JP5668649B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5668649B2
JP5668649B2 JP2011195633A JP2011195633A JP5668649B2 JP 5668649 B2 JP5668649 B2 JP 5668649B2 JP 2011195633 A JP2011195633 A JP 2011195633A JP 2011195633 A JP2011195633 A JP 2011195633A JP 5668649 B2 JP5668649 B2 JP 5668649B2
Authority
JP
Japan
Prior art keywords
secondary battery
current
side wall
positive electrode
wound electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011195633A
Other languages
Japanese (ja)
Other versions
JP2013058368A (en
Inventor
森田 昌宏
昌宏 森田
藤田 秀明
秀明 藤田
谷口 明宏
明宏 谷口
章浩 落合
章浩 落合
平川 靖
靖 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011195633A priority Critical patent/JP5668649B2/en
Publication of JP2013058368A publication Critical patent/JP2013058368A/en
Application granted granted Critical
Publication of JP5668649B2 publication Critical patent/JP5668649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池に関する。   The present invention relates to a secondary battery.

特許文献1には、正極および負極をセパレータを介して対向させて渦巻き状に捲回することにより形成した電極体の正極および負極間に非水電解液を浸透させた電池本体と、電池本体を収納する外装缶(ケース本体)と、外装缶の開口部を塞ぎ、缶内部を封止する缶フタ部(蓋体)とからなる非水電解液二次電池が開示されている。この非水電解液二次電池では、電池内部の温度を感知する金属製の温度感知部材を、缶内部より缶フタ部を貫通して缶外に導かれるように設置している。さらに、温度感知部材により導かれた缶内熱量により、はんだ等の熱溶融部材を溶融することによって、電池電流を遮断する安全装置を装着している。これにより、電池(電極体)の異常昇温時に電池電流を遮断して、非常事態を未然に防止できることが記載されている。   Patent Document 1 discloses a battery body in which a non-aqueous electrolyte is infiltrated between a positive electrode and a negative electrode of an electrode body formed by winding a positive electrode and a negative electrode with a separator facing each other in a spiral shape. A non-aqueous electrolyte secondary battery is disclosed that includes an outer can (case body) to be housed and a can lid (lid) that closes the opening of the outer can and seals the inside of the can. In this non-aqueous electrolyte secondary battery, a metal temperature sensing member that senses the temperature inside the battery is installed so as to penetrate the can lid portion from the inside of the can and be guided outside the can. Further, a safety device is installed that cuts off the battery current by melting the heat melting member such as solder by the amount of heat in the can guided by the temperature sensing member. Thus, it is described that the battery current can be cut off when the battery (electrode body) is abnormally heated to prevent an emergency.

特開2000−182675号公報JP 2000-182675 A

また、二次電池に流れる電流を遮断する機能を有するものとして、電流遮断素子が知られている。この電流遮断素子は、二次電池に電気的に直列に接続され、当該電流遮断素子の温度が一定の電流遮断温度に達すると当該電流遮断素子を流れる電流を遮断することにより、二次電池に流れる電流を遮断する。この電流遮断素子としては、例えば、温度型CID(Current Interrupt Device)や、温度ヒューズなどが知られている。   Moreover, a current interrupting element is known as a device having a function of interrupting a current flowing through the secondary battery. The current interrupting element is electrically connected in series to the secondary battery, and when the temperature of the current interrupting element reaches a certain current interrupting temperature, the current flowing through the current interrupting element is interrupted, thereby Cut off the flowing current. As this current interruption element, for example, a temperature type CID (Current Interrupt Device), a temperature fuse, and the like are known.

ところで、二次電池の蓋体には、電解液をケース内に注入するための注液孔、外部端子(正極外部端子及び負極外部端子)、安全弁などが配置されることが多い。従って、蓋体では、電流遮断素子を配置するスペースが大きく制限される。特に、大電流が流れる二次電池の場合には、大型の電流遮断素子を用いることになるため、二次電池の蓋体に電流遮断素子を配置することが困難になることがあった。   Incidentally, in many cases, the lid of the secondary battery is provided with a liquid injection hole for injecting the electrolyte into the case, external terminals (a positive external terminal and a negative external terminal), a safety valve, and the like. Therefore, in the lid, the space for arranging the current interrupting element is greatly limited. In particular, in the case of a secondary battery through which a large current flows, since a large current interrupting element is used, it may be difficult to arrange the current interrupting element on the lid of the secondary battery.

このため、電流遮断素子を、ケース本体の側壁部の外面に配置することが検討されている。ところが、電流遮断素子を、ケース本体の側壁部の外面に配置した場合、捲回電極体と電流遮断素子との温度差が大きく(捲回電極体の温度に比べて、電流遮断素子の温度がかなり低く)なり、その結果、電流遮断素子によって、捲回電極体の過昇温(電池の安全を確保できる温度を上回ること)を適切に抑制することができない虞があった。具体的には、電流遮断素子の温度が一定の電流遮断温度に達し、電流遮断素子により電池電流が遮断されたときには、捲回電極体の温度が電流遮断温度よりも遙かに高い温度にまで上昇してしまい、捲回電極体の過昇温を適切に防止できない虞があった。   For this reason, arrangement | positioning the electric current interruption element on the outer surface of the side wall part of a case main body is examined. However, when the current interrupting element is arranged on the outer surface of the side wall of the case body, the temperature difference between the wound electrode body and the current interrupting element is large (the temperature of the current interrupting element is higher than the temperature of the wound electrode body). As a result, there is a possibility that an excessive temperature rise of the wound electrode body (exceeding a temperature at which the safety of the battery can be ensured) cannot be appropriately suppressed by the current interrupting element. Specifically, when the temperature of the current interrupting element reaches a certain current interrupting temperature and the battery current is interrupted by the current interrupting element, the temperature of the wound electrode body is much higher than the current interrupting temperature. As a result, the temperature of the wound electrode body may not be appropriately prevented.

本発明は、かかる現状に鑑みてなされたものであって、電流遮断素子をケース本体の側壁部の外面に配置すると共に、捲回電極体と電流遮断素子との温度差を小さくすることができ、その結果、電流遮断素子によって捲回電極体の過昇温を適切に抑制することができる二次電池を提供することを目的とする。   The present invention has been made in view of such a situation, and can arrange a current interruption element on the outer surface of the side wall portion of the case body and reduce a temperature difference between the wound electrode body and the current interruption element. As a result, an object of the present invention is to provide a secondary battery capable of appropriately suppressing an excessive temperature rise of the wound electrode body by the current interrupting element.

本発明の一態様は、少なくとも正極及び負極を捲回した捲回電極体と、開口を有する角形箱状をなし、上記捲回電極体を収容するケース本体と、上記ケース本体の上記開口を閉塞する蓋体と、を備える二次電池において、上記ケース本体の側壁部の外面に配置された電流遮断素子であって、上記二次電池に電気的に直列に接続され、当該電流遮断素子の温度が一定の電流遮断温度に達すると当該電流遮断素子を流れる電流を遮断することにより、上記二次電池に流れる電流を遮断する電流遮断素子と、上記電流遮断素子が配置されている上記ケース本体の上記側壁部である素子配置側壁部を挟んで、上記電流遮断素子と対向する位置で上記ケース本体内部に配置された熱伝導体であって、上記素子配置側壁部の内面と上記捲回電極体とを熱的に接続する熱伝導体と、を備える二次電池である。   One aspect of the present invention includes a wound electrode body in which at least a positive electrode and a negative electrode are wound, a rectangular box shape having an opening, and a case body that accommodates the wound electrode body, and the opening in the case body is closed. A current blocking element disposed on the outer surface of the side wall portion of the case body, and electrically connected in series to the secondary battery, and the temperature of the current blocking element Of the case main body in which the current interrupting element is disposed, and the current interrupting element that interrupts the current flowing through the secondary battery by interrupting the current flowing through the current interrupting element when the current interrupting temperature reaches a certain current interrupting temperature. A heat conductor disposed inside the case body at a position facing the current interrupting element across the element arrangement side wall as the side wall, the inner surface of the element arrangement side wall and the wound electrode body And the thermal A heat conductor connecting, a secondary battery comprising a.

上述の二次電池では、電流遮断素子を、ケース本体の側壁部の外面に配置している。このため、配置スペースの制約が大きい蓋体に電流遮断素子を配置する場合に比べて、電流遮断素子を所望の場所に適切に配置することができる。電流遮断素子を蓋体に配置することが困難な場合に、特に有効な構成となる。   In the secondary battery described above, the current interrupting element is disposed on the outer surface of the side wall portion of the case body. For this reason, compared with the case where a current interruption element is arrange | positioned to the cover body with a large arrangement | positioning space restrictions, a current interruption element can be arrange | positioned appropriately in a desired place. This is a particularly effective configuration when it is difficult to dispose the current interrupting element on the lid.

さらに、上述の二次電池は、電流遮断素子が配置されているケース本体の側壁部(素子配置側壁部という)を挟んで、電流遮断素子と対向する位置で、ケース本体内部に配置された熱伝導体を備えている。この熱伝導体は、素子配置側壁部の内面と捲回電極体とを熱的に接続している。このため、捲回電極体の熱は、熱伝導体を通じて、効率よく、素子配置側壁部に伝達される。従って、上述の二次電池では、捲回電極体の熱を、素子配置側壁部の外面(詳細には、素子配置側壁部を挟んで熱伝導体に対向する部位)に配置された電流遮断素子に、効率よく伝達することができる。これにより、捲回電極体と電流遮断素子との温度差を小さくすることができ、その結果、電流遮断素子によって、捲回電極体の過昇温を適切に抑制することができる。   Furthermore, the above-described secondary battery has a heat disposed in the case body at a position facing the current interrupting element across the side wall portion of the case body (referred to as an element disposition side wall) where the current interrupting element is disposed. It has a conductor. This heat conductor thermally connects the inner surface of the element arrangement side wall portion and the wound electrode body. For this reason, the heat of the wound electrode body is efficiently transmitted to the element arrangement side wall through the heat conductor. Therefore, in the above-described secondary battery, the current interrupting element disposed on the outer surface of the element arrangement side wall (specifically, the portion facing the heat conductor across the element arrangement side wall) in the secondary battery described above. Can be transmitted efficiently. Thereby, the temperature difference between the wound electrode body and the current interrupting element can be reduced, and as a result, the excessive temperature rise of the wound electrode body can be appropriately suppressed by the current interrupting element.

なお、二次電池の蓋体には、例えば、注液孔、外部端子(正極外部端子及び負極外部端子)、安全弁などが配置される。このため、蓋体では、電流遮断素子を配置するスペースが大きく制限される。
また、電流遮断素子としては、例えば、温度型CID(Current Interrupt Device)、温度ヒューズなどが挙げられる。
In addition, a liquid injection hole, an external terminal (a positive electrode external terminal and a negative electrode external terminal), a safety valve, etc. are arrange | positioned at the cover body of a secondary battery, for example. For this reason, in a lid, the space which arranges an electric current interruption element is restricted greatly.
Examples of the current interruption element include a temperature type CID (Current Interrupt Device), a temperature fuse, and the like.

また、捲回電極体としては、正極、負極、及びセパレータを扁平形状に捲回した扁平型の捲回電極体や、正極、負極、及びセパレータを円筒状に捲回した円筒型の捲回電極体を例示できる。   In addition, as the wound electrode body, a flat wound electrode body in which the positive electrode, the negative electrode, and the separator are wound in a flat shape, and a cylindrical wound electrode in which the positive electrode, the negative electrode, and the separator are wound in a cylindrical shape The body can be exemplified.

さらに、上記の二次電池であって、前記熱伝導体は、その一方端側が前記捲回電極体に接合され、その他方端側が前記素子配置側壁部の内面に接合されてなる二次電池とすると良い。   Furthermore, in the above secondary battery, the thermal conductor has one end joined to the wound electrode body and the other end joined to the inner surface of the element arrangement side wall. Good.

熱伝導体の一方端側を捲回電極体に接合し、他方端側を素子配置側壁部の内面に接合することで、熱伝導体を通じた捲回電極体から素子配置側壁部への熱伝導が、効率よく迅速に行われるようになる。これにより、捲回電極体と電流遮断素子との温度差を小さくすることができ、その結果、電流遮断素子によって、捲回電極体の過昇温を適切に抑制することができる。   Heat conduction from the wound electrode body through the heat conductor to the element placement side wall by joining one end of the heat conductor to the wound electrode body and joining the other end to the inner surface of the element placement sidewall. However, it will be done efficiently and quickly. Thereby, the temperature difference between the wound electrode body and the current interrupting element can be reduced, and as a result, the excessive temperature rise of the wound electrode body can be appropriately suppressed by the current interrupting element.

さらに、上記いずれかの二次電池であって、前記熱伝導体は、その一方端側が前記捲回電極体の内部に挿入され、その他方端側が前記素子配置側壁部の内面に接合されてなる二次電池とすると良い。   Furthermore, in any one of the secondary batteries described above, the thermal conductor has one end inserted into the wound electrode body and the other end joined to the inner surface of the element arrangement side wall. A secondary battery is recommended.

熱伝導体の一方端側を捲回電極体の内部に挿し、他方端側を素子配置側壁部の内面に接合することで、熱伝導体を通じた捲回電極体から素子配置側壁部への熱伝導が、効率よく迅速に行われるようになる。これにより、捲回電極体と電流遮断素子との温度差を小さくすることができ、その結果、電流遮断素子によって、捲回電極体の過昇温を適切に抑制することができる。   By inserting one end of the heat conductor into the wound electrode body and joining the other end to the inner surface of the element arrangement side wall, heat from the wound electrode body through the heat conductor to the element arrangement side wall is obtained. Conduction takes place efficiently and quickly. Thereby, the temperature difference between the wound electrode body and the current interrupting element can be reduced, and as a result, the excessive temperature rise of the wound electrode body can be appropriately suppressed by the current interrupting element.

さらに、上記いずれかの二次電池であって、前記熱伝導体は、前記正極または前記負極の電荷を集電する集電板である二次電池とすると良い。   Furthermore, in any of the above secondary batteries, the thermal conductor may be a secondary battery that is a current collecting plate that collects charges of the positive electrode or the negative electrode.

上述の二次電池では、熱伝導体が、正極または負極の電荷を集電する集電板(正極集電板または負極集電板)を兼ねている。換言すれば、正極集電板または負極集電板を、素子配置側壁部の内面と捲回電極体とを熱的に接続する熱伝導体としても用いている。これにより、熱伝導体(集電板)により、捲回電極体の熱を集約して素子配置側壁部に伝達することができるので、捲回電極体から素子配置側壁部への熱伝導を、より一層効率よく行うことができる。また、熱伝導体とは別に集電板を別途設ける場合に比べて、部品点数を削減できるので低コストとなる。   In the secondary battery described above, the thermal conductor also serves as a current collector plate (positive electrode current collector plate or negative electrode current collector plate) that collects positive or negative charge. In other words, the positive electrode current collector plate or the negative electrode current collector plate is also used as a heat conductor that thermally connects the inner surface of the element arrangement side wall portion and the wound electrode body. Thereby, the heat conductor (current collector plate) can condense the heat of the wound electrode body and transmit it to the element arrangement side wall, so that the heat conduction from the wound electrode body to the element arrangement side wall can be It can be performed even more efficiently. Moreover, since the number of parts can be reduced compared with the case where a current collector plate is provided separately from the heat conductor, the cost is reduced.

なお、上述の二次電池では、ケース本体が、集電板を通じて、正極または負極と電気的に接続される。熱伝導体を正極集電板とした場合は、ケース本体が正極と電気的に接続される。この場合、電流経路は、正極外部端子、電流遮断素子、ケース本体(素子配置側壁部)、正極集電板、正極(捲回電極体)の順になる。   In the above secondary battery, the case body is electrically connected to the positive electrode or the negative electrode through the current collector plate. When the heat conductor is a positive electrode current collector, the case body is electrically connected to the positive electrode. In this case, the current path is in the order of the positive external terminal, the current interrupting element, the case body (element arrangement sidewall), the positive current collector, and the positive electrode (winding electrode body).

さらに、上記いずれかの二次電池であって、前記捲回電極体は、前記正極のうち、上記捲回電極体の軸線方向一方端部の位置で捲回されてなる正極合材層未塗工部と、前記負極のうち、上記捲回電極体の軸線方向他方端部の位置で捲回されてなる負極合材層未塗工部と、を有し、上記正極合材層未塗工部または負極合材層未塗工部は、前記素子配置側壁部の内面と対向してなる二次電池とするのが好ましい。   Furthermore, in any one of the above secondary batteries, the wound electrode body is uncoated with a positive electrode mixture layer that is wound at a position of one end in the axial direction of the wound electrode body among the positive electrodes. A negative electrode composite material layer uncoated portion that is wound at the position of the other end in the axial direction of the wound electrode body among the negative electrode, and the positive electrode composite material layer uncoated Preferably, the portion or the negative electrode composite material layer uncoated portion is a secondary battery facing the inner surface of the element arrangement side wall portion.

上述の二次電池では、正極合材層未塗工部または負極合材層未塗工部が、素子配置側壁部の内面と対向している。従って、素子配置側壁部の内面と対向する合材層未塗工部(正極合材層未塗工部または負極合材層未塗工部)に熱伝導体の一方端側を接合し、熱伝導体の他方端側を素子配置側壁部の内面に接合すれば、極めて短い熱伝導経路で、素子配置側壁部の内面と捲回電極体とを熱的に接続することができる。これにより、熱伝導体を通じた捲回電極体から素子配置側壁部への熱伝導を、効率よく迅速に行うことができる。   In the secondary battery described above, the positive electrode mixture layer uncoated portion or the negative electrode mixture layer uncoated portion is opposed to the inner surface of the element arrangement side wall portion. Therefore, one end side of the thermal conductor is bonded to the composite material layer uncoated part (positive electrode composite material layer uncoated part or negative electrode composite material layer uncoated part) facing the inner surface of the element arrangement side wall part, If the other end side of the conductor is joined to the inner surface of the element arrangement side wall portion, the inner surface of the element arrangement side wall portion and the wound electrode body can be thermally connected by an extremely short heat conduction path. Thereby, the heat conduction from the wound electrode body through the heat conductor to the element arrangement side wall can be performed efficiently and promptly.

なお、正極は、正極集電部材(例えば、金属箔)と、その表面に塗工された正極合材層とを有する。また、正極合材層未塗工部とは、正極活物質を含む正極合材層を有することなく、正極を構成する正極集電部材(例えば、金属箔)のみからなる部位をいう。一方、正極のうち正極合材層を有する部位(正極集電部材と正極合材層を有する部位)を、正極合材層塗工部という。   In addition, a positive electrode has a positive electrode current collection member (for example, metal foil) and the positive mix layer coated on the surface. Moreover, the positive electrode mixture layer uncoated portion refers to a portion made only of a positive electrode current collecting member (for example, metal foil) constituting the positive electrode without having a positive electrode mixture layer containing a positive electrode active material. On the other hand, a portion having a positive electrode mixture layer (a portion having a positive electrode current collecting member and a positive electrode mixture layer) in the positive electrode is referred to as a positive electrode mixture layer coating portion.

また、負極は、負極集電部材(例えば、金属箔)と、その表面に塗工された負極合材層とを有する。負極合材層未塗工部とは、負極活物質を含む負極合材層を有することなく、負極を構成する負極集電部材(例えば、金属箔)のみからなる部位をいう。一方、負極のうち負極合材層を有する部位(負極集電部材と負極合材層を有する部位)を、負極合材層塗工部という。   Moreover, a negative electrode has a negative electrode current collection member (for example, metal foil) and the negative mix layer coated on the surface. The negative electrode mixture layer uncoated portion refers to a portion made only of a negative electrode current collecting member (for example, a metal foil) constituting the negative electrode without having a negative electrode mixture layer containing a negative electrode active material. On the other hand, the part (part which has a negative electrode current collection member and a negative electrode composite material layer) which has a negative electrode composite material layer among negative electrodes is called negative electrode composite material layer coating part.

実施例1にかかる二次電池の斜視図である。1 is a perspective view of a secondary battery according to Example 1. FIG. 同二次電池の断面図である。It is sectional drawing of the secondary battery. 同二次電池の断面図であり、図2のB−Bの位置で同二次電池を切断した図に相当する。It is sectional drawing of the secondary battery, and is equivalent to the figure which cut | disconnected the secondary battery in the position of BB of FIG. 同二次電池の捲回電極体の斜視図である。It is a perspective view of the winding electrode body of the secondary battery. 同捲回電極体を構成する負極の斜視図である。It is a perspective view of the negative electrode which comprises the same winding electrode body. 同捲回電極体を構成する正極の斜視図である。It is a perspective view of the positive electrode which comprises the same winding electrode body. 実施例2,3にかかる二次電池の断面図である。4 is a cross-sectional view of a secondary battery according to Examples 2 and 3. FIG. 同二次電池の断面図であり、図7のD−Dの位置で同二次電池を切断した図に相当する。It is sectional drawing of the secondary battery, and is equivalent to the figure which cut | disconnected the secondary battery in the position of DD of FIG. 変形例にかかる二次電池の断面図である。It is sectional drawing of the secondary battery concerning a modification. 同二次電池の断面図であり、図9のE−Eの位置で同二次電池を切断した図に相当する。It is sectional drawing of the secondary battery, and is equivalent to the figure which cut | disconnected the secondary battery in the position of EE of FIG. 比較例にかかる二次電池の断面図である。It is sectional drawing of the secondary battery concerning a comparative example. 同二次電池の断面図であり、図11のC−Cの位置で同二次電池を切断した図に相当する。It is sectional drawing of the secondary battery, and is equivalent to the figure which cut | disconnected the secondary battery in the CC position of FIG.

(実施例1)
次に、本発明の実施例1について説明する。
本実施例1の二次電池100は、図1及び図2に示すように、捲回電極体110と、これを収容する電池ケース180とを備える、リチウムイオン二次電池である。捲回電極体110は、正極130、負極120、及びセパレータ150を捲回した電極体である。
Example 1
Next, Example 1 of the present invention will be described.
As shown in FIGS. 1 and 2, the secondary battery 100 according to the first embodiment is a lithium ion secondary battery including a wound electrode body 110 and a battery case 180 that accommodates the wound electrode body 110. The wound electrode body 110 is an electrode body obtained by winding the positive electrode 130, the negative electrode 120, and the separator 150.

電池ケース180は、アルミニウムからなり、直方体形状をなしている。この電池ケース180は、ケース本体181と蓋体182を有する。このうち、ケース本体181は、開口181jを有する角形箱状をなし、捲回電極体110を収容している。このケース本体181は、4つの側壁部、具体的には、第1側壁部181b、第2側壁部181c、第3側壁部181d、第4側壁部181eを有している(図1〜図3参照)。   The battery case 180 is made of aluminum and has a rectangular parallelepiped shape. The battery case 180 has a case body 181 and a lid 182. Among these, the case main body 181 has a rectangular box shape having the opening 181j, and accommodates the wound electrode body 110. The case main body 181 has four side walls, specifically, a first side wall 181b, a second side wall 181c, a third side wall 181d, and a fourth side wall 181e (FIGS. 1 to 3). reference).

また、蓋体182は、矩形板状であり、ケース本体181の開口181jを閉塞して、このケース本体181に溶接されている。この蓋体182には、安全弁185、注液孔186、及び、注液孔186を封止する注液蓋187が設けられている。   The lid 182 has a rectangular plate shape, and closes the opening 181j of the case main body 181 and is welded to the case main body 181. The lid 182 is provided with a safety valve 185, a liquid injection hole 186, and a liquid injection lid 187 that seals the liquid injection hole 186.

捲回電極体110は、帯状の正極130と帯状の負極120が、帯状のセパレータ150を介して扁平形状に捲回されてなる扁平型の捲回電極体である(図4参照)。詳細には、長手方向DAに延びる帯状の正極130、負極120、及びセパレータ150を、長手方向DAに捲回して、捲回電極体110を形成している(図4〜図6参照)。   The wound electrode body 110 is a flat wound electrode body in which a belt-like positive electrode 130 and a belt-like negative electrode 120 are wound into a flat shape via a belt-like separator 150 (see FIG. 4). Specifically, the strip-shaped positive electrode 130, the negative electrode 120, and the separator 150 extending in the longitudinal direction DA are wound in the longitudinal direction DA to form a wound electrode body 110 (see FIGS. 4 to 6).

正極130は、図6に示すように、長手方向DAに延びる帯状で、アルミニウム箔からなる正極集電部材138と、この正極集電部材138の両面に、それぞれ長手方向DAに延びる帯状に配置された2つの正極合材層131,131とを有している。正極合材層131は、正極活物質137と、アセチレンブラックからなる導電材と、PTFE(結着剤)と、CMC(増粘剤)とを、重量比100:5:4:1の割合で含んでいる。   As shown in FIG. 6, the positive electrode 130 has a strip shape extending in the longitudinal direction DA, and is disposed in a strip shape extending in the longitudinal direction DA on both surfaces of the positive electrode current collector member 138 made of aluminum foil and the positive electrode current collector member 138. Two positive electrode mixture layers 131, 131. The positive electrode mixture layer 131 includes a positive electrode active material 137, a conductive material made of acetylene black, PTFE (binder), and CMC (thickener) in a weight ratio of 100: 5: 4: 1. Contains.

正極130のうち、正極合材層131が塗工されている部位を、正極合材層塗工部130bという。一方、正極合材層131を有することなく、正極集電部材138のみからなる部位を、正極合材層未塗工部130cという。正極合材層未塗工部130cは、正極130の一方長辺に沿って、正極130の長手方向DAに帯状に延びている。この正極合材層未塗工部130cは、捲回されて渦巻き状をなし、捲回電極体110の軸線方向(軸線AXに沿った方向)一方端部(図1及び図4において右端部)に位置している。   A portion of the positive electrode 130 where the positive electrode mixture layer 131 is applied is referred to as a positive electrode mixture layer coating portion 130b. On the other hand, a portion made of only the positive electrode current collector 138 without having the positive electrode mixture layer 131 is referred to as a positive electrode mixture layer uncoated portion 130c. The positive electrode mixture layer uncoated portion 130 c extends in a strip shape in the longitudinal direction DA of the positive electrode 130 along one long side of the positive electrode 130. The positive electrode mixture layer uncoated portion 130c is wound to form a spiral shape, and has one end in the axial direction (direction along the axis AX) of the wound electrode body 110 (the right end in FIGS. 1 and 4). Is located.

なお、本実施例1では、正極活物質137として、LiNi1/3Co1/3Mn1/32を用いている。また、正極集電部材138(アルミニウム箔)は、厚さ15μm、長さ(長手方向DAの寸法)3000mm、幅(幅方向DBの寸法)66mmである。 In Example 1, LiNi 1/3 Co 1/3 Mn 1/3 O 2 is used as the positive electrode active material 137. The positive electrode current collector 138 (aluminum foil) has a thickness of 15 μm, a length (dimension in the longitudinal direction DA) of 3000 mm, and a width (dimension in the width direction DB) of 66 mm.

また、負極120は、図5に示すように、長手方向DAに延びる帯状で、銅箔からなる負極集電部材128と、この負極集電部材128の両面に、それぞれ長手方向DAに延びる帯状に配置された2つの負極合材層121,121とを有している。負極合材層121は、負極活物質127とSBR(結着剤)とCMC(増粘剤)とを、重量比100:1:1の割合で含んでいる。   Further, as shown in FIG. 5, the negative electrode 120 has a strip shape extending in the longitudinal direction DA. The negative electrode current collecting member 128 made of copper foil and strips extending in the longitudinal direction DA on both surfaces of the negative electrode current collecting member 128, respectively. It has two negative electrode mixture layers 121 and 121 arranged. The negative electrode mixture layer 121 includes a negative electrode active material 127, SBR (binder), and CMC (thickener) at a weight ratio of 100: 1: 1.

負極120のうち、負極合材層121が塗工されている部位を、負極合材層塗工部120bという。一方、負極合材層121を有することなく、負極集電部材128のみからなる部位を、負極合材層未塗工部120cという。負極合材層未塗工部120cは、負極120の一方長辺に沿って、負極120の長手方向DAに帯状に延びている。この負極合材層未塗工部120cは、捲回されて渦巻き状をなし、捲回電極体110の軸線方向他方端部(図1及び図4において左端部)に位置している。   A portion of the negative electrode 120 where the negative electrode mixture layer 121 is applied is referred to as a negative electrode mixture layer coating portion 120b. On the other hand, a portion made only of the negative electrode current collecting member 128 without having the negative electrode mixture layer 121 is referred to as a negative electrode mixture layer uncoated portion 120c. The negative electrode mixture layer uncoated portion 120 c extends in a strip shape in the longitudinal direction DA of the negative electrode 120 along one long side of the negative electrode 120. The negative electrode mixture layer uncoated portion 120c is wound to form a spiral shape, and is positioned at the other end portion in the axial direction of the wound electrode body 110 (the left end portion in FIGS. 1 and 4).

なお、本実施例1では、負極活物質127として、黒鉛を用いている。また、負極集電部材128(銅箔)は、厚さ10μm、長さ(長手方向DAの寸法)3300mm、幅(幅方向DBの寸法)69mmである。   In Example 1, graphite is used as the negative electrode active material 127. The negative electrode current collector 128 (copper foil) has a thickness of 10 μm, a length (dimension in the longitudinal direction DA) of 3300 mm, and a width (dimension in the width direction DB) of 69 mm.

セパレータ150は、PP(ポリプロピレン)/PE(ポリエチレン)/PP(ポリプロピレン)の3層からなる厚み24μmのセパレータである。このセパレータ150は、、正極130と負極120との間に介在して、これらを離間させている。セパレータ150には、リチウムイオンを有する非水電解液160を含浸させている。   The separator 150 is a separator having a thickness of 24 μm composed of three layers of PP (polypropylene) / PE (polyethylene) / PP (polypropylene). The separator 150 is interposed between the positive electrode 130 and the negative electrode 120 to separate them. The separator 150 is impregnated with a nonaqueous electrolytic solution 160 having lithium ions.

非水電解液160は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを、体積比で3:3:4に調整した混合有機溶媒に、溶質としてLiPF6を添加した非水電解液である。なお、非水電解液160中のLiPF6の濃度は、1mol/Lとしている。 Nonaqueous electrolyte 160 is a mixed organic solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are adjusted to a volume ratio of 3: 3: 4, and LiPF 6 is added as a solute. Non-aqueous electrolyte. The concentration of LiPF 6 in the non-aqueous electrolyte 160 is 1 mol / L.

さらに、本実施例1の二次電池100では、ケース本体181の第1側壁部181bの外面181fに配置された電流遮断素子140を有している(図1〜図3参照)。電流遮断素子140は、二次電池100に電気的に直列に接続され、当該電流遮断素子140の温度が一定の電流遮断温度(本実施例1では、100℃)に達すると当該電流遮断素子140を流れる電流を遮断することにより、二次電池100に流れる電流を遮断する。これにより、通電(例えば、過充電)による捲回電極体110の過昇温を抑制する。   Furthermore, the secondary battery 100 according to the first embodiment includes the current interrupting element 140 disposed on the outer surface 181f of the first side wall portion 181b of the case body 181 (see FIGS. 1 to 3). The current interruption element 140 is electrically connected to the secondary battery 100 in series, and when the temperature of the current interruption element 140 reaches a certain current interruption temperature (100 ° C. in the first embodiment), the current interruption element 140. By cutting off the current flowing through the secondary battery 100, the current flowing through the secondary battery 100 is cut off. Thereby, the excessive temperature rise of the winding electrode body 110 by electricity supply (for example, overcharge) is suppressed.

この電流遮断素子140は、素子本体部141と、第1端子部142と、第2端子部143とを有している(図1〜図3参照)。素子本体部141は、電気絶縁性を有する熱伝導接着剤により、第1側壁部181bの外面181fに接合されている。第1端子部142は、第1側壁部181bの外面181fに溶接されている。第2端子部143は、接続部材172を通じて、正極外部端子175に電気的に接続されている。   The current interrupting element 140 includes an element main body 141, a first terminal 142, and a second terminal 143 (see FIGS. 1 to 3). The element main body 141 is joined to the outer surface 181f of the first side wall 181b by a heat conductive adhesive having electrical insulation. The first terminal portion 142 is welded to the outer surface 181f of the first side wall portion 181b. The second terminal portion 143 is electrically connected to the positive external terminal 175 through the connection member 172.

電流遮断素子140としては、温度型CID(Current Interrupt Device)、または、温度ヒューズを例示できる。電流遮断素子140は、自身の温度が一定の電流遮断温度(本実施例1では、100℃)に達すると、素子本体部141の内部に位置する導体が溶融することで断線し、これによって自身を流れる電流を遮断する。これにより、二次電池100に流れる電流を遮断する。   Examples of the current interrupt device 140 include a temperature type CID (Current Interrupt Device) or a temperature fuse. When the temperature of the current interrupting element 140 reaches a constant current interrupting temperature (100 ° C. in the first embodiment), the conductor located inside the element main body 141 is melted and disconnected. The current flowing through is cut off. Thereby, the electric current which flows into the secondary battery 100 is interrupted | blocked.

また、本実施例1の二次電池100では、金属板(具体的には、アルミニウム板)からなるコ字形状の熱伝導体171が、電流遮断素子140が配置されているケース本体181の第1側壁部181b(素子配置側壁部)を挟んで、電流遮断素子140と対向する位置でケース本体181の内部に配置されている(図2、図3参照)。なお、熱伝導体171の板厚は1mmである。   Further, in the secondary battery 100 of the first embodiment, the U-shaped heat conductor 171 made of a metal plate (specifically, an aluminum plate) has a first shape of the case body 181 in which the current blocking element 140 is disposed. 1 side wall part 181b (element arrangement | positioning side wall part) is arrange | positioned inside the case main body 181 in the position facing the electric current interruption element 140 (refer FIG. 2, FIG. 3). The plate thickness of the heat conductor 171 is 1 mm.

具体的には、熱伝導体171は、捲回電極体110の正極130(具体的には、正極合材層未塗工部130c)に溶接されている(図2、図3参照)。詳細には、熱伝導体171は、その一方端側(図2及び図3において左端側)に位置する第1接合部171bが、捲回電極体110の正極合材層未塗工部130cに接合されている。また、その他方端側(図2及び図3において右端側)に位置する第2接合部171cが、ケース本体181の第1側壁部181bの内面181gに接合されている。   Specifically, the heat conductor 171 is welded to the positive electrode 130 (specifically, the positive electrode mixture layer uncoated portion 130c) of the wound electrode body 110 (see FIGS. 2 and 3). Specifically, in the heat conductor 171, the first joint portion 171 b located on one end side (the left end side in FIGS. 2 and 3) is connected to the positive electrode mixture layer uncoated portion 130 c of the wound electrode body 110. It is joined. Further, the second joint portion 171c located on the other end side (the right end side in FIGS. 2 and 3) is joined to the inner surface 181g of the first side wall portion 181b of the case body 181.

これにより、熱伝導体171を通じて、捲回電極体110とケース本体181の第1側壁部181bとが熱的に接続されている。なお、熱伝導体171は電気伝導性も有するため、ケース本体181が、熱伝導体171を通じて、正極130と電気的に接続されることにもなる。   Thereby, the wound electrode body 110 and the first side wall portion 181b of the case body 181 are thermally connected through the heat conductor 171. Since the heat conductor 171 also has electrical conductivity, the case body 181 is also electrically connected to the positive electrode 130 through the heat conductor 171.

捲回電極体110とケース本体181の第1側壁部181bとが熱伝導体171を通じて熱的に接続されるため、捲回電極体110の熱は、熱伝導体171を通じて、効率よく、ケース本体181の第1側壁部181b(素子配置側壁部)に伝達される。従って、本実施例1の二次電池100では、捲回電極体110の熱を、第1側壁部181bの外面181f(詳細には、第1側壁部181bを挟んで熱伝導体171に対向する部位)に配置された電流遮断素子140に、効率よく伝達することができる。これにより、捲回電極体110と電流遮断素子140との温度差を小さくすることができ、その結果、電流遮断素子140によって、捲回電極体110の過昇温を適切に抑制することができる。   Since the wound electrode body 110 and the first side wall portion 181b of the case body 181 are thermally connected through the heat conductor 171, the heat of the wound electrode body 110 is efficiently passed through the heat conductor 171. 181 is transmitted to the first side wall 181b (element arrangement side wall). Therefore, in the secondary battery 100 of the first embodiment, the heat of the wound electrode body 110 is opposed to the outer surface 181f of the first side wall portion 181b (specifically, the heat conductor 171 across the first side wall portion 181b). The current can be efficiently transmitted to the current interrupting element 140 disposed in the region. Thereby, the temperature difference between the wound electrode body 110 and the current interrupting element 140 can be reduced, and as a result, the excessive temperature rise of the wound electrode body 110 can be appropriately suppressed by the current interrupting element 140. .

特に、本実施例1では、上述のように、熱伝導体171の一方端側(図2及び図3において左端側)に位置する第1接合部171bが、捲回電極体110の正極合材層未塗工部130cに接合されている。熱伝導体171は電気伝導性も有するため、熱伝導体171によって、正極130の電荷を集電することができる。すなわち、本実施例1では、熱伝導体171が、正極集電板を兼ねている。   In particular, in the first embodiment, as described above, the first bonding portion 171b located on one end side (the left end side in FIGS. 2 and 3) of the heat conductor 171 is the positive electrode mixture of the wound electrode body 110. It is joined to the layer uncoated portion 130c. Since the heat conductor 171 also has electrical conductivity, the charge of the positive electrode 130 can be collected by the heat conductor 171. That is, in Example 1, the heat conductor 171 also serves as the positive electrode current collector plate.

これにより、熱伝導体171(正極集電板)により、捲回電極体110の熱を集約して第1側壁部181b(素子配置側壁部)に伝達することができるので、捲回電極体110から第1側壁部181bへの熱伝導を、より一層効率よく行うことができる。また、熱伝導体171とは別に正極集電板を別途設ける場合に比べて、部品点数を削減できるので低コストにもなる。   Thereby, the heat conductor 171 (positive electrode current collector plate) can collect and transfer the heat of the wound electrode body 110 to the first side wall portion 181b (element arrangement side wall portion). The heat conduction from the first side wall portion 181b to the first side wall portion 181b can be performed more efficiently. In addition, since the number of parts can be reduced as compared with the case where a positive electrode current collector plate is provided separately from the heat conductor 171, the cost can be reduced.

また、実施例1の二次電池100では、正極合材層未塗工部130cが、第1側壁部181b(素子配置側壁部)の内面181gと対向している。従って、実施例1の二次電池100では、第1側壁部181b(素子配置側壁部)の内面181gに対向する正極合材層未塗工部130cに、熱伝導体171の一方端側に位置する第1接合部171bを接合し、他方端側に位置する第2接合部171cを、ケース本体181の第1側壁部181bの内面181gに接合している。これによって、極めて短い熱伝導経路で、第1側壁部181b(素子配置側壁部)の内面181gと捲回電極体110とが熱的に接続される。その結果、熱伝導体171を通じた捲回電極体110から第1側壁部181b(素子配置側壁部)への熱伝導を、効率よく迅速に行うことができる。   Moreover, in the secondary battery 100 of Example 1, the positive electrode mixture layer uncoated portion 130c faces the inner surface 181g of the first side wall portion 181b (element arrangement side wall portion). Therefore, in the secondary battery 100 of Example 1, the positive electrode mixture layer uncoated part 130c facing the inner surface 181g of the first side wall part 181b (element arrangement side wall part) is positioned on one end side of the heat conductor 171. The first joint portion 171b to be joined is joined, and the second joint portion 171c located on the other end side is joined to the inner surface 181g of the first side wall portion 181b of the case body 181. Thereby, the inner surface 181g of the first side wall part 181b (element arrangement side wall part) and the wound electrode body 110 are thermally connected through an extremely short heat conduction path. As a result, heat conduction from the wound electrode body 110 through the heat conductor 171 to the first side wall part 181b (element arrangement side wall part) can be performed efficiently and quickly.

なお、二次電池100の正極側の電流経路は、正極外部端子175、接続部材172、電流遮断素子140、ケース本体181(第1側壁部181b)、熱伝導体171、正極130の順になる。このようにして、電流遮断素子140は、二次電池100に電気的に直列に接続されている。
また、本実施例1では、ケース本体181の第1側壁部181bが、素子配置側壁部に相当する。
Note that the current path on the positive electrode side of the secondary battery 100 is in the order of the positive electrode external terminal 175, the connection member 172, the current blocking element 140, the case body 181 (first side wall portion 181 b), the heat conductor 171, and the positive electrode 130. In this way, the current interrupt device 140 is electrically connected to the secondary battery 100 in series.
In the first embodiment, the first side wall portion 181b of the case main body 181 corresponds to the element arrangement side wall portion.

また、捲回電極体110の負極120(具体的には、負極合材層未塗工部120c)には、金属からなる負極集電板191が溶接されている(図2参照)。負極集電板191は、接続部材196を通じて、負極外部端子195に電気的に接続されている。なお、負極集電板191は、蓋体182との間に電気絶縁性ゴム部材193を介在させることにより、蓋体182(電池ケース180)と電気的に絶縁している。また、負極外部端子195及び接続部材196は、蓋体182との間に電気絶縁性樹脂部材194を介在させることにより、蓋体182(電池ケース180)と電気的に絶縁している。   Further, a negative electrode current collector plate 191 made of metal is welded to the negative electrode 120 (specifically, the negative electrode mixture layer uncoated portion 120c) of the wound electrode body 110 (see FIG. 2). The negative electrode current collector plate 191 is electrically connected to the negative electrode external terminal 195 through the connection member 196. Note that the negative electrode current collector plate 191 is electrically insulated from the lid 182 (battery case 180) by interposing an electrically insulating rubber member 193 between the anode current collector 191 and the lid 182. Further, the negative external terminal 195 and the connecting member 196 are electrically insulated from the lid 182 (battery case 180) by interposing an electrically insulating resin member 194 between the lid 182 and the negative electrode external terminal 195.

次に、実施例1にかかる二次電池100の製造方法について説明する。
まず、正極130、負極120、及びセパレータ150を捲回した捲回電極体110を形成する。具体的には、まず、正極活物質137と、アセチレンブラック(導電材)と、PTFE(結着剤)と、CMC(増粘剤)とを、重量比100:5:4:1の割合で混合し、これに溶媒を混合して、正極スラリを作製した。次いで、この正極スラリを、正極集電部材138の表面(両面)に塗工し、乾燥させた後、プレス加工を施した。これにより、正極130を得た(図6参照)。
Next, a method for manufacturing the secondary battery 100 according to Example 1 will be described.
First, the wound electrode body 110 in which the positive electrode 130, the negative electrode 120, and the separator 150 are wound is formed. Specifically, first, the positive electrode active material 137, acetylene black (conductive material), PTFE (binder), and CMC (thickener) are mixed at a weight ratio of 100: 5: 4: 1. A positive electrode slurry was prepared by mixing and mixing a solvent. Next, this positive electrode slurry was applied to the surface (both surfaces) of the positive electrode current collecting member 138, dried, and then pressed. This obtained the positive electrode 130 (refer FIG. 6).

また、負極活物質127(黒鉛)とSBR(結着剤)とCMC(増粘剤)とを、重量比100:1:1の割合で混合し、これに溶媒を混合して、負極スラリを作製した。次いで、この負極スラリを、銅箔からなる負極集電部材128の表面(両面)に塗工し、乾燥させた後、プレス加工を施した。これにより、負極120を得た(図5参照)。
その後、負極120と正極130との間にセパレータ150を介在させて、長手方向DAに捲回し、捲回電極体110を形成する(図4参照)。
Further, the negative electrode active material 127 (graphite), SBR (binder), and CMC (thickener) are mixed at a weight ratio of 100: 1: 1, and a solvent is mixed with the negative electrode slurry. Produced. Next, this negative electrode slurry was applied to the surface (both surfaces) of a negative electrode current collector 128 made of copper foil, dried, and then pressed. This obtained the negative electrode 120 (refer FIG. 5).
Thereafter, the separator 150 is interposed between the negative electrode 120 and the positive electrode 130 and wound in the longitudinal direction DA to form a wound electrode body 110 (see FIG. 4).

また、安全弁185及び注液孔186が設けられた蓋体182を用意する。そして、この蓋体182に、正極外部端子175及び接続部材176を固定する。具体的には、正極外部端子175のネジ部175bを接続部材176の一方の貫通孔に挿通させて、正極外部端子175及び接続部材176と蓋体182との間に電気絶縁性樹脂部材174を配置した状態で、カシメ部材177を、蓋体182の一方の貫通孔と接続部材176の他方の貫通孔に挿通させる。   Moreover, the cover body 182 provided with the safety valve 185 and the liquid injection hole 186 is prepared. Then, the positive external terminal 175 and the connection member 176 are fixed to the lid 182. Specifically, the threaded portion 175 b of the positive electrode external terminal 175 is inserted into one through hole of the connection member 176, and the electrically insulating resin member 174 is interposed between the positive electrode external terminal 175 and the connection member 176 and the lid 182. In the arranged state, the caulking member 177 is inserted into one through hole of the lid 182 and the other through hole of the connection member 176.

この状態で、カシメ部材177を加締めることにより、接続部材176が、電気絶縁性樹脂部材174を挟んで蓋体182に固定されると共に、正極外部端子175が、電気絶縁性樹脂部材174と接続部材176との間で挟まれて固定される(図2参照)。
なお、カシメ部材177と蓋体182との間には、電気絶縁性ゴム部材193を配置している。
In this state, the caulking member 177 is crimped to fix the connecting member 176 to the lid 182 with the electric insulating resin member 174 interposed therebetween, and the positive external terminal 175 is connected to the electric insulating resin member 174. It is sandwiched and fixed between the members 176 (see FIG. 2).
An electrically insulating rubber member 193 is disposed between the caulking member 177 and the lid 182.

さらに、蓋体182に、負極集電板191、接続部材196、及び負極外部端子195を固定する。具体的には、負極外部端子195のネジ部195bを接続部材196の一方の貫通孔に挿通させて、負極外部端子195及び接続部材196と蓋体182との間に電気絶縁性樹脂部材194を配置した状態で、負極集電板191のカシメ部191bを、蓋体182の一方の貫通孔と接続部材196の他方の貫通孔に挿通させる。   Further, the negative electrode current collector plate 191, the connecting member 196, and the negative electrode external terminal 195 are fixed to the lid 182. Specifically, the screw part 195 b of the negative electrode external terminal 195 is inserted into one through hole of the connection member 196, and the electrically insulating resin member 194 is interposed between the negative electrode external terminal 195 and the connection member 196 and the lid 182. In the disposed state, the caulking portion 191 b of the negative electrode current collector plate 191 is inserted into one through hole of the lid 182 and the other through hole of the connection member 196.

この状態で、負極集電板191のカシメ部191bを加締めることにより、接続部材196が、電気絶縁性樹脂部材194を挟んで蓋体182に固定されると共に、負極外部端子195が、電気絶縁性樹脂部材194と接続部材196との間で挟まれて固定される(図2参照)。
なお、負極集電板191と蓋体182との間には、電気絶縁性ゴム部材193を配置している。
In this state, by crimping the caulking portion 191b of the negative electrode current collector plate 191, the connecting member 196 is fixed to the lid 182 with the electrically insulating resin member 194 interposed therebetween, and the negative electrode external terminal 195 is electrically insulated. The fixing resin member 194 and the connecting member 196 are sandwiched and fixed (see FIG. 2).
Note that an electrically insulating rubber member 193 is disposed between the negative electrode current collector plate 191 and the lid 182.

次いで、正極130(正極合材層未塗工部130c)に、熱伝導体171を溶接する。さらに、負極120(負極合材層未塗工部120c)に、負極集電板191を溶接する。これにより、蓋体182と捲回電極体110とが負極集電板191を通じて一体となる。なお、溶接方法としては、例えば、抵抗溶接や超音波溶接を用いることができる。   Next, the heat conductor 171 is welded to the positive electrode 130 (the positive electrode mixture layer uncoated portion 130c). Further, the negative electrode current collector plate 191 is welded to the negative electrode 120 (negative electrode mixture layer uncoated portion 120c). Thereby, the lid body 182 and the wound electrode body 110 are integrated with each other through the negative electrode current collector plate 191. As a welding method, for example, resistance welding or ultrasonic welding can be used.

その後、負極集電板191及び熱伝導体171を溶接した捲回電極体110を、ケース本体181内に挿入すると共に、蓋体182によってケース本体181の開口181jを閉塞する。次いで、蓋体182とケース本体181とを全周溶接する。このとき、熱伝導体171の他方端側(図2及び図3において右端側)に位置する第2接合部171cが、ケース本体181の第1側壁部181bの内面181gに接触した状態となる。   Thereafter, the wound electrode body 110 to which the negative electrode current collector plate 191 and the heat conductor 171 are welded is inserted into the case main body 181 and the opening 181j of the case main body 181 is closed by the lid 182. Next, the cover body 182 and the case body 181 are welded all around. At this time, the second joint portion 171c located on the other end side (the right end side in FIGS. 2 and 3) of the heat conductor 171 comes into contact with the inner surface 181g of the first side wall portion 181b of the case body 181.

次に、熱伝導体171の第2接合部171cをケース本体181の第1側壁部181bに溶接する。具体的には、第1側壁部181bの外面181f(熱伝導体171の第2接合部171cと対向する部位)にエネルギービーム(例えば、レーザービーム)を照射して、熱伝導体171の第2接合部171cとケース本体181の第1側壁部181bとを溶接する。   Next, the second joint portion 171 c of the heat conductor 171 is welded to the first side wall portion 181 b of the case body 181. Specifically, an energy beam (for example, a laser beam) is applied to the outer surface 181f of the first side wall portion 181b (a portion facing the second joint portion 171c of the thermal conductor 171), and the second side of the thermal conductor 171. The joint portion 171c and the first side wall portion 181b of the case main body 181 are welded.

次に、電流遮断素子140を、第1側壁部181bの外面181fに配置する。具体的には、まず、電流遮断素子140の素子本体部141を、電気絶縁性を有する熱伝導接着剤により、第1側壁部181bの外面181fに接合する。なお、電流遮断素子140の素子本体部141は、第1側壁部181b(素子配置側壁部)を挟んで、熱伝導体171の第2接合部171cと対向する位置に接合する。   Next, the current interruption element 140 is disposed on the outer surface 181f of the first side wall portion 181b. Specifically, first, the element main body 141 of the current interrupting element 140 is joined to the outer surface 181f of the first side wall 181b with an electrically conductive heat conductive adhesive. The element main body 141 of the current interrupting element 140 is bonded to a position facing the second bonding portion 171c of the heat conductor 171 with the first side wall portion 181b (element arrangement side wall portion) interposed therebetween.

その後、電流遮断素子140の第1端子部142を、第1側壁部181bの外面181fに溶接する。さらに、電流遮断素子140の第2端子部143に、接続部材172の一方端部を溶接する。なお、接続部材172の他方端部は、正極外部端子175に接続しておく。   Thereafter, the first terminal portion 142 of the current interrupt device 140 is welded to the outer surface 181f of the first side wall portion 181b. Further, one end portion of the connection member 172 is welded to the second terminal portion 143 of the current interruption element 140. The other end of the connection member 172 is connected to the positive external terminal 175.

その後、注液孔186を通じて、非水電解液160をケース本体181内に注入する。次いで、注入した非水電解液160を、捲回電極体110の内部に含浸させる。その後、注液孔186を注液蓋187で封止して、本実施例1の二次電池100が完成する。   Thereafter, the nonaqueous electrolytic solution 160 is injected into the case main body 181 through the liquid injection hole 186. Next, the injected nonaqueous electrolytic solution 160 is impregnated inside the wound electrode body 110. Thereafter, the liquid injection hole 186 is sealed with a liquid injection lid 187, and the secondary battery 100 of Example 1 is completed.

(実施例2)
実施例2の二次電池200は、実施例1の二次電池100と比較して、熱伝導体(正極集電板)の形状が異なり、その他については同様である。
(Example 2)
The secondary battery 200 of Example 2 is different from the secondary battery 100 of Example 1 in the shape of the heat conductor (positive electrode current collector plate), and is otherwise the same.

具体的には、本実施例2では、熱伝導体として、金属板(具体的には、アルミニウム板)からなるL字形状の熱伝導体271を用いている。この熱伝導体271は、電流遮断素子140が配置されているケース本体181の第1側壁部181b(素子配置側壁部)を挟んで、電流遮断素子140と対向する位置でケース本体181の内部に配置されている(図7及び図8参照)。なお、熱伝導体271の板厚は1mmである。   Specifically, in the second embodiment, an L-shaped heat conductor 271 made of a metal plate (specifically, an aluminum plate) is used as the heat conductor. The heat conductor 271 is located inside the case body 181 at a position facing the current interruption element 140 across the first side wall part 181b (element arrangement side wall part) of the case body 181 where the current interruption element 140 is arranged. (See FIGS. 7 and 8). The plate thickness of the heat conductor 271 is 1 mm.

詳細には、熱伝導体271は、その一方端側(図7及び図8において左端側)に位置する挿入部271bが、捲回電極体110の内部に挿入されている。さらに、挿入部271bのうち、捲回電極体110の正極合材層未塗工部130cに囲まれた第1接合部271dが、正極合材層未塗工部130cに接合されている。また、熱伝導体271の他方端側(図7及び図8において右端側)に位置する第2接合部271cが、ケース本体181の第1側壁部181bの内面181gに接合されている。これにより、熱伝導体271を通じて、捲回電極体110とケース本体181の第1側壁部181bとが熱的に接続されている。   Specifically, the insertion portion 271 b located on one end side (the left end side in FIGS. 7 and 8) of the heat conductor 271 is inserted into the wound electrode body 110. Further, in the insertion portion 271b, the first joining portion 271d surrounded by the positive electrode mixture layer uncoated portion 130c of the wound electrode body 110 is joined to the positive electrode mixture layer uncoated portion 130c. Further, the second joint portion 271c located on the other end side (the right end side in FIGS. 7 and 8) of the heat conductor 271 is joined to the inner surface 181g of the first side wall portion 181b of the case body 181. Thereby, the wound electrode body 110 and the first side wall portion 181b of the case main body 181 are thermally connected through the heat conductor 271.

このため、捲回電極体110の熱は、熱伝導体271を通じて、効率よく、ケース本体181の第1側壁部181b(素子配置側壁部)に伝達される。従って、本実施例2の二次電池200では、捲回電極体110の熱を、第1側壁部181bの外面181f(詳細には、第1側壁部181bを挟んで熱伝導体271に対向する部位)に配置された電流遮断素子140に、効率よく伝達することができる。これにより、捲回電極体110と電流遮断素子140との温度差を小さくすることができ、その結果、電流遮断素子140によって、捲回電極体110の過昇温を適切に抑制することができる。   For this reason, the heat of the wound electrode body 110 is efficiently transmitted to the first side wall portion 181b (element arrangement side wall portion) of the case body 181 through the heat conductor 271. Therefore, in the secondary battery 200 of the second embodiment, the heat of the wound electrode body 110 is opposed to the outer surface 181f of the first side wall portion 181b (specifically, the heat conductor 271 across the first side wall portion 181b). The current can be efficiently transmitted to the current interrupting element 140 disposed in the region. Thereby, the temperature difference between the wound electrode body 110 and the current interrupting element 140 can be reduced, and as a result, the excessive temperature rise of the wound electrode body 110 can be appropriately suppressed by the current interrupting element 140. .

また、熱伝導体271の挿入部271bのうち、捲回電極体110の正極合材層未塗工部130cに囲まれた第1接合部271dが、正極合材層未塗工部130cに接合(溶接)されている。熱伝導体271は電気伝導性も有しているため、熱伝導体271によって、正極130の電荷を集電することができる。すなわち、本実施例2では、熱伝導体271が、正極集電板を兼ねている。   In addition, of the insertion part 271b of the heat conductor 271, the first joining part 271d surrounded by the positive electrode mixture layer uncoated part 130c of the wound electrode body 110 is joined to the positive electrode mixture layer uncoated part 130c. (Welded). Since the heat conductor 271 also has electrical conductivity, the charge of the positive electrode 130 can be collected by the heat conductor 271. That is, in Example 2, the heat conductor 271 also serves as the positive electrode current collector plate.

これにより、熱伝導体271(正極集電板)により、捲回電極体110の熱を集約して第1側壁部181b(素子配置側壁部)に伝達することができるので、捲回電極体110から第1側壁部181bへの熱伝導を、より一層効率よく行うことができる。また、熱伝導体271とは別に正極集電板を別途設ける場合に比べて、部品点数を削減できるので低コストとなる。   Accordingly, the heat conductor 271 (positive current collector plate) can collect heat from the wound electrode body 110 and transfer it to the first side wall portion 181b (element arrangement side wall portion). The heat conduction from the first side wall portion 181b to the first side wall portion 181b can be performed more efficiently. Moreover, since the number of parts can be reduced compared with the case where a positive electrode current collector plate is provided separately from the heat conductor 271, the cost is reduced.

また、熱伝導体271(正極集電板)の第2接合部271cが、ケース本体181の第1側壁部181bの内面181gに接合(溶接)されているため、ケース本体181が、熱伝導体271を通じて、正極130と電気的に接続される。従って、二次電池200の正極側の電流経路は、正極外部端子175、接続部材172、電流遮断素子140、ケース本体181(第1側壁部181b)、熱伝導体271(正極集電板)、正極130の順になる。このようにして、電流遮断素子140は、二次電池200に電気的に直列に接続されている。   Further, since the second joint portion 271c of the heat conductor 271 (positive electrode current collector plate) is joined (welded) to the inner surface 181g of the first side wall portion 181b of the case main body 181, the case main body 181 is connected to the heat conductor. Through 271, the positive electrode 130 is electrically connected. Therefore, the current path on the positive electrode side of the secondary battery 200 includes the positive electrode external terminal 175, the connection member 172, the current blocking element 140, the case main body 181 (first side wall portion 181b), the heat conductor 271 (positive electrode current collector plate), The order is the positive electrode 130. In this way, the current interruption element 140 is electrically connected to the secondary battery 200 in series.

(実施例3)
実施例3の二次電池300は、実施例2の二次電池200と比較して、熱伝導体(正極集電板)の板厚が異なり、その他については同様である。具体的には、熱伝導体271の板厚を0.5mmとしている。
Example 3
The secondary battery 300 of Example 3 is different from the secondary battery 200 of Example 2 in the thickness of the heat conductor (positive electrode current collector plate), and the others are the same. Specifically, the plate thickness of the heat conductor 271 is 0.5 mm.

(変形例)
変形例の二次電池400は、実施例2の二次電池200と比較して、正極集電板及び正極の電流経路が異なり、その他についてはほぼ同様である。
(Modification)
The secondary battery 400 of the modified example is different from the secondary battery 200 of Example 2 in the current path of the positive electrode current collector plate and the positive electrode, and is otherwise substantially the same.

具体的には、本変形例では、熱伝導体271とは別に、正極集電板471を別途設けている。具体的には、捲回電極体110の正極130(具体的には、正極合材層未塗工部130c)には、金属からなる正極集電板471が溶接されている(図9及び図10参照)。正極集電板471は、接続部材176を通じて、正極外部端子175に電気的に接続されている。   Specifically, in this modification, a positive electrode current collector plate 471 is provided separately from the heat conductor 271. Specifically, a positive electrode current collector plate 471 made of metal is welded to the positive electrode 130 (specifically, the positive electrode mixture layer uncoated portion 130c) of the wound electrode body 110 (FIGS. 9 and 9). 10). The positive electrode current collector plate 471 is electrically connected to the positive electrode external terminal 175 through the connection member 176.

なお、正極集電板471は、蓋体182との間に電気絶縁性ゴム部材173を介在させることにより、蓋体182(電池ケース180)と電気的に絶縁している。また、正極外部端子175及び接続部材176は、蓋体182との間に電気絶縁性樹脂部材174を介在させることにより、蓋体182(電池ケース180)と電気的に絶縁している。また、正極外部端子175と接続部材176との間に、電気絶縁性樹脂からなる樹脂ワッシャー487,489及び樹脂スペーサー488を介在させることにより、正極外部端子175と接続部材176とを電気的に絶縁している。   The positive electrode current collecting plate 471 is electrically insulated from the lid 182 (battery case 180) by interposing an electrically insulating rubber member 173 between the positive current collector plate 471 and the lid 182. Further, the positive external terminal 175 and the connecting member 176 are electrically insulated from the lid 182 (battery case 180) by interposing an electrically insulating resin member 174 between the lid 182 and the positive electrode external terminal 175. Further, by interposing resin washers 487 and 489 made of an electrically insulating resin and a resin spacer 488 between the positive external terminal 175 and the connection member 176, the positive external terminal 175 and the connection member 176 are electrically insulated. doing.

また、本変形例では、電流遮断素子140の第1端子部142は、第1側壁部181bの外面181fに溶接されていない。具体的には、電流遮断素子140の第1端子部142は、実施例2と異なり、接続部材478を通じて、正極集電板471に電気的に接続されている。詳細には、接続部材478の一端部が電流遮断素子140の第1端子部142に溶接され(図9及び図10参照)、接続部材478の他端部が正極集電板471のカシメ部471bにおいて正極集電板471に接続されている(図9参照)。これにより、電流遮断素子140の第1端子部142が、接続部材478を通じて、正極集電板471に電気的に接続されている。   Moreover, in this modification, the 1st terminal part 142 of the electric current interruption element 140 is not welded to the outer surface 181f of the 1st side wall part 181b. Specifically, unlike the second embodiment, the first terminal portion 142 of the current interrupt device 140 is electrically connected to the positive electrode current collector plate 471 through the connection member 478. Specifically, one end portion of the connection member 478 is welded to the first terminal portion 142 of the current interrupting element 140 (see FIGS. 9 and 10), and the other end portion of the connection member 478 is the crimping portion 471b of the positive current collector plate 471. Are connected to the positive electrode current collector plate 471 (see FIG. 9). As a result, the first terminal portion 142 of the current interrupting element 140 is electrically connected to the positive electrode current collector plate 471 through the connection member 478.

なお、正極集電板471のカシメ部471bを、蓋体182の貫通孔と接続部材176の貫通孔と接続部材478の貫通孔に挿通させた状態で、カシメ部471bを加締めることにより、正極集電板471と接続部材176と接続部材478とが、蓋体182に固定される。但し、正極集電板471と蓋体182との間は、電気絶縁性ゴム部材173により電気的に絶縁している。また、接続部材176と蓋体182との間は、電気絶縁性樹脂部材174により電気的に絶縁している。   The caulking portion 471b of the positive electrode current collector plate 471 is inserted into the through hole of the lid 182, the through hole of the connecting member 176, and the through hole of the connecting member 478, thereby crimping the caulking portion 471b. The current collector plate 471, the connection member 176, and the connection member 478 are fixed to the lid body 182. However, the positive current collecting plate 471 and the lid 182 are electrically insulated by an electrically insulating rubber member 173. Further, the connection member 176 and the lid body 182 are electrically insulated by an electrically insulating resin member 174.

また、熱伝導体271の挿入部271bは、電気絶縁性の樹脂シート479により、捲回電極体110の正極合材層未塗工部130cと電気的に絶縁されている(図10参照)。なお、熱伝導体271の挿入部271bと正極合材層塗工部130bとは、セパレータ150により電気的に絶縁されている。   Further, the insertion portion 271b of the heat conductor 271 is electrically insulated from the positive electrode mixture layer uncoated portion 130c of the wound electrode body 110 by an electrically insulating resin sheet 479 (see FIG. 10). Note that the insertion portion 271 b of the heat conductor 271 and the positive electrode mixture layer coating portion 130 b are electrically insulated by the separator 150.

本変形例でも、実施例2と同様に、熱伝導体271の一方端側(図9及び図10において左端側)に位置する挿入部271bが捲回電極体110の内部に挿入され、他方端側(図9及び図10において右端側)に位置する第2接合部271cがケース本体181の第1側壁部181bの内面181gに接合されている。これにより、熱伝導体271を通じて、捲回電極体110とケース本体181の第1側壁部181bとが熱的に接続される。   Also in this modification, as in the second embodiment, the insertion portion 271b located on one end side (the left end side in FIGS. 9 and 10) of the heat conductor 271 is inserted into the wound electrode body 110, and the other end The second joint portion 271c located on the side (the right end side in FIGS. 9 and 10) is joined to the inner surface 181g of the first side wall portion 181b of the case body 181. Thereby, the wound electrode body 110 and the first side wall portion 181b of the case body 181 are thermally connected through the heat conductor 271.

このため、捲回電極体110の熱は、熱伝導体271を通じて、効率よく、ケース本体181の第1側壁部181b(素子配置側壁部)に伝達される。従って、本変形例の二次電池400では、捲回電極体110の熱を、第1側壁部181bの外面181f(詳細には、第1側壁部181bを挟んで熱伝導体271に対向する部位)に配置された電流遮断素子140に、効率よく伝達することができる。これにより、捲回電極体110と電流遮断素子140との温度差を小さくすることができ、その結果、電流遮断素子140によって、捲回電極体110の過昇温を適切に抑制することができる。   For this reason, the heat of the wound electrode body 110 is efficiently transmitted to the first side wall portion 181b (element arrangement side wall portion) of the case body 181 through the heat conductor 271. Therefore, in the secondary battery 400 of this modification, the heat of the wound electrode body 110 is transferred to the outer surface 181f of the first side wall portion 181b (specifically, the portion facing the heat conductor 271 across the first side wall portion 181b). ) Can be efficiently transmitted to the current interrupting element 140 arranged in the above. Thereby, the temperature difference between the wound electrode body 110 and the current interrupting element 140 can be reduced, and as a result, the excessive temperature rise of the wound electrode body 110 can be appropriately suppressed by the current interrupting element 140. .

なお、本変形例にかかる二次電池400の正極側の電流経路は、正極外部端子175、接続部材172、電流遮断素子140、接続部材478、正極集電板471、正極130の順になる。このようにして、電流遮断素子140は、二次電池400に電気的に直列に接続されている。
また、本変形例でも、ケース本体181の第1側壁部181bが、素子配置側壁部に相当する。
In addition, the current path on the positive electrode side of the secondary battery 400 according to this modification is in the order of the positive electrode external terminal 175, the connection member 172, the current interruption element 140, the connection member 478, the positive electrode current collector plate 471, and the positive electrode 130. In this way, the current interruption element 140 is electrically connected to the secondary battery 400 in series.
Also in this modification, the first side wall portion 181b of the case main body 181 corresponds to the element arrangement side wall portion.

(比較例)
比較例の二次電池500は、変形例の二次電池400と比較して、熱伝導体271を有していない点が異なり、その他については同様である(図11及び図12参照)。従って、本比較例の二次電池500では、捲回電極体110とケース本体181の第1側壁部181bとを熱的に接続する熱伝導体が存在しない。
(Comparative example)
The secondary battery 500 of the comparative example is different from the secondary battery 400 of the modified example in that it does not have the heat conductor 271 and the other is the same (see FIGS. 11 and 12). Therefore, in the secondary battery 500 of this comparative example, there is no thermal conductor that thermally connects the wound electrode body 110 and the first side wall portion 181b of the case body 181.

(電流遮断試験)
次に、実施例1〜3及び比較例の二次電池について、電流遮断試験を行った。具体的には、各二次電池をSOC0%の状態とし、45℃の温度環境下で、2C(10A)の定電流で充電を行った。各二次電池の充電は、電流遮断素子140により充電電流が遮断されるまで継続して行われた。なお、各二次電池の定格容量は5Ahであるので、1C=5Aとなる。
(Current interruption test)
Next, the electric current interruption test was done about the secondary battery of Examples 1-3 and a comparative example. Specifically, each secondary battery was in a SOC 0% state, and charged at a constant current of 2C (10 A) in a temperature environment of 45 ° C. Each secondary battery was continuously charged until the charging current was interrupted by the current interrupting element 140. Since the rated capacity of each secondary battery is 5Ah, 1C = 5A.

本試験では、電流遮断素子140により充電電流が遮断されたときの、捲回電極体110の温度(中央部の温度)及び第1側壁部181bの外面181fの温度を測定した。この温度測定のため、各二次電池では、予め、捲回電極体110の内部(中央部)、及び、第1側壁部181bの外面181f(熱伝導体171と対向する位置)に、熱電対を配置している。本試験の結果を表1に示す。   In this test, the temperature of the wound electrode body 110 (the temperature of the central part) and the temperature of the outer surface 181f of the first side wall part 181b when the charging current was interrupted by the current interrupting element 140 were measured. In order to measure this temperature, in each secondary battery, a thermocouple is provided in advance on the inside (center portion) of the wound electrode body 110 and the outer surface 181f (position facing the heat conductor 171) of the first side wall portion 181b. Is arranged. The results of this test are shown in Table 1.

Figure 0005668649
Figure 0005668649

実施例1〜3及び比較例の二次電池では、電流遮断素子140により充電電流が遮断されたときの第1側壁部181bの外面181f(電流遮断素子140の近傍)の温度は、いずれも100℃であった。この結果より、いずれの二次電池でも、電流遮断素子140の温度が電流遮断温度(100℃)に達したときに、適切に、電流遮断素子140を流れる電流を遮断することにより、二次電池100に流れる電流を遮断したといえる。   In the secondary batteries of Examples 1 to 3 and the comparative example, the temperature of the outer surface 181f (in the vicinity of the current interrupting element 140) of the first side wall portion 181b when the charging current is interrupted by the current interrupting element 140 is 100. ° C. As a result, in any secondary battery, when the temperature of the current interrupting element 140 reaches the current interrupting temperature (100 ° C.), the secondary battery is appropriately interrupted by appropriately interrupting the current flowing through the current interrupting element 140. It can be said that the current flowing through 100 is cut off.

ところが、比較例の二次電池では、電流遮断素子140により充電電流が遮断されたときの捲回電極体110の温度が141℃となり、電流遮断素子140の電流遮断温度(100℃)に対し41℃も上回った。さらには、電流遮断素子140により充電電流が遮断された後に、安全弁185が作動(開弁)し、電池内部から非水電解液160が噴出してしまった。この現象は、捲回電極体110の過昇温により、非水電解液160の気化が促進され、電池の内圧が安全弁185の作動圧(開弁圧)を上回ったために起こったと考えられる。   However, in the secondary battery of the comparative example, the temperature of the wound electrode body 110 when the charging current is interrupted by the current interrupting element 140 is 141 ° C., which is 41 with respect to the current interrupting temperature (100 ° C.) of the current interrupting element 140. It also exceeded ℃. Furthermore, after the charging current was interrupted by the current interrupting element 140, the safety valve 185 was activated (opened), and the non-aqueous electrolyte 160 was ejected from the inside of the battery. This phenomenon is considered to have occurred because the excessive temperature rise of the wound electrode body 110 promoted vaporization of the non-aqueous electrolyte 160 and the internal pressure of the battery exceeded the operating pressure (opening pressure) of the safety valve 185.

以上より、比較例の二次電池では、電流遮断素子140の温度が電流遮断温度(100℃)に達し、電流遮断素子140により充電電流が遮断されたときには、捲回電極体110の温度が電流遮断温度よりも遙かに高い温度(141℃)にまで上昇してしまい、捲回電極体110の過昇温を防止することができなかったといえる。   From the above, in the secondary battery of the comparative example, when the temperature of the current interrupting element 140 reaches the current interrupting temperature (100 ° C.) and the charging current is interrupted by the current interrupting element 140, the temperature of the wound electrode body 110 becomes the current. It can be said that the temperature has risen to a temperature (141 ° C.) much higher than the cutoff temperature, and it has not been possible to prevent an excessive temperature rise of the wound electrode body 110.

これに対し、実施例1の二次電池では、電流遮断素子140により充電電流が遮断されたときの捲回電極体110の温度が118℃となり、電流遮断素子140の電流遮断温度(100℃)に対し18℃だけ上回った。また、実施例1の二次電池では、安全弁185が作動(開弁)することはなかった。この結果より、実施例1の二次電池では、電流遮断素子140により、捲回電極体110の過昇温を適切に防止することができたといえる。   On the other hand, in the secondary battery of Example 1, the temperature of the wound electrode body 110 when the charging current was interrupted by the current interrupting element 140 was 118 ° C., and the current interrupting temperature (100 ° C.) of the current interrupting element 140 was It exceeded only 18 degreeC. In the secondary battery of Example 1, the safety valve 185 did not operate (open). From this result, it can be said that in the secondary battery of Example 1, the current interruption element 140 was able to appropriately prevent overheating of the wound electrode body 110.

実施例2の二次電池では、電流遮断素子140により充電電流が遮断されたときの捲回電極体110の温度が108℃となり、電流遮断素子140の電流遮断温度(100℃)に対し8℃だけ上回った。実施例2の二次電池でも、安全弁185が作動(開弁)することはなかった。この結果より、実施例2の二次電池でも、電流遮断素子140により、捲回電極体110の過昇温を適切に防止することができたといえる。   In the secondary battery of Example 2, the temperature of the wound electrode body 110 when the charging current is interrupted by the current interrupting element 140 is 108 ° C., which is 8 ° C. with respect to the current interrupting temperature (100 ° C.) of the current interrupting element 140. Only exceeded. Even in the secondary battery of Example 2, the safety valve 185 did not operate (open). From this result, it can be said that the secondary battery of Example 2 was able to appropriately prevent overheating of the wound electrode body 110 by the current interruption element 140.

実施例3の二次電池では、電流遮断素子140により充電電流が遮断されたときの捲回電極体110の温度が112℃となり、電流遮断素子140の電流遮断温度(100℃)に対し12℃だけ上回った。実施例3の二次電池でも、安全弁185が作動(開弁)することはなかった。この結果より、実施例3の二次電池でも、電流遮断素子140により、捲回電極体110の過昇温を適切に防止することができたといえる。   In the secondary battery of Example 3, the temperature of the wound electrode body 110 when the charging current is interrupted by the current interrupting element 140 is 112 ° C., which is 12 ° C. with respect to the current interrupting temperature (100 ° C.) of the current interrupting element 140. Only exceeded. Even in the secondary battery of Example 3, the safety valve 185 did not operate (open). From this result, it can be said that in the secondary battery of Example 3 as well, it was possible to appropriately prevent overheating of the wound electrode body 110 by the current interrupting element 140.

実施例1〜3において、電流遮断素子140により捲回電極体110の過昇温を適切に防止することができた理由は、実施例1〜3では、比較例と異なり、捲回電極体110とケース本体181の第1側壁部181b(素子配置側壁部)とを熱的に接続する熱伝導体を有しているからであるといえる。   In Examples 1 to 3, the reason that the excessive temperature rise of the wound electrode body 110 can be appropriately prevented by the current interrupting element 140 is different from the comparative example in Examples 1 to 3 in the wound electrode body 110. This is because it has a heat conductor that thermally connects the first side wall 181b (element arrangement side wall) of the case main body 181.

これにより、実施例1〜3の二次電池では、捲回電極体110の熱を、熱伝導体171,271を通じて、効率よく、ケース本体181の第1側壁部181b(素子配置側壁部)に伝達し、第1側壁部181bの外面181fに配置された電流遮断素子140に、効率よく伝達することができたといえる。このため、実施例1〜3の二次電池では、捲回電極体110と電流遮断素子140との温度差を小さく(具体的には、18℃以内)することができ、その結果、電流遮断素子140によって捲回電極体110の過昇温を適切に抑制することができたといえる。   Thereby, in the secondary batteries of Examples 1 to 3, the heat of the wound electrode body 110 is efficiently transferred to the first side wall portion 181b (element arrangement side wall portion) of the case main body 181 through the heat conductors 171 and 271. It can be said that it was transmitted efficiently to the current interrupting element 140 disposed on the outer surface 181f of the first side wall portion 181b. For this reason, in the secondary batteries of Examples 1 to 3, the temperature difference between the wound electrode body 110 and the current interrupting element 140 can be reduced (specifically, within 18 ° C.). It can be said that the element 140 was able to appropriately suppress the excessive temperature rise of the wound electrode body 110.

以上において、本発明を実施例1〜3及び変形例に即して説明したが、本発明は上記実施例等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first to third embodiments and the modified examples. However, the present invention is not limited to the above-described embodiments and the like, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, it can be done.

100,200,300,400 二次電池
110 捲回電極体
120 負極
120c 負極合材層未塗工部
121 負極合材層
127 負極活物質
130 正極
130c 正極合材層未塗工部
131 正極合材層
137 正極活物質
140 電流遮断素子
150 セパレータ
171,271 熱伝導体
175 正極外部端子
180 電池ケース
181 ケース本体
181b 第1側壁部(素子配置側壁部)
182 蓋体
185 安全弁
186 注液孔
187 注液蓋
195 負極外部端子
100, 200, 300, 400 Secondary battery 110 Winding electrode body 120 Negative electrode 120c Negative electrode mixture layer uncoated portion 121 Negative electrode mixture layer 127 Negative electrode active material 130 Positive electrode 130c Positive electrode mixture layer uncoated portion 131 Positive electrode mixture Layer 137 Positive electrode active material 140 Current interruption element 150 Separator 171, 271 Thermal conductor 175 Positive electrode external terminal 180 Battery case 181 Case body 181b First side wall (element arrangement side wall)
182 Lid 185 Safety valve 186 Injection hole 187 Injection lid 195 Negative electrode external terminal

Claims (4)

少なくとも正極及び負極を捲回した捲回電極体と、
開口を有する角形箱状をなし、上記捲回電極体を収容するケース本体と、
上記ケース本体の上記開口を閉塞する蓋体と、を備える
二次電池において、
上記ケース本体の側壁部の外面に配置された電流遮断素子であって、上記二次電池に電気的に直列に接続され、当該電流遮断素子の温度が一定の電流遮断温度に達すると当該電流遮断素子を流れる電流を遮断することにより、上記二次電池に流れる電流を遮断する電流遮断素子と、
上記電流遮断素子が配置されている上記ケース本体の上記側壁部である素子配置側壁部を挟んで、上記電流遮断素子と対向する位置で上記ケース本体内部に配置された熱伝導体であって、上記素子配置側壁部の内面と上記捲回電極体とを熱的に接続する熱伝導体と、を備える
二次電池。
A wound electrode body obtained by winding at least the positive electrode and the negative electrode;
Forming a rectangular box having an opening, a case main body for accommodating the wound electrode body,
In a secondary battery comprising a lid that closes the opening of the case body,
A current interrupting device disposed on the outer surface of the side wall of the case body, electrically connected to the secondary battery in series, and when the temperature of the current interrupting device reaches a certain current interrupting temperature, the current interrupting device A current interrupting element that interrupts a current flowing through the secondary battery by interrupting a current flowing through the element;
A heat conductor disposed inside the case body at a position facing the current interrupting element across an element disposition side wall part that is the side wall part of the case body in which the current interrupting element is disposed, A secondary battery comprising: a heat conductor that thermally connects the inner surface of the element arrangement side wall portion and the wound electrode body.
請求項1に記載の二次電池であって、
前記熱伝導体は、その一方端側が前記捲回電極体に接合され、その他方端側が前記素子配置側壁部の内面に接合されてなる
二次電池。
The secondary battery according to claim 1,
The thermal conductor is a secondary battery in which one end side is joined to the wound electrode body and the other end side is joined to the inner surface of the element arrangement side wall.
請求項1または請求項2に記載の二次電池であって、
前記熱伝導体は、その一方端側が前記捲回電極体の内部に挿入され、その他方端側が前記素子配置側壁部の内面に接合されてなる
二次電池。
The secondary battery according to claim 1 or 2, wherein
The thermal conductor is a secondary battery in which one end side is inserted into the wound electrode body and the other end side is joined to the inner surface of the element arrangement side wall.
請求項1〜請求項3のいずれか一項に記載の二次電池であって、
前記熱伝導体は、前記正極または前記負極の電荷を集電する集電板である
二次電池。
The secondary battery according to any one of claims 1 to 3,
The heat conductor is a secondary battery that is a current collecting plate that collects charges of the positive electrode or the negative electrode.
JP2011195633A 2011-09-08 2011-09-08 Secondary battery Active JP5668649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195633A JP5668649B2 (en) 2011-09-08 2011-09-08 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195633A JP5668649B2 (en) 2011-09-08 2011-09-08 Secondary battery

Publications (2)

Publication Number Publication Date
JP2013058368A JP2013058368A (en) 2013-03-28
JP5668649B2 true JP5668649B2 (en) 2015-02-12

Family

ID=48134072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195633A Active JP5668649B2 (en) 2011-09-08 2011-09-08 Secondary battery

Country Status (1)

Country Link
JP (1) JP5668649B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226828A (en) * 2007-02-15 2008-09-25 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008235099A (en) * 2007-03-22 2008-10-02 Denso Corp Battery
JP5211022B2 (en) * 2009-11-30 2013-06-12 株式会社日立製作所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013058368A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
KR101130294B1 (en) Rechargeable Battery
US8389153B2 (en) Battery
JP5105394B2 (en) Battery unit
JP5336024B1 (en) Secondary battery
WO2015146077A1 (en) Cylindrical hermetically sealed battery
JP5841571B2 (en) Secondary battery
JP5591566B2 (en) battery
EP2565964B1 (en) Flat-type battery
JP5334894B2 (en) Lithium ion secondary battery
US20170187025A1 (en) Secondary battery
WO2015002181A1 (en) A nonaqueous electrolyte secondary cell-use electrode, method for producing same, and nonaqueous electrolyte secondary cell
JP2011049064A (en) Battery
US9362588B2 (en) Lithium-ion secondary battery and manufacturing method for same
JP3891047B2 (en) battery
WO2013031056A1 (en) Rectangular battery
US20230083371A1 (en) Secondary battery
JP5765404B2 (en) Lithium ion secondary battery
JP5777982B2 (en) Non-aqueous electrolyte battery
CN115552688A (en) Secondary battery
WO2020179149A1 (en) Lithium secondary battery electrode and lithium secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP5668649B2 (en) Secondary battery
JP2006040772A (en) Lithium ion battery
JP5567462B2 (en) Secondary battery
WO2019167357A1 (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250