JP5283993B2 - Flux-cored wire for titania-based gas shielded arc welding - Google Patents

Flux-cored wire for titania-based gas shielded arc welding Download PDF

Info

Publication number
JP5283993B2
JP5283993B2 JP2008179040A JP2008179040A JP5283993B2 JP 5283993 B2 JP5283993 B2 JP 5283993B2 JP 2008179040 A JP2008179040 A JP 2008179040A JP 2008179040 A JP2008179040 A JP 2008179040A JP 5283993 B2 JP5283993 B2 JP 5283993B2
Authority
JP
Japan
Prior art keywords
content
mass
alloy
tio
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008179040A
Other languages
Japanese (ja)
Other versions
JP2010017733A (en
Inventor
正行 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008179040A priority Critical patent/JP5283993B2/en
Priority to CN2009101389730A priority patent/CN101623799B/en
Priority to KR1020090062091A priority patent/KR20100006546A/en
Publication of JP2010017733A publication Critical patent/JP2010017733A/en
Application granted granted Critical
Publication of JP5283993B2 publication Critical patent/JP5283993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は軟鋼、高張力鋼又は低合金鋼等の溶接に使用されるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤに関し、特に高電流域における立向上進性能に優れ、溶接金属性能を向上させたチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for titania-based gas shielded arc welding used for welding mild steel, high-tensile steel, low-alloy steel, and the like, and particularly has excellent stand-up performance in a high current region and improved weld metal performance. The present invention relates to a flux-cored wire for titania-based gas shielded arc welding.

溶接に用いられるフラックス入りワイヤは、ソリッドワイヤと比較してビード外観が美しく、発生スパッタ量が少なく、更に、溶着効率が高い等の特徴が評価され、その使用量が年々増加しており、特に造船分野における溶接においてフラックス入りワイヤの使用比率は最も高い。造船分野においてはその活況な需要に対応するために自動化及び高能率化に対する取り組みがなされてきており、その一例として下向溶接及び水平すみ肉溶接における多電極溶接による高能率化(特許文献1)、又は溶接ロボットによる自動化・省人化(特許文献2)が挙げられ、それらに適した溶接材料も数多く開発されてきた。しかし、立向上進溶接についてはその溶接姿勢上、溶接ロボット及び装置等を導入することによって自動化並びに省人化を図ることができる工程は限られている。更に、ロボット及び装置等を使用しない半自動溶接においても立向上進溶接は極めて高度な溶接技量が必要とされる溶接姿勢であるため、溶接の高能率化及び脱技能化が図り難いものであった。   The flux-cored wire used for welding has a beautiful bead appearance, less spatter generation, and high welding efficiency, compared to solid wire, and its usage is increasing year by year. The use ratio of flux cored wire is the highest in welding in the shipbuilding field. In the shipbuilding field, efforts have been made to automate and improve the efficiency in order to meet the brisk demand. As one example, the improvement in efficiency is achieved by multi-electrode welding in downward welding and horizontal fillet welding (Patent Document 1). Or, automation and labor saving by a welding robot (Patent Document 2) can be cited, and many welding materials suitable for them have been developed. However, with regard to the stand-up advancement welding, there are limited processes that can be automated and labor-saving by introducing a welding robot, apparatus, and the like due to the welding posture. Furthermore, even in semi-automatic welding that does not use robots and equipment, the stand-up advance welding is a welding posture that requires a very high level of welding skill, so that it is difficult to improve the efficiency and dismantling of welding. .

立向上進溶接における溶接作業性を向上させるために、例えば特許文献3には、Al、MgO及びZrOを必須成分として多量に含有し、溶接電流を高くして溶接を行っても溶融金属及びスラグの垂れ落ち及びビード形状の不良が発生しないガスシールドアーク溶接用フラックス入りワイヤが開示されている。また、特許文献4には、全姿勢溶接における溶接作業性、スラグ剥離性及び溶接金属の衝撃性能を維持しつつ、立向上進溶接性を向上させたチタニヤ系アーク溶接用フラックス入りワイヤが開示されている。 In order to improve the welding workability in vertical advance welding, for example, Patent Document 3 contains a large amount of Al 2 O 3 , MgO and ZrO 2 as essential components, and welding is performed with a high welding current. A flux-cored wire for gas shielded arc welding is disclosed in which molten metal and slag sag and defective bead shape do not occur. Patent Document 4 discloses a flux-cored wire for titania-based arc welding that has improved weldability while maintaining welding workability, slag peelability and weld metal impact performance in all-position welding. ing.

更に、特許文献5にはTi酸化物、SiO、ZrO、KO、フッ化物、Al、Al、Si、及びMnを含有し、ワイヤ全質量あたりSiのMnに対する含有量比[Si]/[Mn]が2.3乃至5.0であるガスシールドアーク溶接用フラックス入りワイヤが開示されている。また、特許文献5に記載のワイヤを用いてガスシールドアーク溶接を行うと、発生アークの安定性が得られるため発生スパッタ量が少なく、更に、溶融スラグ及び溶融金属の垂れを抑制することができることが記載されている。 Further, Patent Document 5 contains Ti oxide, SiO 2 , ZrO 2 , K 2 O, fluoride, Al 2 O 3 , Al, Si, and Mn, and the content ratio of Si to Mn per total wire mass A flux-cored wire for gas shielded arc welding in which [Si] / [Mn] is 2.3 to 5.0 is disclosed. In addition, when gas shielded arc welding is performed using the wire described in Patent Document 5, the stability of the generated arc is obtained, so that the amount of generated spatter is small, and further, dripping of molten slag and molten metal can be suppressed. Is described.

更にまた、特許文献6には、フラックス中に含まれるTi酸化物、Si酸化物、Fe酸化物、Zr酸化物、Al酸化物、Na、K、フッ化物、及びMg含有量、並びにフラックス及び外皮中に含まれるC、Si、Mn、及びAl含有量を特定することによって、立向上進溶接においてもメタル垂れが発生しにくく、他の溶接姿勢においても溶接作業性が良好なガスシールドアーク溶接用フラックス入りワイヤが開示されている。また、特許文献6に記載のガスシールドアーク溶接用フラックス入りワイヤを使用すると、低温靱性が優れた溶接金属が得られるため、溶接の高能率化及び溶接部の品質が向上できることが記載されている。   Furthermore, Patent Document 6 discloses the contents of Ti oxide, Si oxide, Fe oxide, Zr oxide, Al oxide, Na, K, fluoride, and Mg contained in the flux, and the flux and outer shell. By specifying the C, Si, Mn, and Al contents contained in the gas shield arc welding, metal sag is unlikely to occur even in vertical welding, and welding workability is good even in other welding positions. A flux-cored wire is disclosed. Further, it is described that when a flux-cored wire for gas shielded arc welding described in Patent Document 6 is used, a weld metal having excellent low-temperature toughness can be obtained, so that the efficiency of welding and the quality of the welded portion can be improved. .

特開平6−312267号公報JP-A-6-31267 特開平5−169263号公報JP-A-5-169263 特開平8−99192号公報JP-A-8-99192 特開2004−34078号公報JP 2004-34078 A 特開2005−305531号公報JP 2005-305531 A 特開2005−319508号公報JP-A-2005-319508

しかしながら、前述の従来技術には以下のような問題点がある。   However, the above-described prior art has the following problems.

特許文献3及び4に記載のフラックス入りワイヤを使用して溶接を行うと、立向上進すみ肉溶接の高溶接電流域において、スラグ又は溶接金属の粘性不足によって溶融金属の垂れ落ちが発生しやすくビード形状が不良となるため、造船分野等における作業者のワイヤ使用条件範囲が狭くなる。また、特許文献3及び4に記載のフラックス入りワイヤは、溶接時のスパッタの発生量が依然多いものである。   When welding is performed using the flux-cored wires described in Patent Documents 3 and 4, dripping of the molten metal is likely to occur due to insufficient viscosity of the slag or weld metal in the high welding current region of the fillet welding for improving the vertical direction. Since the bead shape is poor, the range of wire usage conditions for workers in the shipbuilding field and the like is narrowed. Moreover, the flux-cored wires described in Patent Documents 3 and 4 still have a large amount of spatter generated during welding.

また、特許文献5に記載のガスシールドアーク溶接用フラックス入りワイヤは、高融点スラグ生成剤であるTiO及びAlのスラグ生成剤全体における含有量の割合が小さく、スラグの流動性が増して溶融金属を保持できない場合がある。また、Alの含有量がワイヤ全質量あたり0.5質量%以下と少ないため、スラグの粘性不足によって溶接作業時にスラグの垂れ落ちが発生しやすくなる。 Further, the flux-cored wire for gas shielded arc welding described in Patent Document 5 has a small content ratio of TiO 2 and Al 2 O 3 which are high melting point slag forming agents in the entire slag forming agent, and the flowability of slag is low. In some cases, the molten metal cannot be retained. Moreover, since the content of Al 2 O 3 is as small as 0.5% by mass or less per the total mass of the wire, the slag droops easily during welding work due to insufficient viscosity of the slag.

更に、特許文献6に記載のガスシールドアーク溶接用フラックス入りワイヤはMgの含有量がワイヤ全質量あたり0.1乃至0.5質量%と少ないため、脱酸不足により粘性が低下し、溶接金属の垂れ落ちが発生しやすくなる。   Furthermore, since the flux-cored wire for gas shielded arc welding described in Patent Document 6 has a low Mg content of 0.1 to 0.5% by mass per total mass of the wire, the viscosity decreases due to insufficient deoxidation, and the weld metal It is easy for dripping to occur.

本発明はかかる問題点に鑑みてなされたものであって、立向上進溶接において高い溶接電流を使用しても溶融スラグ及び溶融金属の垂れ落ちがなく、スパッタ発生量が少ない溶接性が得られ、更に機械的性質が優れた溶接金属を得ることができるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   The present invention has been made in view of such a problem, and even when a high welding current is used in vertical welding, there is no dripping of molten slag and molten metal, and weldability with less spatter generation is obtained. Another object of the present invention is to provide a flux-cored wire for titania-based gas shielded arc welding that can obtain a weld metal having excellent mechanical properties.

本発明に係るチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤは、軟鋼、高張力鋼又は低合金鋼製の金属外皮にフラックスを充填したチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量あたり、TiO:6.0乃至12.0質量%、Al:0.7乃至1.0質量%、SiO:0.6乃至1.0質量%、ZrO:0.1乃至0.3質量%、を含有し、更に、金属又は合金としてMn:1.0乃至3.0質量%(合金の場合はMn換算値)、Si:0.3乃至0.6質量%(合金の場合はSi換算値)、Al:0.1乃至0.3質量%(合金の場合はAl換算値)、及びMg:0.6乃至0.9質量%(合金の場合はMg換算値)を含有する。
The flux-cored wire for titania-based gas shielded arc welding according to the present invention is a flux-cored wire for titania-based gas shielded arc welding in which a metal sheath made of mild steel, high-tensile steel or low-alloy steel is filled with flux. , TiO 2 : 6.0 to 12.0 mass%, Al 2 O 3 : 0.7 to 1.0 mass%, SiO 2 : 0.6 to 1.0 mass%, ZrO 2 : 0.1 to 0 Further, Mn: 1.0 to 3.0% by mass (in the case of an alloy, Mn equivalent value), Si: 0.3 to 0.6% by mass (of the alloy) In the case of Si conversion value), Al: 0.1 to 0.3 mass% (Al conversion value in the case of alloy), and Mg: 0.6 to 0.9 mass% (Mg conversion value in the case of alloy) contains.

そして、TiO含有量を[TiO]、Al含有量を[Al]、SiO含有量を[SiO]、ZrO含有量を[ZrO]、金属又は合金としてのMn含有量(合金の場合はMn換算値)を[Mn]、金属又は合金としてのSi含有量(合金の場合はSi換算値)を[Si]、金属又は合金としてのMg含有量(合金の場合はMg換算値)を[Mg]、Na含有量(化合物又は合金の場合はNa換算値)を[Na]、K含有量(化合物又は合金の場合はK換算値)[K]とするとき、TiO、Al、SiO、及びZrO含有量の総和[TiO]+[Al]+[SiO]+[ZrO]が8.0乃至13.5質量%、TiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比([TiO]+[Al])/([TiO]+[Al]+[SiO]+[ZrO])が0.85乃至0.95、Si含有量に対するMn及びMg含有量の積の比[Mn]×[Mg]/[Si]が2.0乃至4.0、Na及びK含有量の和[Na]+[K]が0.15乃至0.25質量%、K含有量に対するNa含有量の比[Na]/[K]が0.20乃至0.40である。 The TiO 2 content is [TiO 2 ], the Al 2 O 3 content is [Al 2 O 3 ], the SiO 2 content is [SiO 2 ], the ZrO 2 content is [ZrO 2 ], a metal or an alloy. Mn content (Mn equivalent value in case of alloy) is [Mn], Si content as metal or alloy (Si equivalent value in case of alloy) is [Si], Mg content as metal or alloy (alloy) In the case of Mg, the Mg equivalent value is [Mg], the Na content (Na equivalent value in the case of a compound or alloy) is [Na], and the K content (K equivalent value in the case of a compound or alloy) [K]. When the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 [TiO 2 ] + [Al 2 O 3 ] + [SiO 2 ] + [ZrO 2 ] is 8.0 to 13.5 mass %, TiO 2, Al 2 O 3, SiO 2, and ZrO The ratio of the sum of TiO 2 and Al 2 O 3 content to the sum of the content ([TiO 2] + [Al 2 O 3]) / ([TiO 2] + [Al 2 O 3] + [SiO 2] + [ZrO 2 ]) is 0.85 to 0.95, the ratio of the product of Mn and Mg content to Si content is [Mn] × [Mg] / [Si] is 2.0 to 4.0, Na and K The sum [Na] + [K] of the content is 0.15 to 0.25% by mass, and the ratio [Na] / [K] of the Na content to the K content is 0.20 to 0.40.

更に、上記チタニヤ系ガスシールドアーク溶接用フラックス入りワイヤはワイヤ全質量あたり、Ti、Zr、Cu、Cr、Nb及びVのうち、1種以上を総計で0.5質量%以下含有することができる。   Further, the flux-cored wire for titania-based gas shielded arc welding can contain one or more of Ti, Zr, Cu, Cr, Nb and V in total 0.5 mass% or less per total mass of the wire. .

本発明によれば、チタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、高い溶接電流を使用した立向上進溶接においても、溶融部が耐ビード垂れ性及びスパッタ抑制性に優れているため、高い溶接作業性を得ることができる。更に、機械的性質が優れた溶接部を得ることができるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤを得ることができる。   According to the present invention, in a flux-cored wire for titania-based gas shielded arc welding, since the fusion zone is excellent in bead sagging resistance and spatter suppression even in vertical improvement welding using a high welding current, high welding is achieved. Workability can be obtained. Furthermore, a flux-cored wire for titania-based gas shielded arc welding that can obtain a weld having excellent mechanical properties can be obtained.

本願発明者は、立向上進溶接姿勢においてビード形状不良の原因となる溶融金属の垂れ落ちを防止するためスラグの組成を変更し、更に、スラグの凝固点を高める手段を検討した。   The inventor of the present application has studied a means for changing the composition of the slag in order to prevent dripping of the molten metal that causes the bead shape failure in the vertical improvement welding posture and further increasing the freezing point of the slag.

溶融金属が垂れ落ちないように溶接域に保持するためには、スラグ生成剤であるTiO、Al、SiO、及びZrOの添加量が多いほうが有利である。また、スラグの特性を高融点及び高粘性にするためには、Al、SiO、及びZrOの添加が有効である。本願発明者は、各スラグ形成剤の特性を調査し、特にMgOがスラグの剥離性を劣化させ、また、ZrOがスパッタ発生量を増加させ、更にSiOがスラグの流動性を向上させる作用を有することを見出した。また、TiO及びAlにはスラグの剥離性の劣化、スパッタ発生量の増加、及びスラグの粘性の上昇作用があることを見出した。そして、これらのスラグ生成剤の適正な含有量を調整することによって、特にTiO及びAlの含有量をTiO、Al、SiO、及びZrOの合計含有量に対して特定することによって、高融点スラグを形成し、溶融金属の垂れ落ちを効果的に防止することができることを見出した。 In order to hold the molten metal in the weld zone so as not to sag, it is advantageous that the amount of slag-forming agents TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 is increased. In order to make the slag characteristics have a high melting point and high viscosity, the addition of Al 2 O 3 , SiO 2 , and ZrO 2 is effective. The inventor of the present application investigates the characteristics of each slag forming agent, in particular, MgO deteriorates the slag peelability, ZrO 2 increases the amount of spatter generation, and SiO 2 improves the slag fluidity. It was found to have Further, it has been found that TiO 2 and Al 2 O 3 have the effects of deterioration of slag removability, increase in the amount of spatter generated, and increase in slag viscosity. And by adjusting the appropriate content of these slag forming agents, the content of TiO 2 and Al 2 O 3 in particular is made to the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2. It was found that a high melting point slag can be formed and the dripping of the molten metal can be effectively prevented.

また、本願発明者は溶融金属の適正な組成を検討し、溶接金属の強度及び靭性を低下させることなく溶融金属の粘性を上昇させ、溶融金属の溶接部からの垂れ落ちを防止する手段を見出した。即ち、脱酸剤として添加するAl及びSiの添加量を特定することによって、Alの添加による溶接金属の靭性の低下、並びにSiの添加によるスラグ凝固点降下、溶接金属の強度の増加、及び靭性の低下を防止しながら、強脱酸剤であるMn及びMgをSiに対する添加比率によって適正化することによって溶融金属中の酸素量を低下させることができることを見出した。   Further, the inventors of the present application have studied the proper composition of the molten metal, and have found a means for increasing the viscosity of the molten metal without reducing the strength and toughness of the weld metal and preventing dripping of the molten metal from the weld. It was. That is, by specifying the amount of Al and Si to be added as a deoxidizer, the toughness of the weld metal is reduced by the addition of Al, and the slag solidification point is lowered by the addition of Si, the strength of the weld metal is increased, and the toughness is increased. It has been found that the amount of oxygen in the molten metal can be reduced by optimizing Mn and Mg, which are strong deoxidizers, with the addition ratio to Si while preventing the decrease.

更に、溶融プールの振動を抑制することが溶融金属の垂れ落ちを防止することに有効であり、アーク安定性を向上させるアルカリ金属であるNa並びにKの含有量の総計(Na及びKが化合物又は合金として存在する場合は夫々Na及びK換算値)及び比率を調整することが効果的であり、また、Na及びKの含有量を調整することがスパッタ発生量の低減にも効果的であることを見出した。   Further, suppressing vibration of the molten pool is effective in preventing dripping of the molten metal, and the total content of Na and K, which are alkali metals that improve arc stability (Na and K are compounds or When present as an alloy, it is effective to adjust the Na and K conversion values) and ratio, and adjusting the Na and K contents is also effective in reducing the amount of spatter generated. I found.

以下、本発明の数値限定の理由について説明する。   Hereinafter, the reason for the numerical limitation of the present invention will be described.

「TiO含有量[TiO]:6.0乃至12.0質量%」
TiOはスラグ形成剤及びアーク安定剤として作用する。TiOの含有量が6.0質量%未満であると、溶接金属を支えるだけのスラグ発生量を確保できず、溶融金属が垂れ落ちやすくなる。一方、TiOの含有量が12.0質量%を超えると、スラグ生成量が過剰となってスラグが溶接部から垂れ落ちやすくなり、溶接部にスラグ巻き込みが発生しやすくなる。従って、TiOの含有量は6.0乃至12.0質量%である。
“TiO 2 content [TiO 2 ]: 6.0 to 12.0 mass%”
TiO 2 acts as a slag former and arc stabilizer. When the content of TiO 2 is less than 6.0% by mass, a slag generation amount sufficient to support the weld metal cannot be secured, and the molten metal tends to sag. On the other hand, when the content of TiO 2 exceeds 12.0% by mass, the amount of slag generated becomes excessive, and the slag is likely to sag from the welded portion, and the slag is likely to be caught in the welded portion. Therefore, the content of TiO 2 is 6.0 to 12.0% by mass.

「Al含有量[Al]:0.7乃至1.0質量%」
Alにはスラグの凝固点を上昇させ、スラグの粘性を上昇させる作用がある。Alの含有量が0.7質量%未満であると、スラグの凝固点を上昇させる効果が得られず、Alの含有量が1.0質量%を超えるとスパッタの発生量が増加する。従って、Alの含有量は0.7乃至1.0質量%である。
“Al 2 O 3 content [Al 2 O 3 ]: 0.7 to 1.0 mass%”
Al 2 O 3 has the effect of increasing the freezing point of slag and increasing the viscosity of slag. If the content of Al 2 O 3 is less than 0.7% by mass, the effect of increasing the freezing point of the slag cannot be obtained. If the content of Al 2 O 3 exceeds 1.0% by mass, the amount of spatter generated Will increase. Therefore, the content of Al 2 O 3 is 0.7 to 1.0% by mass.

「SiO含有量[SiO]:0.6乃至1.0質量%」
SiOはスラグ形成材及びアーク安定剤として作用する。SiOの含有量が0.6質量%未満であるとアークが不安定になってスパッタの発生量が増加する。一方、SiOの含有量が1.0質量%を超えると、スラグの凝固点が降下し、溶融金属が溶接部から垂れ落ちやすくなる。従って、SiOの含有量は0.6乃至1.0質量%である。
“SiO 2 content [SiO 2 ]: 0.6 to 1.0 mass%”
SiO 2 acts as a slag former and arc stabilizer. When the content of SiO 2 is less than 0.6% by mass, the arc becomes unstable and the amount of spatter generated increases. On the other hand, when the content of SiO 2 exceeds 1.0% by mass, the freezing point of the slag is lowered, and the molten metal tends to sag from the welded portion. Therefore, the content of SiO 2 is 0.6 to 1.0% by mass.

「ZrO含有量[ZrO]:0.1乃至0.3質量%」
ZrOはスラグの凝固点を上昇させ、スラグの流動性を増加させる作用がある。ZrOの含有量が0.1質量%未満であるとスラグの凝固が遅くなり、ZrOの含有量が0.3質量%を超えるとスパッタの発生が増加すると共にスラグの粘性が低下する。従って、ZrOの含有量は0.1乃至0.3質量%である。
“ZrO 2 content [ZrO 2 ]: 0.1 to 0.3 mass%”
ZrO 2 has the effect of increasing the freezing point of the slag and increasing the fluidity of the slag. When the content of ZrO 2 is less than 0.1% by mass, solidification of the slag is delayed, and when the content of ZrO 2 exceeds 0.3% by mass, the generation of spatter increases and the viscosity of the slag decreases. Therefore, the content of ZrO 2 is 0.1 to 0.3% by mass.

「金属又は合金としてのMn含有量(合金の場合はMn換算値)[Mn]:1.0乃至3.0質量%」
Mnは金属又はFe−Mn及びFe−Si−Mn等の鉄合金等によって添加される。Mnは脱酸剤として作用し、溶接金属における引張強度及び靭性を高める作用がある。Mnの含有量が1.0質量%未満であると脱酸不足によって粘性が低下し、溶融金属の垂れ落ちが発生しやすくなる。また、溶接部にブローホール等の溶接欠陥が発生して、強度及び靭性が低下しやすくなる。Mnの含有量が3.0質量%を超えると溶接金属の強度が高くなりすぎる。従って、金属又は合金としてのMnの含有量は1.0乃至3.0質量%である。
“Mn content as metal or alloy (Mn equivalent value in case of alloy) [Mn]: 1.0 to 3.0 mass%”
Mn is added by a metal or an iron alloy such as Fe-Mn and Fe-Si-Mn. Mn acts as a deoxidizer and has the effect of increasing the tensile strength and toughness of the weld metal. When the content of Mn is less than 1.0% by mass, the viscosity is lowered due to insufficient deoxidation, and dripping of the molten metal is likely to occur. In addition, weld defects such as blow holes are generated in the welded portion, and the strength and toughness are likely to decrease. If the Mn content exceeds 3.0% by mass, the strength of the weld metal becomes too high. Therefore, the content of Mn as a metal or alloy is 1.0 to 3.0% by mass.

「金属又は合金としてのSi含有量(合金の場合はSi換算値)[Si]:0.3乃至0.6質量%」
Siは金属又はFe−Si、Fe−Si−Mn及びCa−Si等の合金によって添加される。Siは脱酸剤として作用し、溶接金属における引張強度を向上させる作用を有する。Siの含有量が0.3質量%未満であると、脱酸不足によって粘性が低下し、溶融金属の垂れ落ちが発生しやすくなる。また、溶接部にブローホール等の溶接欠陥が発生しやすくなる。Siの含有量が0.6質量%を超えると、溶接金属の引張強度が高くなり、靭性が低下する。従って、金属又は合金としてのSiの含有量は0.3乃至0.6質量%である。
“Si content as metal or alloy (Si equivalent in case of alloy) [Si]: 0.3 to 0.6 mass%”
Si is added by a metal or an alloy such as Fe-Si, Fe-Si-Mn and Ca-Si. Si acts as a deoxidizer and has the effect of improving the tensile strength of the weld metal. When the Si content is less than 0.3% by mass, the viscosity is lowered due to insufficient deoxidation, and dripping of the molten metal is likely to occur. In addition, welding defects such as blow holes are likely to occur in the welded portion. If the Si content exceeds 0.6% by mass, the tensile strength of the weld metal increases and the toughness decreases. Therefore, the content of Si as a metal or alloy is 0.3 to 0.6% by mass.

「金属又は合金としてのAl含有量(合金の場合はAl換算値):0.1乃至0.3質量%」
Alは金属又はFe−Al等の合金によって添加される。Alは脱酸剤及びスラグ形成剤として作用する。Alの含有量が0.1質量%未満であると、脱酸剤及びスラグ形成剤不足によって溶融金属の垂れ落ちが発生しやすくなる。一方、Alの含有量が0.3質量%を超えると、溶融金属が過度に溶接部に析出するため溶接金属の靭性が低下する。従って、金属又は合金としてのAlの含有量は0.1乃至0.3質量%である。
“Al content as metal or alloy (in the case of alloy, Al conversion value): 0.1 to 0.3 mass%”
Al is added by a metal or an alloy such as Fe-Al. Al acts as a deoxidizer and slag former. When the Al content is less than 0.1% by mass, the molten metal sags easily due to the lack of a deoxidizer and a slag forming agent. On the other hand, when the Al content exceeds 0.3% by mass, the molten metal is excessively precipitated in the welded portion, so that the toughness of the weld metal is lowered. Therefore, the content of Al as a metal or alloy is 0.1 to 0.3% by mass.

「金属又は合金としてのMg含有量(合金の場合はMg換算値)[Mg]:0.6乃至0.9質量%」
Mgは金属又はAl−Mg及びNi−Mg等の合金によって添加される。Mgは強脱酸剤として作用し、Mgの含有量が0.6質量%未満であると、脱酸不足によって溶接金属の粘性が低下して溶融金属が溶接部から垂れ落ちやすくなると共に、溶接金属の靭性が低下する。一方、Mgの含有量が0.9質量%を超えると、脱酸生成物であるMgOが溶融スラグ中に過剰に増加して溶融金属が溶接部から垂れ落ちやすくなり、スパッタ発生量も増加する。従って、金属又は合金としてのMgの含有量は0.6乃至0.9質量%である。
"Mg content as metal or alloy (Mg in case of alloy) [Mg]: 0.6 to 0.9 mass%"
Mg is added by a metal or an alloy such as Al—Mg and Ni—Mg. Mg acts as a strong deoxidizer, and if the Mg content is less than 0.6% by mass, the weld metal viscosity decreases due to insufficient deoxidation and the molten metal tends to sag from the weld, and welding Metal toughness decreases. On the other hand, if the Mg content exceeds 0.9% by mass, MgO, which is a deoxidation product, excessively increases in the molten slag, and the molten metal tends to sag from the welded portion, resulting in an increase in spatter generation. . Therefore, the content of Mg as a metal or alloy is 0.6 to 0.9% by mass.

「TiO、Al、SiO、及びZrO含有量の総和[TiO]+[Al]+[SiO]+[ZrO]:8.0乃至13.5質量%」
TiO、Al、SiO、及びZrOはスラグ生成剤であり、スラグ生成量はこのスラグ生成剤の総和によって変化する。TiO、Al、SiO、及びZrO含有量の総和が8.0質量%未満であると、スラグ生成剤が不足するため溶融金属の垂れ落ちが発生しやすくなる。一方、TiO、Al、SiO、及びZrO含有量の総和が13.5質量%を超えると、スラグ生成剤量が過多となってスラグ生成量が増加し、スラグが溶接部から垂れ落ちやすくなる。また、スラグの生成量が多いと溶接部にスパッタが発生しやすくなり、また、スラグ巻き込み等の欠陥が発生しやすくなる。従って、TiO、Al、SiO、及びZrO含有量の総和は8.0乃至13.5質量%である。
“Total of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 content [TiO 2 ] + [Al 2 O 3 ] + [SiO 2 ] + [ZrO 2 ]: 8.0 to 13.5 mass% "
TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 are slag generating agents, and the amount of slag generation varies depending on the sum of the slag generating agents. When the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 is less than 8.0% by mass, the slag generator is insufficient, and the molten metal is likely to sag. On the other hand, when the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 exceeds 13.5% by mass, the amount of slag generating agent becomes excessive and the amount of slag generated increases, and the slag is welded. It becomes easy to droop from. Moreover, when there is much production amount of slag, it will become easy to generate | occur | produce a spatter in a welding part, and defects, such as slag entrainment, will occur easily. Accordingly, the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 is 8.0 to 13.5% by mass.

「TiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比([TiO]+[Al])/([TiO]+[Al]+[SiO]+[ZrO]):0.85乃至0.95」
TiO及びAlは高融点スラグを生成する成分であり、スラグの流動性及び剥離性を変化させる効果がある。このTiO及びAlの含有量をスラグ生成剤の含有量の総和に対する割合によって規定することによって、スラグの流動性及び剥離性が最適化され、スラグ剥離性の低下及びスパッタ発生量の増加を防止することが可能となるため、立向上進溶接の作業性を向上させることができる。TiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比が0.85未満であると、スラグの流動性が増してスラグが溶融金属を保持することができなくなるため、溶融金属が溶接部から垂れ落ちやすくなる。一方、TiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比が0.95を超えると、スラグの剥離性が低下するため、スラグが溶接部にて焼き付きやすくなる。従って、TiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比は0.85乃至0.95である。
“Ratio of the sum of TiO 2 and Al 2 O 3 content to the sum of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 content ([TiO 2 ] + [Al 2 O 3 ]) / ([TiO 2 ] + [Al 2 O 3 ] + [SiO 2 ] + [ZrO 2 ]): 0.85 to 0.95 ”
TiO 2 and Al 2 O 3 are components that generate high-melting-point slag, and have an effect of changing the fluidity and peelability of the slag. By defining the content of TiO 2 and Al 2 O 3 by the ratio to the sum of the contents of the slag generating agent, the fluidity and peelability of the slag are optimized, the slag peelability is reduced, and the amount of spatter generated is reduced. Since it is possible to prevent the increase, the workability of the vertical improvement welding can be improved. If the ratio of the sum of the TiO 2 and Al 2 O 3 contents to the sum of the TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 contents is less than 0.85, the fluidity of the slag is increased and the slag is increased. Since it becomes impossible to hold | maintain a molten metal, a molten metal becomes easy to sag from a welding part. On the other hand, if the ratio of the sum of the TiO 2 and Al 2 O 3 contents to the sum of the TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 contents exceeds 0.95, the slag peelability is reduced. , The slag is easily seized at the weld. Therefore, the ratio of the sum of the TiO 2 and Al 2 O 3 contents to the sum of the TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 contents is 0.85 to 0.95.

「Si含有量に対するMn及びMg含有量(Mn、Si及びMgは、夫々合金成分の場合はMn、Si及びMg換算値)の積の比[Mn]×[Mg]/[Si]:2.0乃至4.0」
Mn及びMgはSiに比して溶融金属の脱酸性及び粘性を上昇させる効果を有する。このMn及びMgの含有量をSiの含有量に対する比によって規定することによって、溶接金属の機械的性質を低下させることなく溶融金属の脱酸性及び粘性が最適化される。Si含有量に対するMn及びMg含有量の積の比が2.0未満であると、脱酸不足によって溶融金属の粘性が低下し、立向上進溶接において溶融金属の垂れ落ちが発生しやすくなり、更に溶接金属の引張強度及び靭性も低下する。一方、Si含有量に対するMn及びMg含有量の積の比が4.0を超えると、脱酸過剰によって溶接金属の引張強度が過度に高くなり、耐衝撃性が低下すると共に、靱性が低下する。従って、Si含有量に対するMn及びMg含有量の積の比は2.0乃至4.0である。
“Mn and Mg content with respect to Si content (Mn, Si and Mg are Mn, Si and Mg converted values in the case of alloy components, respectively) [Mn] × [Mg] / [Si]: 2. 0 to 4.0 "
Mn and Mg have the effect of increasing the deacidification and viscosity of the molten metal compared to Si. By defining the Mn and Mg contents by the ratio to the Si content, the deacidification and viscosity of the molten metal are optimized without degrading the mechanical properties of the weld metal. If the ratio of the product of Mn and Mg content to the Si content is less than 2.0, the viscosity of the molten metal decreases due to insufficient deoxidation, and dripping of the molten metal is likely to occur in the vertical improvement welding, Furthermore, the tensile strength and toughness of the weld metal are also reduced. On the other hand, when the ratio of the product of Mn and Mg content to Si content exceeds 4.0, the tensile strength of the weld metal becomes excessively high due to excessive deoxidation, impact resistance is lowered, and toughness is lowered. . Therefore, the ratio of the product of Mn and Mg content to Si content is 2.0 to 4.0.

「Na及びK含有量(Na及びKは、夫々化合物又は合金の形態で存在する場合はNa換算値[Na]及びK換算値[K])の和[Na]+[K]:0.15乃至0.25質量%」
Na及びKはアーク安定剤としての作用があり、溶融プールの振動を抑制することによって溶融金属の溶接部からの垂れ落ちを防止する。Na及びK含有量の和が0.15質量%未満であると、溶融プールの振動を抑制する効果が十分に得られず、0.25質量%を超えるとNaO及びKO等の低融点スラグが過剰に発生して溶融金属が溶接部から垂れ落ちやすくなる。従って、Na及びK含有量の和は0.15乃至0.25質量%である。
“Na and K content (when Na and K are present in the form of a compound or an alloy, Na converted value [Na] and K converted value [K]) [Na] + [K]: 0.15 Thru 0.25 mass% "
Na and K act as an arc stabilizer and prevent dripping of the molten metal from the welded portion by suppressing the vibration of the molten pool. If the sum of the Na and K contents is less than 0.15% by mass, the effect of suppressing the vibration of the molten pool cannot be sufficiently obtained, and if it exceeds 0.25% by mass, Na 2 O, K 2 O, etc. Low melting point slag is excessively generated and the molten metal tends to sag from the weld. Therefore, the sum of the Na and K contents is 0.15 to 0.25% by mass.

「K含有量に対するNa含有量(Na及びKは、夫々化合物又は合金の形態で存在する場合はNa換算値[Na]及びK換算値[K])の比[Na]/[K]:0.20乃至0.40」
Kはアーク集中性、Naはアーク安定性を向上させる効果を有する。K含有量に対するNa含有量の比が0.20未満であると、アーク安定性が劣化し、スパッタの発生量が増加すると共に、溶融金属の垂れ落ちが発生しやすくなり、0.40を超えるとアークの集中性が増加してスパッタの発生量が増加しやすくなる。従って、K含有量に対するNa含有量の比は0.20乃至0.40である。
“Ratio of Na content to Na content (Na and K are Na converted value [Na] and K converted value [K] if they are in the form of a compound or an alloy, respectively) [Na] / [K]: 0 .20 to 0.40 "
K has the effect of improving arc concentration, and Na has the effect of improving arc stability. When the ratio of the Na content to the K content is less than 0.20, the arc stability deteriorates, the amount of spatter generated increases, and dripping of the molten metal tends to occur, exceeding 0.40. As a result, the concentration of arc increases and the amount of spatter generated tends to increase. Therefore, the ratio of Na content to K content is 0.20 to 0.40.

「Ti、Zr、Cu、Cr、Nb及びVの内1種以上の含有量合計:0.5質量%以下」
Ti、Zr、Cu、Cr、Nb及びVは溶接部の耐食性、高強度及び耐高温腐食性を向上させる作用がある。しかし、これらの成分が総量でワイヤ全質量あたり0.5質量%を超えると、引張強度が過剰となると共に、衝撃値も低下する。
“Total content of one or more of Ti, Zr, Cu, Cr, Nb and V: 0.5% by mass or less”
Ti, Zr, Cu, Cr, Nb and V have the effect of improving the corrosion resistance, high strength and high temperature corrosion resistance of the weld. However, if the total amount of these components exceeds 0.5% by mass per total mass of the wire, the tensile strength becomes excessive and the impact value also decreases.

本発明のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤは、上記以外の成分として外皮、Fe−Mn、及びFe−Si等の鉄合金、並びに鉄粉由来の鉄成分をワイヤ全質量あたり70乃至90質量%含有する。鉄成分の含有量が70質量%を下回ると溶接金属の溶着効率が著しく低下し、90質量%を超えると鉄成分が過剰となって他の成分の含有量が減少し、夫々の成分の添加効果が得られなくなる。また、本発明のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤには、フッ化物をワイヤ全質量あたり0.05乃至0.1質量%含有させることができる。フッ化物の含有量が0.05質量%未満であると、拡散性水素量の大幅な上昇を招き、0.1質量%を超えるとヒュームの増加によって溶接作業が困難となる。残部は不可逆的不純物である。   The flux-cored wire for titania-based gas shielded arc welding according to the present invention contains, as a component other than the above, an iron alloy such as an outer sheath, Fe—Mn, and Fe—Si, and an iron component derived from iron powder in an amount of 70 to 90 per total mass of the wire. Contains by mass%. If the content of the iron component is less than 70% by mass, the welding efficiency of the weld metal is remarkably reduced, and if it exceeds 90% by mass, the iron component becomes excessive and the content of other components is reduced. The effect cannot be obtained. Further, the flux-cored wire for titania-based gas shielded arc welding of the present invention can contain 0.05 to 0.1% by mass of fluoride per total mass of the wire. If the content of fluoride is less than 0.05% by mass, the amount of diffusible hydrogen is significantly increased, and if it exceeds 0.1% by mass, welding is difficult due to an increase in fume. The balance is irreversible impurities.

なお、本発明に係るチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤの外皮は、被溶接材の材質に応じて適宜、軟鋼、高張力鋼又は低合金鋼等を使用することが好ましい。また、このワイヤの表面状態は特に限定されるものではなく、図1(a)乃至(d)に示すように、ワイヤの断面形状及び径も特に限定されるものではない。そして、上述したチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤは、軟鋼、高張力鋼又は低合金鋼等の溶接において使用することができる。   In addition, it is preferable to use mild steel, high-tensile steel, low alloy steel, or the like as the outer sheath of the flux-cored wire for titania-based gas shielded arc welding according to the present invention depending on the material of the material to be welded. Moreover, the surface state of the wire is not particularly limited, and the cross-sectional shape and diameter of the wire are not particularly limited as shown in FIGS. And the above-mentioned flux cored wire for titania-based gas shielded arc welding can be used in welding mild steel, high-tensile steel, low alloy steel or the like.

以下、本実施形態のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤの効果を示す実施例を比較例とともに示す。   Hereinafter, examples showing the effects of the flux-cored wire for titania-based gas shielded arc welding of this embodiment will be shown together with comparative examples.

表1に示す組成(質量%)及び寸法を有するJIS G3141に規定される一般冷延鋼板(SPCC)を外皮として、この外皮内にフラックスを充填してガスシールドアーク溶接を行った。   A general cold-rolled steel sheet (SPCC) defined in JIS G3141 having the composition (mass%) and dimensions shown in Table 1 was used as an outer skin, and the outer shell was filled with a flux to perform gas shield arc welding.

フラックスは、表2に示す中から選択した材料を配合することにより組成を調整し、図1(a)に示すようにワイヤ全質量に対するフラックス率が16質量%となるように外皮内に充填してワイヤ外径1.4mmの実施例及び比較例のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤを作製し、このワイヤを用いて溶接を行った。そして、立向上進溶接性、スパッタ発生量及び溶接金属の機械的性質の評価を行った。各実施例及び比較例のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤの組成を表3−1乃至6に示す。   The composition of the flux is adjusted by blending a material selected from those shown in Table 2, and is filled in the outer skin so that the flux rate with respect to the total mass of the wire is 16% by mass as shown in FIG. Then, a flux-cored wire for titania-based gas shielded arc welding of Examples and Comparative Examples having a wire outer diameter of 1.4 mm was produced, and welding was performed using this wire. Then, the evaluation was made on the vertical improvement weldability, the amount of spatter generated, and the mechanical properties of the weld metal. Tables 3-1 to 6 show the compositions of the flux-cored wires for titania-based gas shielded arc welding of each example and comparative example.

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

立向溶接性及びスパッタ発生量の評価は、表4に示す組成を有するJIS G3106に規定される溶接構造用圧延鋼材(SM490A)からなる板厚12mm、長さ400mmの試験板を母材とし、この母材を開先のルートギャップ4mmにてT字に交差させて配置し、この開先に対してCOをシールドガスとして供給しながらすみ肉溶接を行って評価した。なお、溶接電流値は320A、アーク電圧は31V、シールドガスの流量は25L/分とし、溶接速度は8乃至14cm/分とした。立向上進溶接におけるビードの垂れ抑制性が良好である場合を○、従来と同等以下であるものを×として表3−1乃至3−6に示す。また、スパッタ発生量が1.5mg/分未満であるものをスパッタ発生抑制性ありとして判定した。スパッタ発生抑制性が良好であるものを○、従来と同等以下であるものを×として表3−1乃至表3−6に示す。 Evaluation of vertical weldability and spatter generation amount is based on a test plate having a thickness of 12 mm and a length of 400 mm made of rolled steel for welded structure (SM490A) defined in JIS G3106 having the composition shown in Table 4, This base material was arranged so as to intersect with a T shape at a groove root gap of 4 mm, and fillet welding was performed while supplying CO 2 as a shielding gas to the groove and evaluated. The welding current value was 320 A, the arc voltage was 31 V, the shield gas flow rate was 25 L / min, and the welding speed was 8 to 14 cm / min. Tables 3-1 to 3-6 show the case where the drooping suppression property of the bead in the vertical improvement welding is good, and the case where it is equal to or less than the conventional case is shown as x. Moreover, the thing whose sputter | spatter generation amount is less than 1.5 mg / min was determined as having sputter | spatter generation | occurrence suppression property. Tables 3-1 to 3-6 show the case where the spatter generation suppressing property is good and the case where it is equal to or less than the conventional case as x.

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

Figure 0005283993
Figure 0005283993

溶接金属の機械的性質の評価には、表4に示す組成(質量%)を有する板厚20mm、幅150mm、長さ300mmの鋼板を母材として使用した。この母材を開先角度45°、ルートギャップ12mmで向かい合わせて配置し、母材の裏側に母材と同様のSM490A製の裏当て金を配置した。この開先に対しCOをシールドガスとして25L/分の流量で供給しながら表3−1乃至表3−6に示す組成を有する実施例及び比較例のワイヤを用いてガスシールドアーク溶接を行った。なお、溶接電流は280A、溶接金属の積層方法は3層4パスとし、溶接入熱は35kJ/cmとした。そして、この溶接部に対してJIS Z 3111に規定されるシャルピー衝撃試験及び引張試験を夫々2回ずつ行った。シャルピー衝撃試験による吸収エネルギーについては、70J以上であるものを良好(○)とし、47J以上70J未満のものをやや良好(△)とし、47J未満のものを不良(×)として判定した。引張試験による引張強度については、550MPa以上600MPa以下であるものを良好(○)とし、600MPaを超え、620MPa以下のものをやや良好(△)とし、620MPaを超えるものを不良(×)として判定した。そして、機械的性質として両者を加味し、衝撃値及び引張強度のいずれも○である場合を機械的性質が○であるとし、衝撃値及び引張強度の組み合わせとして、(○、△)及び(△、△)の場合を機械的性質が△であるとし、衝撃値及び引張強度のいずれかが×である場合に、機械的性質が×であるとした。その結果を表3−1乃至表3−6に併せて示す。 For the evaluation of the mechanical properties of the weld metal, a steel plate having a composition (mass%) shown in Table 4 having a thickness of 20 mm, a width of 150 mm, and a length of 300 mm was used as a base material. This base material was placed facing each other with a groove angle of 45 ° and a root gap of 12 mm, and a backing metal made of SM490A similar to the base material was placed on the back side of the base material. Gas shield arc welding was performed using the wires of Examples and Comparative Examples having the compositions shown in Tables 3-1 to 3-6 while supplying CO 2 as a shielding gas to the groove at a flow rate of 25 L / min. It was. The welding current was 280 A, the welding metal lamination method was 3 layers and 4 passes, and the welding heat input was 35 kJ / cm. And the Charpy impact test and tension test prescribed | regulated to JISZ3111 were each performed twice each to this welded part. Regarding the absorbed energy by the Charpy impact test, a value of 70 J or more was determined as good (◯), a value of 47 J or more and less than 70 J was determined as slightly good (Δ), and a value of less than 47 J was determined as defective (×). About the tensile strength by a tensile test, the thing which is 550 MPa or more and 600 MPa or less was made favorable ((circle)), the thing over 600 MPa, the thing below 620 MPa was made somewhat good ((triangle | delta)), and the thing over 620 MPa was judged as bad (x). . Then, both are considered as mechanical properties. When both the impact value and the tensile strength are ◯, the mechanical property is ◯. As a combination of the impact value and the tensile strength, (◯, △) and (△ , Δ), the mechanical property is Δ, and when either the impact value or the tensile strength is X, the mechanical property is X. The results are also shown in Tables 3-1 to 3-6.

表3−1及び表3−2は本発明の範囲を満足する実施例、表3−3乃至表3−6は本発明の範囲から外れる比較例である。表3−1及び表3−2に示すように、実施例1乃至10は本発明の範囲を満足し、高溶接電流を使用した立向上進溶接における優れた耐ビード垂れ性及びスパッタ発生抑制性が得られ、更に、優れた溶接金属の機械的性質が得られた。   Tables 3-1 and 3-2 are examples that satisfy the scope of the present invention, and Tables 3-3 to 3-6 are comparative examples that are out of the scope of the present invention. As shown in Table 3-1 and Table 3-2, Examples 1 to 10 satisfy the scope of the present invention, and are excellent in bead sagging resistance and spatter generation suppression in stand-up advance welding using a high welding current. In addition, excellent mechanical properties of the weld metal were obtained.

比較例1はTiOの含有量が本発明の範囲を下回り、更にTiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比が本発明の範囲を下回っているため、立向上進溶接におけるビードの垂れ抑制性が得られなかった。比較例2はTiO2の含有量並びにTiO、Al、SiO、及びZrO含有量の総和が本発明の範囲を超え、スラグ量過多による溶融金属の垂れ及びスパッタ発生量の増加が確認された。 In Comparative Example 1, the content of TiO 2 is lower than the range of the present invention, and the ratio of the sum of TiO 2 and Al 2 O 3 content to the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 However, since it is below the range of the present invention, it was not possible to obtain a bead sag-suppressing property in vertical improvement welding. Comparative Example 2 The content of TiO2 and TiO 2, Al 2 O 3, SiO 2, and the sum of the content of ZrO 2 exceeds the range of the present invention, an increase of sag and spatter of molten metal by slag Excessive amount confirmed.

比較例3はAlの含有量が本発明の範囲を下回り、スラグの粘性不足のためにビードの垂れ抑制性が得られなかった。比較例4はAlの含有量が本発明の範囲を超え、大粒のスパッタが多く発生した。比較例5はSiO含有量が本発明の範囲を下回り、スラグ形成剤過小によって溶融金属の垂れが確認された。一方、比較例6はSiO含有量が本発明の範囲を超え、スラグの粘性低下によって溶融金属の垂れが発生した。比較例7はZrO含有量が本発明の範囲を下回り、スラグの所望の凝固点上昇が得られずに溶融金属の垂れが確認された。比較例8はZrO含有量が本発明の範囲を超え、スパッタの発生量が増加し、スラグの粘性低下によって溶融金属の垂れが発生した。 In Comparative Example 3, the content of Al 2 O 3 was below the range of the present invention, and bead sag suppression was not obtained due to insufficient viscosity of the slag. In Comparative Example 4, the content of Al 2 O 3 exceeded the range of the present invention, and many large spatters were generated. In Comparative Example 5, the content of SiO 2 was below the range of the present invention, and the dripping of the molten metal was confirmed due to the slag forming agent being too small. On the other hand, in Comparative Example 6, the content of SiO 2 exceeded the range of the present invention, and dripping of the molten metal occurred due to a decrease in slag viscosity. In Comparative Example 7, the ZrO 2 content was below the range of the present invention, and the desired freezing point increase of the slag was not obtained, and the dripping of the molten metal was confirmed. In Comparative Example 8, the ZrO 2 content exceeded the range of the present invention, the amount of spatter generated increased, and dripping of molten metal occurred due to a decrease in slag viscosity.

比較例9はTiO、Al、SiO、及びZrO含有量の総和が本発明の範囲を下回り、スラグ形成剤不足によって溶融金属の垂れが確認された。一方、比較例10はTiO、Al、SiO、及びZrO含有量の総和が本発明の範囲を超え、スラグ生成剤過多によって溶融金属の垂れが確認され、スパッタも多量に発生した。 In Comparative Example 9, the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 was below the range of the present invention, and the dripping of the molten metal was confirmed due to the lack of the slag forming agent. On the other hand, in Comparative Example 10, the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 exceeded the range of the present invention, and the dripping of molten metal was confirmed due to excessive slag generating agent, and a large amount of spatter was also generated. did.

比較例11並びに12は本発明の範囲を満足する実施例に対し、SiOの含有量を調整してTiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比を変化させた比較例である。比較例11はSiOの含有量が本発明の範囲を超え、更にTiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比が本発明の範囲を下回り、スラグの粘性不足によって立向上進溶接における溶融金属の垂れが発生した。一方、比較例12はSiOの含有量が本発明の範囲を下回り、更にTiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比が本発明の範囲を超えるため、大粒のスパッタが多く発生した。 Comparative Examples 11 and 12 are examples in which the range of the present invention is satisfied, and the content of SiO 2 is adjusted to adjust the content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 to the total content of TiO 2 and Al. 2 O 3 is a comparative example of changing the ratio of the sum of the contents. In Comparative Example 11, the content of SiO 2 exceeds the range of the present invention, and the ratio of the sum of the content of TiO 2 and Al 2 O 3 to the total content of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 However, it was below the scope of the present invention, and the dripping of molten metal occurred in the vertical improvement welding due to insufficient viscosity of the slag. On the other hand, Comparative Example 12 is below the range the content of SiO 2 is of the present invention, further the sum of TiO 2, Al 2 O 3, SiO 2, and TiO 2 and Al 2 O 3 content to the sum of the content of ZrO 2 This ratio exceeded the range of the present invention, and many large spatters were generated.

比較例13はMnの含有量並びにSi含有量に対するMn及びMg含有量の積の比が本発明の範囲を下回り、脱酸不足によって溶融金属の靱性が低下し、溶融金属の粘性低下によって立向上進溶接における溶融金属の垂れが確認された。一方、比較例14はMnの含有量が本発明の範囲を超え、溶接金属の過度の粘性上昇によって引張強度が過剰となった。   In Comparative Example 13, the ratio of the Mn content and the product of the Mn and Mg contents to the Si content is below the range of the present invention, the toughness of the molten metal is reduced due to insufficient deoxidation, and the rise in the viscosity of the molten metal is improved. The dripping of the molten metal was confirmed in the progressive welding. On the other hand, in Comparative Example 14, the Mn content exceeded the range of the present invention, and the tensile strength became excessive due to an excessive increase in the viscosity of the weld metal.

比較例15はSi含有量が本発明の範囲を下回り、脱酸不足によって溶接金属の靱性が低下すると共に、立向上進溶接における溶融金属の垂れの発生が確認された。一方、比較例16はSiの含有量が本発明の範囲を超え、粘性が乏しいSiOがスラグ中に過剰に生成し、溶融金属の垂れが発生した。比較例17は、Alの含有量が本発明の範囲を下回り、スラグ及び溶融金属の粘性の低下によって溶融金属の垂れが発生した。比較例18はAlの含有量が本発明の範囲を超え、合金成分が過度に溶接部に析出して溶接金属の引張強度が過剰となり、溶接金属の靭性が低下した。比較例19は、Mgの含有量が本発明の範囲を下回り、脱酸不足によって溶融金属の粘性が不足して溶融金属の垂れが発生し、更に溶接金属の靱性が低下した。一方、比較例20はMgの含有量が本発明の範囲を超え、大粒のスパッタが多く発生し、更に合金成分が過度に溶接部に析出して溶接金属の引張強度が過剰となった。 In Comparative Example 15, the Si content was below the range of the present invention, and the toughness of the weld metal was lowered due to insufficient deoxidation, and the occurrence of dripping of molten metal in the vertical improvement welding was confirmed. On the other hand, in Comparative Example 16, the Si content exceeded the range of the present invention, and SiO 2 having poor viscosity was excessively generated in the slag, and dripping of the molten metal occurred. In Comparative Example 17, the Al content was below the range of the present invention, and the dripping of the molten metal occurred due to the decrease in the viscosity of the slag and the molten metal. In Comparative Example 18, the Al content exceeded the range of the present invention, the alloy components were excessively deposited on the welded portion, the weld metal had excessive tensile strength, and the weld metal toughness decreased. In Comparative Example 19, the Mg content was lower than the range of the present invention, and the molten metal was insufficient due to insufficient deoxidation, resulting in dripping of the molten metal, and the toughness of the weld metal further decreased. On the other hand, in Comparative Example 20, the Mg content exceeded the range of the present invention, a large amount of spatter was generated, and the alloy components were excessively deposited on the welded portion, resulting in excessive tensile strength of the weld metal.

比較例21はSiの含有量に対するMn及びMg含有量の積の比が本発明の範囲を下回り、脱酸不足によって溶融金属の粘性が低下し、立向上進溶接における溶融金属の垂れが確認され、更に、溶接金属の引張強度及び靱性が低下した。一方、比較例22はSi含有量に対するMn及びMg含有量の積の比が本発明の範囲を超え、脱酸過剰によって溶接金属の引張強度が過度に高くなり、更に、靱性が低下した。   In Comparative Example 21, the ratio of the product of Mn and Mg content to the Si content is below the range of the present invention, and the viscosity of the molten metal is reduced due to insufficient deoxidation, and it is confirmed that the molten metal sags in the vertical improvement welding. Furthermore, the tensile strength and toughness of the weld metal decreased. On the other hand, in Comparative Example 22, the ratio of the product of Mn and Mg content to the Si content exceeded the range of the present invention, and the tensile strength of the weld metal was excessively increased due to excessive deoxidation, and the toughness was further decreased.

比較例23はNa及びK含有量の和が本発明の範囲を下回り、アークが不安定となって大粒のスパッタの発生量が増加し、更に、溶融池の振動が大きくなり、スラグ及び溶融金属の垂れが発生した。比較例24はNa及びK含有量の和が本発明の範囲を超え、粘性に乏しいNaO及びKOが過剰に生成して立向上進溶接における溶融金属の垂れが発生した。比較例25はK含有量に対するNa含有量の比が本発明の範囲を下回り、アークの吹きつけ力が強くなってスラグ及び溶融金属の垂れが発生した。一方、比較例26はK含有量に対するNa含有量の比が本発明の範囲を超え、アークの集中性が増加してスパッタの発生量が増加した。 In Comparative Example 23, the sum of the Na and K contents falls below the range of the present invention, the arc becomes unstable, the amount of large spatter generated increases, the vibration of the molten pool increases, slag and molten metal Sagging occurred. In Comparative Example 24, the sum of the Na and K contents exceeded the range of the present invention, and Na 2 O and K 2 O having poor viscosity were excessively generated, and dripping of molten metal occurred in the vertical improvement welding. In Comparative Example 25, the ratio of the Na content to the K content was below the range of the present invention, the arc blowing force was increased, and slag and molten metal sagging occurred. On the other hand, in Comparative Example 26, the ratio of the Na content to the K content exceeded the range of the present invention, the arc concentration increased, and the amount of spatter generated increased.

本発明の範囲を満足する実施例1乃至12のうち、実施例1乃至10は本発明の請求項2を満足する実施例である。実施例1乃至10はTi、Zr、Cu、Cr、Nb及びVの内1種以上の含有量の合計が本発明の範囲を満足し、実施例11は本願請求項1は満たすが請求項2は満足しないものであり、実施例12は本願請求項2の成分を含有しないものである。これらの実施例12及び13は、実施例1乃至10よりは特性が全体で劣るものの、比較例1乃至26よりは、全体で特性が優れている。   Among Examples 1 to 12 that satisfy the scope of the present invention, Examples 1 to 10 are examples that satisfy claim 2 of the present invention. In Examples 1 to 10, the total content of at least one of Ti, Zr, Cu, Cr, Nb, and V satisfies the scope of the present invention, and Example 11 satisfies Claim 1 of the present application, but Claim 2 Is not satisfied, and Example 12 does not contain the component of Claim 2 of the present application. Although these Examples 12 and 13 are generally inferior in characteristics to Examples 1 to 10, they are generally superior in characteristics to Comparative Examples 1 to 26.

フラックス入りワイヤの断面を示す図である。It is a figure which shows the cross section of a flux cored wire.

符号の説明Explanation of symbols

1:フラックス入りワイヤ、1a:外皮、1b:フラックス 1: flux-cored wire, 1a: outer skin, 1b: flux

Claims (2)

軟鋼、高張力鋼又は低合金鋼製の金属外皮にフラックスを充填したチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量あたり、TiO:6.0乃至12.0質量%、Al:0.7乃至1.0質量%、SiO:0.6乃至1.0質量%、ZrO:0.1乃至0.3質量%、を含有し、更に、金属又は合金としてMn:1.0乃至3.0質量%(合金の場合はMn換算値)、Si:0.3乃至0.6質量%(合金の場合はSi換算値)、Al:0.1乃至0.3質量%(合金の場合はAl換算値)、及びMg:0.6乃至0.9質量%(合金の場合はMg換算値)を含有し、
TiO含有量を[TiO]、Al含有量を[Al]、SiO含有量を[SiO]、ZrO含有量を[ZrO]、金属又は合金としてのMn含有量(合金の場合はMn換算値)を[Mn]、金属又は合金としてのSi含有量(合金の場合はSi換算値)を[Si]、金属又は合金としてのMg含有量(合金の場合はMg換算値)を[Mg]、Na含有量(化合物又は合金の場合はNa換算値)を[Na]、K含有量(化合物又は合金の場合はK換算値)[K]とするとき、
TiO、Al、SiO、及びZrO含有量の総和[TiO]+[Al]+[SiO]+[ZrO]が8.0乃至13.5質量%、TiO、Al、SiO、及びZrO含有量の総和に対するTiO及びAl含有量の和の比([TiO]+[Al])/([TiO]+[Al]+[SiO]+[ZrO])が0.85乃至0.95、Si含有量に対するMn及びMg含有量の積の比[Mn]×[Mg]/[Si]が2.0乃至4.0、Na及びK含有量の和[Na]+[K]が0.15乃至0.25質量%、K含有量に対するNa含有量の比[Na]/[K]が0.20乃至0.40であることを特徴とするチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤ。
In a flux-cored wire for titania-based gas shielded arc welding in which a metal sheath made of mild steel, high-strength steel or low-alloy steel is filled with flux, TiO 2 : 6.0 to 12.0% by mass, Al 2 per total mass of the wire O 3 : 0.7 to 1.0% by mass, SiO 2 : 0.6 to 1.0% by mass, ZrO 2 : 0.1 to 0.3% by mass, and Mn as a metal or alloy : 1.0 to 3.0% by mass (Mn equivalent value in case of alloy), Si: 0.3 to 0.6% by mass (Si equivalent value in case of alloy), Al: 0.1 to 0.3% Containing mass% (Al equivalent value in case of alloy) and Mg: 0.6 to 0.9 mass% (Mg equivalent value in case of alloy),
TiO 2 content [TiO 2 ], Al 2 O 3 content [Al 2 O 3 ], SiO 2 content [SiO 2 ], ZrO 2 content [ZrO 2 ], Mn as metal or alloy The content (Mn equivalent value in case of alloy) is [Mn], Si content as metal or alloy (Si equivalent value in case of alloy) is [Si], Mg content as metal or alloy (in case of alloy) Is Mg conversion value [Mg], Na content (Na conversion value in the case of a compound or alloy) is [Na], K content (K conversion value in the case of a compound or alloy) [K],
The total [TiO 2 ] + [Al 2 O 3 ] + [SiO 2 ] + [ZrO 2 ] of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 content is 8.0 to 13.5 mass%, Ratio of the sum of TiO 2 and Al 2 O 3 content to the sum of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 content ([TiO 2 ] + [Al 2 O 3 ]) / ([TiO 2 ] + [Al 2 O 3 ] + [SiO 2 ] + [ZrO 2 ]) is 0.85 to 0.95, and the ratio of the product of Mn and Mg content to Si content [Mn] × [Mg] / [ Si] is 2.0 to 4.0, the sum of Na and K contents [Na] + [K] is 0.15 to 0.25 mass%, and the ratio of Na content to K content [Na] / [ K] is 0.20 to 0.40, and a titania-based gas shielded arc is characterized by Contact for flux-cored wire.
ワイヤ全質量あたり、Ti、Zr、Cu、Cr、Nb及びVのうち、1種以上を総計で0.5質量%以下含有することを特徴とする請求項1に記載のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤ。 2. The titania-based gas shielded arc welding according to claim 1, wherein the total amount of Ti, Zr, Cu, Cr, Nb and V is 0.5% by mass or less per total mass of the wire. Flux cored wire.
JP2008179040A 2008-07-09 2008-07-09 Flux-cored wire for titania-based gas shielded arc welding Expired - Fee Related JP5283993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008179040A JP5283993B2 (en) 2008-07-09 2008-07-09 Flux-cored wire for titania-based gas shielded arc welding
CN2009101389730A CN101623799B (en) 2008-07-09 2009-05-21 Flux-cored wire for titanic oxide gas shielded arc welding
KR1020090062091A KR20100006546A (en) 2008-07-09 2009-07-08 Titania-based flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179040A JP5283993B2 (en) 2008-07-09 2008-07-09 Flux-cored wire for titania-based gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2010017733A JP2010017733A (en) 2010-01-28
JP5283993B2 true JP5283993B2 (en) 2013-09-04

Family

ID=41519872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179040A Expired - Fee Related JP5283993B2 (en) 2008-07-09 2008-07-09 Flux-cored wire for titania-based gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP5283993B2 (en)
KR (1) KR20100006546A (en)
CN (1) CN101623799B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106736027A (en) * 2016-12-15 2017-05-31 昆山京群焊材科技有限公司 A kind of 1Cr 0.5Mo V power stations steel-casting repair welding flux-cored wire of extremely low carbon high-purity

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267018B (en) * 2010-06-07 2014-11-05 鞍钢股份有限公司 Flux-cored wire for gas shielded welding
JP5669624B2 (en) * 2010-08-10 2015-02-12 株式会社神戸製鋼所 Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material
CN102152027B (en) * 2011-03-17 2013-01-23 北京工业大学 Recycled gas-shielded flux cored wire component and preparation method thereof
CN102873468B (en) * 2012-09-18 2014-10-01 武汉铁锚焊接材料股份有限公司 High-speed flat fillet weld flux-cored wire and preparation and application thereof
JP5845168B2 (en) * 2012-12-28 2016-01-20 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding and gas shielded arc welding method
CN103962746B (en) * 2014-05-08 2016-06-08 广东省工业技术研究院(广州有色金属研究院) A kind of arc welding gas shielded flux cored wire
JP6257508B2 (en) * 2014-12-12 2018-01-10 株式会社神戸製鋼所 Flux-cored wire and welded joint manufacturing method
CN106312370B (en) * 2016-10-28 2018-10-12 北京工业大学 A kind of 308L stainless flux-cored wires for plate sheet welding
CN109128548A (en) * 2018-07-24 2019-01-04 谢颖贤 A kind of tramcar tire welding process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117902A (en) * 1994-08-30 1996-03-06 天津大学 Titanium-type gas shielded flux-cored welding stick
JP3586362B2 (en) * 1997-08-22 2004-11-10 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP3765771B2 (en) * 2002-04-23 2006-04-12 株式会社神戸製鋼所 Stainless steel arc welding flux cored wire
CN100462182C (en) * 2005-11-24 2009-02-18 武汉铁锚焊接材料股份有限公司 Carbon steel cored solder wire for gas-shielded arc welding
JP4986562B2 (en) * 2006-10-02 2012-07-25 株式会社神戸製鋼所 Flux-cored wire for titania-based gas shielded arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106736027A (en) * 2016-12-15 2017-05-31 昆山京群焊材科技有限公司 A kind of 1Cr 0.5Mo V power stations steel-casting repair welding flux-cored wire of extremely low carbon high-purity

Also Published As

Publication number Publication date
CN101623799B (en) 2011-11-16
JP2010017733A (en) 2010-01-28
CN101623799A (en) 2010-01-13
KR20100006546A (en) 2010-01-19

Similar Documents

Publication Publication Date Title
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5205115B2 (en) MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
JP4741445B2 (en) Flux-cored wire for gas shielded arc welding
JP2011125904A (en) Flux cored wire for gas shielded arc welding for weather resistant steel
US20130161303A1 (en) Flux-cored welding wire for carbon steel and process for arc welding
KR100355581B1 (en) Flux cored wire for gas shield arc welding
KR102115725B1 (en) Multi-electrode gas-shielded arc one-side welding method
US10799974B2 (en) Electrodes for forming austenitic and duplex steel weld metal
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
KR101164756B1 (en) Flux-cored wire for welding
KR102117815B1 (en) Multi-electrode gas-shielded arc one-side welding method
JP6085205B2 (en) Flux-cored wire for gas shielded arc welding
JP2019171473A (en) Flux-cored wire
JP2020175433A (en) Ni-BASED ALLOY FLUX-CORED WIRE
JP5361797B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP5448497B2 (en) Flux-cored wire for 2-electrode horizontal fillet gas shielded arc welding
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
KR100578750B1 (en) Metal-based flux cored wire having excelent weldability for high tensile strength steel
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
US20240009779A1 (en) Flux-cored wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5283993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees