JP5669624B2 - Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material - Google Patents

Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material Download PDF

Info

Publication number
JP5669624B2
JP5669624B2 JP2011043775A JP2011043775A JP5669624B2 JP 5669624 B2 JP5669624 B2 JP 5669624B2 JP 2011043775 A JP2011043775 A JP 2011043775A JP 2011043775 A JP2011043775 A JP 2011043775A JP 5669624 B2 JP5669624 B2 JP 5669624B2
Authority
JP
Japan
Prior art keywords
titanium oxide
raw material
oxide raw
welding
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011043775A
Other languages
Japanese (ja)
Other versions
JP2012055970A (en
Inventor
江美子 豊田
江美子 豊田
規生 政家
規生 政家
伊藤 和彦
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011043775A priority Critical patent/JP5669624B2/en
Publication of JP2012055970A publication Critical patent/JP2012055970A/en
Application granted granted Critical
Publication of JP5669624B2 publication Critical patent/JP5669624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/10Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with one or a few disintegrating members arranged in the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、フラックス入り溶接ワイヤ等のフラックスの原料である溶接材料用酸化チタン原料及びそれを使用した溶接材料並びに溶接材料用酸化チタン原料の製造方法に関する。   The present invention relates to a titanium oxide raw material for welding material which is a raw material of flux such as a flux-cored welding wire, a welding material using the same, and a method for producing a titanium oxide raw material for welding material.

溶接に使用するフラックスの原料である酸化チタンは、チタニヤ原料の中に含まれ、広く溶接材料用の原料として使用されている。しかし、この酸化チタン原料は、吸湿性が高く、溶接時に気孔欠陥が発生することがある。   Titanium oxide, which is a raw material for fluxes used for welding, is included in the titania material and is widely used as a raw material for welding materials. However, this titanium oxide raw material has high hygroscopicity, and pore defects may occur during welding.

従来のチタニヤ又は酸化チタン原料として、特許文献1乃至4に開示されたものがある。本願出願人は、特許文献1において、低温環境でのAS WELD(溶接のままの)仕様及びPWHT(溶接後熱処理)仕様でのシャルピー衝撃値及びCOD値等の靭性値を向上させ、全姿勢での溶接作業性を向上させることを目的として、酸化チタンをワイヤ全質量の3.0乃至9.0質量%含有し、不純物として、Nbを0.05%以下、Vを0.08%以下に規制し、Nb+(1/2)Vが0.07%以下であるフラックスを使用したガスシールドアーク溶接用フラックス入りワイヤを提案した。   Conventional titania or titanium oxide materials are disclosed in Patent Documents 1 to 4. In the patent document 1, the applicant of the present application improves toughness values such as Charpy impact value and COD value in AS WELD (as-welded) specification and PWHT (post-weld heat treatment) specification in a low temperature environment, and in all postures. In order to improve the welding workability of the steel, titanium oxide is contained in an amount of 3.0 to 9.0% by mass of the total mass of the wire, and Nb is 0.05% or less and V is 0.08% or less as impurities. A flux-cored wire for gas shielded arc welding using a flux that is regulated and uses Nb + (1/2) V of 0.07% or less was proposed.

また、本願出願人は、特許文献2において、全姿勢溶接性及び溶接作業性を向上させると共に、ソリッドワイヤレベルの耐高温割れ性能を有することを目的として、ワイヤ全質量に対して、Sn:0.004質量%以下、B:0.005質量%以下、Bi+Pb:0.005質量%以下に規制し、Mn:2.5乃至3.0質量%、Si:0.5乃至1.5質量%、チタン酸化物原料:5.0乃至8.0質量%を含有し、チタン酸化物原料中のSnを0.08質量%以下に規制したチタニヤ系フラックス入りワイヤを提案した。   In addition, in the patent document 2, the applicant of the present application has Sn: 0 with respect to the total mass of the wire for the purpose of improving all-position weldability and welding workability and having high-temperature crack resistance at a solid wire level. 0.004 mass% or less, B: 0.005 mass% or less, Bi + Pb: 0.005 mass% or less, Mn: 2.5 to 3.0 mass%, Si: 0.5 to 1.5 mass% Titanium-based flux-cored wire that contains 5.0 to 8.0% by mass of titanium oxide raw material and that regulates Sn in the titanium oxide raw material to 0.08% by mass or less has been proposed.

更に、特許文献3においては、フラックス中のTiO2粉を30%以上とし、その70%以上を粒径が45〜250μmの粉体とし、30%以上を75〜150μmの粉体としたフラックス入りワイヤが開示されている。この従来技術は、フラックス原料の粒径を規定することにより、溶接作業性及び溶接金属性能の向上を図るものである。 Further, in Patent Document 3, the TiO 2 powder in the flux is 30% or more, 70% or more of the powder is a powder having a particle size of 45 to 250 μm, and 30% or more is a powder containing 75 to 150 μm. A wire is disclosed. This prior art is intended to improve welding workability and weld metal performance by defining the particle size of the flux raw material.

しかしながら、これらの従来技術は、酸化チタンの吸湿性が高いという問題点について、それを解消するための手段又は方法を提示するものではなかった。   However, these prior arts did not present a means or method for solving the problem of high hygroscopicity of titanium oxide.

一方、酸化チタン原料の吸湿性の問題に着目した従来技術として、本願出願人は、特許文献4において、フラックス製造時の温度及び湿度等の環境が過酷なものであっても、フラックスが吸湿することなく、良好なフラックス流動性を有し、良好なアーク安定性を確保することができるフラックス入りワイヤを提供することを目的として、酸化チタンを20乃至60質量%含有し、フラックスに含有される酸化チタンのうち、ルチル型酸化チタンの含有量を[Ir]とし、アナターゼ型酸化チタンの含有量を[Ia]とするとき、前記[Ir]と前記[Ia]との比[Ir]/[Ia]が5以上であるフラックス入りワイヤを提案した。   On the other hand, as a prior art focusing on the hygroscopic problem of the titanium oxide raw material, the applicant of the present application disclosed in Patent Document 4 that the flux absorbs moisture even if the environment such as temperature and humidity at the time of flux production is severe. In order to provide a flux-cored wire that has good flux flowability and can ensure good arc stability, titanium oxide is contained in an amount of 20 to 60% by mass and contained in the flux. Among the titanium oxides, when the content of rutile titanium oxide is [Ir] and the content of anatase titanium oxide is [Ia], the ratio [Ir] / [Ia] of [Ir] and [Ia] A flux cored wire with Ia] of 5 or more was proposed.

特開平8−99193号公報JP-A-8-99193 特開2003−311476号公報Japanese Patent Laid-Open No. 2003-311476 特開平4−288992号公報Japanese Unexamined Patent Publication No. Hei 4-2888992 特開2000−254796号公報JP 2000-254796 A

しかしながら、特許文献4の従来技術においては、アナターゼ型酸化チタンの含有量を規定することで、水分異常のトラブルを減少させることはできたが、酸化チタン原料の入荷ロットによっては、その原料を使用して製造された溶接ワイヤを使用した場合に、高電流、多層盛及び突き出し長さが短いといった比較的厳しい溶接施工条件下において、気孔欠陥が多く発生し、水分異常が原因と思われるトラブルが発生することがあった。この入荷ロット単位での不都合は、酸化チタン原料の産地の相違に起因することが考えられる。   However, in the prior art of Patent Document 4, the trouble of moisture abnormality could be reduced by specifying the content of anatase-type titanium oxide, but depending on the lot of titanium oxide raw material received, the raw material may be used. When using a welding wire manufactured in this way, there are many problems with pore defects due to high current, multi-layer buildup and short protruding length, which cause many pore defects and cause abnormal moisture. It sometimes occurred. This inconvenience in units of incoming lots can be attributed to differences in the production area of the titanium oxide raw material.

本発明はかかる問題点に鑑みてなされたものであって、酸化チタン原料の産地に拘わらず、それを使用した溶接ワイヤによる施工時に、厳しい溶接施工条件下においても、気孔欠陥が少なく、水分異常に起因するトラブルを防止することができる溶接材料用酸化チタン原料及びそれを使用した溶接材料並びに溶接材料用酸化チタン原料の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and there are few pore defects and abnormal moisture even under severe welding conditions, regardless of where the titanium oxide raw material is produced. It is an object of the present invention to provide a titanium oxide raw material for welding material, a welding material using the same, and a method for producing the titanium oxide raw material for welding material that can prevent troubles caused by the above.

本発明に係る溶接材料用酸化チタン原料は、酸化チタンを含む粒子及び前記粒子表面に付着する粘土質鉱物を有し、原料中に含まれる粘土質鉱物は、Na、K、Al及びSiの各元素の量が、酸化チタン原料の全体に対する割合で、Na+K量が0.001乃至0.100質量%であり、Al+Si量が0.04乃至1.30質量%であることを特徴とする。   The titanium oxide raw material for welding material according to the present invention has particles containing titanium oxide and a clay mineral adhering to the particle surface, and the clay minerals contained in the raw materials are Na, K, Al, and Si. The element amount is a ratio with respect to the whole titanium oxide raw material, the Na + K amount is 0.001 to 0.100 mass%, and the Al + Si amount is 0.04 to 1.30 mass%.

この溶接材料用酸化チタン原料において、前記粘土質鉱物は、更に、Fe量が0.2乃至0.9質量%、S量が0.003乃至0.011質量%であることが好ましい。   In the titanium oxide raw material for welding materials, the clay mineral preferably further has an Fe content of 0.2 to 0.9 mass% and an S content of 0.003 to 0.011 mass%.

また、前記粒子の比表面積が、0.01乃至0.5m/gであることが好ましい。 The specific surface area of the particles is preferably 0.01 to 0.5 m 2 / g.

本発明に係る第1の溶接材料は、鋼製外皮にフラックスを充填させたフラックス入りワイヤであり、前記フラックスは、前述の溶接材料用酸化チタン原料を含むことを特徴とする。   A first welding material according to the present invention is a flux-cored wire in which a steel outer shell is filled with a flux, and the flux includes the above-described titanium oxide raw material for welding material.

また、本発明に係る第2の溶接材料は、鋼製心線にフラックスを被覆した被覆アーク溶接棒であり、前記フラックスは、前述の溶接材料用酸化チタン原料を含むことを特徴とする。   Moreover, the 2nd welding material which concerns on this invention is the covering arc welding rod which coat | covered the flux to the steel core wire, The said flux contains the above-mentioned titanium oxide raw material for welding materials, It is characterized by the above-mentioned.

更に、本発明に係る第3の溶接材料は、サブマージアーク溶接用のフラックスであり、前記フラックスは、前述の溶接材料用酸化チタン原料を含むことを特徴とする。   Furthermore, the third welding material according to the present invention is a flux for submerged arc welding, and the flux includes the above-described titanium oxide raw material for welding material.

本発明に係る溶接材料用酸化チタン原料の製造方法は、酸化チタン原料となる鉱石の粒子に対し、表面研磨処理して、その粒子表面に付着する粘土質鉱物を除去し、原料中に含まれる粘土質鉱物を構成するNa、K、Al及びSiの各元素の量が、酸化チタン原料の全体に対する割合で、Na+K量が0.001乃至0.100質量%であり、Al+Si量が0.04乃至1.30質量%である酸化チタン原料を得ることを特徴とする。   In the method for producing a titanium oxide raw material for welding material according to the present invention, ore particles as a titanium oxide raw material are subjected to surface polishing treatment to remove clay minerals adhering to the particle surface, and are contained in the raw material. The amount of each element of Na, K, Al and Si constituting the clay mineral is a ratio with respect to the whole titanium oxide raw material, the amount of Na + K is 0.001 to 0.100% by mass, and the amount of Al + Si is 0.04. The titanium oxide raw material which is thru | or 1.30 mass% is obtained.

この溶接材料用酸化チタン原料の製造方法において、前記表面研磨処理は、例えば、ボールミルを使用した処理、V型混合機を使用した処理、又は超音波洗浄を使用した処理である。   In the method for producing a titanium oxide raw material for welding material, the surface polishing treatment is, for example, a treatment using a ball mill, a treatment using a V-type mixer, or a treatment using ultrasonic cleaning.

本発明によれば、産地がいずれであっても、必要に応じて、酸化チタン粒子の表面を研磨することにより、酸化チタン原料中の粘土質鉱物の量を、Na+K量が0.001乃至0.100質量%であり、Al+Si量が0.04乃至1.30質量%とするので、本発明の酸化チタン原料は水分異常が抑制され、この本発明の酸化チタン原料を使用した溶接材料により溶接すると、溶接部に気孔欠陥が発生することが防止される。   According to the present invention, the amount of clay minerals in the titanium oxide raw material can be reduced to 0.001 to 0 in the amount of Na + K by polishing the surface of the titanium oxide particles as necessary regardless of the production area. .100 mass% and Al + Si content of 0.04 to 1.30 mass%, the moisture abnormality of the titanium oxide raw material of the present invention is suppressed, and welding is performed with a welding material using the titanium oxide raw material of the present invention. Then, the occurrence of pore defects in the welded portion is prevented.

EPMAによる酸化チタン粒子の表面の分析結果を示すチャート図である。It is a chart figure showing the analysis result of the surface of titanium oxide particles by EPMA. ボールミルを使用した表面研磨方法を示す図である。It is a figure which shows the surface polishing method which uses a ball mill. V型混合機を使用した表面研磨方法を示す図である。It is a figure which shows the surface grinding | polishing method using a V-type mixer. 超音波洗浄により表面研磨方法を示す図である。It is a figure which shows the surface polishing method by ultrasonic cleaning.

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。先ず、本願発明者等は、気孔欠陥の原因となる酸化チタン原料中の水分量に影響を及ぼす要因について実験研究を行った。特許文献4に記載されているように、ルチル型酸化チタンの含有量を[Ir]、アナターゼ型酸化チタンの含有量を[Ia]とするとき、前記[Ir]と前記[Ia]との比[Ir]/[Ia]が5以上となるように組成を規定することにより、水分異常が減少していた。しかし、それでも、入荷ロットによっては水分異常のトラブルが発生した。産地から供給される酸化チタンは、天然鉱物である。このため、入荷ロットが変わると水分異常のトラブルが発生する原因については、酸化チタンの表面に固着している付着物が関与している可能性が検討された。そこで、本発明者等は、酸化チタン粒子の表面の付着物を、EPMA(Electron Probe Micro Analyzer)により分析した。その結果、図1にEPMAによる分析結果を示すように、水分異常を発生した酸化チタン粒子の表面には、Na、K、Al、Si等の元素が検出された。また、それ以外にFe及びSも検出された。Na、K、Al、Si等の元素は、酸化チタン原料の表面に固着した粘土質鉱物に由来する。また、Fe及びSは、Fe−S系の不純物に由来する。本願発明者等は、これらの酸化チタン原料粒子の表面に付着した粘土質鉱物及びFe−S系不純物の量が、産地により異なり、入荷ロットにより水分異常が発生する原因となっていることを究明した。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. First, the inventors of the present application conducted an experimental study on factors affecting the amount of water in the titanium oxide raw material that causes pore defects. As described in Patent Document 4, when the content of rutile-type titanium oxide is [Ir] and the content of anatase-type titanium oxide is [Ia], the ratio between [Ir] and [Ia] By defining the composition so that [Ir] / [Ia] is 5 or more, the moisture abnormality was reduced. However, there was still a problem with moisture abnormalities depending on the lot received. Titanium oxide supplied from the production area is a natural mineral. For this reason, the possibility of the problem of moisture abnormality occurring when the incoming lot is changed is considered to be related to the deposits adhered to the surface of the titanium oxide. Therefore, the present inventors analyzed the deposits on the surface of the titanium oxide particles by EPMA (Electron Probe Micro Analyzer). As a result, as shown in the analysis result by EPMA in FIG. 1, elements such as Na, K, Al, and Si were detected on the surface of the titanium oxide particles in which the moisture abnormality occurred. In addition, Fe and S were also detected. Elements such as Na, K, Al, and Si are derived from clay minerals fixed to the surface of the titanium oxide raw material. Fe and S are derived from Fe-S impurities. The inventors of the present application have determined that the amount of clay minerals and Fe-S impurities adhering to the surface of these titanium oxide raw material particles varies depending on the production area, and causes moisture abnormalities depending on the arrival lot. did.

上記粘土質鉱物及びFe−S系不純物の量が多いと、この酸化チタン原料を、フラックス入りワイヤ(FCW)、被覆アーク溶接棒(SMAW)及びサブマージアーク溶接材料(SAW)のフラックス材料として使用した場合に、フラックスの吸湿特性が低下し、気孔欠陥が発生する。また、水分異常により、入荷ロットによっては、ワイヤの外観色が変化するものもある。   When the amount of the clay mineral and Fe-S impurities is large, this titanium oxide raw material is used as a flux material for flux-cored wire (FCW), coated arc welding rod (SMAW) and submerged arc welding material (SAW). In this case, the moisture absorption characteristics of the flux are reduced, and pore defects are generated. In addition, the appearance color of the wire may change depending on the incoming lot due to moisture abnormality.

そこで、本発明においては、各種の表面研磨方法を使用して、入荷ロット中の酸化チタン粒子の表面に固着している粘土質鉱物を除去することにより、吸湿特性が良く、初期水分量の低い超撥水酸化チタンを得る。また、この酸化チタン原料を用いることでFCW用フラックスの気孔欠陥の減少と、SMAW及びSAW用フラックスの低水分化を図る。   Therefore, in the present invention, by using various surface polishing methods to remove the clay mineral fixed to the surface of the titanium oxide particles in the incoming lot, the moisture absorption characteristics are good and the initial moisture content is low. Obtain super-hydrophobic titanium. Further, by using this titanium oxide raw material, the pore defects of the FCW flux are reduced and the moisture content of the SMAW and SAW fluxes is reduced.

具体的には、酸化チタン原料中の粘土質鉱物、即ち、酸化チタン粒子の表面に付着する粘土質鉱物及び粘土質鉱物単体におけるNa、K、Al及びSiの各元素の量が、酸化チタン原料の全体に対する割合で、Na+K量が0.001乃至0.100質量%であり、Al+Si量が0.04乃至1.30質量%であるような酸化チタン原料を、FCW、SMAW及びSAWのフラックス原料として使用する。また、Fe量が0.2乃至0.9質量%、S量が0.003乃至0.011質量%であることが好ましい。更に、粒子の比表面積が、0.01乃至0.5m/gであることが好ましい。このような酸化チタン原料を得るためには、産地から入荷した入荷ロットを、ボールミル、V型混合機、又は超音波洗浄等の装置により処理することにより、粒子の表面を研磨処理し、表面に付着している粘土質鉱物等の除去処理を行えばよい。 Specifically, the amount of each element of Na, K, Al and Si in the clay mineral in the titanium oxide raw material, that is, the clay mineral and the clay mineral alone adhering to the surface of the titanium oxide particles, Titanium oxide raw material having a Na + K amount of 0.001 to 0.100 mass% and an Al + Si amount of 0.04 to 1.30 mass% in proportion to the total amount of FCW, SMAW, and SAW flux raw materials Use as Further, it is preferable that the Fe amount is 0.2 to 0.9 mass% and the S amount is 0.003 to 0.011 mass%. Further, the specific surface area of the particles is preferably 0.01 to 0.5 m 2 / g. In order to obtain such a titanium oxide raw material, the surface of the particles is polished by treating the incoming lot received from the production area with an apparatus such as a ball mill, a V-type mixer, or ultrasonic cleaning. What is necessary is just to perform the removal process of the adhering clayey mineral.

なお、本発明においては、酸化チタン粒子の表面の付着物、即ち、粘土質鉱物を構成する元素の種類は、前述のごとく、EPMA(Electron Probe Micro Analyzer)により分析した。その結果、酸化チタン粒子の表面に、Na,K,Al,Si,Fe,Sが存在することを検出した。その上で、EPMAにより検出された各元素について、その量を湿式分析により求めた。   In the present invention, the deposits on the surface of the titanium oxide particles, that is, the types of elements constituting the clay mineral were analyzed by EPMA (Electron Probe Micro Analyzer) as described above. As a result, it was detected that Na, K, Al, Si, Fe, and S were present on the surface of the titanium oxide particles. Then, the amount of each element detected by EPMA was determined by wet analysis.

酸化チタンをフラックス原料として使用したFCWにおいて、気孔欠陥が生じた理由としては耐吸湿特性が低下したことが挙げられる。粘土質鉱物は比表面積が大きく水分が付着しやすいため、耐吸湿特性が低下する要因となる。また、Na、Kも水分量を持ちやすく、耐吸湿特性低下させている。更に、Fe−S系の不純物もまた、水分異常の原因となる。粘土質鉱物とは、Na−K−Si−Al−O系の鉱物である。酸化チタンのEPMAによる表面分析では、この他にSi−O、Zr−Si−O、Fe−S系の鉱物も観察された。 In FCW using titanium oxide as a flux raw material, the reason for the occurrence of pore defects is a decrease in moisture absorption resistance. Clay minerals have a large specific surface area and easily adhere to moisture, which causes a decrease in moisture absorption resistance. Moreover, Na and K are also easy to have a moisture content, and the moisture absorption resistance is reduced. Furthermore, Fe-S impurities also cause moisture abnormalities. The clay mineral is a Na—K—Si—Al—O mineral. In the surface analysis of titanium oxide by EPMA, Si—O, Zr—Si—O, and Fe—S based minerals were also observed.

チタニヤ系FCWにおいては、フラックス中の酸化チタン含有量が特に多く、フラックスの全質量あたり20乃至50質量%を酸化チタンが占めている。従って、フラックスの耐吸湿特性を向上させるためには、含有量の多い酸化チタンの水分量を低減し、耐吸湿特性を上げることが有効である。   In the titania-based FCW, the content of titanium oxide in the flux is particularly large, and titanium oxide accounts for 20 to 50% by mass with respect to the total mass of the flux. Therefore, in order to improve the moisture absorption resistance of the flux, it is effective to increase the moisture absorption resistance by reducing the moisture content of titanium oxide having a high content.

そこで、前述のごとく、本発明においては、酸化チタン原料に含まれる不純物が少なく、撥水性を持つ(耐吸湿特性の高い)酸化チタン原料を得るために、酸化チタン原料の粒子の表面に付着している粘土質鉱物を除去するための処理を行う。従来においても、不純物を除去するために、産地での選鉱は行われているが、現地で行われる選鉱では、酸化チタン粒子と独立して存在する粘土質鉱物の粒子は除去されるが、酸化チタン粒子の表面に固着した粘土質鉱物は除去されないままであった。このため、元来、粘土質鉱物が少ない産地と、粘土質鉱物が多い産地とで、水分異常の発生割合が異なっていた。本発明者等は、水分異常の発生原因が、酸化チタン粒子の表面に付着した粘土質鉱物等の付着物であることを究明し、このため、本発明においては、産地から入荷した酸化物チタン原料を、ボールミル、V型混合機又は超音波洗浄を使用した表面研磨等の手段により、酸化チタン粒子の表面に固着した粘土質鉱物(不純物)を酸化チタン粒子から分離する。なお、この表面研磨処理は、産地において実施してもよいことは勿論である。   Therefore, as described above, in the present invention, in order to obtain a titanium oxide raw material with a small amount of impurities contained in the titanium oxide raw material and having water repellency (high moisture absorption resistance), it adheres to the surface of the particles of the titanium oxide raw material. To remove the clay minerals. In the past, in order to remove impurities, beneficiation is performed at the production area, but in the beneficiation performed locally, clayey mineral particles that exist independently of titanium oxide particles are removed, but oxidation is not possible. The clay mineral fixed to the surface of the titanium particles remained unremoved. For this reason, the occurrence ratio of moisture abnormality was originally different between the production area with few clayey minerals and the production area with many clayey minerals. The inventors of the present invention have determined that the cause of the occurrence of moisture abnormality is an adhering substance such as a clay mineral adhering to the surface of the titanium oxide particles. Therefore, in the present invention, the titanium oxide received from the production area The clay mineral (impurities) fixed to the surface of the titanium oxide particles is separated from the titanium oxide particles by means such as surface polishing using a ball mill, a V-type mixer or ultrasonic cleaning. Needless to say, this surface polishing treatment may be performed in the production area.

図2は、ボールミルを使用した表面研磨方法を示す図である。ステンレス製の円筒状のシェル1内に酸化チタン原料5と、水4と、ステンレス製のボール3とを収納し、ローラ2により、円筒状のシェル1をその中心軸の周りに回転させる。そうすると、ボール3と酸化チタン原料5の粒子とが、衝突を繰り返し、この衝突の間に酸化チタン原料粒子の表面に固着した粘土質鉱物が原料粒子の表面から離脱し、水4に洗われる。このようにして、粘土質鉱物が除去された酸化チタン原料粒子が得られる。表面研磨後に、粘土質鉱物等の不純物は水4に沈み、洗浄された酸化チタン粒子の中には水4に浮かぶものもある。酸化チタン原料5の粒子を洗浄する液体として、イオン交換水又は蒸留水を使用すると、超撥水性の酸化チタン粒子がより効率的に浮遊する。使用するイオン交換水又は蒸留水の電気伝導度は、2.0μS/m程度であることが望ましい。   FIG. 2 is a diagram showing a surface polishing method using a ball mill. The titanium oxide raw material 5, the water 4 and the stainless steel ball 3 are accommodated in the stainless steel cylindrical shell 1, and the cylindrical shell 1 is rotated around its central axis by the roller 2. Then, the balls 3 and the particles of the titanium oxide raw material 5 repeatedly collide, and the clay mineral fixed to the surface of the titanium oxide raw material particles during the collision is detached from the surface of the raw material particles and washed with water 4. Thus, the titanium oxide raw material particle from which the clay mineral was removed is obtained. After the surface polishing, impurities such as clay minerals sink into the water 4, and some washed titanium oxide particles float on the water 4. When ion-exchanged water or distilled water is used as the liquid for washing the titanium oxide raw material 5 particles, the super-water-repellent titanium oxide particles float more efficiently. The electric conductivity of the ion exchange water or distilled water used is preferably about 2.0 μS / m.

図3は、V型混合機を使用した表面研磨方法を示す図である。ステンレス製のV型混合機11の内部に酸化チタン原料15と、ステンレス製のボール13と、蒸留水14とを収納し、このV型混合機11を、回転軸12の周りに回転させる。これにより、ボール13と酸化チタン原料15とが衝突を繰り返し、酸化チタン原料15の粒子の表面に固着している粘土質鉱物が剥がされ、除去される。   FIG. 3 is a diagram showing a surface polishing method using a V-type mixer. A titanium oxide raw material 15, a stainless steel ball 13, and distilled water 14 are housed inside a stainless steel V-type mixer 11, and the V-type mixer 11 is rotated around a rotating shaft 12. As a result, the ball 13 and the titanium oxide raw material 15 repeatedly collide, and the clay mineral fixed to the surface of the particles of the titanium oxide raw material 15 is peeled off and removed.

図4は、超音波洗浄による表面研磨方法を示す図である。超音波洗浄機22内に蒸留水を貯留し、更に、この超音波洗浄機22内にガラス製の容器21を配置する。そして、この容器21内に蒸留水23を収納し、更に、容器21内に酸化チタン原料24を収納する。この状態で、超音波洗浄機22内の蒸留水に超音波振動を与え、かつ、容器21内部に設置されたスクリューで撹拌し,酸化チタン粒子を浮遊させると、その超音波振動が容器21内の蒸留水23に伝播し、酸化チタン原料24が蒸留水23の超音波振動を受け、酸化チタン原料24の粒子の表面に固着した粘土質鉱物が超音波振動により剥離除去される。この粘土質鉱物が剥離した酸化チタンの一部が蒸留水23の表面に浮遊する。   FIG. 4 is a diagram showing a surface polishing method by ultrasonic cleaning. Distilled water is stored in the ultrasonic cleaner 22, and a glass container 21 is disposed in the ultrasonic cleaner 22. Then, distilled water 23 is stored in the container 21, and a titanium oxide raw material 24 is stored in the container 21. In this state, when ultrasonic vibration is applied to the distilled water in the ultrasonic cleaner 22 and stirring is performed with a screw installed inside the container 21 to float the titanium oxide particles, the ultrasonic vibration is generated in the container 21. The titanium oxide raw material 24 is subjected to the ultrasonic vibration of the distilled water 23, and the clay mineral fixed to the surface of the particles of the titanium oxide raw material 24 is peeled and removed by the ultrasonic vibration. A part of the titanium oxide from which the clay mineral has been separated floats on the surface of the distilled water 23.

上記いずれの方法でも、酸化チタン原料の粒子の表面に固着した粘土質鉱物が除去される。また、その他の不純物粒子も酸化チタン原料の粒子の表面から除去される。   In any of the above methods, the clay mineral fixed to the surface of the titanium oxide raw material particles is removed. Other impurity particles are also removed from the surface of the titanium oxide raw material particles.

次に、本発明の酸化チタン原料の粒子表面の分析結果における数値限定理由について説明する。本発明においては、EPMAにより、粒子の表面の元素分析を行う。その結果、図1に示すように、Na,K,Al,Si,Fe及びS等が検出される。これらの元素は、酸化チタン粒子の表面に付着した粘土質鉱物及びFe−S系不純物に由来し、これらの付着物は、吸湿性が高く、酸化チタン原料の水分異常の原因となる。このため、上述の各表面研磨方法により、これらの付着物を除去する必要がある。そして、この処理により、Na量+K量=0.001乃至0.100質量%、かつAl量+Si量=0.04乃至1.30質量%とし、更に好ましくはFe量=0.2乃至0.9質量%かつS量=0.003乃至0.011質量%とする。また、酸化チタン粒子の比表面積は0.01乃至0.50(g/m)であることが好ましい。 Next, the reason for the numerical limitation in the analysis result of the particle surface of the titanium oxide raw material of the present invention will be described. In the present invention, elemental analysis of the surface of the particle is performed by EPMA. As a result, Na, K, Al, Si, Fe, and S are detected as shown in FIG. These elements are derived from clay minerals and Fe-S impurities attached to the surface of the titanium oxide particles, and these deposits are highly hygroscopic and cause moisture anomalies in the titanium oxide raw material. For this reason, it is necessary to remove these deposits by the surface polishing methods described above. And by this process, Na amount + K amount = 0.001 to 0.100 mass% and Al amount + Si amount = 0.04 to 1.30 mass%, more preferably Fe amount = 0.2 to 0. 9 mass% and S amount = 0.003 to 0.011 mass%. The specific surface area of the titanium oxide particles is preferably 0.01 to 0.50 (g / m 2 ).

「Na量+K量=0.001乃至0.100質量%、かつAl量+Si量=0.04乃至1.30質量%」
Na量+K量は0.100質量%以下、かつAl量+Si量は1.30質量%以下の場合に、酸化チタン原料の耐吸湿性が向上し、気孔欠陥が減少する。また、Na量+K量=0.080質量%以下の場合に、更に、気孔欠陥が著しく減少する。
“Na amount + K amount = 0.001 to 0.100 mass%, and Al amount + Si amount = 0.04 to 1.30 mass%”
When the amount of Na + K is 0.100% by mass or less and the amount of Al + Si is 1.30% by mass or less, the moisture absorption resistance of the titanium oxide raw material is improved and pore defects are reduced. Further, when the amount of Na + K amount = 0.080% by mass or less, the pore defects are further remarkably reduced.

一方、これらの元素の含有量(付着物の量)には下限値も存在する。産地から入荷した酸化チタン原料の表面に付着した粘土質鉱物等を、フッ酸溶液により化学的に溶解して、粘土質鉱物等をほぼ完全に除去した。この粘土質鉱物等をほぼ完全に除去した酸化チタン原料を使用してFCWを製造し、アーク溶接を実施した。その結果、アーク安定性が劣化した。この現象は以下のように考えられる。SiO−Al−TiO系の状態図(例えば、Phase Diagrams for Ceramists 1969 Supplement: Fig.2415, Phase Diagrams for Ceramists: Fig771)に示されているように、微量のNa、K、SiO、Alが存在すると、酸化チタンの融点が下がるので、アーク熱によるTiOの溶融が速やかに起こり、アークが安定するものと考えられる。上記状態図の文献によると、純粋な酸化チタンの融点は1870℃であり、Feの融点よりはるかに高い。このために、酸化チタンを低融点化するために有効なNa、KとSiO、Alを粒子表面にある程度残存させることはアークの安定性を維持するのに必要である。 On the other hand, there is a lower limit for the content of these elements (the amount of deposits). The clay minerals adhering to the surface of the titanium oxide raw material received from the production area were chemically dissolved with a hydrofluoric acid solution to remove the clay minerals almost completely. FCW was manufactured using a titanium oxide raw material from which clay minerals and the like were almost completely removed, and arc welding was performed. As a result, arc stability deteriorated. This phenomenon is considered as follows. As shown in the phase diagram of the SiO 2 —Al 2 O 3 —TiO 2 system (for example, Phase Diagrams for Ceramists 1969 Supplement: Fig. 2415, Phase Diagrams for Ceramists: Fig 771), trace amounts of Na, K, SiO 2 , the presence of Al 2 O 3 lowers the melting point of titanium oxide, so melting of TiO 2 due to arc heat occurs rapidly and the arc is considered to be stable. According to the literature of the above phase diagram, the melting point of pure titanium oxide is 1870 ° C., which is much higher than the melting point of Fe. For this reason, it is necessary to maintain the stability of the arc by leaving Na, K, SiO 2 and Al 2 O 3 effective to lower the melting point of titanium oxide to some extent on the particle surface.

このため、Na量+K量は0.001質量%以上、かつAl量+Si量は0.04質量%以上とする。結局、Na量+K量=0.001乃至0.100質量%、かつAl量+Si量=0.04乃至1.30質量%とする。   For this reason, the amount of Na + K is 0.001% by mass or more, and the amount of Al + Si is 0.04% by mass or more. After all, Na amount + K amount = 0.001 to 0.100 mass% and Al amount + Si amount = 0.04 to 1.30 mass%.

「Fe量=0.2乃至0.9質量%かつS量=0.003乃至0.011質量%」
上記表面付着物の量を満足した上で、更に、Fe量=0.2乃至0.9質量%かつS量=0.003乃至0.011質量%を満足することにより、更に、気孔欠陥が著しく減少する。Fe及びSの下限値の規定理由も、上述のNa,K,Al,Siの場合と同様に、酸化チタンの低融点化のためである。
“Fe content = 0.2 to 0.9 mass% and S content = 0.003 to 0.011 mass%”
In addition to satisfying the amount of the surface deposits, further satisfying the Fe amount = 0.2 to 0.9% by mass and the S amount = 0.003 to 0.011% by mass can further reduce pore defects. Remarkably reduced. The reason for defining the lower limit values of Fe and S is also for lowering the melting point of titanium oxide as in the case of Na, K, Al, and Si described above.

「比表面積:0.01乃至0.50(m/g)」
酸化チタン粒子の表面の比表面積を、0.50(m/g)以下とすることにより、耐吸湿性が向上し、これにより、そのフラックスを使用した溶接ワイヤによる溶接において、気孔欠陥が減少する。また、比表面積が0.30(m/g)以下であると、更に、耐吸湿性が向上し、気孔欠陥が更に低下する。一方、酸化チタン粒子の表面の凹凸が、小さくなりすぎると、フラックスの流動性が変化し、フラックスの偏析が生じる可能性がある。また、粘土質鉱物を除去しすぎて、その量が少なくなりすぎると、アーク不安定の原因となる。よって、酸化チタン粒子の表面の比表面積は0.01(m/g)以上とすることが好ましい。従って、酸化チタン粒子の表面の比表面積は0.01乃至0.50(m/g)とすることが好ましい。
“Specific surface area: 0.01 to 0.50 (m 2 / g)”
By making the specific surface area of the surface of the titanium oxide particles 0.50 (m 2 / g) or less, moisture absorption resistance is improved, thereby reducing pore defects in welding with a welding wire using the flux. To do. Further, when the specific surface area is 0.30 (m 2 / g) or less, the moisture absorption resistance is further improved, and the pore defects are further reduced. On the other hand, if the irregularities on the surface of the titanium oxide particles become too small, the flux fluidity may change and flux segregation may occur. Moreover, if the clay mineral is removed too much and its amount becomes too small, arc instability will be caused. Therefore, the specific surface area of the surface of the titanium oxide particles is preferably 0.01 (m 2 / g) or more. Therefore, the specific surface area of the surface of the titanium oxide particles is preferably 0.01 to 0.50 (m 2 / g).

前記表面研磨処理により比表面積が低下する要因としては、この表面研磨処理により、粒子表面に固着していた粘土質鉱物が落ちたことにより、表面の凹凸が少なくなったためと考えられる。このように、粘土質鉱物を酸化チタン粒子の表面から除去することにより、表面の凹凸を減少させて比表面積を小さくすることによって、粒子表面への水分の付着量が減少し、耐吸湿特性が向上する。即ち、吸湿性が高い粘土質鉱物が剥がれて、Na、K、Al、Si、Fe、Sの各元素が低減すると共に、粒子の表面の凹凸現象による比表面積の減少により、水分量が低減し、耐吸湿特性が向上する。   The reason why the specific surface area decreases due to the surface polishing treatment is considered to be that the irregularities on the surface are reduced due to the fall of the clay mineral fixed to the particle surface by the surface polishing treatment. Thus, by removing the clay mineral from the surface of the titanium oxide particles, by reducing the surface irregularities and reducing the specific surface area, the amount of moisture adhering to the particle surface is reduced and the moisture absorption property is reduced. improves. That is, clay minerals with high hygroscopicity are peeled off, and each element of Na, K, Al, Si, Fe, and S is reduced, and the amount of water is reduced by reducing the specific surface area due to the unevenness phenomenon of the particle surface. The moisture absorption resistance is improved.

上記本発明の酸化チタン原料を使用したFCW(フラックス入りワイヤ)は、フラックスの耐吸湿性が向上し、水分量が少なく、気孔欠陥が減少する。よって、品位が低い産地の原料を使用しても、高品位の原料を使用した場合と同様に、フラックスには水分異常がなく、溶接時に気孔欠陥が防止される。これは、本発明の酸化チタンを被覆アーク溶接棒(SMAW)又はサブマージアーク溶接(SAW)に使用した場合においても、低水分量で耐吸湿性向上等の効果が得られる。更に、本発明の酸化チタン原料をSMAW又はSAWに使用した場合、製品の外観色が安定するという効果もある。従来においては、外観色異常が発生した場合、染料を用いて外観色を安定化していたので、この外観色異常を防止できることは極めて有益である。   The FCW (flux-cored wire) using the titanium oxide raw material of the present invention improves the moisture absorption resistance of the flux, reduces the moisture content, and reduces pore defects. Therefore, even when a raw material of a production area with a low quality is used, as in the case of using a high quality raw material, there is no moisture abnormality in the flux, and pore defects are prevented during welding. Even when the titanium oxide of the present invention is used for coated arc welding rod (SMAW) or submerged arc welding (SAW), effects such as improvement in moisture absorption resistance can be obtained with a low moisture content. Furthermore, when the titanium oxide raw material of the present invention is used for SMAW or SAW, there is an effect that the appearance color of the product is stabilized. Conventionally, when an appearance color abnormality occurs, the appearance color is stabilized by using a dye. Therefore, it is extremely useful to prevent this appearance color abnormality.

(酸化チタン原料の耐吸湿性)
次に、本発明の範囲に入る実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。下記表1は、入荷した酸化チタン原料を、表面研磨処理した後、各元素の量を分析した結果を示す。そして、この酸化チタン原料の比表面積と、耐吸湿性能も合わせて、表1に示す。
(Hygroscopic resistance of titanium oxide raw material)
Next, the effect of the embodiment that falls within the scope of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention. Table 1 below shows the results of analyzing the amount of each element after surface polishing the received titanium oxide raw material. Table 1 also shows the specific surface area of this titanium oxide raw material and the moisture absorption resistance.

Figure 0005669624
Figure 0005669624

本実施例においては、表面研磨処理の処理時間を0.5乃至2.0時間の範囲で変化させて、酸化チタン粒子の表面の付着物の組成を調整した。比表面積(m/g)は、Krガス吸着BET法により測定した。更に,耐吸湿性能は、酸化チタン原料を、150℃に1時間再乾燥した後、温度が30℃、湿度が80%の雰囲気下で、168時間放置することにより、酸化チタン原料を吸湿処理し、その後、水分量を測定した。この水分量はAr気流下で、1000℃の温度で水分を抽出することにより、カールフィッシャー法により測定した。下記表2に示すように、水分量が100ppm以上400ppm未満の場合を◎、400ppm以上600ppm未満の場合を○、600ppm以上800pm未満の場合を△、800ppm以上の場合を×として、表1に耐吸湿性能を示した。 In this example, the composition of the deposit on the surface of the titanium oxide particles was adjusted by changing the treatment time of the surface polishing treatment in the range of 0.5 to 2.0 hours. The specific surface area (m 2 / g) was measured by the Kr gas adsorption BET method. Further, the moisture absorption resistance is obtained by re-drying the titanium oxide raw material at 150 ° C. for 1 hour, and then leaving the titanium oxide raw material for 168 hours in an atmosphere at a temperature of 30 ° C. and a humidity of 80%. Thereafter, the water content was measured. This moisture content was measured by the Karl Fischer method by extracting moisture at a temperature of 1000 ° C. under an Ar stream. As shown in Table 2 below, Table 1 shows that the moisture content is 100 ppm or more and less than 400 ppm, ◯ is 400 ppm or more and less than 600 ppm, Δ is 600 ppm or more and less than 800 pm, and x is 800 ppm or more. Hygroscopic performance was shown.

Figure 0005669624
Figure 0005669624

表1に示すように、酸化チタン粒子の表面に付着する粘土質鉱物及び粘土質鉱物単体の組成が本発明の範囲に入る本発明例3,5〜9、11〜14は、耐吸湿性能が◎、○又は△であり、本発明の範囲から外れる比較例1、2、4,10は耐吸湿性能が×であった。なお、フッ酸浸漬洗浄により粘土質鉱物を除去した比較例15は、Na+K等の組成が下限値を下回っているので、アークが不安定となるものの、耐吸湿性能は◎であった。   As shown in Table 1, Examples 3, 5-9, and 11-14 of the present invention in which the composition of the clay mineral and the clay mineral alone adhering to the surface of the titanium oxide particles are within the scope of the present invention have moisture absorption resistance. In Comparative Examples 1, 2, 4, and 10, which are ◎, ○, or Δ, and deviated from the scope of the present invention, the moisture absorption resistance was x. In Comparative Example 15 in which the clay mineral was removed by immersion in hydrofluoric acid, the composition of Na + K and the like was below the lower limit value, so the arc was unstable, but the moisture absorption resistance was ◎.

また、Fe量=0.2〜0.9質量%かつS量=0.003〜0.011質量%を満足した酸化チタン原料を用いたワイヤ(表1の本発明例5〜9、11〜13)は、更に耐吸湿性の向上が見られた。   Moreover, the wire using the titanium oxide raw material which satisfy | filled Fe amount = 0.2-0.9 mass% and S amount = 0.003-0.011 mass% (Invention example 5-9 of Table 1, 11-11) In 13), further improvement in moisture absorption resistance was observed.

なお、比表面積が0.01〜0.50(g/m)の範囲を外れる本発明例5,9,11は、他の本発明例よりも耐吸湿特性の低下が見られた。 In addition, the inventive examples 5, 9, and 11 in which the specific surface area is out of the range of 0.01 to 0.50 (g / m 2 ) showed a decrease in moisture absorption resistance as compared with the other inventive examples.

(FCW)
次に、表1の酸化チタン原料を使用して、フラックス入りワイヤを製造した場合の実施例について説明する。下記表3は、使用した酸化チタン原料の種類(表1のNo)及びその配合量と、その他のフラックス成分の組成を示し、得られたFCWを使用して溶接した場合の気孔欠陥の有無とアーク安定性を示す。
(FCW)
Next, the Example at the time of manufacturing a flux cored wire using the titanium oxide raw material of Table 1 is described. Table 3 below shows the type of titanium oxide raw material used (No in Table 1) and its blending amount and the composition of other flux components, and the presence or absence of pore defects when welding using the obtained FCW. Shows arc stability.

FCWの外皮金属の組成は、下記表4に示す。また、表3の気孔欠陥の欄において、◎、○、△、×は、下記表5に示す数値範囲を示す。更に、表3のアーク安定性は、下記表6に示すスパッタ発生量で表す。表3の判定欄は、気孔欠陥及びアーク安定性のいずれにおいても、×がない場合を○、気孔欠陥及びアーク安定性のいずれか又は双方が×の場合を×とした。   The composition of the FCW skin metal is shown in Table 4 below. In the column of pore defects in Table 3, “◎”, “◯”, “Δ”, and “X” indicate numerical ranges shown in Table 5 below. Furthermore, the arc stability in Table 3 is represented by the amount of spatter generated as shown in Table 6 below. In the judgment column of Table 3, the case where there was no x in any of the pore defects and the arc stability was marked as ◯, and the case where either or both of the pore defects and the arc stability were x was marked as x.

Figure 0005669624
Figure 0005669624

Figure 0005669624
Figure 0005669624

Figure 0005669624
Figure 0005669624

Figure 0005669624
Figure 0005669624

表3に示すように、本発明例A3、A5〜A9、A11〜A14、A17〜A20、A22、A23は気孔欠陥の数が少ない。また、これらの本発明例の中で、表1の本発明例5〜9、11〜14を使用した本発明例A5〜A9、A11〜A14、A18〜A20、A22、A23は、気孔欠陥の数が○又は◎であり、更に気孔欠陥の数が減少した。   As shown in Table 3, Invention Examples A3, A5 to A9, A11 to A14, A17 to A20, A22, and A23 have a small number of pore defects. Of these invention examples, Invention Examples A5 to A9, A11 to A14, A18 to A20, A22 and A23 using Invention Examples 5 to 9 and 11 to 14 in Table 1 are pore defects. The number was ○ or ◎, and the number of pore defects was further reduced.

これらに対し、比較例のFCWは、気孔欠陥が多く発生し、フッ酸洗浄した酸化チタン原料の比較例15の場合は、アーク安定性が悪く、いずれも総合判定は×である。   On the other hand, the FCW of the comparative example has many pore defects, and in the case of the comparative example 15 of the titanium oxide raw material washed with hydrofluoric acid, the arc stability is poor, and the overall judgment is x.

(SMAW)
次に、表1の酸化チタン原料を使用して被覆アーク溶接棒を製造し、その溶接特性を調べた結果について説明する。下記表7は、表1の酸化チタン原料を使用して被覆アーク溶接棒を製造したときのフラックス組成(酸化チタン原料の配合量は18質量%)と、耐吸湿性能及びアークの拡がり状態を示す。耐吸湿性能は、100℃に1時間加熱することにより、再乾燥し、その後、温度30℃及び湿度80%の雰囲気に5時間放置して吸湿処理し、その後、110℃に1時間加熱する乾燥減量法により吸湿水分量(質量%)を測定した。その結果、Na+K及びAl+Siが本発明の範囲を満たす酸化チタン原料を使用した表7の本発明例B2,B4,B5,B7〜B9のSMAWは、吸湿水分量が少なく(2.4質量%以下)、アークも安定していた。これに対し、比較例のSMAWは、吸湿水分量が多いものであった。
(SMAW)
Next, the results of manufacturing a coated arc welding rod using the titanium oxide raw material of Table 1 and examining its welding characteristics will be described. Table 7 below shows the flux composition when the coated arc welding rod is manufactured using the titanium oxide raw material of Table 1 (the compounding amount of the titanium oxide raw material is 18% by mass), the moisture absorption resistance and the arc spreading state. . The moisture absorption resistance is dried by heating to 100 ° C. for 1 hour, then left for 5 hours in an atmosphere of 30 ° C. and 80% humidity, and then heated to 110 ° C. for 1 hour. The moisture absorption (mass%) was measured by the weight loss method. As a result, the SMAWs of the inventive examples B2, B4, B5, B7 to B9 in Table 7 using a titanium oxide raw material in which Na + K and Al + Si satisfy the scope of the present invention have a low moisture absorption amount (2.4% by mass or less). ) The arc was also stable. On the other hand, the SMAW of the comparative example had a large amount of moisture absorption.

また、Na+K及びAl+Siが本発明の範囲を満たす酸化チタン原料を使用した表7の本発明例B2、B4、B5、B7、B8、B9のSMAWのうち、更に、Fe量及びS量も所定の範囲を満たす本発明例B4、B5、B7、B8の酸化チタン原料を使用したSMAWは、更に耐吸湿性能が向上し、更に、比表面積も所定の範囲を満たす本発明例B5、B8のSMAWは更に耐吸湿性能が向上した。   Further, among the SMOWs of Invention Examples B2, B4, B5, B7, B8, and B9 in Table 7 using a titanium oxide raw material in which Na + K and Al + Si satisfy the scope of the present invention, Fe amount and S amount are also predetermined. The SMAW using the titanium oxide raw materials of the present invention examples B4, B5, B7, and B8 that satisfy the range further improves the moisture absorption resistance, and the SMAW of the present invention examples B5 and B8 that satisfies the specific range also satisfies the specific surface area. Furthermore, the moisture absorption performance was improved.

更に、酸化チタンの表面に固着した粘土質鉱物等をフッ酸を用いて化学的に溶解した表1の比較例15の酸化チタン原料を使用して製造したSMAW(表7の比較例B10)は、被覆フラックスの耐吸湿性能は向上したが、溶接作業性が劣化(アークの拡がり不安定)した。この原因としては、被覆アーク溶接棒の場合、溶接電流が低いので、酸化チタンなどの高融点のスラグは溶融が困難であると考えられる。その結果としてアークの拡がりが狭くなった。   Furthermore, SMAW (Comparative Example B10 of Table 7) manufactured using the titanium oxide raw material of Comparative Example 15 of Table 1 in which clay minerals fixed on the surface of titanium oxide were chemically dissolved using hydrofluoric acid was Although the moisture absorption performance of the coated flux was improved, the welding workability was deteriorated (the arc spread was unstable). As a cause of this, in the case of a coated arc welding rod, since the welding current is low, it is considered that slag having a high melting point such as titanium oxide is difficult to melt. As a result, the arc spread became narrower.

Figure 0005669624
Figure 0005669624

(SAW)
次に、本発明の酸化チタンをサブマージアーク溶接用の造粒フラックスに適用したときの溶接の結果について説明する。再乾燥条件は、250℃に1時間加熱したものである。吸湿条件は、30℃及び80%の条件で、5時間放置したものである。耐吸湿性は、SMAWの場合と異なり、水分量(質量%)を増量法で測定した。その結果を表8に示す。
(SAW)
Next, the results of welding when the titanium oxide of the present invention is applied to a granulation flux for submerged arc welding will be described. The re-drying conditions are those heated to 250 ° C. for 1 hour. The moisture absorption conditions are those left for 5 hours at 30 ° C. and 80%. Unlike the case of SMAW, the moisture absorption resistance was determined by measuring the water content (mass%) by an increase method. The results are shown in Table 8.

表8に示すように、被覆アーク溶接棒の場合と同様に、表1の酸化チタン原料のうち、Na+K及びAl+Siが本発明の範囲を満たす酸化チタン原料を使用した表8の本発明例C3、C5〜C9の造粒フラックスは、水分量が0.25質量%以下であり、耐吸湿性能が高いものであった。   As shown in Table 8, as in the case of the coated arc welding rod, among the titanium oxide raw materials in Table 1, Invention Example C3 in Table 8 using a titanium oxide raw material in which Na + K and Al + Si satisfy the scope of the present invention, The granulated flux of C5 to C9 had a moisture content of 0.25% by mass or less and high moisture absorption resistance.

また、Fe及びS量が本発明の範囲を満たす本発明例C5〜C8は耐吸湿性能が更に向上し、更に、比表面積が本発明の範囲を満たす本発明例C6は、更に耐吸湿性能が向上した。   In addition, the present invention examples C5 to C8 in which the Fe and S amounts satisfy the range of the present invention further improve the moisture absorption performance, and the present invention example C6 in which the specific surface area satisfies the range of the present invention further improves the moisture absorption performance. Improved.

また、フッ酸処理を行った酸化チタンを適用した表1の比較例15の酸化チタン原料を使用して製造したSAW(表8の比較例C10)は、造粒フラックスの耐吸湿性能は向上したものの、溶接作業性が劣化した(ビード幅不安定、軽度のポックマーク発生)。純粋な酸化チタンの融点は1870℃であり、鉄の融点に比較して高融点である。このため、表面洗浄度が高くなると、酸化チタンの融点が高くなり、フラックスの速やかな溶融が困難になるためである。   In addition, SAW (Comparative Example C10 in Table 8) manufactured using the titanium oxide raw material of Comparative Example 15 in Table 1 to which titanium oxide subjected to hydrofluoric acid treatment was applied has improved moisture absorption resistance of the granulated flux. However, welding workability deteriorated (bead width was unstable, and a slight pock mark was generated). Pure titanium oxide has a melting point of 1870 ° C., which is higher than that of iron. For this reason, when the surface cleaning degree becomes high, the melting point of titanium oxide becomes high, and it becomes difficult to quickly melt the flux.

なお、ケイ酸塩鉱物は、配合フラックス中に原料フラックスとして添加されることもある。この場合、酸化チタンとケイ酸塩鉱物との接触は、ケイ酸塩鉱物が酸化チタン表面に固着しているものと比較し、極端に低レベルにあるので、酸化チタンの低温溶融には影響しない。   In addition, a silicate mineral may be added as a raw material flux in a mixing | blending flux. In this case, the contact between the titanium oxide and the silicate mineral is extremely low compared to the contact of the silicate mineral with the titanium oxide surface, and thus does not affect the low temperature melting of the titanium oxide. .

Figure 0005669624
Figure 0005669624

1:シェル、2:ローラ、3,13:ボール、4,14,23:蒸留水、5,15,2425:酸化チタン原料、11:V型混合機、22:超音波洗浄機 1: Shell, 2: Roller, 3, 13: Ball, 4, 14, 23: Distilled water, 5, 15, 2425: Titanium oxide raw material, 11: V-type mixer, 22: Ultrasonic cleaner

Claims (8)

酸化チタンを含む粒子及び前記粒子表面に付着する粘土質鉱物を有し、原料中に含まれる粘土質鉱物は、Na、K、Al及びSiの各元素の量が、酸化チタン原料の全体に対する割合で、Na+K量が0.001乃至0.100質量%であり、Al+Si量が0.04乃至1.30質量%であることを特徴とする溶接材料用酸化チタン原料。 It has particles containing titanium oxide and clayey minerals adhering to the surface of the particles, and the clay mineral contained in the raw material has a ratio of each element of Na, K, Al and Si to the whole titanium oxide raw material. The titanium oxide raw material for welding materials, wherein the Na + K amount is 0.001 to 0.100 mass% and the Al + Si amount is 0.04 to 1.30 mass%. 前記粘土質鉱物は、更に、Fe量が0.2乃至0.9質量%、S量が0.003乃至0.011質量%であることを特徴とする請求項1に記載の溶接材料用酸化チタン原料。 The oxidation for welding material according to claim 1, wherein the clay mineral further has an Fe content of 0.2 to 0.9 mass% and an S content of 0.003 to 0.011 mass%. Titanium raw material. 前記粒子の比表面積が、0.01乃至0.5m/gであることを特徴とする請求項1又は2に記載の溶接材料用酸化チタン原料。 3. The titanium oxide raw material for welding material according to claim 1, wherein a specific surface area of the particles is 0.01 to 0.5 m 2 / g. 鋼製外皮にフラックスを充填させたフラックス入りワイヤであり、前記フラックスは、前記請求項1乃至3のいずれか1項に記載の溶接材料用酸化チタン原料を含むことを特徴とする溶接材料。 A welding material comprising a flux cored wire in which a steel outer shell is filled with a flux, wherein the flux includes the titanium oxide raw material for welding material according to any one of claims 1 to 3. 鋼製心線にフラックスを被覆した被覆アーク溶接棒であり、前記フラックスは、前記請求項1乃至3のいずれか1項に記載の溶接材料用酸化チタン原料を含むことを特徴とする溶接材料。 It is a covering arc welding rod which coat | covered the flux on the steel core wire, The said flux contains the titanium oxide raw material for welding materials of any one of the said Claim 1 thru | or 3. The welding material characterized by the above-mentioned. サブマージアーク溶接用のフラックスであり、前記フラックスは、前記請求項1乃至3のいずれか1項に記載の溶接材料用酸化チタン原料を含むことを特徴とする溶接材料。 It is a flux for submerged arc welding, The said flux contains the titanium oxide raw material for welding materials of any one of the said Claim 1 thru | or 3. The welding material characterized by the above-mentioned. 酸化チタン原料となる鉱石の粒子に対し、表面研磨処理して、その粒子表面に付着する粘土質鉱物を除去し、原料中に含まれる粘土質鉱物を構成するNa、K、Al及びSiの各元素の量が、酸化チタン原料の全体に対する割合で、Na+K量が0.001乃至0.100質量%であり、Al+Si量が0.04乃至1.30質量%である酸化チタン原料を得ることを特徴とする溶接材料用酸化チタン原料の製造方法。 Each of each of Na, K, Al and Si constituting the clay mineral contained in the raw material by removing the clay mineral adhering to the particle surface by subjecting the ore particles as the titanium oxide raw material to surface polishing treatment. To obtain a titanium oxide raw material in which the amount of element is a ratio with respect to the whole titanium oxide raw material, the Na + K amount is 0.001 to 0.100 mass%, and the Al + Si amount is 0.04 to 1.30 mass%. A method for producing a titanium oxide raw material for welding material. 前記表面研磨処理は、ボールミルを使用した処理、V型混合機を使用した処理、又は超音波洗浄を使用した処理であることを特徴とする請求項に記載の溶接材料用酸化チタン原料の製造方法。 The said surface polishing process is a process using a ball mill, a process using a V-type mixer, or a process using ultrasonic cleaning, The manufacture of the titanium oxide raw material for welding materials of Claim 7 characterized by the above-mentioned. Method.
JP2011043775A 2010-08-10 2011-03-01 Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material Active JP5669624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043775A JP5669624B2 (en) 2010-08-10 2011-03-01 Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010179683 2010-08-10
JP2010179683 2010-08-10
JP2011043775A JP5669624B2 (en) 2010-08-10 2011-03-01 Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material

Publications (2)

Publication Number Publication Date
JP2012055970A JP2012055970A (en) 2012-03-22
JP5669624B2 true JP5669624B2 (en) 2015-02-12

Family

ID=45837805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043775A Active JP5669624B2 (en) 2010-08-10 2011-03-01 Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material

Country Status (3)

Country Link
JP (1) JP5669624B2 (en)
KR (1) KR101302941B1 (en)
CN (1) CN102398125B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544293B1 (en) * 2011-02-08 2015-08-12 가부시키가이샤 고베 세이코쇼 Titanium oxide raw material for welding material
JP5952597B2 (en) * 2012-03-08 2016-07-13 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286699A (en) * 1986-06-03 1987-12-12 Kobe Steel Ltd Raw material for high titania welding material
JPS62289398A (en) * 1986-06-06 1987-12-16 Daido Steel Co Ltd Production of flux cored welding wire
JPH0636999B2 (en) * 1990-07-19 1994-05-18 新日本製鐵株式会社 Flux-cored wire for gas shield arc welding
JPH06269989A (en) * 1993-03-24 1994-09-27 Nippon Steel Corp Low hydrogen shield arc welding rod
JP2001038486A (en) * 1999-07-29 2001-02-13 Kawasaki Steel Corp Firing type flux for submerge arc welding with excellent moisture adsorption resistance and degradation resistance, and manufacturing method
JP4454112B2 (en) * 2000-06-28 2010-04-21 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP2002137090A (en) * 2000-10-26 2002-05-14 Kobe Steel Ltd Titania flux cored wire
JP4206222B2 (en) * 2002-04-25 2009-01-07 株式会社神戸製鋼所 Titanya flux cored wire
JP3824973B2 (en) * 2002-07-02 2006-09-20 株式会社神戸製鋼所 Flux-cored wire for titania arc welding
JP3816070B2 (en) * 2003-09-16 2006-08-30 株式会社神戸製鋼所 Titanya flux cored wire
KR100615685B1 (en) 2005-06-30 2006-08-28 현대종합금속 주식회사 A flux cored wire with anti-hotcracking property for weather resistance steel
JP4986562B2 (en) * 2006-10-02 2012-07-25 株式会社神戸製鋼所 Flux-cored wire for titania-based gas shielded arc welding
KR100774155B1 (en) * 2006-10-20 2007-11-07 고려용접봉 주식회사 Flux cored wire for duplex stainless steel and the manufacturing method thereof
JP5283993B2 (en) * 2008-07-09 2013-09-04 株式会社神戸製鋼所 Flux-cored wire for titania-based gas shielded arc welding

Also Published As

Publication number Publication date
CN102398125A (en) 2012-04-04
KR101302941B1 (en) 2013-09-06
KR20120014877A (en) 2012-02-20
JP2012055970A (en) 2012-03-22
CN102398125B (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5198481B2 (en) Ni-based alloy flux cored wire
BRPI0505405B1 (en) Low moisture absorption core electrode, method for forming a diffusible low hydrogen solder fillet and arc stabilization component.
EP1728584A2 (en) Modified flux system
JP6488637B2 (en) Manufacturing method of flux-cored wire for gas shielded arc welding
JP5669624B2 (en) Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material
JP2011152572A (en) Stainless steel flux cored wire
CN110977248B (en) Wear-resistant flux-cored composition, wear-resistant welding wire, and preparation method and application thereof
JP5912969B2 (en) Fused flux used for submerged arc welding and welding method using the same
JP7092634B2 (en) Bond flux for submerged arc welding of duplex stainless steel
JP3580720B2 (en) Flux-cored wire for welding
JP3816070B2 (en) Titanya flux cored wire
JPH09168889A (en) Gas shielded arc welding wire
JP2001138092A (en) Flux cored wire for welding two-phase stainless steel
EP2308634A1 (en) Titanium oxide material for welding materials, flux-cored wire, covered electrode, and submerged arc welding flux
KR100400412B1 (en) Server-Merged Arc Welding Flux Composition and Manufacturing Method
TWI706825B (en) Method of manufacturing welding electrode
JP3505429B2 (en) Flux-cored wire for gas shielded arc welding
JP2002011594A (en) Flux-cored wire for gas shield metal-arc welding
JP3093416B2 (en) Flux-cored wire for high hydrogen fillet welding
JPH11129093A (en) Flux cored wire for welding austenitic stainless steel
JP2003311416A (en) One-side welding method by carbon dioxide shielded arc welding
CN115255562A (en) Preparation method of titanium alloy wear-resistant coating
JP2001179488A (en) Metallic flux cored wire electrode for arc welding
KR100419170B1 (en) Fluxes containing molybdenium oxides for electroslag welding
JPH09271982A (en) Ni-cr group covered electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5669624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150