JP5640214B2 - Capacitor charge / discharge engine ignition system - Google Patents

Capacitor charge / discharge engine ignition system Download PDF

Info

Publication number
JP5640214B2
JP5640214B2 JP2010145832A JP2010145832A JP5640214B2 JP 5640214 B2 JP5640214 B2 JP 5640214B2 JP 2010145832 A JP2010145832 A JP 2010145832A JP 2010145832 A JP2010145832 A JP 2010145832A JP 5640214 B2 JP5640214 B2 JP 5640214B2
Authority
JP
Japan
Prior art keywords
engine
ignition timing
control
rotation
control characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010145832A
Other languages
Japanese (ja)
Other versions
JP2012007575A (en
Inventor
章範 山口
章範 山口
Original Assignee
パナソニック エコソリューションズ池田電機株式会社
パナソニック エコソリューションズ池田電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック エコソリューションズ池田電機株式会社, パナソニック エコソリューションズ池田電機株式会社 filed Critical パナソニック エコソリューションズ池田電機株式会社
Priority to JP2010145832A priority Critical patent/JP5640214B2/en
Publication of JP2012007575A publication Critical patent/JP2012007575A/en
Application granted granted Critical
Publication of JP5640214B2 publication Critical patent/JP5640214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

本発明は、コンデンサ充放電式エンジン点火装置に関し、エンジンの始動性の向上を図るようにしたものである。   The present invention relates to a capacitor charge / discharge engine ignition device, and is intended to improve engine startability.

2サイクルエンジン等の小型汎用エンジンに搭載するコンデンサ充放電式エンジン点火装置には、エンジンにより駆動される磁石式発電機と、この磁石式発電機のソースコイルに発生する正の半波出力により充電される充放電用コンデンサと、導通時に充放電用コンデンサの電荷を点火コイルの一次側に放電させる放電用スイッチング素子と、ソースコイルに発生する負の半波出力によりエンジンの回転に応じたタイミングで放電用スイッチング素子を導通させる点火時期制御手段とを備え、充放電用コンデンサの電荷を点火コイルの一次側に放電したときに二次側に発生する高電圧により、エンジンの回転数に相応しい上死点前の進角位置でエンジンを点火させるように構成されている(特許文献1)。   A capacitor charge / discharge engine ignition device mounted on a small general-purpose engine such as a two-cycle engine is charged by a magnet generator driven by the engine and a positive half-wave output generated in the source coil of the magnet generator. Charging / discharging capacitor, discharging switching element that discharges the charge of the charging / discharging capacitor to the primary side of the ignition coil when conducting, and negative half-wave output generated in the source coil at a timing according to the rotation of the engine Ignition timing control means for conducting the switching element for discharge, and the top deadline suitable for the engine speed due to the high voltage generated on the secondary side when the charge of the charge / discharge capacitor is discharged to the primary side of the ignition coil The engine is ignited at the advance position before the point (Patent Document 1).

このエンジンの点火制御方式には、回転数の上昇に伴って点火時期が進角する円弧状の制御特性に従ってハード的に制御するハード点火方式(特許文献2の図2)の他に、近年の排気ガスの浄化、燃費の向上、始動操作時の負担の軽減等の要求に応えるために、複雑な制御特性に沿って点火時期を制御するソフト点火方式が提案されている。またソフト点火方式には、全回転域をソフト的に制御する単独方式(特許文献3)と、微速回転域でのハード点火と微速回転域以外の回転域でのソフト点火とを併用した併用方式(特許文献2の図1)とがある。   In addition to a hard ignition system (FIG. 2 of Patent Document 2) that performs hardware control in accordance with an arc-shaped control characteristic in which the ignition timing is advanced as the rotational speed increases, this engine ignition control system has been developed in recent years. In order to meet demands such as purification of exhaust gas, improvement of fuel consumption, and reduction of burden during start operation, a soft ignition system that controls ignition timing in accordance with complicated control characteristics has been proposed. In addition, the soft ignition method is a combined method in which a single method (Patent Document 3) that controls the entire rotational range in software and a hard ignition in a slow rotational region and a soft ignition in a rotational region other than the slow rotational region are used in combination. (FIG. 1 of Patent Document 2).

特開2000−45923号公報JP 2000-45923 A 特開2003−13829号公報JP 2003-13829 A 特開2007−170393号公報JP 2007-170393 A

エンジンの始動に際しては、通常、アクセル開度をアイドリング回転域の2000〜3000r/min又はそれ以上の回転域に設定し、リコイルスタータを操作して1000〜1500r/minの回転数でエンジンを回転させて、その回転数に応じた進角で点火する。そして、エンジンの回転数が上昇するに伴って所定の制御特性に従って順次点火時期を進角させながら、アイドル回転域まで回転数を上げて行く。   When starting the engine, usually, the accelerator opening is set to 2000 to 3000 r / min or more in the idling rotation range, and the recoil starter is operated to rotate the engine at a rotation speed of 1000 to 1500 r / min. And ignite at an advance angle corresponding to the rotational speed. Then, as the engine speed increases, the engine speed is increased to the idling engine speed range while the ignition timing is sequentially advanced according to predetermined control characteristics.

しかし、従来の点火時期制御方式は、ハード点火、ソフト点火の何れを問わず制御特性が一つのみであり、しかもエンジンの回転数を基準にして、その回転数が上昇するに伴って点火時期が進角するようになっている。従って、エンジンの回転数が1000r/minのときには1000r/minに対応する点火時期で、2000r/minのときには2000r/minに対応する点火時期で夫々点火信号を出力することになる。   However, the conventional ignition timing control system has only one control characteristic regardless of whether it is hard ignition or soft ignition, and the ignition timing is increased as the engine speed increases with reference to the engine speed. Has been advanced. Accordingly, an ignition signal is output at an ignition timing corresponding to 1000 r / min when the engine speed is 1000 r / min, and at an ignition timing corresponding to 2000 r / min when it is 2000 r / min.

このため例えば寒冷期でのエンジンの始動時には、アクセル開度が3000r/minの設定であっても、エンジンの回転数がスムーズに上昇せずに2000r/min付近の回転数を維持したままになれば、2000r/min付近の回転数に対応する点火時期でしか点火信号が出力しないので、2000r/min付近の回転数で停滞する可能性がある。従って、従来のエンジンの回転数の上昇に伴って点火時期を進角させる制御方式では、始動後に回転数の上昇を積極的に促すことができず、アイドル回転域までエンジンの回転数をスムーズに上昇させ難いという問題がある。   For this reason, for example, when the engine is started in the cold season, even if the accelerator opening is set to 3000 r / min, the engine speed does not rise smoothly and the engine speed remains at around 2000 r / min. For example, since the ignition signal is output only at the ignition timing corresponding to the rotation speed near 2000 r / min, there is a possibility of stagnation at the rotation speed near 2000 r / min. Therefore, in the conventional control method in which the ignition timing is advanced as the engine speed increases, the engine speed cannot be positively promoted after starting, and the engine speed is smoothly increased to the idle speed range. There is a problem that it is difficult to raise.

本発明は、このような従来の課題に鑑み、始動後にエンジンの回転数の上昇を積極的に促しアイドリング回転域までエンジンの回転数をスムーズに上昇させることができるコンデンサ充放電式エンジン点火装置を提供することを目的とする。   In view of such a conventional problem, the present invention provides a capacitor charging / discharging engine ignition device that can positively promote an increase in the engine speed after startup and smoothly increase the engine speed to the idling engine speed range. The purpose is to provide.

本発明は、エンジンに同期して駆動される磁石式発電機と、該磁石式発電機のソースコイルからの正の半波出力により充電される充放電用コンデンサと、導通時に前記充放電用コンデンサの電荷を点火コイルを経て放電させる放電用スイッチング素子と、前記ソースコイルの負の半波出力により作動し、且つ制御特性に従って前記エンジンの回転に応じた点火時期で前記放電用スイッチング素子を導通させる点火時期制御手段とを備えたコンデンサ充放電式エンジン点火装置において、前記点火時期制御手段はアイドル回転域以下の低速回転域用に設けられ且つ回転数に対して点火時期の進角特性が異なる複数の前記制御特性を有し、前記エンジンの始動時に前記複数の制御特性の内、進角の最も小さい前記制御特性に従って前記点火時期を制御し、始動後の低速回転時に前記エンジンが規定回数回転する毎に進角の大きい他の前記制御特性に移行して該制御特性に従って点火時期を順次進角させるものである。 The present invention includes a magnet generator driven in synchronism with an engine, a charge / discharge capacitor charged by a positive half-wave output from a source coil of the magnet generator, and the charge / discharge capacitor during conduction. Switching element that discharges the electric charge through the ignition coil, and the discharge switching element that is activated by the negative half-wave output of the source coil and that conducts the discharge switching element at the ignition timing according to the engine rotation according to the control characteristics In the capacitor charging / discharging engine ignition device including the ignition timing control means, the ignition timing control means is provided for a low-speed rotation range that is equal to or lower than the idle rotation range , and a plurality of ignition timing advance characteristics differ with respect to the rotation speed. The ignition timing is determined according to the control characteristic having the smallest advance angle among the plurality of control characteristics when the engine is started. Gyoshi is intended to sequentially advance the ignition timing in accordance with the control characteristic the engine during low speed rotation after start-up shifts to larger other of the control characteristics of the advance angle for every prescribed number of times rotation.

前記点火時期制御手段はアイドル回転域以下の低速回転域用に設けられ且つ回転数に対して点火時期の進角特性が異なる複数の制御テーブルと、前記エンジンの始動時に前記複数の制御テーブルの内、進角の最も小さい前記制御テーブルに従って前記点火時期を制御し、且つ始動後に前記エンジンが規定回数回転する毎に進角の大きい他の前記制御テーブルに移行して、該制御テーブルに従って移行前の進角よりも大きい進角で点火時期を制御する手段とを備えたものでもよい。 It said ignition timing control means and the advance characteristics of the ignition timing against the and the rotational speed provided to the idle rotation region below the low-speed rotation range are different control tables, the plurality of control tables at the time of starting of the engine Among them, the ignition timing is controlled according to the control table with the smallest advance angle, and each time the engine rotates a specified number of times after starting, it shifts to another control table with a large advance angle, and before the transition according to the control table And means for controlling the ignition timing with an advance angle larger than the advance angle.

前記進角の最も小さい制御特性は上死点近傍で点火時期進角させるようにしてもよい。また最も進角の大きい低速回転域用制御特性とアイドル回転域用制御特性と高速回転域用制御特性とを含む定常制御特性を有し、前記低速回転域用制御特性は前記アイドル回転域用制御特性よりも進角するようにしてもよい。 Smallest control characteristics of the advance angle may be caused to advance the ignition timing in the vicinity of the top dead center. Further, it has a steady control characteristic including a control characteristic for a low-speed rotation range, a control characteristic for an idle rotation range, and a control characteristic for a high-speed rotation range having the largest advance angle, and the control characteristic for a low-speed rotation range is the control for the idle rotation range You may make it advance rather than a characteristic.

前記点火時期制御手段は前記エンジンが進角の小さい前記制御特性で複数回回転したときに次の前記制御特性に移行させるようにしてもよい。   The ignition timing control means may shift to the next control characteristic when the engine rotates a plurality of times with the control characteristic having a small advance angle.

本発明によれば、始動後にエンジンの回転数の上昇を積極的に促しアイドリング回転域までエンジンの回転数をスムーズに上昇させることができる利点がある。   According to the present invention, there is an advantage that it is possible to actively increase the engine speed after starting and smoothly increase the engine speed to the idling rotation range.

本発明の第1の実施形態を示す磁石式発電機の正面概略図である。1 is a schematic front view of a magnet generator showing a first embodiment of the present invention. 同磁石式発電機の側面概略図である。It is a schematic side view of the magnet generator. 同コンデンサ充放電式エンジン点火装置の回路図である。It is a circuit diagram of the capacitor charging / discharging engine ignition device. 同点火時期制御特性図である。It is the same ignition timing control characteristic diagram. 同点火時期制御手段のブロック図である。It is a block diagram of the ignition timing control means. 同制御テーブルの説明図である。It is explanatory drawing of the same control table. 同波形図である。FIG. 同フローチャートである。It is the same flowchart. 同エンジンの回転回数と点火時期との関係図である。It is a relationship diagram between the number of rotations of the engine and the ignition timing. 本発明の第2の実施形態を示す点火時期制御特性図である。It is an ignition timing control characteristic view showing a second embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて詳述する。図1〜図9は本発明の第1の実施形態を例示する。図1及び図2は2サイクルエンジン等のエンジン1を示し、このエンジン1はシリンダを含むエンジン本体2と、このエンジン本体2に回転自在に設けられたクランク軸3と、このクランク軸3の両側に設けられた磁石式発電機4及びリコイルスタータ5を備えている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 9 illustrate a first embodiment of the present invention. 1 and 2 show an engine 1 such as a two-cycle engine. The engine 1 includes an engine main body 2 including a cylinder, a crankshaft 3 rotatably provided on the engine main body 2, and both sides of the crankshaft 3. Are provided with a magnet generator 4 and a recoil starter 5.

磁石式発電機4はエンジン1のクランク軸3の一端に固定されたフライホイール等のロータ6と、エンジン本体2に固定されたステータ7とを備えている。ロータ6は周方向に所定の間隔でS極、N極が設けられた永久磁石8を有し、またステータ7はその鉄心に巻装されたソースコイル9を有する。リコイルスタータ5はエンジン1の始動時に引き紐を引っ張って始動操作を行うようになっている。   The magnet generator 4 includes a rotor 6 such as a flywheel fixed to one end of the crankshaft 3 of the engine 1 and a stator 7 fixed to the engine body 2. The rotor 6 has a permanent magnet 8 provided with S and N poles at predetermined intervals in the circumferential direction, and the stator 7 has a source coil 9 wound around its iron core. The recoil starter 5 performs a starting operation by pulling a pull string when the engine 1 is started.

図3はコンデンサ充放電式エンジン点火装置を示し、このエンジン点火装置はエンジン1に同期して駆動される磁石式発電機4と、この磁石式発電機4のソースコイル9の正の半波出力(図7(A)参照)により充電される充放電用コンデンサ10と、一次側が充放電用コンデンサ10に接続され且つ二次側が点火プラグ11に接続された点火コイル12と、導通時に充放電用コンデンサ10の電荷を点火コイル12の一次側を経て放電させる放電用スイッチング素子13と、ソースコイル9の負の半波出力(図7(A)参照)により充電される電源回路14と、ソースコイル9の正の半波出力を波形成形する第1波形成形回路15と、ソースコイル9の負の半波出力を波形成形する第2波形成形回路16と、電源回路14が立ち上がり電圧まで上昇したときに動作するマイコン17により構成され、且つ第1波形成形回路15からの正パルス、第2波形成形回路16からの負パルスに基づいてエンジン1の各回転毎の回転周期を演算して、ソースコイル9の負の半波出力によりエンジン1の回転に応じた点火時期で放電用スイッチング素子13を導通させる点火時期制御手段18とを備えている。   FIG. 3 shows a capacitor charging / discharging engine ignition device. This engine ignition device is driven in synchronism with the engine 1 and a positive half-wave output of a source coil 9 of the magnet generator 4. (See FIG. 7 (A)), the charging / discharging capacitor 10, the ignition coil 12 whose primary side is connected to the charging / discharging capacitor 10 and whose secondary side is connected to the spark plug 11, and charging / discharging when conducting Discharging switching element 13 for discharging the electric charge of capacitor 10 through the primary side of ignition coil 12, power supply circuit 14 charged by the negative half-wave output of source coil 9 (see FIG. 7A), source coil The first waveform shaping circuit 15 that shapes the positive half-wave output of 9, the second waveform shaping circuit 16 that shapes the negative half-wave output of the source coil 9, and the power supply circuit 14 rises. And a rotation period for each rotation of the engine 1 is calculated based on a positive pulse from the first waveform shaping circuit 15 and a negative pulse from the second waveform shaping circuit 16. And an ignition timing control means 18 for conducting the discharge switching element 13 at an ignition timing corresponding to the rotation of the engine 1 by the negative half-wave output of the source coil 9.

ソースコイル9の正の半波出力はダイオード19,20を介して、負の半波出力はダイオード21を介して夫々流れる。波形成形回路15,16はトランジスタ15a,16aを有する。電源回路14はソースコイル9の負の半波出力により充電され、図7(B)に示すようにエンジン1が1回転した後にマイコン17の電源が立ち上がって点火時期制御手段18を動作可能にする。   The positive half-wave output of the source coil 9 flows through the diodes 19 and 20, and the negative half-wave output flows through the diode 21. The waveform shaping circuits 15 and 16 have transistors 15a and 16a. The power supply circuit 14 is charged by the negative half-wave output of the source coil 9, and as shown in FIG. 7B, after the engine 1 makes one revolution, the power supply of the microcomputer 17 is turned on to enable the ignition timing control means 18 to operate. .

点火時期制御手段18は図4に示すように低速回転域23、アイドル回転域24、高速回転域25を含む全回転域の内そのアイドル回転域24以下の低速回転域23用に設けられ、且つ回転数に対する点火時期の進角特性が異なる複数の制御特性26〜30を有し、進角の最も小さい制御特性26に従ってエンジン1の始動を開始した後、進角の小さい制御特性26〜29でエンジン1が規定回数回転する毎に、順次進角の大きい制御特性27〜30に移行しながら、各制御特性26〜30に従ってエンジン1の点火時期を進角制御するようになっている。   As shown in FIG. 4, the ignition timing control means 18 is provided for a low-speed rotation region 23 that is equal to or lower than the idle rotation region 24 out of all the rotation regions including the low-speed rotation region 23, the idle rotation region 24, and the high-speed rotation region 25. After starting the engine 1 in accordance with the control characteristic 26 having the smallest advance angle, the control characteristic 26 to 29 having a small advance angle has a plurality of control characteristics 26 to 30 having different advance characteristics of the ignition timing with respect to the rotational speed. Every time the engine 1 rotates a specified number of times, the ignition timing of the engine 1 is advanced in accordance with the control characteristics 26-30 while sequentially shifting to the control characteristics 27-30 having a large advance angle.

この点火時期制御手段18はRAM、ROM、CPU等を有するマイコン17により構成され、図5に示すように複数の制御テーブル31〜35とパルス幅検出部36と回転数検出部37と回転回数検出部38と点火時期演算部39と出力部40とを有する。   The ignition timing control means 18 is constituted by a microcomputer 17 having RAM, ROM, CPU, etc. As shown in FIG. 5, a plurality of control tables 31 to 35, a pulse width detector 36, a rotational speed detector 37, and a rotational frequency detector. A unit 38, an ignition timing calculation unit 39, and an output unit 40;

各制御テーブル31〜35は図6に示すように1回転目用の第1制御特性26、2〜6回転目用の第2制御特性27、7〜11回転目用の第3制御特性28、12〜75回転目用の第4制御特性29、76回転目以降用の第5制御特性30の5種類の制御特性により構成されている。   As shown in FIG. 6, each control table 31 to 35 includes a first control characteristic 26 for the first rotation, a second control characteristic 27 for the second to sixth rotations, a third control characteristic 28 for the seventh to eleventh rotations, The fourth control characteristic 29 is for the 12th to 75th rotations, and the fifth control characteristic 30 is for the 76th and subsequent rotations.

なお、エンジン1の始動に際しては、後述の電源回路14の電源電圧が立ち上がって点火時期制御手段18が動作可能になるまでに1回転するが、その回転は点火時期制御手段18を動作可能にするための準備回転として、回転回数には算入しないものとする。   When the engine 1 is started, the engine 1 makes one revolution until a power supply voltage of a power supply circuit 14 described later rises and the ignition timing control means 18 becomes operable. This rotation makes the ignition timing control means 18 operable. As a preparatory rotation for this, the number of rotations is not counted.

第1制御特性26は点火時期が上死点近傍となる最も小さい進角特性を、第5制御特性30は回転数をアイドル回転域24まで上昇させるに必要な最も大きい進角特性を夫々有する。そして、この第1制御特性26と第5制御特性30との間に、進角が順次大になる第2制御特性27と第3制御特性28と第4制御特性29とが適当な進角間隔で設けられている。   The first control characteristic 26 has the smallest advance angle characteristic at which the ignition timing is in the vicinity of the top dead center, and the fifth control characteristic 30 has the largest advance angle characteristic necessary for increasing the rotation speed to the idle rotation range 24. Between the first control characteristic 26 and the fifth control characteristic 30, the second control characteristic 27, the third control characteristic 28, and the fourth control characteristic 29 in which the advance angle sequentially increases are set at appropriate advance angle intervals. Is provided.

第1制御特性26はエンジン1の準備回転後の1回転目にアナログ点火するためのアナログ点火用であり、上死点近傍の進角域又は遅角域で点火するように設定されている。また第2制御特性27はそれに続く2〜6回転目の規定回転回数での点火用であり、第1制御特性26よりも若干進角するように設定されている。第2制御特性27と第5制御特性30との間には略等間隔で進角するように第3制御特性28と第4制御特性29とが設定されている。第5制御特性30はエンジン1の定常運転時の点火時期を制御する定常制御特性41の一部を構成している。各制御特性26〜30は回転数に対して点火時期が進角する特性を有する。   The first control characteristic 26 is for analog ignition for performing analog ignition in the first rotation after the preparatory rotation of the engine 1, and is set so that ignition is performed in an advance angle region or a retard angle region near the top dead center. The second control characteristic 27 is for ignition at the specified number of rotations of the second to sixth rotations that follow, and is set to advance slightly more than the first control characteristic 26. A third control characteristic 28 and a fourth control characteristic 29 are set between the second control characteristic 27 and the fifth control characteristic 30 so as to advance at substantially equal intervals. The fifth control characteristic 30 constitutes a part of a steady control characteristic 41 that controls the ignition timing during steady operation of the engine 1. Each of the control characteristics 26 to 30 has a characteristic that the ignition timing is advanced with respect to the rotational speed.

因みに第2制御特性27は略500〜2800r/minの回転数に対して略−2〜5度の範囲で進角し、第3制御特性28は同様に略7〜13度の範囲、第4制御特性29は略16〜22度の範囲、第5制御特性30は略25〜30度の範囲で夫々進角するように設定されている。   Incidentally, the second control characteristic 27 is advanced in the range of about −2 to 5 degrees with respect to the rotational speed of about 500 to 2800 r / min, and the third control characteristic 28 is similarly in the range of about 7 to 13 degrees. The control characteristic 29 is set to advance in the range of approximately 16 to 22 degrees, and the fifth control characteristic 30 is set to advance in the range of approximately 25 to 30 degrees.

定常制御特性41は略2800〜4500r/minのアイドル回転域24での点火時期を進角制御するアイドル回転域用制御特性42と、アイドル回転域24よりも低速の低速回転域23での点火時期を制御する第5制御特性30と、アイドル回転域24よりも高速の高速回転域25での点火時期を制御する高速回転域用制御特性43とを有する。   The steady control characteristic 41 includes an idle rotation region control characteristic 42 that controls the advance of the ignition timing in the idle rotation region 24 of approximately 2800 to 4500 r / min, and an ignition timing in the low speed rotation region 23 that is slower than the idle rotation region 24. And a control characteristic 43 for a high-speed rotation region that controls ignition timing in a high-speed rotation region 25 that is faster than the idle rotation region 24.

アイドル回転域用制御特性42は第5制御特性30の最大進角に比較して半分又はそれ以下の小さい進角で略一定しており、このアイドル回転域用制御特性42と第5制御特性30との間では点火時期が急激に変化している。高速回転域用制御特性43は略4500〜6000r/minの範囲で略10〜30度程度進角・遅角させる加減速制御特性44と、略6000r/min以上で略30度の最大進角に維持する安定制御特性45とを有する。   The idling rotation range control characteristic 42 is substantially constant at a small advance angle that is half or less than the maximum advance angle of the fifth control characteristic 30. The idling rotation range control characteristic 42 and the fifth control characteristic 30 are substantially constant. Between, the ignition timing changes rapidly. The control characteristic 43 for the high-speed rotation region has an acceleration / deceleration control characteristic 44 that advances and retards about 10 to 30 degrees in a range of about 4500 to 6000 r / min, and a maximum advance angle of about 30 degrees at about 6000 r / min or more. And a stable control characteristic 45 to be maintained.

パルス幅検出部36は準備回転後のエンジン1の1回転目の回転時に第2波形成形回路16の負パルス(又は第1波形成形回路15で波形成形された正パルス)のパルス幅t1(図7(A)参照)を検出して、ソースコイル9に負の半波出力(又は正の半波出力)が発生する時点のエンジン1のクランク軸3の角速度を演算するようになっている。   The pulse width detector 36 has a pulse width t1 of the negative pulse of the second waveform shaping circuit 16 (or the positive pulse shaped by the first waveform shaping circuit 15) during the first rotation of the engine 1 after the preparatory rotation (see FIG. 7 (A)) is detected, and the angular velocity of the crankshaft 3 of the engine 1 at the time when the negative half-wave output (or positive half-wave output) is generated in the source coil 9 is calculated.

回転数検出部37は準備回転後のエンジン1の2回転目から以降の各回転時に、図7(A)に示すように、その前の回転時の第1波形成形回路15の正パルス(又は第2波形成形回路16の負パルス)との間の正パルス(又は負パルス)間の間隔からエンジン1の回転数(回転周期T1,T2,T3・・・)を検出するようになっている。   As shown in FIG. 7 (A), the rotation speed detection unit 37, during each subsequent rotation from the second rotation of the engine 1 after the preparatory rotation, generates a positive pulse (or a first pulse of the first waveform shaping circuit 15 during the previous rotation). The number of revolutions of the engine 1 (rotation periods T1, T2, T3,...) Is detected from the interval between the positive pulse (or negative pulse) between the second waveform shaping circuit 16 and the negative pulse). .

回転回数検出部38は第1波形成形回路15の正パルス(又は第2波形成形回路16の負パルス)を順次計数してエンジン1の回転回数を演算するようになっている。なお、この回転回数検出部38は少なくともエンジン1の回転数がアイド回転域24又はその近傍に達するまでの回転回数を計数すれば十分である。   The rotation number detector 38 sequentially counts the positive pulses of the first waveform shaping circuit 15 (or the negative pulses of the second waveform shaping circuit 16) to calculate the number of rotations of the engine 1. It should be noted that it is sufficient for the rotation number detection unit 38 to count at least the number of rotations until the rotation number of the engine 1 reaches the idling rotation region 24 or the vicinity thereof.

点火時期演算部39はパルス幅検出部36で検出されたパルス幅(角速度)、回転数検出部37で検出された回転数(回転周期)、回転回数検出部38で検出された回転回数に基づいて、エンジン1が規定回数回転する毎に、対応する制御テーブル31〜35の制御特性26〜30を読み出して、そのときのエンジン1の角速度、回転数に応じた点火時期を演算するようになっている。   The ignition timing calculation unit 39 is based on the pulse width (angular velocity) detected by the pulse width detection unit 36, the rotation number (rotation cycle) detected by the rotation number detection unit 37, and the number of rotations detected by the rotation number detection unit 38. Thus, every time the engine 1 rotates a specified number of times, the control characteristics 26 to 30 of the corresponding control tables 31 to 35 are read, and the ignition timing corresponding to the angular velocity and the rotational speed of the engine 1 at that time is calculated. ing.

例えば、エンジン1が1回転目の場合には、第1制御テーブル31の第1制御特性26を読み出して、パルス幅検出部36で検出されたパルス幅(角速度)に相応しい初発の点火時期を第1制御特性26に従って演算する。またエンジン1が2〜6回転目の場合には、第2制御テーブル32の第2制御特性27を読み出して、各回転毎に回転数検出部37で検出された1回転前の回転数に基づいて2〜6回転目に相応しい点火時期を第2制御特性27に従って演算する。同様に7〜11回転目は第3制御特性28に、12〜75回転目は第4制御特性29に、76回転目以降は第5制御特性30に従って夫々その点火時期を演算する。   For example, when the engine 1 is in the first rotation, the first control characteristic 26 of the first control table 31 is read, and the first ignition timing corresponding to the pulse width (angular velocity) detected by the pulse width detector 36 is set to the first ignition timing. 1 Calculate according to the control characteristic 26. Further, when the engine 1 is in the second to sixth rotations, the second control characteristic 27 of the second control table 32 is read, and based on the rotation speed before one rotation detected by the rotation speed detection unit 37 for each rotation. Thus, the ignition timing suitable for the second to sixth rotations is calculated according to the second control characteristic 27. Similarly, the ignition timing is calculated according to the third control characteristic 28 for the seventh to eleventh rotations, the fourth control characteristic 29 for the twelfth to 75th rotations, and the fifth control characteristic 30 for the 76th and subsequent rotations.

出力部40は図7(B)に示すように点火時期演算部39で演算された点火時期に点火出力P1,P2,P3・・・を出力して、放電用スイッチング素子13を導通させる。なお、点火時期演算部39はエンジン1の上死点を基準に点火時期を演算する。   The output unit 40 outputs ignition outputs P1, P2, P3,... At the ignition timing calculated by the ignition timing calculation unit 39 as shown in FIG. The ignition timing calculator 39 calculates the ignition timing with reference to the top dead center of the engine 1.

次に図8、図9を参照しながらエンジン1の始動方法を説明する。なお、図8はエンジン1の始動時のフローチャートを示し、図9はエンジン1の回転回数と点火時期との関係を示す。   Next, a method for starting the engine 1 will be described with reference to FIGS. 8 shows a flowchart when the engine 1 is started, and FIG. 9 shows the relationship between the number of rotations of the engine 1 and the ignition timing.

エンジン1の始動に際してリコイルスタータ5を操作すると(ステップS1)、エンジン1の回転に同期して磁石式発電機4のロータ6を回転し、ソースコイル9に正の半波出力と負の半波出力とが交互に発生し(ステップS2)、その正の半波出力により充放電用コンデンサ10が充電され、また負の半波出力により電源回路14が充電される。なお、回転開始直後の準備回転での負の半波出力により、電源回路14の電源電圧がマイコン17の動作に必要な電圧まで立ち上がるので、その後マイコン17等が動作可能になる。   When the recoil starter 5 is operated at the start of the engine 1 (step S1), the rotor 6 of the magnet generator 4 is rotated in synchronization with the rotation of the engine 1, and a positive half-wave output and a negative half-wave are supplied to the source coil 9. The output is alternately generated (step S2), the charging / discharging capacitor 10 is charged by the positive half-wave output, and the power supply circuit 14 is charged by the negative half-wave output. Note that the negative half-wave output in the preparatory rotation immediately after the start of rotation causes the power supply voltage of the power supply circuit 14 to rise to a voltage necessary for the operation of the microcomputer 17, so that the microcomputer 17 and the like can be operated thereafter.

ソースコイル9に正の半波出力、負の半波出力が発生する都度、第1・第2波形成形回路15,16で波形成形された正パルス、負パルスの入力波形が発生し、その正パルス、負パルスが点火時期制御手段18に入力する(ステップS2)。点火時期制御手段18では正パルス、負パルスの入力を受けて、回転回数検出部38がエンジン1の回転回数を検出し(ステップS3)、その回転回数に応じて夫々の処理を行う(ステップS4〜S7)。   Each time a positive half-wave output and a negative half-wave output are generated in the source coil 9, positive and negative pulse input waveforms generated by the first and second waveform shaping circuits 15 and 16 are generated. Pulses and negative pulses are input to the ignition timing control means 18 (step S2). The ignition timing control means 18 receives the input of the positive pulse and the negative pulse, and the rotation number detection unit 38 detects the rotation number of the engine 1 (step S3), and performs each process according to the rotation number (step S4). ~ S7).

エンジン1の回転回数が1回転目であれば(ステップS4)、パルス幅検出部36が1回転目の負パルスのパルス幅t1を検出して、そのパルス幅t1から負パルスの発生時点におけるエンジン1の角速度を算出する(ステップS8)。そして、点火時期演算部39がエンジン1の1回転目に対応する第1制御テーブル31の第1制御特性26を読み出して(ステップS9)、第1制御特性26に従って角速度t1に見合う点火時期を演算し(ステップS10)、出力部40が図7(C)に示すようにその角速度t1に相応しい点火時期β1で充放電用コンデンサ10に点火出力P1を出力する(ステップS11)。   If the number of rotations of the engine 1 is the first rotation (step S4), the pulse width detector 36 detects the pulse width t1 of the negative pulse of the first rotation, and the engine at the time when the negative pulse is generated from the pulse width t1. 1 is calculated (step S8). Then, the ignition timing calculation unit 39 reads the first control characteristic 26 of the first control table 31 corresponding to the first rotation of the engine 1 (step S9), and calculates the ignition timing corresponding to the angular velocity t1 according to the first control characteristic 26. Then, as shown in FIG. 7C, the output unit 40 outputs the ignition output P1 to the charging / discharging capacitor 10 at the ignition timing β1 suitable for the angular velocity t1 (step S11).

例えば、エンジン1の角速度が1000r/minに相当するものであれば、第1制御特性26に従って上死点前−2度前後の点火時期を演算し、その点火時期で出力部40が充放電用コンデンサ10に点火出力P1を出力する(ステップS11)。またエンジン1の角速度が1500r/minに相当するものであれば、第1制御特性26に従って上死点前0度付近の点火時期を演算し、その点火時期で出力部40が充放電用コンデンサ10に点火出力P1を出力する(ステップS11)。   For example, if the angular velocity of the engine 1 is equivalent to 1000 r / min, the ignition timing around −2 degrees before top dead center is calculated according to the first control characteristic 26, and the output unit 40 is used for charging and discharging at the ignition timing. The ignition output P1 is output to the capacitor 10 (step S11). If the angular velocity of the engine 1 is equivalent to 1500 r / min, the ignition timing near 0 degrees before top dead center is calculated according to the first control characteristic 26, and the output unit 40 uses the charging timing at the ignition timing. The ignition output P1 is output to (step S11).

またエンジン1が回転し始めると、回転数検出部37が各回転毎に第1波形成形回路15の正パルスの前後の間隔に基づいて回転数(回転周期T1,T2,T3・・・)を検出する。例えばエンジン1が2回転目になれば(ステップS5)、1回転目の正パルスと2回転目の正パルスとの間隔を演算して、1回転目のエンジン1の回転数(回転周期T1)を検出する(ステップS12)。3回転目以降も同様である。   When the engine 1 starts to rotate, the rotation speed detector 37 determines the rotation speed (rotation period T1, T2, T3...) Based on the interval before and after the positive pulse of the first waveform shaping circuit 15 for each rotation. To detect. For example, if the engine 1 is in the second rotation (step S5), the interval between the first rotation positive pulse and the second rotation positive pulse is calculated, and the rotation speed of the first rotation engine 1 (rotation cycle T1). Is detected (step S12). The same applies to the third and subsequent rotations.

そして、エンジン1の2〜6回転目の5回転中は、点火時期演算部39が2〜6回転目に対応する第2制御テーブル32の第2制御特性27を読み出して(ステップS13)、1回転前である1〜5回転目の回転数(回転周期T1,T2,T3・・・)に基づいて第2制御特性27に従って2〜6回転目の点火時期β2,β3,β4・・・を演算し(ステップS14)、その点火時期β2,β3,β4・・・に出力部40が充放電用コンデンサ10に点火出力P2,P3,P4・・・を出力する(ステップS11)。従って、2〜6回転目の5回転の規定回転中は、第2制御特性27に従って点火時期を順次進角させて行く。   During the second to sixth rotations of the engine 1, the ignition timing calculation unit 39 reads the second control characteristic 27 of the second control table 32 corresponding to the second to sixth rotations (step S13). The ignition timings β2, β3, β4,... Of the second to sixth rotations according to the second control characteristic 27 based on the rotation speeds (rotation periods T1, T2, T3...) Of the first to fifth rotations before the rotation. The output unit 40 outputs ignition outputs P2, P3, P4... To the charging / discharging capacitor 10 at the ignition timings β2, β3, β4... (Step S11). Therefore, the ignition timing is sequentially advanced in accordance with the second control characteristic 27 during the 5th specified rotation of the 2nd to 6th rotations.

エンジン1の回転回数が7〜11回転目になれば(ステップS6)、回転数検出部37が6〜10回転目の回転数を検出し(ステップS15)、点火時期演算部39が7〜11回転目に対応する第3制御テーブル33の第3制御特性28を読み出して(ステップS16)、1回転前である6〜10回転目の回転数に基づいて第3制御特性27に従って7〜11回転目の点火時期を演算し(ステップS17)、その点火時期に出力部40が充放電用コンデンサ10に点火出力を出力する(ステップS11)。従って、7〜11回転目の5回転の規定回転中は、第3制御特性28に従って点火時期を順次進角させて行く。   When the number of rotations of the engine 1 reaches the seventh to eleventh rotations (step S6), the rotation number detection unit 37 detects the rotation number of the sixth to tenth rotations (step S15), and the ignition timing calculation unit 39 performs the seventh to eleventh rotations. The third control characteristic 28 of the third control table 33 corresponding to the rotation eye is read (step S16), and 7 to 11 rotations according to the third control characteristic 27 based on the rotation speed of the 6th to 10th rotations before one rotation. The ignition timing of the eyes is calculated (step S17), and the output unit 40 outputs an ignition output to the charging / discharging capacitor 10 at the ignition timing (step S11). Therefore, the ignition timing is sequentially advanced in accordance with the third control characteristic 28 during the 5th specified rotation of the 7th to 11th rotations.

エンジン1の回転回数が12〜75回転目の場合にも(ステップS7)、同様に回転数検出部37が11〜74回転目の回転数を検出し(ステップS18)、点火時期演算部39が12〜75回転目に対応する第4制御テーブル34の第4制御特性29を読み出して(ステップS19)、1回転前である11〜74回転目の回転数に基づいて第4制御特性27に従って12〜75回転目の点火時期を演算し(ステップS20)、その点火時期に出力部40が充放電用コンデンサ10に点火出力を出力する(ステップS11)。従って、12〜75回転目の64回転の規定回転中は、第4制御特性29に従って点火時期を順次進角させて行く。   Even when the number of rotations of the engine 1 is the 12th to 75th rotations (step S7), the rotation number detection unit 37 similarly detects the rotation number of the 11th to 74th rotations (step S18), and the ignition timing calculation unit 39 The fourth control characteristic 29 of the fourth control table 34 corresponding to the 12th to 75th rotations is read (step S19), and 12 according to the 4th control characteristic 27 based on the rotation speeds of the 11th to 74th rotations before one rotation. The ignition timing of the ˜75th rotation is calculated (step S20), and the output unit 40 outputs an ignition output to the charging / discharging capacitor 10 at the ignition timing (step S11). Accordingly, the ignition timing is sequentially advanced according to the fourth control characteristic 29 during the 64th specified rotation of the 12th to 75th rotations.

エンジン1の回転回数が76回転目以降の場合にも(ステップS7)、同様に1回転前の回転数を検出し(ステップS21)、76回転目以降に対応する第5制御テーブル35の第5制御特性30を読み出して(ステップS22)、1回転前の回転数に基づいて第5制御特性30に従って点火時期を演算し(ステップS23)、その点火時期に点火出力を出力する(ステップS11)。従って、76回転目以降も第5制御特性30に従ってアイドル回転域24に達するまで点火時期を進角させて行く。   Even when the number of rotations of the engine 1 is after the 76th rotation (step S7), the number of rotations before one rotation is similarly detected (step S21), and the fifth of the fifth control table 35 corresponding to the 76th rotation and thereafter is detected. The control characteristic 30 is read (step S22), the ignition timing is calculated according to the fifth control characteristic 30 based on the rotation speed before one rotation (step S23), and the ignition output is output at the ignition timing (step S11). Accordingly, after the 76th rotation, the ignition timing is advanced according to the fifth control characteristic 30 until the idle rotation region 24 is reached.

このような始動方法を取れば、次のような利点がある。前後の正パルス間の周期からエンジン1の回転数(回転周期)を求めて、その回転数に相応しい点火時期で点火する場合、1回転目のときは図7(B)に示すように回転数の検出が不能であるため、点火信号を出力できなくなる。しかし、図7(A)(C)に示すように、1回転目の負パルス(又は正パルス)のパルス幅t1を求めて、そのパルス幅t1に対応する点火時期で点火出力P1を出力することにより1回転目から点火することができ、始動性を向上させることができる。   Taking such a starting method has the following advantages. When the number of revolutions (rotation period) of the engine 1 is obtained from the period between the front and rear positive pulses and ignition is performed at an ignition timing suitable for the number of revolutions, the number of revolutions is as shown in FIG. Since it is impossible to detect the ignition signal, the ignition signal cannot be output. However, as shown in FIGS. 7A and 7C, the pulse width t1 of the negative pulse (or positive pulse) of the first rotation is obtained, and the ignition output P1 is output at the ignition timing corresponding to the pulse width t1. Thus, ignition can be performed from the first rotation, and startability can be improved.

また1回転目は回転し始めた直後であるため、1回転中でも圧縮行程、排気行程の差などによって角速度に大きなバラツキがあるが、負パルス(又は正パルス)のパルス幅t1を求めて、その負パルス(又は正パルス)を基準に点火時期を演算することにより、その時点の角速度に相応しいタイミングで点火することができる。   Further, since the first rotation is immediately after starting to rotate, there is a large variation in angular velocity due to the difference in compression stroke and exhaust stroke even during one rotation, but the pulse width t1 of the negative pulse (or positive pulse) is obtained, By calculating the ignition timing based on the negative pulse (or positive pulse), ignition can be performed at a timing suitable for the angular velocity at that time.

また回転数に対する点火時期の異なる複数の制御特性26〜30があり、その複数の制御特性26〜30の内、進角の最も小さい第1制御特性26に従って点火時期の制御を開始し、その第1制御特性26でエンジン1が規定回数回転するまで点火時期を制御した後、第2制御特性27に従っての点火時期の進角制御に移行し、その後、エンジン1が規定回数回転する都度、第3制御特性28、第4制御特性29、第5制御特性30へと移行しながらアイドル回転域24まで点火時期を段階的に進角させて行く。このため進角の小さい制御特性26〜29から進角の大きい制御特性27〜30へと移行することにより、エンジン1に対して積極的に回転数の増加を促すことができ、アイドル回転域24までスムーズに回転数を上昇させることができる。   Further, there are a plurality of control characteristics 26 to 30 having different ignition timings with respect to the rotational speed, and control of the ignition timing is started according to the first control characteristic 26 having the smallest advance angle among the plurality of control characteristics 26 to 30. After the ignition timing is controlled until the engine 1 rotates the specified number of times with the 1 control characteristic 26, the control proceeds to the advance control of the ignition timing according to the second control characteristic 27. Thereafter, every time the engine 1 rotates the specified number of times, the third While shifting to the control characteristic 28, the fourth control characteristic 29, and the fifth control characteristic 30, the ignition timing is advanced stepwise to the idle rotation region 24. For this reason, by shifting from the control characteristics 26 to 29 having a small advance angle to the control characteristics 27 to 30 having a large advance angle, the engine 1 can be actively encouraged to increase the rotational speed. The number of rotations can be increased smoothly.

また次の制御特性27〜30に移行する都度、その制御特性27〜30に従って点火時期を制御しながら規定回数回転させるため、進角の小さい制御特性26〜29から進角の大きい次の制御特性27〜30に移行したときに、各制御特性27〜30での進角特性以上に急減に点火時期が進角するにも拘わらず、エンジン1が規定回数(複数回)回転する間にその回転数を十分に上昇させることができ、ケッチン等の発生を未然に防止することができる。   Further, every time the control characteristic shifts to the next control characteristic 27-30, the ignition timing is controlled in accordance with the control characteristic 27-30, and the engine is rotated a specified number of times. Therefore, the control characteristic 26-29 having a small advance angle is changed to the next control characteristic having a large advance angle. When the engine 1 shifts to 27-30, the engine 1 rotates during a specified number of times (a plurality of times) even though the ignition timing advances more rapidly than the advance angle characteristics of the control characteristics 27-30. The number can be increased sufficiently, and the occurrence of ketins and the like can be prevented in advance.

更に進角の大きい制御特性で点火時期を制御する場合の規定回転数(例えば第4制御特性では64回転)は、進角の小さい制御特性で点火時期を制御するときの規定回転数(例えば第2制御特性27、第3制御特性28では5回転)に比較して多くしているので、その規定回転数での回転中にエンジン1の回転数を安定して上昇させることができる。   Furthermore, the specified rotational speed (for example, 64 rotations in the fourth control characteristic) when controlling the ignition timing with a control characteristic having a large advance angle is the specified rotational speed (for example, the first rotational speed when controlling the ignition timing with a control characteristic having a small advance angle). 2 in the second control characteristic 27 and the third control characteristic 28), the number of revolutions of the engine 1 can be stably increased during the revolution at the specified number of revolutions.

また規定の回転回数毎に第1制御特性26から順次第5制御特性30まで移行しながらエンジン1の回転数を上昇させるようにしているが、各制御特性26〜30は回転数の上昇に従って順次進角する進角特性を有するので、各制御特性26〜30での制御中にエンジン1が規定回数回転する間にも、その制御特性26〜30に従って点火時期をスムーズに進角させることができる。   In addition, the engine speed of the engine 1 is increased while sequentially shifting from the first control characteristic 26 to the fifth control characteristic 30 every prescribed number of rotations, but each control characteristic 26-30 is sequentially increased as the rotation speed increases. Since it has an advance angle characteristic, the ignition timing can be smoothly advanced in accordance with the control characteristics 26-30 even while the engine 1 rotates a specified number of times during the control of each control characteristic 26-30. .

エンジン1の回転数がアイドル回転域24近傍まで上昇したときには点火時期は上死点前略30度まで進角する。そして、その後は定常制御特性41に従ってアイドル回転域24の上死点前10度に急激に遅角する。そして、続いてスロット開度を大にする加速操作をすると、アイドル回転域用制御特性42、高速回転域用制御特性43等の定常制御特性41に従って進化時期が変化する。   When the rotational speed of the engine 1 rises to the vicinity of the idle speed range 24, the ignition timing is advanced to approximately 30 degrees before the top dead center. Thereafter, the angle is rapidly retarded to 10 degrees before the top dead center according to the steady control characteristic 41. Subsequently, when an acceleration operation for increasing the slot opening is performed, the evolution timing changes in accordance with the steady control characteristics 41 such as the idle rotation area control characteristic 42 and the high speed rotation area control characteristic 43.

また減速時にアイドル回転域24以下に誤って操作するようなことがあっても、アイドル回転域24から第5制御特性30の上死点前略30度前後へと点火時期が急激に進角するため、その進角によりエンジン1の回転数の上昇を促すことができる。従って、誤操作によるエンジン1の不測の停止等を未然に防止することができる。   In addition, even if there is an accidental operation below the idle rotation range 24 during deceleration, the ignition timing is rapidly advanced from the idle rotation range 24 to about 30 degrees before the top dead center of the fifth control characteristic 30. The advance of the engine 1 can be promoted by the advance angle. Therefore, it is possible to prevent an unexpected stop of the engine 1 due to an erroneous operation.

図10は本発明の第2の実施形態を例示する。この実施形態では、上死点近傍の点火時期から上死点前略30度付近までの間に略等間隔の進角で複数の第1〜第4制御特性26〜29が設けられている。第1制御特性26は1回転目の初発点火と2回転目から6回転目との点火用である。各制御特性26〜29は進角の大きい制御特性27〜29ほど傾斜が大になる等、進角特性が異なっている。   FIG. 10 illustrates a second embodiment of the present invention. In this embodiment, a plurality of first to fourth control characteristics 26 to 29 are provided at substantially equal intervals between the ignition timing near the top dead center and about 30 degrees before the top dead center. The first control characteristic 26 is for initial ignition at the first rotation and ignition from the second rotation to the sixth rotation. The control characteristics 26 to 29 are different in advance angle characteristics, such as the control characteristics 27 to 29 having a larger advance angle have a larger inclination.

このようにエンジン1の1回転目にパルス幅t1に対応する点火時期を演算し、それに続いての規定回数の回転中にその回転数に対応する点火時期を演算して、夫々に相応しいタイミングで点火する場合、それらの点火時期は共通の第1制御特性26に従って求めるようにしてもよい。またエンジン1が規定回数回転する毎に、進角の小さい制御特性26〜28から大きい制御特性27〜29へと順次移行しながら点火時期の進角制御を行う場合、各制御特性26〜29又は一部の制御特性26〜29の進角勾配を変えてもよいし、各制御特性26〜29又は一部の制御特性26〜29はエンジン1の用途、その他に応じて非直線的にしてもよい。   In this way, the ignition timing corresponding to the pulse width t1 is calculated in the first rotation of the engine 1, and the ignition timing corresponding to the rotation speed is calculated during the subsequent specified number of rotations. In the case of ignition, the ignition timing may be obtained according to the common first control characteristic 26. Further, when the ignition timing advance control is performed while sequentially shifting from the control characteristics 26 to 28 having a small advance angle to the control characteristics 27 to 29 having a small advance angle every time the engine 1 rotates a specified number of times, the control characteristics 26 to 29 or The advance gradient of some of the control characteristics 26 to 29 may be changed, or each control characteristic 26 to 29 or some of the control characteristics 26 to 29 may be non-linear depending on the application of the engine 1 and others. Good.

以上、本発明の各実施形態について詳述したが、本発明は各実施形態に限定されるものではない。例えば、実施形態では、便宜上、エンジン1の1回転に対してソースコイル9に正の半波出力と負の半波出力とが発生する磁石式発電機4について例示しているが、エンジン1が1回転したときにソースコイル9に正の半波出力、負の半波出力、正の半波出力、負の半波出力がその順序で発生するもの、負の半波出力、正の半波出力、負の半波出力がその順序で発生するものなどであってもよい。従って、実施形態の磁石式発電機4、ソースコイル9に発生する半波出力等は単なる例示に過ぎない。   As mentioned above, although each embodiment of this invention was explained in full detail, this invention is not limited to each embodiment. For example, in the embodiment, for convenience, the magnet generator 4 in which a positive half-wave output and a negative half-wave output are generated in the source coil 9 with respect to one rotation of the engine 1 is illustrated. A positive half-wave output, a negative half-wave output, a positive half-wave output, and a negative half-wave output generated in that order in the source coil 9 in one rotation, a negative half-wave output, a positive half-wave For example, the output and the negative half-wave output may be generated in that order. Accordingly, the half wave output generated in the magnet generator 4 and the source coil 9 of the embodiment is merely an example.

また点火時期を制御する制御特性は2以上の複数あれば十分である。その場合、少ない回転回数に対応する制御特性は上死点近傍で点火時期が進角し、回転回数が規定回数ずつ増える毎に進角が大きくなる制御特性へ移行するように構成すればよいが、上下の制御特性相互間での進角の違いは略同じ程度にすることが望ましい。また回転回数、点火時期等の数値は単なる例示に過ぎず、必要に応じて適宜変更可能である。   Further, it is sufficient that a plurality of control characteristics for controlling the ignition timing are two or more. In that case, the control characteristic corresponding to a small number of rotations may be configured to shift to a control characteristic in which the ignition timing is advanced near the top dead center and the advancement is increased each time the number of rotations increases by a specified number. It is desirable that the difference in the advance angle between the upper and lower control characteristics is substantially the same. Numerical values such as the number of rotations and ignition timing are merely examples, and can be appropriately changed as necessary.

1 エンジン
4 磁石式発電機
9 ソースコイル
10 充放電用コンデンサ
12 点火コイル
13 放電用スイッチング素子
18 点火時期制御手段
23 低速回転域
24 アイドル回転域
1 Engine 4 Magnet Generator 9 Source Coil 10 Charging / Discharging Capacitor 12 Ignition Coil 13 Discharging Switching Element 18 Ignition Timing Control Unit 23 Low Speed Rotation Range 24 Idle Rotation Range

Claims (5)

エンジンに同期して駆動される磁石式発電機と、該磁石式発電機のソースコイルからの正の半波出力により充電される充放電用コンデンサと、導通時に前記充放電用コンデンサの電荷を点火コイルを経て放電させる放電用スイッチング素子と、前記ソースコイルの負の半波出力により作動し、且つ制御特性に従って前記エンジンの回転に応じた点火時期で前記放電用スイッチング素子を導通させる点火時期制御手段とを備えたコンデンサ充放電式エンジン点火装置において、前記点火時期制御手段はアイドル回転域以下の低速回転域用に設けられ且つ回転数に対して点火時期の進角特性が異なる複数の前記制御特性を有し、前記エンジンの始動時に前記複数の制御特性の内、進角の最も小さい前記制御特性に従って前記点火時期を制御し、始動後の低速回転時に前記エンジンが規定回数回転する毎に進角の大きい他の前記制御特性に移行して該制御特性に従って点火時期を順次進角させることを特徴とするコンデンサ充放電式エンジン点火装置。 A magnet generator driven in synchronization with the engine, a charge / discharge capacitor charged by a positive half-wave output from the source coil of the magnet generator, and the charge of the charge / discharge capacitor ignited when conducting A discharge switching element that discharges through a coil , and an ignition timing control means that is operated by a negative half-wave output of the source coil and that conducts the discharge switching element at an ignition timing according to the rotation of the engine according to control characteristics The ignition timing control means is provided for a low-speed rotation region that is equal to or lower than the idle rotation region, and a plurality of the control characteristics having different ignition timing advance characteristics with respect to the rotational speed. And controlling the ignition timing according to the control characteristic having the smallest advance angle among the plurality of control characteristics when starting the engine. Capacitor discharge engine ignition system wherein the slow speed engine is shifted to larger other of the control characteristics of the advance angle for every prescribed number of times rotation, characterized in that to sequentially advance the ignition timing in accordance with the control characteristic after . 前記点火時期制御手段はアイドル回転域以下の低速回転域用に設けられ且つ回転数に対して点火時期の進角特性が異なる複数の制御テーブルと、前記エンジンの始動時に前記複数の制御テーブルの内、進角の最も小さい前記制御テーブルに従って前記点火時期を制御し、且つ始動後に前記エンジンが規定回数回転する毎に進角の大きい他の前記制御テーブルに移行して、該制御テーブルに従って移行前の進角よりも大きい進角で点火時期を制御する手段とを備えたことを特徴とする請求項1に記載のコンデンサ充放電式エンジン点火装置。 It said ignition timing control means and the advance characteristics of the ignition timing against the and the rotational speed provided to the idle rotation region below the low-speed rotation range are different control tables, the plurality of control tables at the time of starting of the engine Among them, the ignition timing is controlled according to the control table with the smallest advance angle, and each time the engine rotates a specified number of times after starting, it shifts to another control table with a large advance angle, and before the transition according to the control table 2. The capacitor charging / discharging engine ignition device according to claim 1, further comprising means for controlling the ignition timing with an advance angle larger than the advance angle . 前記進角の最も小さい制御特性は上死点近傍で点火時期を進角させることを特徴とする請求項1又は2に記載のコンデンサ充放電式エンジン点火装置。 The advance smallest control characteristic capacitor discharge engine ignition device according to claim 1 or 2, characterized in that advancing the ignition timing in the vicinity of the top dead center of. 最も進角の大きい低速回転域用制御特性とアイドル回転域用制御特性と高速回転域用制御特性とを含む定常制御特性を有し、前記低速回転域用制御特性は前記アイドル回転域用制御特性よりも進角することを特徴とする請求項2又は3に記載のコンデンサ充放電式エンジン点火装置。   It has a steady-state control characteristic including a control characteristic for a low-speed rotational range, a control characteristic for an idle rotational range, and a control characteristic for a high-speed rotational range having the largest advance angle, and the control characteristic for a low-speed rotational range is the control characteristic for the idle rotational range The capacitor charging / discharging engine ignition device according to claim 2 or 3, wherein the capacitor ignition / advancement angle is more advanced. 前記点火時期制御手段は前記エンジンが進角の小さい前記制御特性で複数回回転したときに次の前記制御特性に移行させることを特徴とする請求項2〜4の何れかに記載のコンデンサ充放電式エンジン点火装置。   5. The capacitor charging / discharging according to claim 2, wherein the ignition timing control means shifts to the next control characteristic when the engine rotates a plurality of times with the control characteristic having a small advance angle. Engine ignition device.
JP2010145832A 2010-06-28 2010-06-28 Capacitor charge / discharge engine ignition system Expired - Fee Related JP5640214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010145832A JP5640214B2 (en) 2010-06-28 2010-06-28 Capacitor charge / discharge engine ignition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145832A JP5640214B2 (en) 2010-06-28 2010-06-28 Capacitor charge / discharge engine ignition system

Publications (2)

Publication Number Publication Date
JP2012007575A JP2012007575A (en) 2012-01-12
JP5640214B2 true JP5640214B2 (en) 2014-12-17

Family

ID=45538388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145832A Expired - Fee Related JP5640214B2 (en) 2010-06-28 2010-06-28 Capacitor charge / discharge engine ignition system

Country Status (1)

Country Link
JP (1) JP5640214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163088A1 (en) * 2018-02-23 2019-08-29 マーレエレクトリックドライブズジャパン株式会社 Engine control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609622B2 (en) * 1998-07-29 2005-01-12 池田デンソー株式会社 Capacitor charge / discharge ignition system
JP3838006B2 (en) * 2000-09-01 2006-10-25 日産自動車株式会社 Ignition timing control device for internal combustion engine
JP2010138795A (en) * 2008-12-11 2010-06-24 Toyota Motor Corp Internal combustion engine control device

Also Published As

Publication number Publication date
JP2012007575A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
EP2031218B1 (en) Control apparatus for internal combustion engine
US8056536B2 (en) Ignition device for internal combustion engine
JP4577031B2 (en) Ignition device for internal combustion engine
JP2008115787A (en) Engine starting method and engine starting device
JP4915207B2 (en) Ignition device for internal combustion engine
JP2009024540A (en) Engine starting device
JP4031428B2 (en) Ignition control device for internal combustion engine
JP2009057832A (en) Fuel injection control apparatus
JP2004162691A (en) Electronic engine control device
JP5640214B2 (en) Capacitor charge / discharge engine ignition system
JP5569539B2 (en) Ignition control device for engine
JP3578047B2 (en) Internal combustion engine ignition control method and internal combustion engine ignition control device
JP2015074285A (en) Start control apparatus
JP2005061380A (en) Ignitor for capacitor discharge type internal combustion engine
JP3146848B2 (en) Ignition control method for multi-cylinder internal combustion engine
JP2004084577A (en) Control device for two cycle engine
JP5650936B2 (en) Capacitor charge / discharge engine ignition system
JP5650937B2 (en) Capacitor charge / discharge engine ignition system
JP2012007579A (en) Engine ignition device
JP2005307855A (en) Engine ignitor
JP2004084579A (en) Control device for two cycle direct-injection engine
JP5601022B2 (en) Power generation control device
JPH09144636A (en) Ignition device for internal combustion engine
JP2007085197A (en) Ignitor for engine
JP4622936B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5640214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees