JP5649281B2 - Charge / discharge device for battery pack - Google Patents

Charge / discharge device for battery pack Download PDF

Info

Publication number
JP5649281B2
JP5649281B2 JP2009016510A JP2009016510A JP5649281B2 JP 5649281 B2 JP5649281 B2 JP 5649281B2 JP 2009016510 A JP2009016510 A JP 2009016510A JP 2009016510 A JP2009016510 A JP 2009016510A JP 5649281 B2 JP5649281 B2 JP 5649281B2
Authority
JP
Japan
Prior art keywords
discharge
charging
charge
assembled battery
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009016510A
Other languages
Japanese (ja)
Other versions
JP2010178456A (en
Inventor
俊昭 藪本
俊昭 藪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2009016510A priority Critical patent/JP5649281B2/en
Publication of JP2010178456A publication Critical patent/JP2010178456A/en
Application granted granted Critical
Publication of JP5649281B2 publication Critical patent/JP5649281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

非常用電源設備に使用するような組電池について、長時間の使用後も、セルの電圧バラツキを軽減できる組電池の充放電装置に関する。   The present invention relates to a battery pack charging / discharging device that can reduce the voltage variation of a cell even after a long period of use for a battery pack used in an emergency power supply facility.

非常用電源設備に使用する組電池は、複数の単電池(セル)、例えば、鉛蓄電池を直並列に接続して通常、系統電源からの電力により充電状態にあり、停電など系統電源からの電力が遮断されたときに放電して負荷に電力を供給する役目を果たしている。そのため、長時間の使用後には、セルに電圧バラツキが発生し易い。複数のセルを直接接続した組電池は、その総電圧が交直変換器のような充電器で規定されているため、一部のセルに電圧バラツキが発生したとき、他のセルの電圧に影響を与えるようになる。   The battery pack used for emergency power facilities is usually connected to a plurality of single cells (cells), for example, lead-acid batteries connected in series and parallel, and is charged with power from the system power supply. It plays the role of discharging and supplying power to the load when the is interrupted. For this reason, after use for a long time, voltage variation is likely to occur in the cell. An assembled battery with multiple cells directly connected has its total voltage regulated by a charger such as an AC / DC converter.Therefore, when voltage variation occurs in some cells, it affects the voltage of other cells. To give.

従来のこの種の組電池の総電圧に与える影響を考慮した装置は、例えば、特開2002-374633号公報及び特公昭63-20099号公報に記載されている。
特開2002-374633号公報には、その図3に示されるように、複数の単位電池Cを直列に接続した蓄電池と、単位電池の正負極端子間電圧を検出可能な電圧検出手段9と、単位電池の放電すべきものを選択して実行可能な放電手段10と、電圧検出手段9の検出情報に基づいて、複数の単位電池夫々の正負間電圧が均一に近い状態になるように、放電すべきものを判別して放電させる放電作動を実行する制御手段17とを設けて単位電池間電圧を精度よく検出するようにした蓄電装置が開示されている。
For example, Japanese Patent Application Laid-Open No. 2002-374633 and Japanese Patent Publication No. 63-20099 describe a device that takes into account the influence of this type of battery pack on the total voltage.
In JP 2002-374633 A, as shown in FIG. 3, a storage battery in which a plurality of unit batteries C are connected in series, a voltage detection means 9 capable of detecting a voltage between positive and negative terminals of the unit battery, Based on the detection information of the discharge means 10 and the voltage detection means 9 that can be executed by selecting the unit battery to be discharged, the discharge should be performed so that the positive and negative voltages of the plurality of unit batteries are almost uniform. There is disclosed a power storage device that is provided with a control means 17 for performing discharge operation for discriminating and discharging a kimono so as to accurately detect a voltage between unit cells.

本発明は、請求項1に記載の通り、系統電源から交直変換器を介して充電される非常用電源設備用組電池と、系統電源の停電時に前記組電池から直交変換器を介して給電される負荷とで構成し、停電復旧後は前記交直変換器を介して前記組電池が再度充電される非常用電源設備用組電池の充放電装置において、前記系統電源からの電力により充電状態にある組電池の各セルの電圧を測定する電圧測定装置と、上記電圧測定値が所定値を外れたセル数の総数に対する割合を演算し、上記割合が所定値を超えた時、組電池から所定量の放電を行う放電処理装置に対し指令を発し、且つ前述の放電処理を実行した後、通常のフロート充電時より大きな電流で充電を行うように充電処理装置に対し指令を発する充放電制御装置とで構成することを特徴とする非常用電源設備用組電池の充放電装置に関する。
更に本発明は、請求項2に記載のように、上記の発明において、放電処理装置による放電は、通常の停電時の放電と同じ電流値で負荷に対して行うことを特徴とする。
更に本発明は、請求項3に記載のように、上記の発明において、放電処理装置による放電は、放電開始時の組電池の定格容量の10〜25%の放電となるまでの時間行うことを特徴とする。
更に本発明は、請求項4に記載のように、上記の発明において、充電処理装置による充電は、通常のフロート充電電流より大きい0.05〜0.20Cの充電電流で充電を始め、通常のフロート充電電流に達するまで行うことを特徴とする。
The present invention, as described in claim 1, and emergency power supply equipment for battery pack that is charged via the AC-DC converter from the power grid, power is supplied via the orthogonal transformer from the assembled battery during a power failure of the system power source In a charging / discharging device for an assembled battery for an emergency power supply facility in which the assembled battery is recharged via the AC / DC converter after restoration of a power failure, the battery is charged with power from the system power supply A voltage measuring device for measuring the voltage of each cell of the assembled battery, and calculating a ratio with respect to the total number of cells in which the voltage measurement value deviates from a predetermined value, and when the ratio exceeds a predetermined value, a predetermined amount from the assembled battery A charge / discharge control device that issues a command to a discharge processing device that performs a discharge of a charge, and issues a command to the charge processing device so that charging is performed with a larger current than during normal float charging after performing the above-described discharge processing; It consists of The present invention relates to an assembled battery for an emergency power supply facility .
Furthermore, as described in claim 2, the present invention is characterized in that, in the above invention, the discharge by the discharge treatment device is performed on the load with the same current value as the discharge at the time of a normal power failure.
Further, according to the present invention, as described in claim 3, in the above invention, the discharge by the discharge treatment device is performed for a time until the discharge reaches 10 to 25% of the rated capacity of the assembled battery at the start of discharge. Features.
Further, according to the present invention, as described in claim 4, in the above invention, the charging by the charging processing device starts charging at a charging current of 0.05 to 0.20 C, which is larger than a normal float charging current, and a normal float charging current. It is performed until it reaches.

特開2002-374633号公報JP 2002-374633 A 特公昭63-20099号公報Japanese Patent Publication No. 63-20099

特許文献1に記載の組電池の充電装置では、制御手段17が電圧検出処理を時間間隔を隔てて繰り返し実行し、且つ放電手段により放電作動させる処理を電圧検出処理とは異なるタイミングで実行するようにしているから、制御手段の動作が極めて複雑となる。
特許文献2に記載の直流電源装置では、組電池3における電圧バラツキを軽減させるため、均等充電時の電圧を高めに設定し、二種の充電設定電圧を用意しておく必要があり、充電装置の制御が煩雑となる。
本発明は、上記従来の課題を解決するため、組電池を長時間使用したときセルに電圧のバラツキを生ずる場合に、自動的にセル電圧のバラツキについて容易に均等化することができるものであって、セルの寿命を判定し、新しいセルと交換するような無駄を省き、経済的に運用できる組電池の充放電装置を提供することに在る。
In the battery pack charging device described in Patent Document 1, the control means 17 repeatedly executes the voltage detection process at intervals of time, and the discharge operation by the discharge means is executed at a timing different from the voltage detection process. Therefore, the operation of the control means becomes extremely complicated.
In the DC power supply device described in Patent Document 2, in order to reduce voltage variation in the assembled battery 3, it is necessary to set the voltage at the time of uniform charging higher and prepare two types of charge setting voltages. The control becomes complicated.
In order to solve the above-described conventional problems, the present invention can automatically equalize the cell voltage variation automatically when the cell has a voltage variation when the assembled battery is used for a long time. Thus, an object of the present invention is to provide a battery pack charging / discharging device that can be economically operated by determining the life of the cell and eliminating waste such as replacement with a new cell.

本発明は、請求項1に記載の通り、系統電源から交直変換器を介して充電される組電池と、系統電源の停電時に組電池から直交変換器を介して給電される負荷とで構成し、停電復旧後は前記交直変換器を介して前記組電池が再度充電される電源設備において、組電池の各セルごとの電圧を測定する電圧測定装置と上記電圧測定値が所定値を外れたセル数の総数に対する割合を演算し、上記割合が所定値を超えた時、組電池から所定量の放電を行う放電処理装置に対し指令を発し、且つ前述の放電処理を実行した後、通常のフロート充電時より大きな電流で充電を行うように充電処理装置に対し指令を発する充放電制御装置とで構成することを特徴とする組電池の放電装置に関する。
更に本発明は、請求項2に記載のように、上記の発明において、放電処理装置による放電は、通常の停電時の放電と同じ電流値で負荷に対して行うことを特徴とする。
更に本発明は、請求項3に記載のように、上記の発明において、放電処理装置による放電は、放電開始時の組電池の定格容量の10〜25%の放電となるまでの時間行うことを特徴とする。
更に本発明は、請求項4に記載のように、上記の発明において、充電処理装置による充電は、通常のフロート充電電流より大きい0.05〜0.20Cの充電電流で充電を始め、通常のフローと充電電流に達するまで行うことを特徴とする。
The present invention, as described in claim 1, comprises an assembled battery that is charged from the system power supply via the AC / DC converter, and a load that is fed from the assembled battery via the orthogonal converter during a power failure of the system power supply. In a power supply facility in which the assembled battery is recharged via the AC / DC converter after a power failure recovery, a voltage measuring device that measures the voltage of each cell of the assembled battery and a cell in which the voltage measurement value deviates from a predetermined value When a ratio with respect to the total number of numbers is calculated and the ratio exceeds a predetermined value, a command is issued to the discharge processing device that discharges a predetermined amount from the assembled battery, and after performing the above-described discharge processing, a normal float is performed. The present invention relates to a battery pack discharge device comprising a charge / discharge control device that issues a command to a charge processing device so as to charge with a larger current than that during charging.
Furthermore, as described in claim 2, the present invention is characterized in that, in the above invention, the discharge by the discharge treatment device is performed on the load with the same current value as the discharge at the time of a normal power failure.
Further, according to the present invention, as described in claim 3, in the above invention, the discharge by the discharge treatment device is performed for a time until the discharge reaches 10 to 25% of the rated capacity of the assembled battery at the start of discharge. Features.
Further, according to the present invention, as described in claim 4, in the above invention, charging by the charging processing device starts charging at a charging current of 0.05 to 0.20 C, which is larger than a normal float charging current, It is performed until the current is reached.

請求項1に係る発明によれば、セルに生ずる電圧のバラツキを抑制し、組電池を構成するセル全体が所定の電圧値の範囲内に収めることができる。一方、通常のフロート充電より大きな電流で充電されることにより電極反応の再活性化が可能となり、また、大きい電流での充電により不活性化していた部分も活性化される。
請求項2に係る発明によれば、放電のための強制放電回路や放電処理装置を設けなくて済み、組電池の充放電装置の構成を簡単にすることができる。
請求項3に係る発明によれば、放電量を適正な範囲とすることにより、セルの電極の不活性化された部分が充分に活性化され、電極における反応面積の差が小さくなり、セルのバラツキは充分に小さくなる。放電量を10%以上とすることによって、充分な再充電量を確保することができるため、電極の不活性化部分の活性化をより効率的に行うことができる。また、放電量を25%以下に抑えることにより、非常用電源設備として運用する場合の一般的な保守率0.8を確保して、安全に使用することができる。
請求項4に係る発明によれば、充電電流値を適正な範囲とすることにより、上記請求項3に係る発明と同様の効果を奏することに加え、充電器の仕様を大きくしなくて済むため、充電器の構成を簡単にすることができる。更に詳細には、定電流-定電圧充電において、定電流時における初期電流を0.05〜0.20Cの充電電流とし、所定の定電圧充電に移行した後は、電流が垂下して通常のフロート充電電流に達するまでこの充電を行い、その後は所定電圧でのフロート充電を継続するもので、ここで、初期の充電電流を0.05C以上とすることにより、電極の不活性化部分の活性化をより効率的に行うことができると共に、充電電流を0.20C以内にすることにより、無駄に充電器の仕様を大きくしなくて済む。
According to the first aspect of the invention, variations in voltage generated in the cells can be suppressed, and the entire cells constituting the assembled battery can fall within a predetermined voltage value range. On the other hand, it is possible to reactivate the electrode reaction by charging with a current larger than that of normal float charging, and the part that has been inactivated by charging with a large current is also activated.
According to the invention of claim 2, it is not necessary to provide a forced discharge circuit or a discharge treatment device for discharging, and the configuration of the assembled battery charge / discharge device can be simplified.
According to the invention of claim 3, by setting the discharge amount to an appropriate range, the inactivated portion of the cell electrode is sufficiently activated, the difference in the reaction area in the electrode is reduced, and the cell The variation is sufficiently small. By setting the discharge amount to 10% or more, a sufficient recharge amount can be ensured, so that the inactivated portion of the electrode can be activated more efficiently. Further, by suppressing the discharge amount to 25% or less, it is possible to secure a general maintenance rate of 0.8 when operating as an emergency power supply facility and use it safely.
According to the invention according to claim 4, by setting the charging current value in an appropriate range, in addition to achieving the same effect as the invention according to claim 3, it is not necessary to increase the specification of the charger. The structure of the charger can be simplified. More specifically, in constant current-constant voltage charging, the initial current at constant current is set to 0.05 to 0.20 C charging current, and after shifting to a predetermined constant voltage charging, the current droops and the normal float charging current This charge is continued until the value reaches, and then the float charge at a predetermined voltage is continued. Here, by making the initial charge current 0.05C or more, the activation of the inactive portion of the electrode is made more efficient. In addition, the charging current can be kept within 0.20C, so that the specification of the charger need not be increased.

本発明の実施形態の組電池の充・放電装置の1例を示す構成図。The block diagram which shows one example of the charging / discharging apparatus of the assembled battery of embodiment of this invention. 図1における電流測定装置の内部構成を示す図。FIG. 2 is a diagram showing an internal configuration of the current measuring device in FIG. 図1における充放電制御装置の内部構成を示す図。FIG. 2 is a diagram showing an internal configuration of a charge / discharge control device in FIG. 本発明の実施例における各部の動作フローチャートを示す図。The figure which shows the operation | movement flowchart of each part in the Example of this invention.

本発明を実施するための形態例を添付図面に基づいて以下に説明する。
図1は、本発明の実施の形態例を示す。同図において、1は系統電源を示し、通常はスイッチ2を経て組電池を充電し、負荷8に電力を供給している。3は可変電圧型交直変換器を示し、組電池充電用の直流出力を得ている。4は電流測定装置を示し、後述するように組電池5に対し入出力直流の電流を測定する。5は組電池を示し、多数のセルを直列に接続して成る組電池を示す。6はスイッチを示し、組電池5から負荷8へ送電する電力をオン・オフに切り換える。7は電力送電線を示し、系統電源1からの電力を負荷8に送電する。9は電池の電圧測定装置を示し、組電池5を構成するセルの正負極端子間の電圧を個別に測定する。また、規定電圧以下に低下したセルの個数を充放電制御装置10へ送出する。更に組電池5の総電圧を測定することができて、充放電制御装置10からの指令に対して電圧値を送信する。10は充放電制御装置を示し、電圧の低下したセルの数が後述するように所定個数に達したとき、組電池5を全体的に放電させることを放電処理装置11に対して指令する。該放電処理装置11は、充放電制御装置10からの指令に基づいて組電池5を放電させるように、スイッチ6を閉じる。スイッチ6は通常は開いていて、組電池5から負荷8に交流化した電流を送るとき閉じる。12は充電処理装置を示し、充放電制御装置10からの指令に基づいて組電池5を再充電するようにスイッチ2を閉じる。13は直交変換器を示し、組電池5からの直流を交流化する。14は切換スイッチを示し、通常は系統電源1からの交流を負荷8に供給するように操作しておく。
Embodiments for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows an embodiment of the present invention. In the figure, reference numeral 1 denotes a system power supply, which normally charges an assembled battery via a switch 2 and supplies power to a load 8. Reference numeral 3 denotes a variable voltage type AC / DC converter, which obtains a DC output for charging an assembled battery. Reference numeral 4 denotes a current measuring device, which measures input / output direct current with respect to the assembled battery 5 as described later. Reference numeral 5 denotes an assembled battery, which is an assembled battery formed by connecting a number of cells in series. Reference numeral 6 denotes a switch for switching on / off the power transmitted from the assembled battery 5 to the load 8. Reference numeral 7 denotes a power transmission line, which transmits power from the system power supply 1 to the load 8. Reference numeral 9 denotes a battery voltage measuring device, which individually measures the voltage between the positive and negative terminals of the cells constituting the assembled battery 5. In addition, the number of cells that have dropped below the specified voltage is sent to the charge / discharge control device 10. Further, the total voltage of the assembled battery 5 can be measured, and a voltage value is transmitted in response to a command from the charge / discharge control device 10. Reference numeral 10 denotes a charge / discharge control device, which instructs the discharge processing device 11 to discharge the assembled battery 5 as a whole when the number of cells with reduced voltage reaches a predetermined number as will be described later. The discharge processing device 11 closes the switch 6 so as to discharge the assembled battery 5 based on a command from the charge / discharge control device 10. The switch 6 is normally open and is closed when an alternating current is sent from the assembled battery 5 to the load 8. Reference numeral 12 denotes a charge processing device, which closes the switch 2 so as to recharge the assembled battery 5 based on a command from the charge / discharge control device 10. Reference numeral 13 denotes an orthogonal converter, which converts direct current from the assembled battery 5 into alternating current. Reference numeral 14 denotes a changeover switch, which is normally operated to supply alternating current from the system power supply 1 to the load 8.

前記の電流測定装置4の構成は、図2に示すように制御部41と電流計42で構成されている。制御部41は、放電時は組電池5から負荷8に対する放電電流を計測した電流計42の計測値と、該計測値の量と所定の電流が流れる時間を計測して、(電流値×時間)の値を演算することを主とし、放電電気量を把握しておくと共に、組電池5を構成するセルの定格容量を把握しておく。
前記の充放電制御装置10は、図3に示すように制御判断部21(タイマー付きの構成が望ましい)、放電指令部22、充電指令部23とで構成されており、制御信号送受信線24で電流測定装置4と接続され、電圧測定装置9からの信号を信号受信線25により受信する。
The configuration of the current measuring device 4 includes a control unit 41 and an ammeter 42 as shown in FIG. The control unit 41 measures the measured value of the ammeter 42 that measures the discharge current from the assembled battery 5 to the load 8 at the time of discharge, the amount of the measured value, and the time during which a predetermined current flows, and (current value × time ) Is mainly calculated, the amount of discharge electricity is grasped, and the rated capacity of the cells constituting the assembled battery 5 is grasped.
As shown in FIG. 3, the charge / discharge control device 10 includes a control determination unit 21 (a configuration with a timer is desirable), a discharge command unit 22, and a charge command unit 23. It is connected to the current measuring device 4 and receives a signal from the voltage measuring device 9 through the signal receiving line 25.

また、電流測定装置4は充電時に図2に示す電流計42により充電電流値を計測し、これを制御部41で把握しておくと共に、放電前のフロート充電電流量を把握しておく。制御部41は上記電流計42の動作を制御し、また後述する制御信号送受信線24により充放電制御装置10との制御信号を送受する。
充放電制御装置10の制御判断部21は、組電池5を構成する各セルの電圧が電圧測定装置9において各セル毎に測定されたときに、その値を信号受信線25により受信している。このときタイマーを使用して連日一定時刻に測定することが望ましい。組電池5を非常用電源などとして2.23V/セル×電池個数で全体の電圧を規定して使用開始した後、そのセル電圧値にバラツキが発生して、例えば、2.13V以下又は/及び2.33V以上となるセルの数が、例えば、合計で3個生じたことが、制御判断部21において判断された場合、所定個数に達したとして、本発明による処理が開始される。
セルの個数が組電池5において例えば54個としたとき、上記の異常電圧となったセルの総数3に対する割合が0.056となる。即ち、この数値が0.05(5%)以上となったときを、所定個数に達したときと判断し、組電池5の放電・充電の処理を開始する。
そこで制御判断部21は処理開始の判断を行い、放電指令部22に対して組電池5の放電を実行することを通知する。放電司令部22は放電処理装置11に対し指令するから、放電処理装置11はスイッチ2を開き、スイッチ6を閉じ、直交変換器13を起動させる。また切換スイッチ14を組電池5側に切換え、負荷8に送電する。更に放電処理装置11は電流測定装置4に対し放電電気量演算のための処理を指令する。放電は定電力で行うため、放電電気量の算出は所定時間、例えば1分間の平均電流を求め、この平均電流と放電時間との積で1分間の放電電気量を求め、この電気量を累積して、所定量の放電電気量を算出する。
Further, the current measuring device 4 measures the charging current value by the ammeter 42 shown in FIG. 2 during charging, and grasps this by the control unit 41 and grasps the amount of float charging current before discharging. The control unit 41 controls the operation of the ammeter 42 and transmits / receives a control signal to / from the charge / discharge control device 10 through a control signal transmission / reception line 24 described later.
The control determination unit 21 of the charge / discharge control device 10 receives the value by the signal reception line 25 when the voltage of each cell constituting the assembled battery 5 is measured for each cell in the voltage measurement device 9. . At this time, it is desirable to measure at a constant time every day using a timer. After using the battery pack 5 as an emergency power supply and specifying the overall voltage as 2.23V / cell x number of batteries, the cell voltage value varies, for example, 2.13V or less or / and 2.33V For example, when the control determining unit 21 determines that a total of three cells have occurred, the process according to the present invention is started assuming that the predetermined number has been reached.
When the number of cells is 54 in the assembled battery 5, for example, the ratio to the total number 3 of cells having the abnormal voltage is 0.056. That is, when this numerical value is 0.05 (5%) or more, it is determined that the predetermined number has been reached, and discharge / charge processing of the assembled battery 5 is started.
Therefore, the control determination unit 21 determines the start of processing and notifies the discharge command unit 22 that the assembled battery 5 is to be discharged. Since the discharge command unit 22 instructs the discharge processing device 11, the discharge processing device 11 opens the switch 2, closes the switch 6, and activates the orthogonal transformer 13. Further, the changeover switch 14 is switched to the assembled battery 5 side to transmit power to the load 8. Further, the discharge processing device 11 instructs the current measuring device 4 to perform a process for calculating the amount of discharge electricity. Since discharge is performed at a constant power, the amount of discharge electricity is calculated for an average current for a predetermined time, for example, 1 minute, and the amount of electricity discharged for 1 minute is determined by the product of this average current and discharge time, and this amount of electricity is accumulated. Then, a predetermined amount of discharge electricity is calculated.

前記の放電が通常の停電時と同じ電流で実行されているとき、充放電制御装置10は電流測定装置4により組電池5の放電電気量を演算して、その定格容量と比較して所定量(10〜25%)に達したとき、充放電制御装置10は組電池5の放電を停止させる。それはスイッチ6を開き、また、切換スイッチ14を系統電源1側に切換えるように放電処理装置11に指令することである。
次に充放電制御装置10は充電制御装置12に指令して、スイッチ2を閉じる。交直変換器3は、このとき最大能率で運転開始することが好適である。その結果、組電池5に対し定電流-定電圧充電の定電流電圧区間において、通常のフロート充電電流より遥かに大きな電流で充電が開始される。極板活性化のために加え、放電後の再充電時に、まだ電圧バラツキがあるため、上記の組電池において1週間乃至2週間の充電を続けることが適当であることが確認された。セルのうち、定電圧充電に移行した後も電極間電圧の低下していたものについて、電極反応を活性化するためである。
数値例としては、充電電流が通常のフロート充電時の電流量と比べ、遥かに大きく、約100倍程度である。今1000Ahの容量の組電池についてみると、好ましい再充電電流値は0.05C〜0.2Cであって、50〜200Aの値となる。尚、「C」は電池容量値を示す。通常のフロート充電の電流は0.001Cのように小さいから1000Ah容量の組電池の充電時電流は1A以下となる。
When the discharge is performed at the same current as during a normal power failure, the charge / discharge control device 10 calculates the discharge electricity amount of the assembled battery 5 by the current measuring device 4, and compares it with its rated capacity by a predetermined amount. When reaching (10 to 25%), the charge / discharge control device 10 stops the discharge of the assembled battery 5. That is, the switch 6 is opened, and the discharge processing device 11 is instructed to switch the changeover switch 14 to the system power supply 1 side.
Next, the charge / discharge control device 10 instructs the charge control device 12 to close the switch 2. It is preferable that the AC / DC converter 3 starts operation at the maximum efficiency at this time. As a result, charging of the assembled battery 5 is started with a current much larger than a normal float charging current in a constant current-constant voltage section of constant current-constant voltage charging. It was confirmed that it is appropriate to continue charging for one to two weeks in the above assembled battery because there is still voltage variation at the time of recharging after discharging in addition to activation of the electrode plate. This is for activating the electrode reaction of the cells whose voltage between the electrodes has decreased even after shifting to constant voltage charging.
As a numerical example, the charging current is much larger than the current amount during normal float charging, which is about 100 times. Now, looking at the assembled battery having a capacity of 1000 Ah, a preferable recharge current value is 0.05 C to 0.2 C, which is a value of 50 to 200 A. “C” indicates a battery capacity value. Since the current of normal float charging is as small as 0.001C, the charging current of a 1000 Ah capacity battery pack is 1 A or less.

このように、200Ah-2Vセル54個から成る組電池の充放電装置を5年間運用し、1日1回電圧測定を実施し、設定値2.23V±0.1Vを超えたセルを異常と判定する設定とした。この異常セルの数を全セル数で除して異常セル数の割合を算出し、この割合が5%以上を超えた場合、強制放電を実施する条件に設定した。
5年間の間に、3回の強制放電は各回とも組電池の定格容量の10%相当分を放電するよう実施されたが、5年後でも全てのセル電圧が規定範囲内に収まっていることが確認できた。
尚、放電後の再充電時はセル間の電圧バラツキが有るため、放電後2週間はこの機能を停止させる設計構成とした。
In this way, an assembled battery charge / discharge device consisting of 54 200Ah-2V cells has been in operation for 5 years, voltage measurement is performed once a day, and cells exceeding the set value of 2.23V ± 0.1V are determined to be abnormal. It was set. The ratio of the number of abnormal cells was divided by the total number of cells to calculate the ratio of the number of abnormal cells. When this ratio exceeded 5% or more, the condition for forced discharge was set.
During the five years, three forced discharges were performed each time to discharge 10% of the rated capacity of the battery pack, but all cell voltages were within the specified range even after five years. Was confirmed.
In addition, since there was a voltage variation between cells at the time of recharging after discharging, the design configuration was made to stop this function for two weeks after discharging.

これに対し、本発明の上記の機能を具備しない従来の組電池の充放電装置において、毎年の定期点検時に各セル電圧の測定を行った。その結果を表1に示す。   On the other hand, in the conventional assembled battery charging / discharging device that does not have the above-described function of the present invention, each cell voltage was measured at the regular inspection every year. The results are shown in Table 1.

Figure 0005649281
Figure 0005649281

表1に示すように、経年毎に規定値を超えた異常セルの数が増加し、5年経過したときは、異常セルは5個となった。従って、通常であれば、これら5個のセルを交換することになるが、その各セルの容量を測定したところ、定格容量200Ahに対していずれも95%以上の容量があることを確認した。このことから、セルの電圧が上記のように低くても、性能面では問題がなく、未だ使用可能であることが検証できると共に、本発明の充放電装置を具備することにより、交換を行う無駄を省くことができ、経済的損失を低減することができる効果を有することが確認された。   As shown in Table 1, the number of abnormal cells that exceeded the specified value increased over time, and when 5 years passed, there were 5 abnormal cells. Therefore, normally, these five cells are replaced. When the capacity of each cell was measured, it was confirmed that the capacity was 95% or more with respect to the rated capacity of 200 Ah. Therefore, even if the voltage of the cell is low as described above, there is no problem in performance and it can be verified that it can still be used. It has been confirmed that it has an effect of reducing the economic loss.

次に図4は本発明の実施例における主として図2に示す制御部41、図3に示す制御判断部21について、その動作状況を示すフローチャートである。図4における(1)はタイマー起動を示し、前述のように例えば1日1回、同一時刻に電圧を測定するように処理を開始する。
(2)のT1は測定頻度で、例えば24時間とする。Tは前回の充放電処理の時刻からの経過時間を示す。そのため、24時間を経過したとき、再度の処理が可能となる。(2)の処理がYESとなったとき、(3)において組電池の各セルの電圧を電圧測定装置9が測定する。測定値が充放電制御装置10に通知され、(4)において判断される。即ち、予め定めておいた規定電圧よりバラツキのため生じた小電圧測定値をV1、同じく大電圧測定値をV2としたとき、測定電圧Vnと比較する。(4)の判断において、VnをV1、V2と比較し、その範囲を外れたときNOとし、(5)において異常判定セル1個とする。尚、(4)においてYESのときは次の処理がされず、当初のタイマー起動状態に戻る。
次に(6)において、異常判定セルの数を積算し、結果の総数をN1とする。(7)において、組電池の全セル数Nと、上記N1との比率を算出する。そして(8)において、予め要処理と判断する設定基準Aと、前記比率N1/Nとを比較する。比率の値がAより大きい値となっているとき「YES」の方法に進み、比率の値がAより小さい値のとき「NO」の方向に進む。「YES」の方向に進んだときは、(9)において組電池の充放電装置のスイッチ2を開く。そのため組電池5からの放電が開始される。(フローチャート(10)の動作)。
次に、放電が進み、組電池5の放電電気量が所定値に達したとき、前記放電が停止される(フローチャート(11)の動作)、即ち、(11)におけるT2は所定量の放電がなされる時間として予め求めておいたもの、Tは上述の実際の放電動作時間を示している。尚、このフローチャートでは、放電停止の判断を時間で行っているが、前述した通り、放電電気量で行っても構わない。
放電停止は直ちに再充電開始であって、フローチャート(11)の「YES」の動作に基づいて(12)に示す組電池の充放電装置のスイッチ2の再投入から動作に入る。そして関連するスイッチの開閉動作がなされる。フローチャート(15)において充電電流が通常のフロート充電電流値に落ち着くまでの所定の時間T3以上経過したとき、再充電が停止される。経過していないときは、再充電に戻る。
Next, FIG. 4 is a flowchart showing the operation status of the control unit 41 shown in FIG. 2 and the control determination unit 21 shown in FIG. 3 in the embodiment of the present invention. (1) in FIG. 4 indicates timer activation, and as described above, for example, once a day, processing is started so as to measure voltage at the same time.
T1 in (2) is the measurement frequency, for example, 24 hours. T indicates the elapsed time from the time of the previous charge / discharge process. Therefore, when 24 hours have elapsed, the process can be performed again. When the processing of (2) becomes YES, the voltage measuring device 9 measures the voltage of each cell of the assembled battery in (3). The measured value is notified to the charge / discharge control device 10 and determined in (4). That is, when the small voltage measurement value generated due to variation from the predetermined voltage set in advance is V1, and the large voltage measurement value is V2, the comparison is made with the measurement voltage Vn. In the determination of (4), Vn is compared with V1 and V2, and when it is out of the range, NO is determined, and in (5), one abnormality determination cell is determined. If YES in (4), the next process is not performed and the original timer activation state is restored.
Next, in (6), the number of abnormality determination cells is integrated, and the total number of results is N1. In (7), the ratio between the total number of cells N of the assembled battery and the above N1 is calculated. Then, in (8), the setting standard A, which is determined to be necessary in advance, is compared with the ratio N1 / N. When the ratio value is larger than A, the process proceeds to “YES”, and when the ratio value is smaller than A, the process proceeds to “NO”. When proceeding in the direction of “YES”, the switch 2 of the assembled battery charging / discharging device is opened in (9). Therefore, discharge from the assembled battery 5 is started. (Operation of flowchart (10)).
Next, when the discharge progresses and the discharge electricity amount of the assembled battery 5 reaches a predetermined value, the discharge is stopped (operation in the flowchart (11)), that is, T2 in (11) is discharged by a predetermined amount. What has been obtained in advance as the time to be performed, T represents the actual discharge operation time described above. In this flowchart, the discharge stop is determined by time, but as described above, it may be determined by the amount of discharge electricity.
The stop of the discharge is immediately the start of recharging, and the operation starts from the reactivation of the switch 2 of the assembled battery charging / discharging device shown in (12) based on the operation of “YES” in the flowchart (11). The associated switch is opened or closed. When a predetermined time T3 or more elapses until the charging current settles to the normal float charging current value in the flowchart (15), the recharging is stopped. If not, return to recharging.

1 系統電源
2 スイッチ
3 交直変換器
4 電流測定装置
5 組電池
6 スイッチ
7 電力送電線
8 負荷
9 電圧測定装置
10 充放電制御装置
11 放電処理装置
12 充電処理装置
13 直交変換器
14 切換スイッチ
Single power supply
2 switch
3 AC / DC converter
4 Current measuring device
5 batteries
6 switch
7 Electric power transmission line
8 Load
9 Voltage measuring device
10 Charge / discharge control device
11 Discharge treatment equipment
12 Charge processing device
13 Orthogonal transformer
14 selector switch

Claims (4)

系統電源から交直変換器を介して充電される非常用電源設備用組電池と、系統電源の停電時に前記組電池から直交変換器を介して給電される負荷とで構成し、停電復旧後は前記交直変換器を介して前記組電池が再度充電される非常用電源設備用組電池の充放電装置において、前記系統電源からの電力により充電状態にある組電池の各セルの電圧を測定する電圧測定装置と、上記電圧測定値が所定値を外れたセル数の総数に対する割合を演算し、上記割合が所定値を超えた時、組電池から所定量の放電を行う放電処理装置に対し指令を発し、且つ前述の放電処理を実行した後、通常のフロート充電時より大きな電流で充電を行うように充電処理装置に対し指令を発する充放電制御装置とで構成することを特徴とする非常用電源設備用組電池の充放電装置。 And emergency power equipment for battery pack that is charged via the AC-DC converter from the system power supply, constituted by a load which is powered via the orthogonal transformer from the assembled battery during a power failure of the system power source, after the power recovery is the In the charging / discharging device for an assembled battery for an emergency power supply facility in which the assembled battery is recharged via an AC / DC converter, voltage measurement is performed to measure the voltage of each cell of the assembled battery that is in a charged state by power from the system power supply The device calculates a ratio to the total number of cells in which the voltage measurement value deviates from the predetermined value, and when the ratio exceeds the predetermined value, issues a command to the discharge processing apparatus that performs a predetermined amount of discharge from the assembled battery. An emergency power supply facility comprising: a charge / discharge control device that issues a command to the charge processing device so as to charge with a larger current than that during normal float charging after performing the above-described discharge processing of use battery pack charge Collector. 放電処理装置による放電は、通常の停電時の放電と同じ電流値で負荷に対して行うことを特徴とする請求項1に記載の非常用電源設備用組電池の充放電装置。 2. The charging / discharging device for an assembled battery for an emergency power supply facility according to claim 1, wherein the discharge by the discharge processing device is performed on the load with the same current value as the discharge at the time of a normal power failure. 放電処理装置による放電は、放電開始時の組電池の定格容量の10〜25%の放電となるまでの時間行うことを特徴とする請求項1乃至2に記載の非常用電源設備用組電池の充放電装置。 By discharge treatment apparatus discharges, the emergency power supply equipment for battery pack according to claim 1 or 2, characterized in that the time until 10 to 25% of the discharge of the rated capacity of the battery pack during discharge initiation Charge / discharge device. 充電処理装置による充電は、通常のフロート充電電流より大きい0.05〜0.20Cの充電電流で充電を始め、通常のフロート充電電流に達するまで行うことを特徴とする請求項1乃至3のいずれか1つに記載の組電池の非常用電源設備用充放電装置。 The charging by the charging processing device is started at a charging current of 0.05 to 0.20 C, which is larger than a normal float charging current, and is performed until a normal floating charging current is reached. Charge / discharge device for emergency power supply equipment for assembled batteries as described in 1.
JP2009016510A 2009-01-28 2009-01-28 Charge / discharge device for battery pack Active JP5649281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016510A JP5649281B2 (en) 2009-01-28 2009-01-28 Charge / discharge device for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016510A JP5649281B2 (en) 2009-01-28 2009-01-28 Charge / discharge device for battery pack

Publications (2)

Publication Number Publication Date
JP2010178456A JP2010178456A (en) 2010-08-12
JP5649281B2 true JP5649281B2 (en) 2015-01-07

Family

ID=42708857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016510A Active JP5649281B2 (en) 2009-01-28 2009-01-28 Charge / discharge device for battery pack

Country Status (1)

Country Link
JP (1) JP5649281B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829337A (en) * 1981-08-13 1983-02-21 日本電信電話株式会社 Dc power source
JPH07322518A (en) * 1994-05-17 1995-12-08 Sofutetsuku Kogyo:Kk Automatic charger of battery
JP3411753B2 (en) * 1996-06-17 2003-06-03 日野自動車株式会社 In-vehicle battery control device
JP4081970B2 (en) * 2000-09-22 2008-04-30 株式会社デンソー Battery pack voltage adjustment device and battery pack voltage adjustment method
JP2007309839A (en) * 2006-05-19 2007-11-29 Fuji Electric Systems Co Ltd Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same

Also Published As

Publication number Publication date
JP2010178456A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
KR101820807B1 (en) Refresh charging method of battery assembly composed of lead-acid battery and charging device
US8952663B2 (en) Battery charge and discharge control apparatus and method for controlling battery charge and discharge
EP2629387A1 (en) Power management system
EP2629388A1 (en) Power management system
JP6897765B2 (en) Management device, power storage device and power storage system
JP2014166015A (en) Stationary power storage system, and control method
JP2012143151A5 (en)
JP2013085386A (en) Storage battery controller, storage battery control method, power storage system, and drive system for electric vehicle
JP2013192389A (en) Discharge control system and discharge control method for battery pack
JP2012249484A (en) Power storage system
JP2013160582A (en) Battery pack system and management method of battery pack system
KR20190050386A (en) Battery life management device
RU2013148374A (en) ENERGY POWER SYSTEM, BACK-UP POWER SUPPLY, METHOD FOR MOUNTING THE DATA PROCESSING CENTER, POWER PROCESSING SYSTEM CONTROLLER, POWER SYSTEM AND METHOD OF OPERATING THE SYSTEM OF THE SYSTEM
JP2011254585A (en) Charged state control device and controlling method thereof
RU152482U1 (en) ELECTRIC ENERGY STORAGE BASED ON SUPERCAPACITORS FOR HIGH POWER PULSE EQUIPMENT
JP5366641B2 (en) Lithium-ion battery management device and lithium-ion battery system
KR20120046628A (en) Recycling device for rechargeable battery
KR101425394B1 (en) Power Converting System with Diagnostic or Regeneration Function for Battery
JP5649281B2 (en) Charge / discharge device for battery pack
JP5587941B2 (en) Uninterruptible power supply and uninterruptible power supply method
WO2019163008A1 (en) Dc feeding system
JP5149132B2 (en) Cell replacement time determination device for battery pack
JP2011055592A (en) Secondary cell and method for charging and discharging the same
WO2012043133A1 (en) Storage battery charging/discharging control device and storage battery charging/discharging control method
WO2012049973A1 (en) Power management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5649281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150