JP5656135B2 - Cu-based wiring film - Google Patents

Cu-based wiring film Download PDF

Info

Publication number
JP5656135B2
JP5656135B2 JP2013185185A JP2013185185A JP5656135B2 JP 5656135 B2 JP5656135 B2 JP 5656135B2 JP 2013185185 A JP2013185185 A JP 2013185185A JP 2013185185 A JP2013185185 A JP 2013185185A JP 5656135 B2 JP5656135 B2 JP 5656135B2
Authority
JP
Japan
Prior art keywords
film
wiring film
based wiring
display device
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013185185A
Other languages
Japanese (ja)
Other versions
JP2014059559A (en
Inventor
村田 英夫
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013185185A priority Critical patent/JP5656135B2/en
Publication of JP2014059559A publication Critical patent/JP2014059559A/en
Application granted granted Critical
Publication of JP5656135B2 publication Critical patent/JP5656135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、平面表示装置に用いられるCu系配線膜に関するものである。   The present invention relates to a Cu-based wiring film used in a flat display device.

薄膜デバイスを作製する液晶ディスプレイ、プラズマディスプレイパネル、有機エレクトロルミネッセンスディスプレイ等の平面表示装置に用いられる配線膜には、従来から耐食性、耐熱性、基板との密着性に優れる金属であるMoやMoを主成分とする合金が用いられている(例えば、特許文献1参照)。しかしながら、近年、Moは原料価格が高騰しており、より価格の安い代替の金属材料としてCu等が検討されている。   For wiring films used in flat display devices such as liquid crystal displays, plasma display panels, and organic electroluminescence displays that produce thin film devices, Mo and Mo, which are metals with excellent corrosion resistance, heat resistance, and adhesion to substrates, have been used. An alloy having a main component is used (for example, see Patent Document 1). However, in recent years, the raw material price of Mo has soared, and Cu or the like has been studied as an alternative metal material with a lower price.

特開2002−190212号公報JP 2002-190212 A

Cuは、Moに比べて低価格な金属材料であるが、Cuを配線膜に適用する場合には、基板に対する密着性が弱いという問題がある。
本発明の目的は、上記の課題に鑑み、基板との密着性を向上することが可能な新規なCu系配線膜を提供することである。
Cu is a metal material that is less expensive than Mo. However, when Cu is applied to a wiring film, there is a problem that adhesion to a substrate is weak.
In view of the above problems, an object of the present invention is to provide a novel Cu-based wiring film capable of improving adhesion to a substrate.

本発明者は、Cu系配線膜として、CuOを一定量含んだCuからなる膜に制御することで、基板との密着性を向上させるが可能となることを見出し本発明に到達した。
すなわち、本発明は、ガラス基板上に形成されるCu酸化物を有するCu系配線膜であって、Cuの主結晶面(111)面のX線回折ピーク強度をCu(111)、CuOの主結晶面(111)面のX線回折のピーク強度をCuO(111)とした場合に、その強度比Cu(111)/CuO(111)の値が0.8〜2.5の範囲にあるCu系配線膜である。
また、好ましくは、膜厚が200〜500nmである前記Cu系配線膜である。
また、好ましくは、比抵抗が15μΩcm以下の前記Cu系配線膜である。
また、前記Cu系配線膜上にCu膜が積層される構成も望ましい。
The present inventor has found that the adhesion to the substrate can be improved by controlling the Cu-based wiring film to a film made of Cu containing a certain amount of Cu 2 O, and has reached the present invention.
That is, the present invention is a Cu-based wiring film having Cu oxide formed on a glass substrate, wherein the X-ray diffraction peak intensity of the main crystal plane (111) of Cu is Cu (111), Cu 2 O. of when the peak intensity of X-ray diffraction of the major crystal faces (111) plane was Cu 2 O (111), the value of the intensity ratio Cu (111) / Cu 2 O (111) 0.8~2. Cu-based wiring film in the range of 5.
Moreover, the Cu-based wiring film having a thickness of 200 to 500 nm is preferable.
The Cu-based wiring film having a specific resistance of 15 μΩcm or less is preferable.
A configuration in which a Cu film is laminated on the Cu-based wiring film is also desirable.

本発明によれば、配線材料として価格の安いCu系配線膜として、基板との密着性を向上させることが可能となるので、平面表示装置用の配線膜として欠くことのできない技術となる。   According to the present invention, it is possible to improve the adhesiveness with a substrate as a Cu-based wiring film, which is inexpensive as a wiring material, and this is an indispensable technique as a wiring film for a flat display device.

試料1のX線回折パターンである。2 is an X-ray diffraction pattern of Sample 1. 試料5のX線回折パターンである。3 is an X-ray diffraction pattern of Sample 5. 試料6のX線回折パターンである。2 is an X-ray diffraction pattern of Sample 6.

本発明の最大の特徴は、Cu系配線膜として、CuOを一定量含んだCuからなる膜に制御することで、基板に対する密着性を向上させることが可能となる点にある。
Cu系配線膜中のCuO量に関しては、同定が困難であるため、X線回折強度測定において、Cuの主結晶面(111)面のピーク強度とCuOの主結晶面(111)面のピーク強度の比で特定している。ピーク強度比Cu(111)/CuO(111)は0.8〜2.5の範囲とすることで、密着性の向上の効果が十分現れる。好ましくは、ピーク強度比Cu(111)/CuO(111)が1.0〜2.0の範囲である。
The greatest feature of the present invention is that the adhesion to the substrate can be improved by controlling the Cu-based wiring film to a film made of Cu containing a certain amount of Cu 2 O.
Since it is difficult to identify the amount of Cu 2 O in the Cu-based wiring film, the peak intensity of the Cu main crystal plane (111) plane and the Cu 2 O main crystal plane (111) are measured in the X-ray diffraction intensity measurement. It is specified by the ratio of the peak intensity of the surface. By making the peak intensity ratio Cu (111) / Cu 2 O (111) in the range of 0.8 to 2.5, the effect of improving the adhesion sufficiently appears. Preferably, the peak intensity ratio Cu (111) / Cu 2 O (111) is in the range of 1.0 to 2.0.

なお、ピーク強度比Cu(111)/CuO(111)が0.8に満たない場合には、Cu系配線膜中のCuOの含有量が多くなると考えられるため、密着性の向上効果は高いが、比抵抗が上昇し過ぎるため好ましくない。また、ピーク強度比Cu(111)/CuO(111)が2.5を超える場合には、Cu系配線膜中のCuOの含有量が少ないと考えられるため、密着性の向上が十分ではない。 Since the peak intensity ratio Cu (111) / Cu 2 O (111) is in the case of less than 0.8 is considered to have the content of Cu 2 O in the Cu-based wiring film increases, improvement in adhesion Although the effect is high, it is not preferable because the specific resistance increases excessively. Further, when the peak intensity ratio Cu (111) / Cu 2 O (111) exceeds 2.5, it is considered that the content of Cu 2 O in the Cu-based wiring film is small, so that the adhesion is improved. Not enough.

また、本発明のCu系配線膜は、膜厚が200〜500nmであることが好ましい。それは、膜厚が200nmに満たない場合には、膜が薄いために膜表面の電子散乱の影響によって電気抵抗が上昇してしまうとともに、膜の表面形態が変化しやすく望ましくないためである。また、膜厚が500nmを超えると、電気抵抗は低く抑えられるが、膜応力によって膜が剥がれ易くなり、成膜に時間がかかり生産効率上望ましくないためである。   The Cu-based wiring film of the present invention preferably has a film thickness of 200 to 500 nm. This is because when the film thickness is less than 200 nm, since the film is thin, the electrical resistance increases due to the influence of electron scattering on the film surface, and the surface form of the film easily changes, which is not desirable. On the other hand, if the film thickness exceeds 500 nm, the electrical resistance can be kept low, but the film is easily peeled off by the film stress, and it takes a long time to form the film, which is undesirable in terms of production efficiency.

また、本発明のCu系配線膜は、比抵抗が15μΩcm以下であることが好ましい。それは、純Mo配線膜の比抵抗が15μΩcm程度であり、Mo系配線膜の代替材料としては、同一の比抵抗程度以下を実現することが望ましいためである。
なお、本発明のCu系配線膜においては、成膜時に比抵抗が高いものに関しても、成膜後に真空雰囲気中で加熱処理を行うことで、比抵抗を15μΩcm以下へ低減することが可能である。
In addition, the Cu-based wiring film of the present invention preferably has a specific resistance of 15 μΩcm or less. This is because the specific resistance of the pure Mo wiring film is about 15 μΩcm, and it is desirable to realize the same specific resistance or less as an alternative material for the Mo-based wiring film.
In the Cu-based wiring film of the present invention, even when the specific resistance is high during film formation, the specific resistance can be reduced to 15 μΩcm or less by performing heat treatment in a vacuum atmosphere after film formation. .

また、平面表示装置の配線膜として使用される場合には、駆動素子である薄膜トランジスタ(TFT)に用いられるシリコン薄膜上に接して配線膜を形成する場合がある。Cuを配線膜に適用する場合には、このシリコン薄膜との相互拡散反応により駆動素子の特性が劣化するという問題があるが、本発明のピーク強度比Cu(111)/CuO(111)が0.8〜2.5の範囲にあるCu系配線膜とすることで相互拡散反応も抑制することも可能となる。 When used as a wiring film of a flat display device, the wiring film may be formed in contact with a silicon thin film used for a thin film transistor (TFT) as a driving element. When Cu is applied to the wiring film, there is a problem that the characteristics of the driving element deteriorate due to the mutual diffusion reaction with the silicon thin film. However, the peak intensity ratio Cu (111) / Cu 2 O (111) By using a Cu-based wiring film in the range of 0.8 to 2.5, it is possible to suppress the mutual diffusion reaction.

また、本発明のピーク強度比Cu(111)/CuO(111)が0.8〜2.5の範囲にあるCu系配線膜は、基板に対する密着性を向上させることが可能であるため、さらに、このCu系配線膜上にCu膜を積層させた配線膜を形成することも可能である。この構成を有する配線膜とすることで、基板に対する十分な密着性と積層したCu膜の低抵抗の特性を併せもつことが可能となるためである。 Further, the Cu-based wiring film having the peak intensity ratio Cu (111) / Cu 2 O (111) in the range of 0.8 to 2.5 of the present invention can improve the adhesion to the substrate. Furthermore, it is possible to form a wiring film in which a Cu film is laminated on the Cu-based wiring film. This is because by using the wiring film having this configuration, it is possible to have both sufficient adhesion to the substrate and the low resistance characteristics of the laminated Cu film.

本発明のCu系配線膜を成膜するためには、スパッタリングガスとしてArとOの混合ガスを使用した反応性スパッタにより成膜を行うことが望ましい。また、反応性スパッタにおいてはO分圧、投入電力を制御して、基板との密着性を向上させるために必要なCuOをCu系配線膜中に含有させることが重要となる。 In order to form the Cu-based wiring film of the present invention, it is desirable that the film be formed by reactive sputtering using a mixed gas of Ar and O 2 as a sputtering gas. In reactive sputtering, it is important to contain Cu 2 O necessary for improving the adhesion with the substrate by controlling the O 2 partial pressure and input power in the Cu-based wiring film.

反応性スパッタリングにおけるO分圧は、5%以下では密着性が十分でなく、30%を超えると低抵抗が大きく増加してしまう。このため、5〜30%程度に制御することが望ましい。また、スパッタリングにおける投入電力は、成膜速度とCu系配線膜中のCuOの含有量、さらにタ−ゲット表面での酸化物の生成に影響を与える。スパッタリングの際の投入電力が低いと生産性が低下するとともにCuタ−ゲットの表面に酸化物が生成し、パ−ティクル等の異物が発生しやすくなる。また、投入電力を上げすぎると異常放電等が起きやすくなる。よって、スパッタリングの際にパーティクルや異常放電の発生を抑制し、CuOの含有量を適切に制御したCu系配線膜を成膜するため、投入電力はターゲットの表面積あたりの換算で、2〜10W/cm程度に制御することが望ましい。 If the O 2 partial pressure in the reactive sputtering is 5% or less, the adhesion is not sufficient, and if it exceeds 30%, the low resistance greatly increases. For this reason, it is desirable to control to about 5 to 30%. In addition, the input power in sputtering affects the film formation rate, the Cu 2 O content in the Cu-based wiring film, and the generation of oxide on the target surface. If the input power at the time of sputtering is low, productivity is lowered and oxides are generated on the surface of the Cu target, and foreign matters such as particles are likely to be generated. Further, if the input power is increased too much, abnormal discharge or the like is likely to occur. Therefore, in order to suppress the generation of particles and abnormal discharge during sputtering and to form a Cu-based wiring film in which the content of Cu 2 O is appropriately controlled, the input power is 2 to 2 in terms of the surface area of the target. It is desirable to control to about 10 W / cm 2 .

なお、上記の反応性スパッタリングによって成膜されたCu系配線膜は、真空雰囲気中で加熱することで、比抵抗を低減することが可能となる。その際に、真空雰囲気とするのは、Cu系配線膜の酸化の進行を防止するためであり、望ましくは、1×10Pa以下へ減圧した雰囲気である。また、加熱温度は、Cu系配線膜中の欠陥の低減とCuOを安定化させるという理由から、250〜400℃の範囲で加熱することが望ましい。 In addition, it becomes possible to reduce a specific resistance by heating the Cu-type wiring film formed by the above reactive sputtering in a vacuum atmosphere. In this case, the vacuum atmosphere is used to prevent the progress of oxidation of the Cu-based wiring film, and is preferably an atmosphere reduced to 1 × 10 4 Pa or less. The heating temperature is preferably in the range of 250 to 400 ° C. for the reason of reducing defects in the Cu-based wiring film and stabilizing Cu 2 O.

また、本発明のCu系配線膜は、ガラス基板、Siウェハ基板、樹脂基板等の上に形成することが可能であるが、特に、一般的に平面表示装置を製造するのに使用さているガラス基板上へ形成するのに有効である。   In addition, the Cu-based wiring film of the present invention can be formed on a glass substrate, a Si wafer substrate, a resin substrate, etc., and in particular, glass generally used for manufacturing a flat display device. It is effective for forming on a substrate.

25×50mmのガラス基板上(コーニング1737)に、純度99.99%のCuターゲット(直径164mm×厚さ5mm)、Oガスを含んだArガスを用いた反応性スパッタリングによって、膜厚200nmのCu系配線膜を成膜した。なお、反応性スパッタリングとしては、アネルバ製C−3010のスパッタリング装置、スパッタリング雰囲気中のガス圧0.5Pa、投入電力1000Wの条件で、スパッタリングガス中のO分圧を0〜40%の範囲で条件を振って、表1に示す試料1〜6のCu系配線膜を作製した。 On a 25 × 50 mm glass substrate (Corning 1737), a reactive sputtering using a 99.99% pure Cu target (diameter 164 mm × thickness 5 mm) and Ar gas containing O 2 gas has a thickness of 200 nm. A Cu-based wiring film was formed. In addition, as reactive sputtering, an O 2 partial pressure in the sputtering gas is within a range of 0 to 40% under the conditions of an Anelva C-3010 sputtering apparatus, a gas pressure in the sputtering atmosphere of 0.5 Pa, and an input power of 1000 W. Under conditions, Cu-based wiring films of Samples 1 to 6 shown in Table 1 were produced.

各試料は、比抵抗を測定するとともに、リガク製X線回折装置RINT2500を使用してX線回折強度測定を行いCuとCuOのピーク強度比を評価した。また、密着性試験として、各試料のスパッタリング成膜したCu系配線膜に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にテープを貼り、引き剥がした時に基板上に残った桝目を面積率で評価する試験を行った。以上の結果を表1に示す。
また、試料1、5および6のX回折強度測定をした際のX線回折パターンをそれぞれ図1〜3に示す。
また、各試料を100Pa以下に減圧した真空雰囲気で温度250℃、1時間の加熱処理を行った後に、比抵抗を測定した。その結果も表1に示す。
Each sample measured the specific resistance and measured the X-ray diffraction intensity using a Rigaku X-ray diffractometer RINT2500 to evaluate the peak intensity ratio of Cu and Cu 2 O. In addition, as an adhesion test, the Cu-based wiring film formed by sputtering for each sample was cut into a grid pattern at intervals of 2 mm, and then tape was applied to the film surface, and the grid remaining on the substrate when peeled off. The test which evaluates by area ratio was done. The results are shown in Table 1.
Moreover, the X-ray diffraction pattern at the time of measuring the X diffraction intensity of the samples 1, 5 and 6 is shown in FIGS.
The specific resistance was measured after performing heat treatment at 250 ° C. for 1 hour in a vacuum atmosphere in which each sample was decompressed to 100 Pa or less. The results are also shown in Table 1.

表1から、ピーク強度比Cu(111)/CuO(111)が0.8〜2.5の範囲にある試料4および5は、密着性試験において膜剥れが生じておらず十分な密着性を有していることが分かる。
また、試料4および5は、真空雰囲気中で加熱処理を行うことで、比抵抗を15μΩcm以下へ低減することが可能であることも分かる。
From Table 1, samples 4 and 5 in which the peak intensity ratio Cu (111) / Cu 2 O (111) is in the range of 0.8 to 2.5 are sufficiently free from film peeling in the adhesion test. It turns out that it has adhesiveness.
It can also be seen that samples 4 and 5 can be reduced in specific resistance to 15 μΩcm or less by heat treatment in a vacuum atmosphere.

25×50mmのガラス基板上(コーニング1737)に、膜厚50nmのシリコン薄膜を形成した後に、純度99.99%のCuターゲット(直径164mm×厚さ5mm)、Oガスを含んだArガスを用いた反応性スパッタリングによって、膜厚200nmのCu系配線膜を成膜した。なお、反応性スパッタリングとしては、アネルバ製C−3010のスパッタリング装置、スパッタリング雰囲気中のガス圧0.5Pa、投入電力1000Wの条件とした。また、スパッタリングガス中のO分圧に関しては、試料11を0%、試料12を14%の条件で成膜をした。
各試料は、比抵抗を測定するとともに、実施例1と同様に、X線回折強度測定を行いCuとCuOのピーク強度比を評価した。また、ガラス基板側からコニカミノルタ製のCM2002分光測色計でSi膜の反射率を測定した。
その後、各試料を100Pa以下に減圧した真空雰囲気で温度250℃、1時間の加熱処理を行った。加熱処理後の試料に関しても上記と同様に比抵抗、X線回折強度、反射率を測定した。以上の結果を表2に示す。
After forming a 50 nm-thick silicon thin film on a 25 × 50 mm glass substrate (Corning 1737), a 99.99% pure Cu target (diameter 164 mm × thickness 5 mm) and Ar gas containing O 2 gas were used. A Cu-based wiring film having a thickness of 200 nm was formed by the reactive sputtering used. In addition, as reactive sputtering, it was set as the conditions of the sputtering device of Anelva C-3010, gas pressure 0.5Pa in sputtering atmosphere, and input electric power 1000W. Further, regarding the O 2 partial pressure in the sputtering gas, the film was formed under the condition of 0% for sample 11 and 14% for sample 12.
Each sample measured the specific resistance and measured the X-ray diffraction intensity as in Example 1 to evaluate the peak intensity ratio of Cu and Cu 2 O. Further, the reflectance of the Si film was measured from the glass substrate side with a CM2002 spectrocolorimeter manufactured by Konica Minolta.
Thereafter, heat treatment was performed at 250 ° C. for 1 hour in a vacuum atmosphere in which each sample was decompressed to 100 Pa or less. The specific resistance, X-ray diffraction intensity, and reflectance were also measured for the sample after the heat treatment in the same manner as described above. The results are shown in Table 2.

表2から、本発明例である試料12では、加熱処理後に比抵抗の上昇がないことからCu系配線膜へのシリコンの拡散反応が生じていないこと分かる。また、配線膜が加熱された際には、Cuがシリコン中へ拡散することによってシリコンが合金化する等の理由から、半透明の薄膜が黒ずむ現象が生じ、シリコン薄膜の反射率が低下する。本発明例の試料12では、加熱処理後に反射率の低下がないことからシリコン薄膜へのCuの拡散反応が生じていないことが確認できる。   From Table 2, it can be seen that in Sample 12 which is an example of the present invention, there is no increase in specific resistance after the heat treatment, and therefore no silicon diffusion reaction occurs in the Cu-based wiring film. Further, when the wiring film is heated, a phenomenon that the semi-transparent thin film is darkened occurs due to the fact that Cu is diffused into the silicon and the silicon is alloyed, and the reflectance of the silicon thin film is lowered. In the sample 12 of the present invention example, it can be confirmed that the Cu diffusion reaction to the silicon thin film does not occur since the reflectance does not decrease after the heat treatment.

また、スパッタリングガス中のO分圧を12%、投入電力を800Wとする以外は実施例1と同様の条件で、表3に示す各膜厚のCu系配線膜を25×50mmのガラス基板上(コーニング1737)に成膜した。成膜後の各試料について、実施例1と同様に、比抵抗の測定、CuとCuOのピーク強度比の評価、密着性試験を行った。その結果を表3に示す。 Further, a Cu-based wiring film having each film thickness shown in Table 3 is a 25 × 50 mm glass substrate under the same conditions as in Example 1 except that the O 2 partial pressure in the sputtering gas is 12% and the input power is 800 W. A film was formed on the top (Corning 1737). For each sample after film formation in the same manner as in Example 1, the measurement of the specific resistance, the evaluation of the peak intensity ratio of Cu and Cu 2 O, the adhesion test was performed. The results are shown in Table 3.

表3から、膜厚100〜500nmのCu系配線膜でも、ピーク強度比Cu(111)/CuO(111)が0.8〜2.5の範囲であれば十分な密着性を有することが分かる。また、膜厚100nmの試料21では、比抵抗が若干高い値となっている。 From Table 3, even with a Cu-based wiring film having a film thickness of 100 to 500 nm, it has sufficient adhesion as long as the peak intensity ratio Cu (111) / Cu 2 O (111) is in the range of 0.8 to 2.5. I understand. Further, in the sample 21 having a film thickness of 100 nm, the specific resistance has a slightly high value.

25×50mmのガラス基板上(コーニング1737)に、純度99.99%のCuターゲット(直径164mm×厚さ5mm)、Oガスを含んだArガスを用いた反応性スパッタリングによって、膜厚50nmのCu系配線膜を成膜した。なお、反応性スパッタリングとしては、アネルバ製C−3010のスパッタリング装置、スパッタリング雰囲気中のガス圧0.5Pa、投入電力800Wの条件とし、スパッタリングガス中のO分圧に関しては12%の条件で成膜をした。このCu系配線膜をリガク製X線回折装置RINT2500を使用してX線回折強度測定を行いCuとCuOのピーク強度比を評価したところ、ピーク強度比Cu(111)/CuO(111)=1.15であった。 On a 25 × 50 mm glass substrate (Corning 1737), a reactive sputtering using a 99.99% pure Cu target (diameter 164 mm × thickness 5 mm) and Ar gas containing O 2 gas has a thickness of 50 nm. A Cu-based wiring film was formed. Reactive sputtering is performed under the conditions of an Anelva C-3010 sputtering apparatus, a gas pressure in the sputtering atmosphere of 0.5 Pa, and an input power of 800 W, and an O 2 partial pressure in the sputtering gas of 12%. Made a membrane. The Cu-based wiring film was measured for X-ray diffraction intensity using a Rigaku X-ray diffractometer RINT2500 to evaluate the peak intensity ratio of Cu and Cu 2 O. The peak intensity ratio Cu (111) / Cu 2 O ( 111) = 1.15.

続いて、上記のCu系配線膜の上に、純度99.99%のCuターゲット(直径164mm×厚さ5mm)、アネルバ製C−3010のスパッタリング装置を用いて、スパッタリング雰囲気中のガス圧0.5Pa、投入電力1200Wの条件とし、スパッタリングガスをArのみとして、膜厚300nmのCu膜を積層形成した。
上記で作製した積層のCu系配線膜に関して、比抵抗を測定するとともに、密着性試験として積層のCu系配線膜に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にテープを貼り、引き剥がした時に基板上に残った桝目を面積率で評価する試験を行った。その結果、比抵抗は2.3μΩcm、密着性は100%であった。
以上から、積層のCu系配線膜とすることで、密着性と低抵抗特性を両立した配線膜が得られることが分かる。
Subsequently, a Cu target having a purity of 99.99% (diameter: 164 mm × thickness: 5 mm) and an Anelva C-3010 sputtering apparatus are used on the above Cu-based wiring film, and the gas pressure in the sputtering atmosphere is reduced to 0. 0. A Cu film having a film thickness of 300 nm was stacked and formed under the conditions of 5 Pa and input power of 1200 W, using only Ar as the sputtering gas.
Regarding the laminated Cu-based wiring film produced above, the specific resistance was measured and, as an adhesion test, the laminated Cu-based wiring film was cut into a grid pattern at intervals of 2 mm, and then a tape was applied to the film surface. A test was conducted to evaluate the area remaining on the substrate when peeled off by the area ratio. As a result, the specific resistance was 2.3 μΩcm, and the adhesion was 100%.
From the above, it can be seen that by using a laminated Cu-based wiring film, a wiring film having both adhesiveness and low resistance characteristics can be obtained.

Claims (5)

シリコン薄膜直上に形成される、Cu酸化物を含有する平面表示装置用Cu系配線膜であって、Cuの主結晶面(111)面のX線回折ピーク強度をCu(111)、CuOの主結晶面(111)面のX線回折のピーク強度をCuO(111)とした時に、ピーク強度比Cu(111)/CuO(111)の値が0.8〜2.5の範囲にあることを特徴とする平面表示装置用Cu系配線膜。 A Cu-based wiring film for a flat panel display device containing Cu oxide and formed immediately above a silicon thin film, wherein the X-ray diffraction peak intensity of the main crystal plane (111) of Cu is Cu (111), Cu 2 O The peak intensity ratio Cu (111) / Cu 2 O (111) is 0.8 to 2.5 when the peak intensity of the X-ray diffraction of the main crystal plane (111) is Cu 2 O (111). A Cu-based wiring film for a flat display device, characterized by being in the range of 前記シリコン薄膜がSiウェハ基板のシリコン薄膜である請求項1に記載の平面表示装置用Cu系配線膜。 The Cu-based wiring film for a flat display device according to claim 1, wherein the silicon thin film is a silicon thin film on a Si wafer substrate. 膜厚が200〜500nmであることを特徴とする請求項1または請求項2に記載の平面表示装置用Cu系配線膜。   The Cu-based wiring film for a flat panel display device according to claim 1 or 2, wherein the film thickness is 200 to 500 nm. 比抵抗が15μΩcm以下であることを特徴とする請求項1から請求項3までのいずれか1項に記載の平面表示装置用Cu系配線膜。   The Cu-based wiring film for a flat panel display device according to any one of claims 1 to 3, wherein a specific resistance is 15 µΩcm or less. 請求項1に記載の平面表示装置用Cu系配線膜上にCu膜が積層されることを特徴とする平面表示装置用Cu系配線膜。   A Cu-based wiring film for a flat display device, wherein a Cu film is laminated on the Cu-based wiring film for a flat display device according to claim 1.
JP2013185185A 2007-07-31 2013-09-06 Cu-based wiring film Active JP5656135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185185A JP5656135B2 (en) 2007-07-31 2013-09-06 Cu-based wiring film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007198939 2007-07-31
JP2007198939 2007-07-31
JP2008001374 2008-01-08
JP2008001374 2008-01-08
JP2013185185A JP5656135B2 (en) 2007-07-31 2013-09-06 Cu-based wiring film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009525427A Division JP5360595B2 (en) 2007-07-31 2008-07-30 Cu-based wiring film

Publications (2)

Publication Number Publication Date
JP2014059559A JP2014059559A (en) 2014-04-03
JP5656135B2 true JP5656135B2 (en) 2015-01-21

Family

ID=40304376

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009525427A Active JP5360595B2 (en) 2007-07-31 2008-07-30 Cu-based wiring film
JP2013185185A Active JP5656135B2 (en) 2007-07-31 2013-09-06 Cu-based wiring film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009525427A Active JP5360595B2 (en) 2007-07-31 2008-07-30 Cu-based wiring film

Country Status (4)

Country Link
JP (2) JP5360595B2 (en)
KR (1) KR101088744B1 (en)
CN (1) CN101689502B (en)
WO (1) WO2009017146A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312633A1 (en) * 2009-10-15 2011-04-20 Applied Materials, Inc. Method and installation for producing a semiconductor device, and semiconductor device
KR101227288B1 (en) * 2010-07-14 2013-02-07 알프스 덴키 가부시키가이샤 Input device and method for manufacturing same
KR101795480B1 (en) * 2015-04-06 2017-11-10 코닝정밀소재 주식회사 Substrate for ic package

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034214A (en) * 1989-05-31 1991-01-10 Sharp Corp Liquid crystal display device
US5834374A (en) * 1994-09-30 1998-11-10 International Business Machines Corporation Method for controlling tensile and compressive stresses and mechanical problems in thin films on substrates
JPH11204521A (en) * 1998-01-09 1999-07-30 Toshiba Corp Semiconductor device and manufacture of the same
JP2001144092A (en) * 1999-11-15 2001-05-25 Toshiba Corp Method of manufacturing semiconductor device
KR100379566B1 (en) * 2000-08-30 2003-04-10 엘지.필립스 엘시디 주식회사 Method For Fabricating Liquid Crystal Display Device
JP2002305198A (en) * 2001-04-06 2002-10-18 Toshiba Corp Method for manufacturing electronic device
JP2007005628A (en) * 2005-06-24 2007-01-11 Sharp Corp Interconnection structure and its manufacturing method
JP2007072428A (en) * 2005-08-09 2007-03-22 Tohoku Univ Planar electronic display device and its manufacturing method
CN101090803A (en) * 2005-11-28 2007-12-19 联合材料公司 Resin-bonded superabrasive wheel and process for producing the same
TWI499466B (en) * 2007-03-22 2015-09-11 Hitachi Chemical Co Ltd Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink

Also Published As

Publication number Publication date
CN101689502A (en) 2010-03-31
KR20100009640A (en) 2010-01-28
CN101689502B (en) 2011-09-28
WO2009017146A1 (en) 2009-02-05
JP5360595B2 (en) 2013-12-04
KR101088744B1 (en) 2011-12-01
JP2014059559A (en) 2014-04-03
JPWO2009017146A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
TWI394850B (en) A display device using a Cu alloy film and a Cu alloy sputtering target
JP6016083B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
TWI447250B (en) Method for producing molybdenum alloy sputtering target material and molybdenum alloy sputtering target material
JP6284004B2 (en) Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
TWI583801B (en) A sputtering target for forming a wiring film for an electronic component and a coating layer material
JP6823799B2 (en) Laminated wiring film for electronic components and sputtering target material for coating layer formation
JP5656135B2 (en) Cu-based wiring film
JP6292471B2 (en) Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
KR101597018B1 (en) METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
JP5416470B2 (en) Display device and Cu alloy film used therefor
WO2010082638A1 (en) Cu alloy film and display device
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP5420964B2 (en) Display device and Cu alloy film used therefor
JP5207120B2 (en) Wiring and electrodes for liquid crystal display devices with no thermal defects and excellent adhesion
JP5888501B2 (en) Thin film wiring formation method
JP2005091543A (en) Thin film wiring layer
JP4840173B2 (en) Laminated wiring and laminated electrode for liquid crystal display device having no thermal defect and excellent adhesion, and methods for forming them
KR101421881B1 (en) Membrane laminated wiring for electronic components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5656135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350