG. 8 is an explanatory diagram showing a process of predicting a polishing shape.

【図9】被研磨面の任意の半径寸法の円周が受ける押付
力分布積算値を算出する方法の説明図である。
FIG. 9 is an explanatory diagram of a method of calculating an integrated value of a pressing force distribution received on a circumference having an arbitrary radius dimension of a surface to be polished.

【図10】押付力分布積算値均一性と研磨均一性とを比
較した一つの例を示す説明図である。
FIG. 10 is an explanatory diagram showing one example in which the uniformity of the integrated value of the pressing force distribution and the polishing uniformity are compared.

【図11】押付力分布積算値均一性と研磨均一性とを比
較した他の例を示す説明図である。
FIG. 11 is an explanatory diagram showing another example in which the uniformity of the integrated value of the pressing force distribution and the polishing uniformity are compared.

【図12】押付力分布積算値均一性と研磨均一性との相
関をとった結果の説明図である。
FIG. 12 is an explanatory diagram of a result obtained by correlating the pressing force distribution integrated value uniformity and the polishing uniformity.

【図13】本発明に係る研磨装置の実施の形態1におけ
る別の構成を示す縦断面図である。
FIG. 13 is a longitudinal sectional view showing another configuration of the polishing apparatus according to the first embodiment of the present invention.

【図14】図13で示す研磨装置の研磨パッド及び試料
の間の押付力分布評価領域を示す説明図である。
14 is an explanatory diagram showing a pressing force distribution evaluation area between a polishing pad and a sample of the polishing apparatus shown in FIG.

【図15】本発明に係る研磨装置のベルト式の構成を示
す模式的正面図である。
FIG. 15 is a schematic front view showing a belt-type configuration of the polishing apparatus according to the present invention.

【図16】パッド領域と、パッド及び試料の間の押付力
分布評価領域との関係を示す説明図である。
FIG. 16 is an explanatory diagram showing a relationship between a pad area and a pressing force distribution evaluation area between a pad and a sample.

【図17】被研磨面の任意の半径寸法の円周が受ける押
付力分布積算値を算出する方法の説明図である。
FIG. 17 is an explanatory diagram of a method of calculating an integrated value of a pressing force distribution received on a circumference having an arbitrary radius dimension of a surface to be polished.

【図18】本発明に係る研磨装置の揺動式の構成を示す
一部を切欠いた斜視図である。
FIG. 18 is a partially cutaway perspective view showing a swing type configuration of the polishing apparatus according to the present invention.

【図19】パッド領域と、パッド及び試料の間の押付力
分布評価領域との関係を示す説明図である。
FIG. 19 is an explanatory diagram showing a relationship between a pad region and a pressing force distribution evaluation region between a pad and a sample.

【図20】被研磨面の任意の半径寸法の円周が受ける押
付力分布積算値を算出する方法の説明図である。
FIG. 20 is an explanatory diagram of a method for calculating an integrated value of a pressing force distribution received on a circumference having an arbitrary radius dimension of a surface to be polished.

【図21】実施の形態3の研磨装置が用いられる研磨シ
ステムを模式的に示す平面図である。
FIG. 21 is a plan view schematically showing a polishing system using the polishing apparatus of the third embodiment.

【図22】自動的に押付力分布を測定し、測定した押付
力分布に基づいて次の研磨を行うかどうかの判断を研磨
装置が行う場合のフローチャートである。
FIG. 22 is a flowchart in the case where the pressing force distribution is automatically measured and the polishing apparatus determines whether or not to perform the next polishing based on the measured pressing force distribution.

【図23】本発明に係る研磨装置の実施の形態4の構成
を示す縦断面図である。
FIG. 23 is a longitudinal sectional view showing a configuration of a polishing apparatus according to a fourth embodiment of the present invention.

【図24】本発明に係る研磨装置の実施の形態4の構成
を示す縦断面図である。
FIG. 24 is a longitudinal sectional view showing a configuration of a polishing apparatus according to a fourth embodiment of the present invention.

【図25】本発明に係る研磨装置の実施の形態5の構成
を示す縦断面図である。
FIG. 25 is a longitudinal sectional view showing a configuration of a polishing apparatus according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1a 研磨定盤 1b 円環部材 2,2a, 2b 研磨パッド 3 試料保持器 6 センサーシート 7 研磨基板 A 試料 a 被研磨面 1, 1a Polishing surface plate 1b Ring member 2, 2a, 2b Polishing pad 3 Sample holder 6 Sensor sheet 7 Polishing substrate A Sample a Polished surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 香西 雄三 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社半導体装置事業部内 (72)発明者 小原 基之 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社半導体装置事業部内 Fターム(参考) 3C058 AA07 AA12 AC02 BA01 BA05 BB06 BB08 BB09 CB01 DA17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuzo Kosai 1-8 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Metal Industries, Ltd. Semiconductor Equipment Division (72) Inventor Motoyuki Ohara 1st Fuso-cho, Amagasaki-shi, Hyogo No. 8 Sumitomo Metal Industries, Ltd. Semiconductor Equipment Division F-term (reference) 3C058 AA07 AA12 AC02 BA01 BA05 BB06 BB08 BB09 CB01 DA17

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 円板形の試料を回転させつつその被研磨
面を研磨パッドに押付けて研磨する実研磨での研磨形状
を予測する方法であって、 前記試料と研磨パッドとの間の第1の押付力分布を測定
し、測定した第1の押付力分布に基づいて前記被研磨面
をその直径方向に区分した複数の試料区分域に加わる第
2の押付力分布を算出し、この算出した第2の押付力分
布に基づいて実研磨での研磨形状を予測することを特徴
とする研磨形状予測方法。
1. A method for predicting a polished shape in actual polishing in which a polished surface is pressed against a polishing pad while rotating a disk-shaped sample, and wherein a polishing shape between the sample and the polishing pad is determined. The first pressing force distribution is measured, and based on the measured first pressing force distribution, a second pressing force distribution applied to a plurality of sample sections in which the surface to be polished is divided in the diameter direction is calculated. A polishing shape prediction method, wherein a polishing shape in actual polishing is predicted based on the second pressing force distribution thus obtained.
【請求項2】 円板形の試料を回転させつつその被研磨
面を研磨パッドに押付けて研磨する実研磨での研磨形状
を予測する方法であって、 前記試料と研磨パッドとの間の第1の押付力分布を測定
し、測定した第1の押付力分布に基づいて前記被研磨面
をその直径方向に区分した複数の試料区分域に加わる第
3の押付力分布を算出し、この算出した第3の押付力分
布及び該第3の押付力分布で実研磨したときの研磨形状
の相関関係を予め求めてあり、前記試料と研磨パッドと
の間の第1の押付力分布を測定し、測定した第1の押付
力分布に基づいて前記被研磨面をその直径方向に区分し
た複数の試料区分域に加わる第2の押付力分布を算出
し、この算出した第2の押付力分布の形状と、予め求め
られた相関関係とを比較して実研磨での研磨形状を予測
することを特徴とする研磨形状予測方法。
2. A method for predicting a polishing shape in actual polishing in which a polished surface is pressed against a polishing pad while rotating a disk-shaped sample, and wherein a polishing shape between the sample and the polishing pad is determined. The first pressing force distribution is measured, and based on the measured first pressing force distribution, a third pressing force distribution applied to a plurality of sample sections in which the surface to be polished is divided in the diameter direction is calculated. The correlation between the third pressing force distribution obtained and the polishing shape when actual polishing is performed with the third pressing force distribution has been determined in advance, and the first pressing force distribution between the sample and the polishing pad is measured. Calculating, based on the measured first pressing force distribution, a second pressing force distribution applied to a plurality of sample sections in which the surface to be polished is divided in the diameter direction, and calculating the second pressing force distribution By comparing the shape and the correlation determined in advance, the polished shape in actual polishing Polishing shape prediction method characterized by predicting.
【請求項3】 前記第1の押付力分布の測定は、前記研
磨パッド及び試料を相対移動させて研磨パッド上の複数
の位置で行う請求項1及び請求項2記載の研磨形状予測
方法。
3. The polishing shape prediction method according to claim 1, wherein the first pressing force distribution is measured at a plurality of positions on the polishing pad by relatively moving the polishing pad and the sample.
【請求項4】 前記第2及び第3の押付力分布は、前記
研磨パッドの被研磨面との接触域を前記試料区分域と同
数に区分したパッド区分域ごとの平均押付力と、前記試
料が一回転する間で前記試料区分域が前記パッド区分域
を通過する割合とに基づいて算出する請求項1乃至請求
項3記載の研磨形状予測方法。
4. The second and third pressing force distributions include an average pressing force for each pad section obtained by dividing a contact area of the polishing pad with a surface to be polished into the same number as the sample sections, The polishing shape prediction method according to claim 1, wherein the polishing shape is calculated based on a ratio of the sample division area passing through the pad division area during one rotation.
【請求項5】 円板形の試料を回転させつつその被研磨
面を研磨パッドに押付けて研磨する研磨方法において、 請求項1乃至4記載の研磨形状予測方法を実行する予測
工程と、予測結果に基づいて研磨開始の可否を判定する
研磨開始可否判定工程と、判定結果に基づいて研磨する
研磨工程とからなることを特徴とする試料の研磨方法。
5. A polishing method for polishing a polished surface by pressing a surface to be polished against a polishing pad while rotating a disk-shaped sample, a prediction step for executing the polishing shape prediction method according to claim 1, and a prediction result. A polishing method for a sample, comprising: a polishing start propriety judging step of judging whether polishing can be started based on the above, and a polishing step of polishing based on the judgment result.
【請求項6】 円板形の試料を回転させつつその被研磨
面を、研磨基板を介して研磨定盤に取付けられた研磨パ
ッドに押付けて研磨する研磨方法において、 前記研磨基板は前記研磨パッドに加える押付力分布が異
なる複数の種類を備えており、請求項1乃至4記載の研
磨形状予測方法を実行する予測工程と、予測結果に基づ
いて前記研磨基板の一つを選択する選択工程と、前記研
磨基板を選択した研磨基板に取り替えて研磨する研磨工
程とからなることを特徴とする試料の研磨方法。
6. A polishing method in which a disk-shaped sample is rotated and a surface to be polished is pressed against a polishing pad attached to a polishing surface plate via a polishing substrate to polish the polishing object, wherein the polishing substrate is the polishing pad. A plurality of types having different pressing force distributions, and a selecting step of selecting one of the polished substrates based on a result of the prediction. A polishing step of polishing the substrate by replacing the polishing substrate with a selected polishing substrate.
【請求項7】 円板形の試料を回転させつつその被研磨
面を、研磨定盤に取付けられた研磨パッドに押付けて研
磨する研磨方法において、 前記研磨定盤は直径寸法が異なる複数が同心的に配さ
れ、夫々が独立して前記研磨パッドの方向への移動が可
能な円環部材を備えており、請求項1乃至4記載の研磨
形状予測方法を実行する予測工程と、予測結果に基づい
て前記円環部材を夫々移動させ、これら円環部材の位置
を調整する位置調整工程と、研磨する研磨工程とからな
ることを特徴とする試料の研磨方法。
7. A polishing method for polishing a surface to be polished while rotating a disk-shaped sample while pressing the surface against a polishing pad attached to a polishing surface plate, wherein a plurality of polishing surface plates having different diameters are concentric. 5. A polishing step for executing the polishing shape prediction method according to any one of claims 1 to 4, further comprising an annular member which is arranged in a manner that can be independently moved in the direction of the polishing pad. A polishing method for a sample, comprising: a step of adjusting the positions of the annular members by moving the annular members on the basis of the positions of the annular members, and a polishing step of polishing.
【請求項8】 試料の被研磨面を研磨定盤に取付けられ
た研磨パッドに押付けて研磨する研磨方法において、 前記研磨定盤は直径寸法が異なる複数が同心的に配さ
れ、夫々が独立して前記研磨パッドの方向への移動が可
能な円環部材を備えており、前記試料の被研磨面と反対
側の裏面又は研磨パッドの裏面に押付力を複数の位置で
測定する押付力分布測定器を配して押付力分布を測定す
る測定工程と、測定した押付力分布に基づいて実研磨で
の研磨形状を予測する予測工程と、予測結果に基づいて
前記円環部材を夫々移動させ、これら円環部材の位置を
調整する位置調整工程と、研磨する研磨工程とからなる
ことを特徴とする試料の研磨方法。
8. A polishing method for polishing a sample by pressing a surface to be polished against a polishing pad attached to a polishing table, wherein the polishing table has a plurality of concentrically different diameters, each of which is independent. A pressurizing force distribution measuring device for measuring a pressing force at a plurality of positions on a back surface opposite to a surface to be polished of the sample or a back surface of the polishing pad. A measuring step of measuring the pressing force distribution by arranging a vessel, a predicting step of predicting a polishing shape in actual polishing based on the measured pressing force distribution, and moving the annular members based on the predicted results, A method for polishing a sample, comprising: a position adjusting step of adjusting the positions of the annular members; and a polishing step of polishing.
【請求項9】 試料の被研磨面を研磨パッドに押付けて
研磨する研磨装置において、 前記研磨パッドへの押付力を前記試料と研磨パッドとの
間の複数の位置で測定する押付力分布測定器を前記試料
と研磨パッドとの間に配する配置手段と、前記押付力分
布測定器が測定した押付力分布に基づいて実研磨での研
磨形状を予測する研磨形状予測手段とを備えることを特
徴とする研磨装置。
9. A polishing apparatus for polishing a sample by pressing a surface to be polished against a polishing pad, wherein the pressing force distribution measuring device measures a pressing force against the polishing pad at a plurality of positions between the sample and the polishing pad. And a polishing shape predicting means for predicting a polishing shape in actual polishing based on a pressing force distribution measured by the pressing force distribution measuring device. Polishing equipment.
【請求項10】 実研磨したときの研磨形状を予め設定
する設定手段と、前記予測した研磨形状と予め設定され
た研磨形状とを比較する比較手段と、比較した試料の研
磨開始の可否を判定する研磨開始可否判定手段とを備え
る請求項9記載の研磨装置。
10. A setting means for presetting a polishing shape at the time of actual polishing, a comparing means for comparing the predicted polishing shape with a preset polishing shape, and judging whether or not polishing of the compared sample can be started. The polishing apparatus according to claim 9, further comprising: a polishing start possibility determination unit that performs polishing.
【請求項11】 前記研磨定盤は直径寸法が異なる複数
が同心的に配され、夫々が独立して前記研磨パッドの方
向への移動が可能な円環部材を備えており、前記研磨形
状予測手段が予測した研磨形状に基づいて前記円環部材
を夫々移動させ、これら円環部材の位置を調整する位置
調整手段を備える請求項9記載の研磨装置。
11. The polishing platen is provided with a plurality of concentrically arranged polishing plates having different diameters, each of which is provided with an annular member capable of independently moving in the direction of the polishing pad. The polishing apparatus according to claim 9, further comprising a position adjusting unit configured to move each of the annular members based on the polishing shape predicted by the unit and adjust the positions of the annular members.
【請求項12】 試料の被研磨面を研磨定盤に取付けら
れた研磨パッドに押付けて研磨する研磨装置において、 前記研磨定盤は直径寸法が異なる複数が同心的に配さ
れ、夫々が独立して前記研磨パッドの方向への移動が可
能な円環部材を備えており、前記試料の被研磨面と反対
側の裏面又は研磨パッドの裏面に配され、前記研磨パッ
ドへの押付力を複数の位置で測定する押付力分布測定器
と、該押付力分布測定器が測定した押付力分布に基づい
て実研磨での研磨形状を予測する研磨形状予測手段と、
該研磨形状予測手段が予測した研磨形状に基づいて前記
円環部材を夫々移動させ、これら円環部材の位置を調整
する位置調整手段とを備えることを特徴とする研磨装
置。
12. A polishing apparatus for polishing by polishing a surface to be polished of a sample against a polishing pad attached to a polishing table, wherein a plurality of polishing tables having different diameters are concentrically arranged, each of which is independent. An annular member capable of moving in the direction of the polishing pad, is disposed on the back surface opposite to the surface to be polished of the sample or the back surface of the polishing pad, and applies a plurality of pressing forces to the polishing pad. Pressing force distribution measuring device to measure at the position, polishing shape prediction means to predict the polishing shape in actual polishing based on the pressing force distribution measured by the pressing force distribution measuring device,
A polishing apparatus comprising: a position adjusting unit that moves each of the annular members based on the polishing shape predicted by the polishing shape predicting unit and adjusts the positions of the annular members.
JP2000031019A 2000-02-08 2000-02-08 Polishing shape predicting method, and polishing method and device Withdrawn JP2001219369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000031019A JP2001219369A (en) 2000-02-08 2000-02-08 Polishing shape predicting method, and polishing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000031019A JP2001219369A (en) 2000-02-08 2000-02-08 Polishing shape predicting method, and polishing method and device

Publications (2)

Publication Number Publication Date
JP2001219369A true JP2001219369A (en) 2001-08-14
JP2001219369A5 JP2001219369A5 (en) 2006-02-23

Family

ID=18555944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000031019A Withdrawn JP2001219369A (en) 2000-02-08 2000-02-08 Polishing shape predicting method, and polishing method and device

Country Status (1)

Country Link
JP (1) JP2001219369A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061817A1 (en) * 2001-01-31 2002-08-08 Nikon Corporation Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium
US7263876B2 (en) * 2001-09-19 2007-09-04 Ricoh Company Limited Apparatus and method of detecting surface convexity of members, and method of producing the members
JP2009224702A (en) * 2008-03-18 2009-10-01 Tokyo Seimitsu Co Ltd Wafer polishing device and wafer polishing method using the polishing device
JP2011083856A (en) * 2009-10-15 2011-04-28 Nikon Corp Machining device and machining method
JP2014069261A (en) * 2012-09-28 2014-04-21 Disco Abrasive Syst Ltd Polishing device
JP2017102051A (en) * 2015-12-03 2017-06-08 ニッタ株式会社 Pressure measuring device and pressure measuring program
JP2017104951A (en) * 2015-12-10 2017-06-15 信越半導体株式会社 Evaluation method of polishing head, polishing method of wafer, and surface pressure distribution evaluation object
CN110815071A (en) * 2019-12-09 2020-02-21 深圳市汇友环境科技有限公司 Anti-drop conversion sheet and manufacturing method thereof
WO2022259913A1 (en) * 2021-06-10 2022-12-15 株式会社荏原製作所 Method for creating polishing rate responsiveness profile of workpiece, polishing method, and computer-readable recording medium having program stored thereon

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031687B2 (en) 2001-01-31 2015-05-12 Nikon Corporation Method for predicting worked shape, method for determining working conditions, working method, working system, semiconductor device manufacturing method, computer program and computer program storage medium
EP1365445A1 (en) * 2001-01-31 2003-11-26 Nikon Corporation Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium
EP1365445A4 (en) * 2001-01-31 2006-11-22 Nikon Corp Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium
US7686673B2 (en) 2001-01-31 2010-03-30 Nikon Corporation Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium
WO2002061817A1 (en) * 2001-01-31 2002-08-08 Nikon Corporation Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium
US7263876B2 (en) * 2001-09-19 2007-09-04 Ricoh Company Limited Apparatus and method of detecting surface convexity of members, and method of producing the members
JP2009224702A (en) * 2008-03-18 2009-10-01 Tokyo Seimitsu Co Ltd Wafer polishing device and wafer polishing method using the polishing device
JP2011083856A (en) * 2009-10-15 2011-04-28 Nikon Corp Machining device and machining method
JP2014069261A (en) * 2012-09-28 2014-04-21 Disco Abrasive Syst Ltd Polishing device
JP2017102051A (en) * 2015-12-03 2017-06-08 ニッタ株式会社 Pressure measuring device and pressure measuring program
JP2017104951A (en) * 2015-12-10 2017-06-15 信越半導体株式会社 Evaluation method of polishing head, polishing method of wafer, and surface pressure distribution evaluation object
CN110815071A (en) * 2019-12-09 2020-02-21 深圳市汇友环境科技有限公司 Anti-drop conversion sheet and manufacturing method thereof
WO2022259913A1 (en) * 2021-06-10 2022-12-15 株式会社荏原製作所 Method for creating polishing rate responsiveness profile of workpiece, polishing method, and computer-readable recording medium having program stored thereon

Similar Documents

Publication Publication Date Title
US6494765B2 (en) Method and apparatus for controlled polishing
US6439964B1 (en) Method of controlling a polishing machine
TWI449595B (en) Polishing method and polishing device
KR101152747B1 (en) Polishing endpoint detection system and method using friction sensor
US6896583B2 (en) Method and apparatus for conditioning a polishing pad
TWI275451B (en) Measurement of thickness profile and elastic modulus profile of polishing pad
US6531399B2 (en) Polishing method
US20120021671A1 (en) Real-time monitoring of retaining ring thickness and lifetime
JP6193623B2 (en) Polishing method and polishing apparatus
US20090298388A1 (en) Method and apparatus for chemical mechanical polishing of large size wafer with capability of polishing individual die
JPH09168963A (en) Device for profile measurement of polishing pad of chemical mechanical polishing system
JP2004142083A (en) Wafer polishing device and wafer polishing method
JP2001219369A (en) Polishing shape predicting method, and polishing method and device
JP6778176B2 (en) Adjusting the board thickness profile
US6220936B1 (en) In-site roller dresser
KR20220116316A (en) Abrasive carrier head with piezoelectric pressure control
US20070281485A1 (en) Method of and apparatus for semiconductor device
TW202231405A (en) System and method for chemical mechanical polishing
JP2005347568A (en) Method and apparatus for polishing substrate
TWI570791B (en) Polishing apparatus and substrate holding apparatus
CN218110400U (en) Carrier head for holding a substrate in a polishing system
JP2006093296A (en) Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
JPH08316179A (en) Flattening method and apparatus in semiconductor process
CN115135449B (en) Deformable substrate chuck
JP4326985B2 (en) Wafer polishing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080616