JP5671744B2 - Measuring method of electrode length in electric resistance melting furnace - Google Patents

Measuring method of electrode length in electric resistance melting furnace Download PDF

Info

Publication number
JP5671744B2
JP5671744B2 JP2010290206A JP2010290206A JP5671744B2 JP 5671744 B2 JP5671744 B2 JP 5671744B2 JP 2010290206 A JP2010290206 A JP 2010290206A JP 2010290206 A JP2010290206 A JP 2010290206A JP 5671744 B2 JP5671744 B2 JP 5671744B2
Authority
JP
Japan
Prior art keywords
electrode
length
microwave
furnace
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010290206A
Other languages
Japanese (ja)
Other versions
JP2012137255A (en
Inventor
早衛 萱野
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2010290206A priority Critical patent/JP5671744B2/en
Publication of JP2012137255A publication Critical patent/JP2012137255A/en
Application granted granted Critical
Publication of JP5671744B2 publication Critical patent/JP5671744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

本発明は、都市ごみや産業廃棄物、鉄鉱石等の被溶融物を炉内に投入して溶融処理するために使用される電気抵抗式溶融炉における電極の長さを測定する方法に関する。   The present invention relates to a method for measuring the length of an electrode in an electric resistance melting furnace used for melting a municipal waste, industrial waste, iron ore or the like to be melted by being charged into the furnace.

都市ごみや産業廃棄物、鉄鉱石等の被溶融物を炉内に投入し、堆積した被溶融物に、炉内に垂下する炭素電極を差し入れて電極に通電し、ジュール熱により被溶融物を溶融し、溶融物を回収する電気抵抗式溶融炉が使用されている。例えば、図8に示すように、鉄鉱石を溶融する場合は、炉100の内部に堆積している鉄鉱石に炭素電極101を差し入れ、炭素電極101に電流を流して電極間に存在する鉄鉱石を抵抗としてジュール熱により鉄鉱石を溶融する。炭素電極101への給電は、電源110から炭素電極101に装着した電極ホルダー180を介して行う。そして、溶融が進むと、炉底には、上から順に未溶融の鉄鉱石102、溶融スラグ層103、溶融鉄層104の3層が形成され、スラグ排出口105から溶融スラグを回収し、出鋼口106から溶融鉄を回収する。   Municipal waste, industrial waste, iron ore, and other materials to be melted are placed in the furnace, and a carbon electrode hanging down in the furnace is inserted into the accumulated material to be melted, and the electrodes are energized. An electric resistance melting furnace that melts and recovers the melt is used. For example, as shown in FIG. 8, when melting iron ore, the carbon electrode 101 is inserted into the iron ore deposited inside the furnace 100, and an electric current is passed through the carbon electrode 101 to exist between the electrodes. The iron ore is melted by Joule heat with resistance. Power is supplied to the carbon electrode 101 from the power source 110 through an electrode holder 180 attached to the carbon electrode 101. When melting proceeds, three layers of unmelted iron ore 102, molten slag layer 103, and molten iron layer 104 are formed in order from the top on the furnace bottom, and the molten slag is recovered from the slag discharge port 105 and discharged. Molten iron is recovered from the steel port 106.

このような電気抵抗式溶融炉100において、例えば特許文献1では、溶融スラグ層と溶融塩層とで電気抵抗値が変わることを利用して、炭素電極を昇降させながら電流値を測定し、電流値が大きく変化したときの電極位置から溶融スラグ層と溶融塩層との界面を検出することを提案している。従って、図8に示す鉄鉱石を溶融する場合には、電極昇降装置120により炭素電極101を図中上下方向に昇降させながら電流値を測定し、電気抵抗値が大きく変化した炭素電極101の位置から、鉄鉱石102と溶融スラグ層103との界面、並びに溶融スラグ層103と溶融鉄層104との界面を検知することができる。そして、これらの境界から、溶融鉄が出鋼口106よりも上方でスラグ排出口105よりも下方の位置まで貯まり、溶融スラグがスラグ排出口105よりも上方の位置かで貯まったかどうか判断することができる。   In such an electric resistance melting furnace 100, for example, in Patent Document 1, the current value is measured while raising and lowering the carbon electrode by utilizing the fact that the electric resistance value varies between the molten slag layer and the molten salt layer. It is proposed to detect the interface between the molten slag layer and the molten salt layer from the electrode position when the value changes greatly. Therefore, when the iron ore shown in FIG. 8 is melted, the current value is measured while raising and lowering the carbon electrode 101 in the vertical direction in the drawing by the electrode lifting device 120, and the position of the carbon electrode 101 where the electrical resistance value has changed greatly. Therefore, the interface between the iron ore 102 and the molten slag layer 103 and the interface between the molten slag layer 103 and the molten iron layer 104 can be detected. Then, from these boundaries, it is determined whether or not the molten iron is stored at a position above the steel outlet 106 and below the slag outlet 105, and whether or not the molten slag is stored at a position above the slag outlet 105. Can do.

しかし、炭素電極101は、金属製の円筒体からなる電極カバーの内部にカーボン塊とコールタールピッチとの混合物を充填し、溶融時の熱により焼成されたカーボン焼成体(電極本体160)で構成されているため(図2参照)、溶融に伴ってカーボン焼成体が消耗する。界面は、炭素電極101の垂下位置から求められるため、摩耗により電極長が変化していると、界面の位置を正確に検知できていない。また、カーボン焼成体が消耗すると、電極カバーの上端からカーボン塊を補給することが行われているが、カーボン焼成体の消耗の度合が分からないと、カーボン塊の適切な補給量を知ることもできない。   However, the carbon electrode 101 is constituted by a carbon fired body (electrode body 160) in which a mixture of carbon lump and coal tar pitch is filled in an electrode cover made of a metal cylinder and fired by heat at the time of melting. Therefore, the carbon fired body is consumed as it melts. Since the interface is obtained from the drooping position of the carbon electrode 101, the position of the interface cannot be accurately detected if the electrode length changes due to wear. In addition, when the carbon fired body is consumed, the carbon lump is replenished from the upper end of the electrode cover. However, if the degree of consumption of the carbon fired body is not known, the appropriate replenishment amount of the carbon lump may be known. Can not.

また、炭素電極101の鉄鉱石102への挿入量が不足すると、鉄鉱石102の上部のみが溶融して炉100に溶融鉄が貯まらない「上熱現象」が発生し、出鋼口106から溶融鉄が回収できなくなる。更に、炭素電極101を下げすぎると、焼成されていないカーボン塊が炭素電極101の下方側に移行して炭素電極101の折損事故が起こりやくなる。そのため、炭素電極101の長さを正確に検知できないと、炭素電極101の垂下量を適切に制御できず、このような問題が発生する。   In addition, when the amount of insertion of the carbon electrode 101 into the iron ore 102 is insufficient, only the upper part of the iron ore 102 is melted and an “upper heat phenomenon” in which the molten iron is not stored in the furnace 100 occurs. Iron cannot be recovered. Furthermore, if the carbon electrode 101 is lowered too much, the unburned carbon lump moves to the lower side of the carbon electrode 101 and the carbon electrode 101 is easily broken. Therefore, if the length of the carbon electrode 101 cannot be accurately detected, the amount of drooping of the carbon electrode 101 cannot be appropriately controlled, and such a problem occurs.

特開平8−94060号公報JP-A-8-94060

このように電気抵抗式溶融炉では、これまで炭素電極の長さを正確に検知できておらず、それに伴う上記のような諸問題が起こっている。そこで本発明は、電気気抵抗式溶融炉における電極の長さを正確に測定して少なくとも溶融スラグ層と溶融金属層との界面を正確に検知するとともに、上熱現象や炭素電極の折損事故等の不具合を防ぐことを目的とする。   As described above, in the electric resistance melting furnace, the length of the carbon electrode has not been accurately detected so far, and the above-described problems have occurred. Accordingly, the present invention accurately measures the length of the electrode in the electric resistance type melting furnace to accurately detect at least the interface between the molten slag layer and the molten metal layer, and causes an overheating phenomenon, a carbon electrode breakage accident, etc. The purpose is to prevent malfunctions.

上記の目的を達成するために、本発明は下記の各方法を提供する。
(1)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における炭素電極の長さを測定する方法であって、
少なくとも1本の炭素電極に、軸線に沿って下端まで延びる空孔を形成し、空孔の上端にマイクロ波送受信器を装着するとともに、マイクロ波を送信し、下端で反射されたマイクロ波を受信して炭素電極の長さを求めることを特徴とする電気抵抗式溶融炉における電極長の測定方法。
(2)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における炭素電極の長さを測定する方法であって、
少なくとも1本の炭素電極の内部に、炭素電極の下端に達する金属製パイプを挿通し、金属製パイプの上端にマイクロ波送受信器を装着するとともに、マイクロ波を送信し、金属製パイプの下端で反射されたマイクロ波を受信して金属製パイプの長さを計測し、計測した金属製パイプの長さを炭素電極の長さとして求めることを特徴とする電気抵抗式溶融炉における電極長の測定方法。
(3)空孔または金属製パイプに、窒素ガスまたは不活性ガスを流入させながらマイクロ波の送受信を行うことを特徴とする請求項1または2記載の電気抵抗式溶融炉における電極長の測定方法。
(4)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、軸線に沿って下端まで延びる空孔の上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を昇降させながら該電極に流れる電流値を測定し、少なくとも電流値が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
(5)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、電極下端に達する金属製パイプを挿通して上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を昇降させながら該電極に流れる電流値を測定し、少なくとも電流値が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
(6)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、軸線に沿って下端まで延びる空孔の上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を、空孔に窒素ガスまたは不活性ガスを一定量で供給しながら昇降させ、少なくとも内圧が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
(7)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、電極下端に達する金属製パイプを挿通して上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を、金属製パイプに窒素ガスまたは不活性ガスを一定量で供給しながら昇降させ、少なくとも内圧が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
(8)炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における電極の昇降を制御する方法であって、
請求項1〜3の何れか1項に記載の方法により炭素電極の長さ(L1)を求めるとともに、マイクロ波送受器の上方に距離計を配置して、マイクロ波送受信器と距離計との離間距離(L2)を計測し、離間距離(L2)と、求めた炭素電極の長さ(L1)とを合算して距離計から電極下端までの距離(L3)を求め、距離(L3)に基づき炭素電極の垂下位置を制御することを特徴とする電気抵抗式溶融炉における電極の昇降制御方法。
In order to achieve the above object, the present invention provides the following methods.
(1) A method of measuring the length of a carbon electrode in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material accumulated in the furnace and the electrode is energized to melt the melted material. There,
A hole extending to the lower end along the axis is formed in at least one carbon electrode, a microwave transceiver is attached to the upper end of the hole, and a microwave is transmitted, and a microwave reflected at the lower end is received. And measuring the length of the carbon electrode to measure the length of the electrode in an electric resistance melting furnace.
(2) A method of measuring the length of a carbon electrode in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material accumulated in the furnace, and the melted material is melted by energizing the electrode. There,
At least one carbon electrode is inserted with a metal pipe reaching the lower end of the carbon electrode, a microwave transceiver is attached to the upper end of the metal pipe, and microwaves are transmitted at the lower end of the metal pipe. Measuring the length of the metal pipe by receiving the reflected microwave and measuring the length of the measured metal pipe as the length of the carbon electrode, measuring the electrode length in an electric resistance melting furnace Method.
(3) The method of measuring an electrode length in an electric resistance melting furnace according to claim 1 or 2, wherein microwaves are transmitted / received while flowing nitrogen gas or inert gas into a hole or a metal pipe. .
(4) At least a molten slag layer and a molten metal layer in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material accumulated in the furnace, and the melted material is melted by energizing the electrode. A method for detecting an interface comprising:
At least one carbon electrode is used as an electrode length measurement electrode by attaching a microwave transceiver to the upper end of a hole extending to the lower end along the axis,
Measure the value of the current flowing through the electrode while raising and lowering the electrode length measurement electrode, transmit a microwave at least when the current value changes stepwise, receive the microwave reflected at the lower end, and increase the electrode length An interface detection method in an electric resistance melting furnace, characterized in that an interface is detected from the measured electrode length.
(5) At least a molten slag layer and a molten metal layer in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material deposited in the furnace and the melted material is melted by energizing the electrode. A method for detecting an interface comprising:
At least one carbon electrode is inserted into a metal pipe reaching the lower end of the electrode and a microwave transceiver is attached to the upper end to form an electrode length measuring electrode,
Measure the value of the current flowing through the electrode while raising and lowering the electrode length measurement electrode, transmit a microwave at least when the current value changes stepwise, receive the microwave reflected at the lower end, and increase the electrode length An interface detection method in an electric resistance melting furnace, characterized in that an interface is detected from the measured electrode length.
(6) At least a molten slag layer and a molten metal layer in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material accumulated in the furnace, and the melted material is melted by energizing the electrode. A method for detecting an interface comprising:
At least one carbon electrode is used as an electrode length measurement electrode by attaching a microwave transceiver to the upper end of a hole extending to the lower end along the axis,
The electrode length measurement electrode is moved up and down while supplying a certain amount of nitrogen gas or inert gas to the holes, and at least when the internal pressure changes stepwise, the microwave is transmitted and the microwave reflected at the lower end is transmitted. A method for detecting an interface in an electric resistance melting furnace, comprising: receiving and measuring an electrode length; and detecting an interface from the measured electrode length.
(7) At least a molten slag layer and a molten metal layer in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material deposited in the furnace, and the melted material is melted by energizing the electrode A method for detecting an interface comprising:
At least one carbon electrode is inserted into a metal pipe reaching the lower end of the electrode and a microwave transceiver is attached to the upper end to form an electrode length measuring electrode,
The electrode for measuring the electrode length is raised and lowered while supplying a certain amount of nitrogen gas or inert gas to the metal pipe, and at least when the internal pressure changes stepwise, the microwave is transmitted and the microwave reflected at the lower end , Measuring the electrode length, and detecting the interface from the measured electrode length.
(8) A method of controlling the raising and lowering of an electrode in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material deposited in the furnace and the electrode is energized to melt the melted material. ,
While obtaining the length (L1) of a carbon electrode by the method of any one of Claims 1-3, a distance meter is arrange | positioned above a microwave handset, and a microwave transmitter-receiver and a distance meter The separation distance (L2) is measured, and the separation distance (L2) and the obtained length (L1) of the carbon electrode are added together to obtain the distance (L3) from the distance meter to the lower end of the electrode. A control method for raising and lowering an electrode in an electric resistance melting furnace, wherein the drooping position of the carbon electrode is controlled based on the control.

本発明によれば、電気抵抗式溶融炉における炭素電極の長さを正確に計測することができ、それにより少なくとも溶融スラグ層と溶融金属層との界面を正確に検出ことができる。また、被溶融物の溶融に適した位置に炭素電極を精度よく配置することができ、操業効率を高めることができる。   According to the present invention, it is possible to accurately measure the length of the carbon electrode in the electric resistance melting furnace, thereby accurately detecting at least the interface between the molten slag layer and the molten metal layer. In addition, the carbon electrode can be accurately arranged at a position suitable for melting of the material to be melted, and the operation efficiency can be increased.

本発明の電極長の測定方法を実施するための電気抵抗式溶融炉の全体構造を示す図である。It is a figure which shows the whole structure of the electrical resistance type melting furnace for enforcing the measuring method of the electrode length of this invention. 炭素電極を示す断面図である。It is sectional drawing which shows a carbon electrode. 電極ケースを示す上面図である。It is a top view which shows an electrode case. 図2のA部分の拡大図である。FIG. 3 is an enlarged view of a portion A in FIG. 2. 炭素電極を昇降させたときの電気抵抗値の変化を示すグラフである。It is a graph which shows the change of an electrical resistance value when raising / lowering a carbon electrode. 第2のマイクロ波送受信器を備える装置を示す図である。It is a figure which shows an apparatus provided with the 2nd microwave transmitter-receiver. 炭素電極の他の例を示す断面図である。It is sectional drawing which shows the other example of a carbon electrode. 従来の電気抵抗式溶融炉の全体構成を示す図である。It is a figure which shows the whole structure of the conventional electrical resistance type melting furnace.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明の電極長の測定方法を実施するための電気抵抗式溶融炉の全体構造を示す図であるが、電気抵抗式溶融炉の全体構成は従来と同様で構わず、例えば図8に示した構成と同様に、炉100の内部に垂下する炭素電極101を、堆積している鉄鉱石に差し入れ、電源110から炭素電極101に給電して鉄鉱石を溶融して未溶融の鉄鉱石102、溶融スラグ層103及び溶融鉄層104の3層を形成し、スラグ排出口105から溶融スラグを回収し、出鋼口106から溶融鉄を回収する。   FIG. 1 is a diagram showing the entire structure of an electric resistance melting furnace for carrying out the electrode length measuring method of the present invention. The entire structure of the electric resistance melting furnace may be the same as that of the prior art. For example, FIG. As in the configuration shown in FIG. 1, the carbon electrode 101 hanging down inside the furnace 100 is inserted into the deposited iron ore, and the power is supplied from the power source 110 to the carbon electrode 101 to melt the iron ore and unmelted iron ore. 102, a molten slag layer 103 and a molten iron layer 104 are formed, molten slag is collected from the slag discharge port 105, and molten iron is collected from the steel outlet 106.

炭素電極101は、図2に拡大して示すように、金属製の円筒体からなる電極ケース150の内部に、カーボン焼成体からなる電極本体160を収容したものである。電極ケース150には電極ホルダー180を通じて電源110から給電され、電極本体160に電流が流れる。電極本体160は、溶融時に消耗するため、上端の開口からカーボン塊170とコールタールピッチとの混合物を投入し、溶融に伴う熱で焼成させて消耗分を補給するように構成されている。   As shown in FIG. 2 in an enlarged manner, the carbon electrode 101 is obtained by accommodating an electrode body 160 made of a carbon fired body in an electrode case 150 made of a metal cylinder. Power is supplied to the electrode case 150 from the power source 110 through the electrode holder 180, and a current flows through the electrode body 160. Since the electrode body 160 is consumed at the time of melting, a mixture of the carbon lump 170 and coal tar pitch is introduced from the opening at the upper end, and the electrode body 160 is baked with heat accompanying melting to replenish the consumed amount.

電極ケース150は、図3に示すように、内壁に補強用のリブ155を放射状に設けてもよい。また、電極ケース150も溶融時に消耗するため、図4にA部分を拡大して示すように、下方の電極ケース片151に新たな別の電極ケース片152を継ぎ足すように構成されている。   As shown in FIG. 3, the electrode case 150 may be provided with reinforcing ribs 155 radially on the inner wall. Further, since the electrode case 150 is also consumed at the time of melting, another electrode case piece 152 is added to the lower electrode case piece 151 as shown in FIG.

本発明では、少なくとも1本の炭素電極101aの内部に、電極本体160の軸線に沿って下端に達する金属製パイプ200を挿通し、更に金属製パイプ200の上端にマイクロ波送受信器300を装着し、電極長測定用電極として機能させる。そして、マイクロ波送受信器300からマイクロ波を送信すると、マイクロ波は金属製パイプ200の内部を伝播し、下端200aに達した時点で、外部との誘電率が大きく変わるために反射される。そして、反射されたマイクロ波が金属製パイプ200の内部を再度伝搬してマイクロ波送受信器300で受信される。そして、マイクロ波の送受信の時間差から金属製パイプ200の長さが求められる。金属製パイプ200の下端200aは、電極本体160の下端と一致するため、金属製パイプ200の長さを炭素電極101aの長さとすることができる。   In the present invention, the metal pipe 200 reaching the lower end along the axis of the electrode body 160 is inserted into at least one carbon electrode 101a, and the microwave transceiver 300 is attached to the upper end of the metal pipe 200. And function as an electrode length measuring electrode. When a microwave is transmitted from the microwave transceiver 300, the microwave propagates through the metal pipe 200 and is reflected when the lower end 200a is reached because the dielectric constant with the outside changes greatly. Then, the reflected microwave propagates again inside the metal pipe 200 and is received by the microwave transceiver 300. And the length of the metal pipe 200 is calculated | required from the time difference of transmission / reception of a microwave. Since the lower end 200a of the metal pipe 200 coincides with the lower end of the electrode body 160, the length of the metal pipe 200 can be the length of the carbon electrode 101a.

尚、測定された金属製パイプ200の長さに基づく炭素電極101aの長さは、炭素電極101aの実際の長さよりも長くなる。この長くなる割合(倍率)は、金属製パイプ200の径が大きくなるほど小さくなる。そこで、測定された炭素電極101aの長さを、金属製パイプ200の径毎に求めた倍率で割って補正する。従って、金属製パイプ200の径には制限はなく、電極ケース150の径に応じて適宜選択することができる。   Note that the length of the carbon electrode 101a based on the measured length of the metal pipe 200 is longer than the actual length of the carbon electrode 101a. This rate of increase (magnification) decreases as the diameter of the metal pipe 200 increases. Therefore, the measured length of the carbon electrode 101 a is corrected by dividing by the magnification obtained for each diameter of the metal pipe 200. Therefore, there is no restriction | limiting in the diameter of the metal pipe 200, According to the diameter of the electrode case 150, it can select suitably.

また、金属製パイプ200の下端200aは溶融時に消耗するため、マイクロ波送受信器300との間に継手210を挿入し、消耗分を継ぎ足すように構成されている。また、金属製パイプ200の下端200aは開口しているため、溶融スラグや溶融鉄が流入するのを防ぐために、パイプの上方部分、例えば継手210とマイクロ波送受信器300との間に窒素ガスや不活性ガスを供給してパイプの内圧を高めることが好ましい。内圧の調整は、圧力調整器250で行う。   In addition, since the lower end 200a of the metal pipe 200 is consumed when melted, a joint 210 is inserted between the metal pipe 200 and the microwave transceiver 300, and the consumed amount is added. Further, since the lower end 200a of the metal pipe 200 is open, in order to prevent molten slag and molten iron from flowing in, nitrogen gas or the like between the upper part of the pipe, for example, the joint 210 and the microwave transceiver 300 can be used. It is preferable to increase the internal pressure of the pipe by supplying an inert gas. The internal pressure is adjusted by the pressure regulator 250.

マイクロ波として、円偏波マイクロ波を利用することが好ましい。マイクロ波送受信器300の発振ダイオードからは電界が直線方向を向くマイクロ波が発振されるが、導波管内に90°位相差を生ずる位相差板を入射電界に対し45゜の方向に配置することで、電界がある方向に向かって回転する円偏波マイクロ波が発生する。この円偏波マイクロ波は、反射されると、反射のたびに電界の回転方向が逆転する性質があり、例えばマイクロ波送受信器300から左回転の円偏波マイクロ波を送信した場合、金属製パイプ200の下端200aで反射されると、右回転の円偏波マイクロ波となってマイクロ波送受信器300で受信される。金属製パイプ200の下端200a以外に他の部分で奇数回反射されると、左回転の円偏波マイクロ波となるため、マイクロ波送受信器300で右回転の円偏波マイクロ波のみを検波する構成にすることにより、偶数回反射されたマイクロ波を排除でき、金属製パイプ200の下端200aでの反射をより正確に検知できるようになる。   It is preferable to use a circularly polarized microwave as the microwave. A microwave whose electric field is directed in a linear direction is oscillated from the oscillation diode of the microwave transceiver 300, but a phase difference plate that causes a 90 ° phase difference in the waveguide is disposed in a direction of 45 ° with respect to the incident electric field. Thus, a circularly polarized microwave that rotates in a certain direction is generated. When the circularly polarized microwave is reflected, the direction of rotation of the electric field is reversed every time it is reflected. For example, when a circularly polarized microwave that is rotated counterclockwise is transmitted from the microwave transceiver 300, the circularly polarized microwave is made of metal. When reflected by the lower end 200 a of the pipe 200, it becomes a right-handed circularly polarized microwave and is received by the microwave transceiver 300. If it is reflected an odd number of times other than the lower end 200a of the metal pipe 200, it becomes a left-handed circularly polarized microwave, so that only the right-handed circularly polarized microwave is detected by the microwave transceiver 300. By adopting the configuration, the microwave reflected even times can be eliminated, and reflection at the lower end 200a of the metal pipe 200 can be detected more accurately.

ところで、電極昇降装置120により炭素電極101aを昇降させながら電流値を測定すると、溶融鉄層104、溶融スラグ層103、未溶融の鉄鉱石102を通過する際に図5に示すように階段状に導電率が変化する。それにより、炉底から高さAまで溶融鉄層104があり、高さAから高さBまで溶融スラグ層103があり、高さBから高さCまで未溶融の鉄鉱石102があることがわかる。しかし、各層の炉底からの高さは、炭素電極101aの下端の位置に対応して求められるため、炭素電極101aが消耗して測定時の炭素電極101aの長さが分からないと、各層の本当の高さが求められない。そのため、例えば溶融スラグ層103と溶融鉄層104との境界、即ち炉底からの高さAが正確でないと、スラグ排出口105から溶融スラグと共に溶融鉄も排出されることがあり、分離回収率が低下する。   By the way, when the current value is measured while raising and lowering the carbon electrode 101a by the electrode lifting / lowering device 120, as it passes through the molten iron layer 104, the molten slag layer 103, and the unmelted iron ore 102, as shown in FIG. The conductivity changes. Thereby, there is a molten iron layer 104 from the furnace bottom to the height A, a molten slag layer 103 from the height A to the height B, and an unmelted iron ore 102 from the height B to the height C. Recognize. However, since the height from the furnace bottom of each layer is obtained corresponding to the position of the lower end of the carbon electrode 101a, if the carbon electrode 101a is consumed and the length of the carbon electrode 101a at the time of measurement is unknown, Real height is not required. Therefore, for example, if the boundary between the molten slag layer 103 and the molten iron layer 104, that is, the height A from the furnace bottom is not accurate, molten iron may be discharged together with the molten slag from the slag discharge port 105, and the separation recovery rate Decreases.

しかし、本発明によれば、炭素電極101aが消耗していたとしても、測定時の炭素電極101aの長さが正確に測定されるため、各層の界面が正確に求められて上記のような不具合がなくなる。即ち、上記に従い、伝導率が階段状に大きく変化した位置の炭素電極101aの電極長を測定することにより、界面の位置を正確に知ることができる。その際、マイクロ波は常時送信してもよいし、伝送率が階段状に大きく変化時点で送信してもよい。   However, according to the present invention, even if the carbon electrode 101a is consumed, the length of the carbon electrode 101a at the time of measurement is accurately measured. Disappears. That is, according to the above, the position of the interface can be accurately known by measuring the electrode length of the carbon electrode 101a at the position where the conductivity has greatly changed in a stepped manner. At that time, the microwave may be transmitted constantly, or may be transmitted when the transmission rate is greatly changed stepwise.

また、電流値を測定してその変化を検出する代わりに、金属製パイプ200の内圧の変化からも未溶融の鉄鉱石102、溶融スラグ層103、溶融鉄層104の界面を検出することもできる。金属製パイプ200に窒素ガスや不活性ガスを一定量で供給しながら昇降させると、溶融鉄層104に近づくほど内圧が高まり、また溶融鉱層104、溶融スラグ層103及び未溶融の鉄鉱石102では密度が異なるため、図5(但し、導電率比を内圧比とする)に示すように、各層ごとに内圧が階段状に変化する。そのため、内圧の変化を測定し、内圧が階段状に大きく変化する点を溶融鉄層104、溶融スラグ層103、未溶融の鉄鉱石102の界面と見做すことができる。   Further, instead of measuring the current value and detecting the change, the interface of the unmelted iron ore 102, the molten slag layer 103, and the molten iron layer 104 can also be detected from the change in the internal pressure of the metal pipe 200. . When the metal pipe 200 is moved up and down while supplying a certain amount of nitrogen gas or inert gas, the internal pressure increases as it approaches the molten iron layer 104, and the molten ore layer 104, molten slag layer 103, and unmelted iron ore 102 Since the densities are different, the internal pressure changes stepwise for each layer as shown in FIG. 5 (where the conductivity ratio is the internal pressure ratio). Therefore, the change of the internal pressure can be measured, and the point where the internal pressure changes greatly in a stepwise manner can be regarded as the interface of the molten iron layer 104, the molten slag layer 103, and the unmelted iron ore 102.

そして、上記に従い、金属製パイプ200の内圧が階段状に大きく変化した位置の炭素電極101aの電極長を測定することにより、界面の位置を正確に知ることができる。また、窒素ガスや不活性ガスにより金属製パイプ200の内圧が高まっているため、溶融スラグや溶融鉄の浸入を防ぐこともできる。   And according to the above, the position of the interface can be accurately known by measuring the electrode length of the carbon electrode 101a at the position where the internal pressure of the metal pipe 200 is greatly changed stepwise. Moreover, since the internal pressure of the metal pipe 200 is increased by nitrogen gas or inert gas, it is possible to prevent the intrusion of molten slag or molten iron.

また、図6に示すように、マイクロ波送受信器300の上方に距離計、例えば第2のマイクロ波送受信器400を設置し、第2のマイクロ波送受信器400からマイクロ波送受信器300までの距離を測定し、マイクロ波送受信器300で測定した電極長と合算して第2のマイクロ波送受信器400から炭素電極101aの下端までの距離を求め、この距離信号に基づいて電極昇降装置120による炭素電極101aの垂下位置を制御することができる。マイクロ波送受信器300と第2のマイクロ波送受信器400との距離を測定するには、例えばマイクロ波送受信器300の金属製パイプ200との連結部位に金属板310を付設しておき、金属板310に向けて第2のマイクロ波送受信器400のアンテナ410からマイクロ波を送信し、金属板310で反射したマイクロ波をアンテナ410で受信してアンテナ410と金属板310との距離(L2)を求める。そして、アンテナ410と金属板310との距離(L2)と、マイクロ波送受信器300で測定した電極長(L1)とを合算して、第2のマイクロ波送受信器400のアンテナ410から炭素電極101aの下端までの距離(L3)が求められる。   Further, as shown in FIG. 6, a distance meter, for example, a second microwave transceiver 400 is installed above the microwave transceiver 300, and the distance from the second microwave transceiver 400 to the microwave transceiver 300 is set. Is measured and added to the electrode length measured by the microwave transceiver 300 to obtain the distance from the second microwave transceiver 400 to the lower end of the carbon electrode 101a, and based on this distance signal, the carbon by the electrode lifting / lowering device 120 is obtained. The drooping position of the electrode 101a can be controlled. In order to measure the distance between the microwave transceiver 300 and the second microwave transceiver 400, for example, a metal plate 310 is attached to a connection portion of the microwave transceiver 300 with the metal pipe 200, and the metal plate A microwave is transmitted from the antenna 410 of the second microwave transceiver 400 toward the antenna 310, and the microwave reflected by the metal plate 310 is received by the antenna 410, and the distance (L2) between the antenna 410 and the metal plate 310 is obtained. Ask. Then, the distance (L2) between the antenna 410 and the metal plate 310 and the electrode length (L1) measured by the microwave transceiver 300 are added together, and the carbon electrode 101a from the antenna 410 of the second microwave transceiver 400 is added. The distance (L3) to the lower end of is determined.

炭素電極101aは、溶融により消耗して徐々に短くなるため、それに合わせて炭素電極101全体を徐々に降下させる必要がある。しかし、炭素電極101aの長さが分からないと、降下量を決めることができない。そこで、炉設備の天井のように高さが変わらない場所に第2のマイクロ波送受信器400を固定して基準位置とし、この基準位置からの炭素電極101aの下端までの距離(L3)を知ることにより、炭素電極101aの垂下位置を制御することができる。   Since the carbon electrode 101a is consumed by melting and becomes gradually shorter, it is necessary to gradually lower the entire carbon electrode 101 accordingly. However, the amount of descent cannot be determined unless the length of the carbon electrode 101a is known. Therefore, the second microwave transmitter / receiver 400 is fixed at a place where the height does not change, such as the ceiling of the furnace facility, and is set as a reference position, and the distance (L3) from the reference position to the lower end of the carbon electrode 101a is known. Thereby, the drooping position of the carbon electrode 101a can be controlled.

尚、炭素電極101aの垂下位置を制御するには、第2のマイクロ波送受信器400からの距離(L2)の信号と、マイクロ波送受信器300による電極長さ(L1)の信号とを電極昇降装置120に送り、距離(L2)と電極長さ(L1)との合算値(L3)を元に電極昇降装置120による電極101aを昇降させる。   In order to control the drooping position of the carbon electrode 101a, the signal of the distance (L2) from the second microwave transceiver 400 and the signal of the electrode length (L1) by the microwave transceiver 300 are moved up and down. The electrode 101a is lifted / lowered by the electrode lifting / lowering device 120 based on the total value (L3) of the distance (L2) and the electrode length (L1).

上記では、炭素電極101aに金属製パイプ200を挿通した構成を説明したが、図7に示すように、金属製パイプ200に代えて、電極本体160に、軸線に沿って下端まで達する空孔500を形成しても同様の効果が得られる。尚、電極本体160は黒鉛の円筒体を用いることが好ましい。黒鉛は軟質で、精度良く孔開けすることができ、更には耐熱温度も3000℃程度であるため溶融時に溶解して空孔500が変形することもない。このように、電極本体160に空孔500を形成した場合も、下端では誘電率が大きく変化してマイクロ波が反射される。従って、空孔500の上端にマイクロ波送受信器300を装着してマイクロ波を送信し、下端で反射されたマイクロ波を受信することにより、炭素電極101aの長さを測定することができる。   In the above description, the configuration in which the metal pipe 200 is inserted through the carbon electrode 101a has been described. However, as shown in FIG. 7, instead of the metal pipe 200, the hole 500 reaching the lower end along the axis in the electrode body 160. The same effect can be obtained even if formed. The electrode body 160 is preferably a graphite cylindrical body. Graphite is soft and can be perforated with high accuracy. Furthermore, since the heat-resistant temperature is about 3000 ° C., it is not melted during melting and the voids 500 are not deformed. Thus, even when the hole 500 is formed in the electrode body 160, the dielectric constant changes greatly at the lower end, and the microwave is reflected. Therefore, the length of the carbon electrode 101a can be measured by attaching the microwave transceiver 300 to the upper end of the hole 500, transmitting the microwave, and receiving the microwave reflected at the lower end.

マイクロ波送受信器300を装着するには、導波管300の内径を空孔500の径と同径にし、空孔500の上端に導波管320の下端が近接するようにマイクロ波送受信器300を配置する。この場合も、導波管300を通じて空孔500に窒素ガスや不活性ガスを供給することにより、下端からの溶融スラグや溶融鉄の浸入を防ぐことができる。   In order to mount the microwave transceiver 300, the microwave transceiver 300 is set so that the inner diameter of the waveguide 300 is the same as the diameter of the hole 500, and the lower end of the waveguide 320 is close to the upper end of the hole 500. Place. Also in this case, by supplying nitrogen gas or inert gas to the air holes 500 through the waveguide 300, it is possible to prevent the molten slag and molten iron from entering from the lower end.

このように電極本体160に空孔500を形成する方式では、上記のように金属製パイプ200が不要となり、装置全体が安価になる。   As described above, the method of forming the holes 500 in the electrode body 160 eliminates the need for the metal pipe 200 and makes the entire apparatus inexpensive.

また、摩耗した際の補給は、上端面に新しい円筒状の黒鉛片を重ね、黒鉛でできたニップル(ねじをきったもの)を黒鉛片間に挟み、ねじ締して連結する。   In addition, when worn, a new cylindrical graphite piece is stacked on the upper end surface, and a graphite nipple (threaded) is sandwiched between the graphite pieces and screwed together.

100 炉
101、101a 炭素電極
102 未溶融の鉄鉱石
103 溶融スラグ層
104 溶融鉄層
150 電極ケース
160 電極本体
170 カーボン塊
200 金属製パイプ
250 圧力調整器
300 マイクロ波送受信器
400 第2のマイクロ波送受信器
500 空孔
DESCRIPTION OF SYMBOLS 100 Furnace 101, 101a Carbon electrode 102 Unmelted iron ore 103 Molten slag layer 104 Molten iron layer 150 Electrode case 160 Electrode body 170 Carbon lump 200 Metal pipe 250 Pressure regulator 300 Microwave transceiver 400 Second microwave transmission / reception 500 holes

Claims (8)

炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における炭素電極の長さを測定する方法であって、
少なくとも1本の炭素電極に、軸線に沿って下端まで延びる空孔を形成し、空孔の上端にマイクロ波送受信器を装着するとともに、マイクロ波を送信し、下端で反射されたマイクロ波を受信して炭素電極の長さを求めることを特徴とする電気抵抗式溶融炉における電極長の測定方法。
A method of measuring the length of a carbon electrode in an electric resistance melting furnace in which a carbon electrode hanging in the furnace is inserted into the melted material deposited in the furnace, and the melted material is melted by energizing the electrode,
A hole extending to the lower end along the axis is formed in at least one carbon electrode, a microwave transceiver is attached to the upper end of the hole, and a microwave is transmitted, and a microwave reflected at the lower end is received. And measuring the length of the carbon electrode to measure the length of the electrode in an electric resistance melting furnace.
炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における炭素電極の長さを測定する方法であって、
少なくとも1本の炭素電極の内部に、炭素電極の下端に達する金属製パイプを挿通し、金属製パイプの上端にマイクロ波送受信器を装着するとともに、マイクロ波を送信し、金属製パイプの下端で反射されたマイクロ波を受信して金属製パイプの長さを計測し、計測した金属製パイプの長さを炭素電極の長さとして求めることを特徴とする電気抵抗式溶融炉における電極長の測定方法。
A method of measuring the length of a carbon electrode in an electric resistance melting furnace in which a carbon electrode hanging in the furnace is inserted into the melted material deposited in the furnace, and the melted material is melted by energizing the electrode,
At least one carbon electrode is inserted with a metal pipe reaching the lower end of the carbon electrode, a microwave transceiver is attached to the upper end of the metal pipe, and microwaves are transmitted at the lower end of the metal pipe. Measuring the length of the metal pipe by receiving the reflected microwave and measuring the length of the measured metal pipe as the length of the carbon electrode, measuring the electrode length in an electric resistance melting furnace Method.
空孔または金属製パイプに、窒素ガスまたは不活性ガスを流入させながらマイクロ波の送受信を行うことを特徴とする請求項1または2記載の電気抵抗式溶融炉における電極長の測定方法。   3. The method of measuring an electrode length in an electric resistance melting furnace according to claim 1, wherein microwaves are transmitted and received while flowing nitrogen gas or inert gas into the holes or the metal pipe. 炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、軸線に沿って下端まで延びる空孔の上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を昇降させながら該電極に流れる電流値を測定し、少なくとも電流値が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
At least the interface between the molten slag layer and the molten metal layer is detected in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the molten material deposited in the furnace, and the molten material is melted by energizing the electrode. A way to
At least one carbon electrode is used as an electrode length measurement electrode by attaching a microwave transceiver to the upper end of a hole extending to the lower end along the axis,
Measure the value of the current flowing through the electrode while raising and lowering the electrode length measurement electrode, transmit a microwave at least when the current value changes stepwise, receive the microwave reflected at the lower end, and increase the electrode length An interface detection method in an electric resistance melting furnace, characterized in that an interface is detected from the measured electrode length.
炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、電極下端に達する金属製パイプを挿通して上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を昇降させながら該電極に流れる電流値を測定し、少なくとも電流値が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
At least the interface between the molten slag layer and the molten metal layer is detected in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the molten material deposited in the furnace, and the molten material is melted by energizing the electrode. A way to
At least one carbon electrode is inserted into a metal pipe reaching the lower end of the electrode and a microwave transceiver is attached to the upper end to form an electrode length measuring electrode,
Measure the value of the current flowing through the electrode while raising and lowering the electrode length measurement electrode, transmit a microwave at least when the current value changes stepwise, receive the microwave reflected at the lower end, and increase the electrode length An interface detection method in an electric resistance melting furnace, characterized in that an interface is detected from the measured electrode length.
炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、軸線に沿って下端まで延びる空孔の上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を、空孔に窒素ガスまたは不活性ガスを一定量で供給しながら昇降させ、少なくとも内圧が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
At least the interface between the molten slag layer and the molten metal layer is detected in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the molten material deposited in the furnace, and the molten material is melted by energizing the electrode. A way to
At least one carbon electrode is used as an electrode length measurement electrode by attaching a microwave transceiver to the upper end of a hole extending to the lower end along the axis,
The electrode length measurement electrode is moved up and down while supplying a certain amount of nitrogen gas or inert gas to the holes, and at least when the internal pressure changes stepwise, the microwave is transmitted and the microwave reflected at the lower end is transmitted. A method for detecting an interface in an electric resistance melting furnace, comprising: receiving and measuring an electrode length; and detecting an interface from the measured electrode length.
炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における少なくとも溶融スラグ層と溶融金属層との界面を検出する方法であって、
少なくとも1本の炭素電極を、電極下端に達する金属製パイプを挿通して上端にマイクロ波送受信器を装着して電極長測定用電極にするとともに、
電極長測定用電極を、金属製パイプに窒素ガスまたは不活性ガスを一定量で供給しながら昇降させ、少なくとも内圧が階段状に変化したときにマイクロ波を送信し、下端で反射されたマイクロ波を受信して電極長を測定し、測定した電極長から界面を検出することを特徴とする電気抵抗式溶融炉における界面検出方法。
At least the interface between the molten slag layer and the molten metal layer is detected in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the molten material deposited in the furnace, and the molten material is melted by energizing the electrode. A way to
At least one carbon electrode is inserted into a metal pipe reaching the lower end of the electrode and a microwave transceiver is attached to the upper end to form an electrode length measuring electrode,
The electrode for measuring the electrode length is raised and lowered while supplying a certain amount of nitrogen gas or inert gas to the metal pipe, and at least when the internal pressure changes stepwise, the microwave is transmitted and the microwave reflected at the lower end , Measuring the electrode length, and detecting the interface from the measured electrode length.
炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、電極に通電して被溶融物を溶融する電気抵抗式溶融炉における電極の昇降を制御する方法であって、
請求項1〜3の何れか1項に記載の方法により炭素電極の長さ(L1)を求めるとともに、マイクロ波送受器の上方に距離計を配置して、マイクロ波送受信器と距離計との離間距離(L2)を計測し、離間距離(L2)と、求めた炭素電極の長さ(L1)とを合算して距離計から電極下端までの距離(L3)を求め、距離(L3)に基づき炭素電極の垂下位置を制御することを特徴とする電気抵抗式溶融炉における電極の昇降制御方法。
A method of controlling the raising and lowering of an electrode in an electric resistance melting furnace in which a carbon electrode suspended in the furnace is inserted into the melted material accumulated in the furnace, and the melted material is melted by energizing the electrode,
While obtaining the length (L1) of a carbon electrode by the method of any one of Claims 1-3, a distance meter is arrange | positioned above a microwave handset, and a microwave transmitter-receiver and a distance meter The separation distance (L2) is measured, and the separation distance (L2) and the obtained length (L1) of the carbon electrode are added together to obtain the distance (L3) from the distance meter to the lower end of the electrode, and the distance (L3) is obtained. A control method for raising and lowering an electrode in an electric resistance melting furnace, wherein the drooping position of the carbon electrode is controlled based on the control.
JP2010290206A 2010-12-27 2010-12-27 Measuring method of electrode length in electric resistance melting furnace Active JP5671744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010290206A JP5671744B2 (en) 2010-12-27 2010-12-27 Measuring method of electrode length in electric resistance melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290206A JP5671744B2 (en) 2010-12-27 2010-12-27 Measuring method of electrode length in electric resistance melting furnace

Publications (2)

Publication Number Publication Date
JP2012137255A JP2012137255A (en) 2012-07-19
JP5671744B2 true JP5671744B2 (en) 2015-02-18

Family

ID=46674808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290206A Active JP5671744B2 (en) 2010-12-27 2010-12-27 Measuring method of electrode length in electric resistance melting furnace

Country Status (1)

Country Link
JP (1) JP5671744B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265792B2 (en) * 2014-03-11 2018-01-24 新日鉄住金エンジニアリング株式会社 Measuring device for oxygen supply pipe and oxygen scrubber
US20170267959A1 (en) 2014-11-25 2017-09-21 Corning Incorporated Cell culture media extending materials and methods
KR101696737B1 (en) * 2014-12-17 2017-01-16 주식회사 포스코 Electrode controlling apparatus and mothod of electric furnace
EP3295209B1 (en) * 2015-05-15 2020-09-02 Hatch Ltd. Method and apparatus for measuring the length of an electrode in an electric arc furnace
JP7306277B2 (en) * 2020-01-20 2023-07-11 住友金属鉱山株式会社 Valuable metal recovery method from waste batteries
CN114688883B (en) * 2020-12-29 2024-01-26 北京超测智能***有限公司 Electrode sounding system and method for electrode of submerged arc furnace
JP7347889B1 (en) 2023-07-14 2023-09-20 株式会社Wadeco Device for measuring electrode length of carbon electrode in electric resistance melting furnace and method for operating electric resistance melting furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137783A (en) * 1983-01-24 1984-08-07 株式会社神戸製鋼所 Method of measuring depth of electrode in sealed electric furnace
JPH11101631A (en) * 1997-09-29 1999-04-13 Kobe Steel Ltd Electrode tip position measuring method in electric furnace, and measuring sensor
JPH11201420A (en) * 1998-01-19 1999-07-30 Nippon Steel Corp Method of detecting surface level of melt in electric resistance fusion furnace for ash processing
JP2005241203A (en) * 2004-02-27 2005-09-08 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JP5324832B2 (en) * 2008-06-13 2013-10-23 株式会社タクマ Level measuring method and level measuring apparatus for ash melting furnace

Also Published As

Publication number Publication date
JP2012137255A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5671744B2 (en) Measuring method of electrode length in electric resistance melting furnace
WO2014002192A1 (en) Method for measuring electrode length in electric resistance melting furnace
US10520254B2 (en) Electric induction furnace lining wear detection system
KR101463590B1 (en) Method and apparatus for length measurement at an electrode
US10705196B2 (en) Method and apparatus for measuring the length of an electrode in an electric arc furnace
CN109996622B (en) Method and device for detecting a variable in a spout of a metallurgical vessel
CN107164602B (en) A kind of converter bottom measurer for thickness and method
CN110273046A (en) Method and apparatus for determining the consumption of the electrode material during electric furnace operation
JP4321824B2 (en) Method and apparatus for monitoring the bottom of melting furnace
JP5324832B2 (en) Level measuring method and level measuring apparatus for ash melting furnace
CN101825401B (en) Automatic control device of electrode deep insertion of submerged electric furnace
CN101825400B (en) Automatic control method of electrode deep insertion of submerged electric furnace
US20200191486A1 (en) Electric Induction Furnace With Lining Wear Detection System
JP7347889B1 (en) Device for measuring electrode length of carbon electrode in electric resistance melting furnace and method for operating electric resistance melting furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP2010025464A (en) Unit for measuring molten material surface level in vertical type furnace and measuring method therefor
JP5007094B2 (en) Control method of plasma melting furnace
AU2017301416B2 (en) Electric induction furnace with lining wear detection system
JPH109555A (en) Method and device for sensing level of ash melting furnace
KR20190016801A (en) Apparatus and method for measuring temperature
JP2004144443A (en) Operation controller and its method for dc electric type melting furnace
Hopf Operating Safety of Induction Melting Furnaces
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method
RU2446932C2 (en) Method of repairing metal structures with surface cracks and device to this end
Kranti et al. Resistance Heating of Oxide Slags-Theoretical Model and Experimental Validation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5671744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150116

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250