JP5657913B2 - Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution - Google Patents

Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution Download PDF

Info

Publication number
JP5657913B2
JP5657913B2 JP2010108000A JP2010108000A JP5657913B2 JP 5657913 B2 JP5657913 B2 JP 5657913B2 JP 2010108000 A JP2010108000 A JP 2010108000A JP 2010108000 A JP2010108000 A JP 2010108000A JP 5657913 B2 JP5657913 B2 JP 5657913B2
Authority
JP
Japan
Prior art keywords
photocatalyst material
nanocomposite
semiconductor photocatalyst
titanium oxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010108000A
Other languages
Japanese (ja)
Other versions
JP2011236074A (en
Inventor
金子 聡
聡 金子
スレシ チャンド ヴァルマ
チャンド ヴァルマ スレシ
邦浩 杉原
邦浩 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2010108000A priority Critical patent/JP5657913B2/en
Publication of JP2011236074A publication Critical patent/JP2011236074A/en
Application granted granted Critical
Publication of JP5657913B2 publication Critical patent/JP5657913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、ギ酸アンモニウム支持塩を加えたメタノール水溶液にナノコンポジット半導体光触媒材料を混入し、紫外線及び可視光線を含む人工光源若しくは太陽光を照射して水素を製造する方法、更にはそのナノコンポジット半導体光触媒材料の高活性化に関するものである。 The present invention relates to a method for producing hydrogen by mixing a nanocomposite semiconductor photocatalyst material in an aqueous methanol solution to which an ammonium formate-supporting salt is added, and irradiating an artificial light source including ultraviolet rays and visible light or sunlight, and further the nanocomposite semiconductor. The present invention relates to high activation of the photocatalytic material.

特許文献1には、酸化チタン等の半導体光触媒を用いて水溶液を光分解し、燃料電池等のエネルギー源となる水素を生成する発明が開示されている。
特許文献2には、反応溶液として水に、メタノール、エタノール、1―プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオールなどを加えたアルコール水溶液を用いることで光触媒を活性化させ、また、反応溶液の水は、必ずしも純水に限定されず、炭酸塩や炭酸水素塩の塩類を混合、溶解させた水溶液を用いて水素の生成効率を向上させる発明が開示されている。
Patent Document 1 discloses an invention in which an aqueous solution is photodecomposed using a semiconductor photocatalyst such as titanium oxide to generate hydrogen that serves as an energy source for a fuel cell or the like.
Patent Document 2 discloses that as a reaction solution, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,2-butanediol, 1,3-butanediol, 1,4- The photocatalyst is activated by using an alcohol aqueous solution to which butanediol or the like is added, and the water in the reaction solution is not necessarily limited to pure water, and an aqueous solution in which carbonates or bicarbonates are mixed and dissolved is used. An invention that uses it to improve the production efficiency of hydrogen is disclosed.

特許第3136339号公報Japanese Patent No. 3136339 特許公開2007−069158号公報Japanese Patent Publication No. 2007-069158

しかしながら、これらの支持電解質(支持塩)を用いても光触媒による水素生成効率や水素発生量は小さく、光触媒物質を用いた水素製造法の実用化及び産業化には、大きな懸念が持たれている。 However, even if these supporting electrolytes (supporting salts) are used, the hydrogen production efficiency and the amount of hydrogen generated by the photocatalyst are small, and there is great concern for the practical use and industrialization of the hydrogen production method using the photocatalytic substance. .

本発明は、従来技術の支持電解質と光触媒を用いた水素生方法より、更に高効率に水素を生成できる支持電解質の提供と、該支持電解質と組合わせて用いるナノコンポジット半導体光触媒材料と、これら材料を用いたメタノール水溶液からの水素製造方法、更にはナノコンポジット半導体光触媒材料を高活性化させる方法の提供などを目的とする。 The present invention is a hydrogen-producing formation method using the prior art supporting electrolyte and photocatalyst, and provides the supporting electrolyte which can produce hydrogen more efficiently, and the nanocomposite semiconductor photocatalyst material used in combination with the supporting electrolyte, these An object of the present invention is to provide a method for producing hydrogen from an aqueous methanol solution using the material and a method for highly activating the nanocomposite semiconductor photocatalyst material.

請求項1に記載の発明では、まず、メタノール水溶液を収容する容器にギ酸アンモニウムとナノコンポジット半導体光触媒材料を添加混合する。ギ酸アンモニウムは溶解し支持電解質として作用し、ナノコンポジット半導体光触媒材料は水溶液に不溶で懸濁状態、或いは沈降状態となる。次いで容器内のメタノール水溶液に人口光源(紫外線及び可視光線を含む)や太陽光を照射して水素ガスを生成させる。
請求項2に記載の発明は、請求項1の構成において、前記ナノコンポジット半導体光触媒材料が、少なくとも一部に酸化銅/酸化アルミニウム/酸化チタンの3成分系からなるナノコンポジットを含有することを特徴とする。
請求項3に記載の発明は、請求項1又は請求項2の構成において、前記ナノコンポジット半導体光触媒材料が、少なくとも一部にアナターゼ型の酸化チタンを含有することを特徴とする。
請求項4に記載の発明は、請求項1乃至請求項3の何れか一つの構成において、前記ギ酸アンモニウム支持電解質の濃度が0.1〜0.25Mであることを特徴とする。
上記目的を達成するために、請求項5に記載の発明は、請求項1又は請求項3又は請求項4の構成において、前記ナノコンポジット半導体光触媒材料が酸化アルミニウム/酸化チタンの2成分系からなり、メタノール水溶液にさらに銅イオンとギ酸アンモニウム支持電解質を添加し、光還元により酸化アルミニウム/酸化チタンナノコンポジット表面に銅粒子を析出させながら水素を製造することを特徴とする。
請求項6に記載の発明は、請求項5の構成において、メタノール水溶液中銅イオンと酸化チタンとの重量比が、0.0005:1から0.004:1の範囲にあることを特徴とする。
In the first aspect of the invention, first, ammonium formate and the nanocomposite semiconductor photocatalyst material are added and mixed in a container containing an aqueous methanol solution. Ammonium formate dissolves and acts as a supporting electrolyte, and the nanocomposite semiconductor photocatalyst material is insoluble in an aqueous solution and becomes suspended or settled. Next, the aqueous methanol solution in the container is irradiated with artificial light sources (including ultraviolet rays and visible rays) and sunlight to generate hydrogen gas.
The invention according to claim 2 is characterized in that, in the configuration of claim 1, the nanocomposite semiconductor photocatalyst material contains at least a nanocomposite composed of a three-component system of copper oxide / aluminum oxide / titanium oxide. And
According to a third aspect of the present invention, in the configuration of the first or second aspect, the nanocomposite semiconductor photocatalyst material contains anatase-type titanium oxide at least partially.
According to a fourth aspect of the present invention, in any one of the first to third aspects, the concentration of the ammonium formate supporting electrolyte is 0.1 to 0.25M.
In order to achieve the above object, according to a fifth aspect of the present invention, in the configuration of the first, third, or fourth aspect, the nanocomposite semiconductor photocatalytic material comprises a two-component system of aluminum oxide / titanium oxide. Further, copper ions and ammonium formate supporting electrolyte are further added to a methanol aqueous solution, and hydrogen is produced while copper particles are precipitated on the surface of the aluminum oxide / titanium oxide nanocomposite by photoreduction.
The invention according to claim 6 is characterized in that, in the constitution of claim 5, the weight ratio of copper ions and titanium oxide in the methanol aqueous solution is in the range of 0.0005: 1 to 0.004: 1. .

本発明によれば、これまで用いられてきた炭酸塩などの支持電解質を用いた場合より、水素生成効率が向上できる。具体的は、これまでの炭酸塩を用いた場合の水素生成量より2倍から3倍程度水素生成量が増加する。従って、光触媒物質を用いた水素製造法の実用化及び産業化に大きく前進する。 According to the present invention, the hydrogen generation efficiency can be improved as compared with the case where a supporting electrolyte such as a carbonate used so far is used. Specifically, the hydrogen production amount increases by about 2 to 3 times the hydrogen production amount when using the conventional carbonate. Therefore, a significant advance is made in the practical application and industrialization of hydrogen production methods using photocatalytic substances.

以下、本発明の実施の形態を説明する。
[ナノコンポジット半導体光触媒材料の製造方法]
まず、本発明に用いられるナノコンポジット半導体光触媒材料には、酸化チタン、酸化亜鉛、チタン酸ストロンチウム、炭化ケイ素、酸化鉄、酸化銅、セレン化カドミウム、硫化カドミウムなどの半導体の複合体が利用される。ナノコンポジット化には、これらの半導体を組み合わせて複合化する方法や、白金、パラジウム、ロジウム、金、銀などの金属を半導体に修飾する手法が用いられる。さらに、酸化アルミニウムや酸化イリジウムなどの酸化物を半導体に修飾する手法も用いられる。
Embodiments of the present invention will be described below.
[Method for producing nanocomposite semiconductor photocatalyst material]
First, as the nanocomposite semiconductor photocatalyst material used in the present invention, a semiconductor composite such as titanium oxide, zinc oxide, strontium titanate, silicon carbide, iron oxide, copper oxide, cadmium selenide, cadmium sulfide is used. . For nanocompositing, a method of combining these semiconductors into a composite and a method of modifying metals such as platinum, palladium, rhodium, gold, and silver into semiconductors are used. Furthermore, a method of modifying an oxide such as aluminum oxide or iridium oxide with a semiconductor is also used.

また、ナノコンポジット半導体光触媒材料は粉末状のものが望ましい。光を有効に利用するためには、比表面積が大きい粒子、すなわち径の小さい粒子が有利だからで、具体的には1nm〜200nmの範囲の粒子径の粉末が好適には用いられる。粒子を適宜成型加工して板状等の形態としたり、適当な基板上に固定化したりすることもできる。 The nanocomposite semiconductor photocatalyst material is preferably in powder form. In order to effectively use light, particles having a large specific surface area, that is, particles having a small diameter are advantageous. Specifically, powders having a particle diameter in the range of 1 nm to 200 nm are preferably used. The particles can be appropriately molded to form a plate or the like, or can be fixed on a suitable substrate.

さらに、ナノコンポジット半導体光触媒材料が、少なくとも一部に酸化銅/酸化アルミニウム/酸化チタンの3成分系からなるナノコンポジットを含有することが望ましい。ここで、酸化アルミニウムは、重量%で0.1〜3.0%となるように配合するのが望ましい。当該配合以外では、光触媒活性が低くなり、水素生成能力が低下するからである。また、酸化銅も、重量%で0.2〜3.0%となるように配合するのが望ましい。当該配合以外では、光触媒活性が低くなり、水素生成能力が低下するからである。 Furthermore, it is desirable that the nanocomposite semiconductor photocatalyst material contains at least a nanocomposite composed of a three-component system of copper oxide / aluminum oxide / titanium oxide. Here, it is desirable to mix aluminum oxide so that it may be 0.1 to 3.0% by weight. It is because photocatalytic activity will become low and hydrogen generation capability will fall except the said mixing | blending. Moreover, it is desirable to mix copper oxide so that it may be 0.2 to 3.0% by weight. It is because photocatalytic activity will become low and hydrogen generation capability will fall except the said mixing | blending.

また、酸化チタンを含有するナノコンポジット半導体光触媒材料では、少なくとも一部にアナターゼ型の酸化チタンを含有するのが望ましい。酸化チタンには、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン等の各種酸化チタンがあるが、一般的にアナターゼ型のものが光触媒活性が高いことから、アナターゼ型酸化チタン単独、又はアナターゼ型酸化チタンを主成分とする、例えばアナターゼ型/ルチル型酸化チタン混合物を含有しているのが、水素生成には有利となる。 Moreover, in the nanocomposite semiconductor photocatalyst material containing titanium oxide, it is desirable to contain anatase-type titanium oxide at least in part. There are various types of titanium oxide such as anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, etc., but since anatase-type ones generally have high photocatalytic activity, anatase-type titanium oxide alone, or It is advantageous for hydrogen generation to contain an anatase type titanium oxide as a main component, for example, an anatase type / rutile type titanium oxide mixture.

[水素生成方法]
上記のナノコンポジット半導体光触媒材料による水素生成は、ギ酸アンモニウム支持電解質を加えられたメタノール水溶液を反応溶液とし、人工光源若しくは太陽光源からの紫外線及び可視光線を照射することにより行われる。メタノールなどのアルコール水溶液中では、アルコール分子と水分子とが水素結合で繋がった会合体を形成し、さらに上下のアルコール会合体を水分子が水素結合のネットワークで繋ぎ、水和クラスターを形成していると考えられる。このアルコール水溶液を用いることで、光触媒が活性化されて水素発生反応が進行する。また、ギ酸アンモニウム支持電解質を加えることにより、さらに光触媒が活性化されて水素生成量が向上する。
[Hydrogen generation method]
Hydrogen generation by the nanocomposite semiconductor photocatalyst material is performed by using an aqueous methanol solution to which an ammonium formate supporting electrolyte is added as a reaction solution and irradiating ultraviolet rays and visible rays from an artificial light source or a solar light source. In an aqueous alcohol solution such as methanol, an alcohol molecule and water molecule form an association with hydrogen bonds, and the upper and lower alcohol associations are joined by a network of hydrogen bonds to form a hydrated cluster. It is thought that there is. By using this aqueous alcohol solution, the photocatalyst is activated and the hydrogen generation reaction proceeds. Further, by adding an ammonium formate supporting electrolyte, the photocatalyst is further activated and the amount of hydrogen generation is improved.

上記反応溶液にナノコンポジット半導体光触媒材料を添加する場合の添加量は、基本的に入射した光が効率良く吸収できる量を選択する。照射する光は、ナノコンポジット半導体光触媒のバンドギャップを上回るエネルギーを持つ必要があり、紫外線が好適に使用されるが、活性なナノコンポジット半導体光触媒材料であれば、太陽光に含まれる紫外線でも有効に利用できるため、太陽光を照射しても良い。   The amount of the nanocomposite semiconductor photocatalyst material added to the reaction solution is basically selected so that incident light can be efficiently absorbed. The irradiation light needs to have energy exceeding the band gap of the nanocomposite semiconductor photocatalyst, and ultraviolet rays are preferably used. However, an active nanocomposite semiconductor photocatalyst material is effective even with ultraviolet rays contained in sunlight. Since it can be used, it may be irradiated with sunlight.

ナノコンポジット半導体光触媒材料として、酸化銅/酸化アルミニウム/酸化チタンの3成分系からなるナノコンポジット光触媒を使用した。使用した酸化チタンは日本エアロジル製P25であり、この酸化チタンはアナターゼ構造約80%、ルチル構造約20%の酸化チタン混合物で、細孔の少ない多面構造となっている。平均粒径は約20nmであり、比表面積は約50m/gであった。
酸化アルミニウムは、アルドリッチ社製のナノ粒子を用い、平均粒径は約40〜47nmであり、比表面積は約35〜40m/gであった。
酸化銅は、アルドリッチ社製のナノ粒子を用い、平均粒径は約33nmであり、比表面積は約29m/gであった。
As a nanocomposite semiconductor photocatalyst material, a nanocomposite photocatalyst composed of a three-component system of copper oxide / aluminum oxide / titanium oxide was used. The titanium oxide used was P25 made by Nippon Aerosil, and this titanium oxide is a titanium oxide mixture having anatase structure of about 80% and rutile structure of about 20%, and has a multifaceted structure with few pores. The average particle size was about 20 nm and the specific surface area was about 50 m 2 / g.
As the aluminum oxide, nanoparticles made by Aldrich were used, the average particle size was about 40 to 47 nm, and the specific surface area was about 35 to 40 m 2 / g.
As the copper oxide, Aldrich nanoparticles were used, the average particle size was about 33 nm, and the specific surface area was about 29 m 2 / g.

酸化銅の添加量は重量%で0.2%で、酸化アルミニウムの添加量は重量%で0.3%になるように、酸化チタン、酸化アルミニウム、酸化銅を配合し、メノウ乳鉢で約15分間混合した。その後、空気中において、4℃/分の昇温速度で500℃まで加熱して、その温度下で3時間焼成し、焼成後、メノウ乳鉢で約15分間すりつぶして粉末状とし、酸化チタンに酸化アルミニウムと酸化銅とが担持されたナノコンポジット半導体光触媒材料とした。 Titanium oxide, aluminum oxide and copper oxide were blended so that the addition amount of copper oxide was 0.2% by weight and the addition amount of aluminum oxide was 0.3% by weight, and about 15 in an agate mortar. Mixed for minutes. After that, it is heated to 500 ° C. at a rate of temperature increase of 4 ° C./min in the air, baked at that temperature for 3 hours, ground and then ground in an agate mortar for about 15 minutes, and oxidized to titanium oxide. It was set as the nanocomposite semiconductor photocatalyst material with which aluminum and copper oxide were carry | supported.

パイレックス(登録商標)ガラス製の反応容器(容積55.3mL)に、支持電解質が溶解した、体積%で10%のメタノール水溶液30mLを入れ、ここにナノコンポジット半導体光触媒材料20mgを添加して、マグネティックスターラー撹拌子を入れて反応容器を密閉した。次に、マグネティックスターラーを用いてメタノール水溶液を撹拌し、ナノコンポジット半導体光触媒材料を液中に懸濁させた。液温は恒温槽を用いて50℃で一定としている。
次に、反応容器の側面から、ブラックライト(東芝ライテック(株)製ネオボール5ブラックライト、ピーク波長352nm、光強度1.0mW/cm)を用いて紫外線を照射した。3時間光照射を行った後、照射を中止して、反応容器内の気体をガスシリンジにより250μL採取し、水素生成量を熱伝導度検出器付きガスクロマトグラフィー(GLサイエンス(株)製GC−320)で測定した。この水素生成量を表1に示す。なお、ここに記載の水素生成量は、10回繰り返し実験を行った結果の平均値である。
Pyrex (registered trademark) glass reaction vessel (volume: 55.3 mL) was charged with 30 mL of 10% by volume methanol aqueous solution in which the supporting electrolyte was dissolved, and 20 mg of nanocomposite semiconductor photocatalyst material was added thereto, and magnetic A reaction vessel was sealed with a stir bar. Next, the methanol aqueous solution was stirred using a magnetic stirrer to suspend the nanocomposite semiconductor photocatalyst material in the liquid. The liquid temperature is constant at 50 ° C. using a thermostatic bath.
Next, ultraviolet rays were irradiated from the side of the reaction vessel using a black light (Neoball 5 black light manufactured by Toshiba Lighting & Technology Co., Ltd., peak wavelength 352 nm, light intensity 1.0 mW / cm 2 ). After 3 hours of light irradiation, the irradiation was stopped, the gas in the reaction vessel was sampled by 250 μL with a gas syringe, and the amount of hydrogen produced was measured by gas chromatography with a thermal conductivity detector (GC-produced by GL Science Co., Ltd.). 320). This hydrogen production amount is shown in Table 1. In addition, the hydrogen production amount described here is an average value of results obtained by repeating the experiment ten times.

ナノコンポジット半導体光触媒材料として、酸化アルミニウム/酸化チタンの2成分系からなるナノコンポジット光触媒を使用した。使用した酸化チタンは日本エアロジル製P25であり、この酸化チタンはアナターゼ構造約80%、ルチル構造約20%の酸化チタン混合物で、細孔の少ない多面構造となっている。平均粒径は約20nmであり、比表面積は約50m/gであった。
酸化アルミニウムは、アルドリッチ社製のナノ粒子を用い、平均粒径は約40〜47nmであり、比表面積は約35〜40m/gであった。
As the nanocomposite semiconductor photocatalyst material, a nanocomposite photocatalyst composed of two components of aluminum oxide / titanium oxide was used. The titanium oxide used was P25 made by Nippon Aerosil, and this titanium oxide is a titanium oxide mixture having anatase structure of about 80% and rutile structure of about 20%, and has a multifaceted structure with few pores. The average particle size was about 20 nm and the specific surface area was about 50 m 2 / g.
As the aluminum oxide, nanoparticles made by Aldrich were used, the average particle size was about 40 to 47 nm, and the specific surface area was about 35 to 40 m 2 / g.

酸化アルミニウムの添加量は重量%で0.3%になるように、酸化チタン、酸化アルミニウム、酸化銅を配合し、メノウ乳鉢で約15分間混合した。その後、空気中において、4℃/分の昇温速度で500℃まで加熱して、その温度下で3時間焼成し、焼成後、メノウ乳鉢で約15分間すりつぶして粉末状とし、酸化チタンに酸化アルミニウムと酸化銅が担持されたナノコンポジット半導体光触媒材料とした。 Titanium oxide, aluminum oxide, and copper oxide were blended so that the amount of aluminum oxide added was 0.3% by weight, and mixed in an agate mortar for about 15 minutes. After that, it is heated to 500 ° C. at a rate of temperature increase of 4 ° C./min in the air, baked at that temperature for 3 hours, ground and then ground in an agate mortar for about 15 minutes, and oxidized to titanium oxide. A nanocomposite semiconductor photocatalyst material carrying aluminum and copper oxide was obtained.

パイレックス(登録商標)ガラス製の反応容器(容積55.3mL)に、ギ酸アンモニウム支持電解質と硝酸銅が溶解した、体積%で10%のメタノール水溶液30mLを入れ、ここにナノコンポジット半導体光触媒材料20mgを添加して、マグネティックスターラー撹拌子を入れて反応容器を密閉した。この時のギ酸アンモニウム支持電解質の濃度は、200mmol/Lであった。次に、マグネティックスターラーを用いてメタノール水溶液を撹拌し、ナノコンポジット半導体光触媒材料を液中に懸濁させた。液温は恒温槽を用いて50℃で一定としている。
次に、反応容器の側面から、ブラックライト(東芝ライテック(株)製ネオボール5ブラックライト、ピーク波長352nm、光強度1.0mW/cm)を用いて紫外線を照射した。3時間光照射を行った後、照射を中止して、反応容器内の気体をガスシリンジにより250μL採取し、水素生成量を熱伝導度検出器付きガスクロマトグラフィー(GLサイエンス(株)製GC−320)で測定した。この水素生成量を表2に示す。なお、ここに記載の水素生成量は、10回繰り返し実験を行った結果の平均値である。
Pyrex (registered trademark) glass reaction vessel (volume: 55.3 mL) was charged with 30 mL of 10% by volume methanol aqueous solution in which ammonium formate supporting electrolyte and copper nitrate were dissolved, and 20 mg of nanocomposite semiconductor photocatalyst material was added here. The magnetic stirrer stir bar was added and the reaction vessel was sealed. The concentration of the ammonium formate supporting electrolyte at this time was 200 mmol / L. Next, the methanol aqueous solution was stirred using a magnetic stirrer to suspend the nanocomposite semiconductor photocatalyst material in the liquid. The liquid temperature is constant at 50 ° C. using a thermostatic bath.
Next, ultraviolet rays were irradiated from the side of the reaction vessel using a black light (Neoball 5 black light manufactured by Toshiba Lighting & Technology Co., Ltd., peak wavelength 352 nm, light intensity 1.0 mW / cm 2 ). After 3 hours of light irradiation, the irradiation was stopped, the gas in the reaction vessel was sampled by 250 μL with a gas syringe, and the amount of hydrogen produced was measured by gas chromatography with a thermal conductivity detector (GC-produced by GL Science Co., Ltd.). 320). This hydrogen production amount is shown in Table 2. In addition, the hydrogen production amount described here is an average value of results obtained by repeating the experiment ten times.

表1の結果を比較すると、これまで支持電解質として報告されている炭酸塩や炭酸水素塩より、ギ酸アンモニウム塩を用いた場合、優れた水素生成能力が得られていることが分かる。特に、ギ酸アンモニウム濃度200mmol/Lの場合には、炭酸水素塩を用いた場合より2.3倍水素生成量が増加した。また、表2の結果と比較すると、硝酸銅濃度16.7μmol/Lの場合には、3.3倍水素生成量が増加した。ギ酸アンモニウムは低廉であり、工業的に水素を大量に生産する場合に断然有利であると言える。











Comparing the results in Table 1, it can be seen that when ammonium formate salt is used, an excellent hydrogen generating ability is obtained from carbonates and hydrogen carbonates that have been reported as supporting electrolytes. In particular, when the ammonium formate concentration was 200 mmol / L, the amount of hydrogen generation increased 2.3 times compared to the case of using the bicarbonate. Further, when compared with the results in Table 2, the amount of hydrogen generation increased 3.3 times when the copper nitrate concentration was 16.7 μmol / L. Ammonium formate is inexpensive and can be said to be extremely advantageous when industrially producing hydrogen in large quantities.











Claims (6)

人工光源若しくは太陽光源からの紫外線及び可視光線をナノコンポジット半導体光触媒材料が分散されたメタノール水溶液に照射して、水素を製造する水素製造方法であって、前記メタノール水溶液にギ酸アンモニウム支持電解質(支持塩)を加えて水素を製造することを特徴とする水素製造方法。 A hydrogen production method for producing hydrogen by irradiating an aqueous methanol solution in which a nanocomposite semiconductor photocatalyst material is dispersed with ultraviolet light and visible light from an artificial light source or a solar light source, wherein the aqueous methanol solution is a supporting electrolyte (supporting salt). ) Is added to produce hydrogen. 前記ナノコンポジット半導体光触媒材料が、少なくとも一部に酸化銅/酸化アルミニウム/酸化チタンの3成分系からなるナノコンポジットを含有することを特徴とする請求項1に記載の水素製造方法。 2. The method for producing hydrogen according to claim 1, wherein the nanocomposite semiconductor photocatalyst material contains at least a nanocomposite composed of a three-component system of copper oxide / aluminum oxide / titanium oxide. 前記ナノコンポジット半導体光触媒材料が、少なくとも一部にアナターゼ型の酸化チタンを含有することを特徴とする請求項1又は請求項2の何れか一項に記載の水素製造方法。 The method for producing hydrogen according to claim 1, wherein the nanocomposite semiconductor photocatalyst material contains anatase-type titanium oxide at least in part. 前記メタノール水溶液中の前記ギ酸アンモニウム支持電解質の濃度が0.1〜0.25Mであることを特徴とする請求項1乃至請求項3の何れか一項に記載の水素製造方法。 The method for producing hydrogen according to any one of claims 1 to 3, wherein a concentration of the ammonium formate supporting electrolyte in the aqueous methanol solution is 0.1 to 0.25M. 前記ナノコンポジット半導体光触媒材料が酸化アルミニウム/酸化チタンの2成分からなるナノコンポジットを含有し、且つ、前記メタノール水溶液中に銅イオンとギ酸アンモニウム支持電解質とが添加されることを特徴とする請求項1又は請求項3又は請求項4の何れか一項に記載の水素製造方法。 2. The nanocomposite semiconductor photocatalyst material contains a nanocomposite composed of two components of aluminum oxide / titanium oxide, and copper ions and ammonium formate supporting electrolyte are added to the methanol aqueous solution. Or the hydrogen production method as described in any one of Claim 3 or Claim 4. 請求項5に記載のメタノール水溶液中の銅イオンと酸化チタンとの重量比が、0.0005:1から0.004:1の範囲にあることを特徴とする請求項5に記載の水素製造方法。







6. The method for producing hydrogen according to claim 5, wherein the weight ratio of copper ions to titanium oxide in the aqueous methanol solution according to claim 5 is in the range of 0.0005: 1 to 0.004: 1. .







JP2010108000A 2010-05-10 2010-05-10 Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution Active JP5657913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108000A JP5657913B2 (en) 2010-05-10 2010-05-10 Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108000A JP5657913B2 (en) 2010-05-10 2010-05-10 Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution

Publications (2)

Publication Number Publication Date
JP2011236074A JP2011236074A (en) 2011-11-24
JP5657913B2 true JP5657913B2 (en) 2015-01-21

Family

ID=45324483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108000A Active JP5657913B2 (en) 2010-05-10 2010-05-10 Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution

Country Status (1)

Country Link
JP (1) JP5657913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204200A1 (en) * 2013-06-18 2014-12-24 서강대학교산학협력단 Hydrogen fuel converter provided with photocatalyst and method for preparing hydrogen from methanol using photocatalyst
KR102153528B1 (en) * 2013-06-18 2020-09-08 서강대학교 산학협력단 hydrogen fuel processor containing photocatalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767040B2 (en) * 1996-09-05 2006-04-19 三菱ふそうトラック・バス株式会社 Engine exhaust gas purification device
JPH11169726A (en) * 1997-08-28 1999-06-29 Toto Ltd Functional material having photocatalytic function and composite functional material and manufacture thereof
JP3136339B2 (en) * 1998-09-21 2001-02-19 工業技術院長 Titanium oxide photocatalyst and method for producing the same
JP3482461B2 (en) * 2000-03-28 2003-12-22 独立行政法人産業技術総合研究所 Potassium titanate photocatalyst and method for producing the same
US6399828B1 (en) * 2001-10-29 2002-06-04 Boehringer Ingelheim Chemicals, Inc. Preparation of amphetamines from phenylpropanolamines
JP4110279B2 (en) * 2004-02-02 2008-07-02 昭和電工株式会社 Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP5229947B2 (en) * 2008-11-17 2013-07-03 中部電力株式会社 Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen

Also Published As

Publication number Publication date
JP2011236074A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
Huang et al. Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution
Chen et al. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction
Chu et al. Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production
Zhu et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles
Zhou et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst
Su et al. Internal electric field assisted photocatalytic generation of hydrogen peroxide over BiOCl with HCOOH
CN110327920A (en) A kind of monatomic catalyst and its preparation method and application
Kadi et al. Uniform dispersion of CuO nanoparticles on mesoporous TiO2 networks promotes visible light photocatalysis
CN105980294A (en) Photocatalytic hydrogen production from water over AG-PD-AU deposited on titanium dioxide materials
Miao et al. Photoelectrocatalysis for high-value-added chemicals production
CN104607185A (en) Monodispersed spherical titanium dioxide core-shell structure composite material and preparation method thereof
Li et al. Rationally engineered avtive sites for efficient and durable hydrogen production over γ-graphyne assembly CuMoO4 S-scheme heterojunction
Elysabeth et al. A comparative study of CuO deposition methods on titania nanotube arrays for photoelectrocatalytic ammonia degradation and hydrogen production
Mohan et al. Zinc iron selenide nanoflowers anchored g-C3N4 as advanced catalyst for photocatalytic water splitting and dye degradation
Nagaraju et al. Ionothermal synthesis of TiO2 nanoparticles for enhanced photocatalytic H2 generation
Zhang et al. In situ liquid‐phase growth strategies of g‐C3N4 solar‐driven heterogeneous catalysts for environmental applications
JP2004059507A (en) Method for reducing carbon dioxide by using photocatalyst
Xiang et al. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production
Dang et al. A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution
Jin et al. Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n–2) electron transport layer
Ibarra-Rodriguez et al. Formic acid and hydrogen generation from the photocatalytic reduction of CO2 on visible light activated N-TiO2/CeO2/CuO composites
Li et al. Multiple light scattering and nanotip effect of hierarchical sea urchin-like W18O49 boosting photocatalytic hydrolysis of ammonia borane
Guo et al. Catalytic reduction of CO2 by Al–Sn-CNTs composite for synthesizing formic acid
Peng et al. Solar-driven multifunctional Au/TiO2@ PCM towards bio-glycerol photothermal reforming hydrogen production and thermal storage
JP5657913B2 (en) Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5657913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250