JP5639783B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP5639783B2
JP5639783B2 JP2010108574A JP2010108574A JP5639783B2 JP 5639783 B2 JP5639783 B2 JP 5639783B2 JP 2010108574 A JP2010108574 A JP 2010108574A JP 2010108574 A JP2010108574 A JP 2010108574A JP 5639783 B2 JP5639783 B2 JP 5639783B2
Authority
JP
Japan
Prior art keywords
electron
compound
active layer
photoelectric conversion
organic active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010108574A
Other languages
Japanese (ja)
Other versions
JP2011238762A (en
Inventor
伊藤 紳三郎
紳三郎 伊藤
英生 大北
英生 大北
宏明 辨天
宏明 辨天
邦仁 三宅
邦仁 三宅
明子 三谷
明子 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Sumitomo Chemical Co Ltd
Original Assignee
Kyoto University
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Sumitomo Chemical Co Ltd filed Critical Kyoto University
Priority to JP2010108574A priority Critical patent/JP5639783B2/en
Priority to PCT/JP2011/060650 priority patent/WO2011142314A1/en
Publication of JP2011238762A publication Critical patent/JP2011238762A/en
Application granted granted Critical
Publication of JP5639783B2 publication Critical patent/JP5639783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、太陽電池、光センサーなどの光電デバイスに用いられる光電変換素子に関する。   The present invention relates to a photoelectric conversion element used for a photoelectric device such as a solar cell or an optical sensor.

光電変換素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に設けられる有機活性層とを備える素子である。光電変換素子では、いずれかの電極を透明又は半透明の材料から構成し、透明又は半透明とした電極側から有機活性層に光を入射させる。有機活性層に入射した光のエネルギー(hν)によって、有機活性層において電荷(正孔及び電子)が生成し、生成した正孔は陽極に向かい、電子は陰極に向かう。電極に外部回路を接続することにより、外部回路に電流(I)が供給される。   A photoelectric conversion element is an element provided with a pair of electrodes consisting of an anode and a cathode, and an organic active layer provided between the pair of electrodes. In the photoelectric conversion element, one of the electrodes is made of a transparent or translucent material, and light is incident on the organic active layer from the transparent or translucent electrode side. Charges (holes and electrons) are generated in the organic active layer by the energy (hν) of light incident on the organic active layer, and the generated holes are directed to the anode and the electrons are directed to the cathode. By connecting an external circuit to the electrode, current (I) is supplied to the external circuit.

上記有機活性層は、電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)とから構成されている。電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)とが混合されて用いられている有機活性層はバルクへテロ型有機活性層と呼称される。   The organic active layer is composed of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor). An organic active layer in which an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor) are mixed and used is called a bulk hetero-type organic active layer.

バルクへテロ型有機活性層において、電子受容性化合物と電子供与性化合物は、一方の電極側から他方の電極側に亘って連続した微細かつ複雑な形状の相を構成しており、相互に分離しつつ複雑な界面を構成している。   In the bulk hetero-type organic active layer, the electron-accepting compound and the electron-donating compound constitute a continuous phase of fine and complicated shape from one electrode side to the other electrode side, and are separated from each other However, it forms a complex interface.

光電変換素子の有機活性層に用いる有機材料は、π−π遷移に基づいて光吸収する有機化合物である。例えば、電子供与性化合物と電子受容性化合物とキシレン等を溶媒として用いた溶液を基板上に塗布して製造した有機活性層を含む光電変換素子が提案されている。(非特許文献1)。 An organic material used for the organic active layer of the photoelectric conversion element is an organic compound that absorbs light based on a π-π * transition. For example, a photoelectric conversion element including an organic active layer manufactured by applying a solution using an electron donating compound, an electron accepting compound, xylene, or the like as a solvent on a substrate has been proposed. (Non-Patent Document 1).

アプライド フィジックス レターズ(APPLIED PHYSICS LETTERS) 2007年、第90巻、p.193506APPLIED PHYSICS LETTERS 2007, Vol. 90, p. 193506

しかしながら、上記光電変換素子は、光電変換効率が低いという課題がある。   However, the photoelectric conversion element has a problem that the photoelectric conversion efficiency is low.

そこで、本発明は、光電変換効率が高い光電変換素子を提供することを目的とする。   Then, an object of this invention is to provide a photoelectric conversion element with high photoelectric conversion efficiency.

即ち、本発明は第1に、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像1μmあたり、100μm以上である光電変換素子を提供する。 That is, the present invention first has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting compound are contained in the organic active layer. An image of the organic active layer observed with a transmission electron microscope, and the image of the organic active layer binarized from light to dark, wherein the bond length between the electron donating compound and the electron accepting compound is The photoelectric conversion element is 100 μm or more per 1 μm 2 of the image.

本発明は第2に、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物の少なくとも一方の励起状態の寿命が、1ns以下である前記光電変換素子を提供する。   Secondly, the present invention provides the photoelectric conversion element, wherein the lifetime of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 1 ns or less.

本発明は第3に、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化して白色部と黒色部を形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差が、0.09以下である光電変換素子を提供する。   Thirdly, the present invention has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and has an electron donating compound and an electron accepting compound in the organic active layer. An image of an organic active layer in the range of 900 nm × 900 nm observed with a transmission electron microscope, in which brightness and darkness are binarized to form a white part and a black part, is divided into nine sections having an equal area And the photoelectric conversion element whose standard deviation computed from the area fraction of the black part of each division is 0.09 or less is provided.

本発明は第4に、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物の少なくとも一方の励起状態の寿命が、1ns以下である光電変換素子を提供する。   Fourthly, the present invention has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and has an electron donating compound and an electron accepting compound in the organic active layer. Provided is a photoelectric conversion element in which the lifetime of at least one of an electron donating compound in the organic active layer and an electron accepting compound in the organic active layer is 1 ns or less.

本発明は第5に、陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含む前記光電変換素子を製造する製造方法を提供する。   The fifth aspect of the present invention is the photoelectric conversion comprising the step of producing an organic active layer by applying a solution containing an electron donating compound, an electron accepting compound, and a solvent having a boiling point of 100 ° C. or less on the anode or the cathode. A manufacturing method for manufacturing an element is provided.

本発明は第6に、陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含み、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である光電変換素子の製造方法を提供する。

Figure 0005639783

(式(I)中、R1、R2、R3、R4、R5及びR6は、同一又は相異なり、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成してもよい。X1、X2及びX3は、同一又は相異なり、硫黄原子、酸素原子、セレン原子、−N(R7)−又は−C(R8)=C(R9)−を表す。R7、8及びR9は、同一又は相異なり、水素原子又は置換基を表す。n及びmは、同一又は相異なり、0〜5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。) Sixth, the present invention includes a step of producing an organic active layer by applying a solution containing an electron-donating compound, an electron-accepting compound, and a solvent having a boiling point of 100 ° C. or less on an anode or a cathode. And at least one of the organic compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), wherein all the repeating units contained in the polymer compound have the formula (I) The manufacturing method of the photoelectric conversion element which is a polymer compound with the largest ratio of the repeating unit represented by these is provided.
Figure 0005639783

(In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and represent a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure, and X 1 , X 2 and X 3 are the same or different and are a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 are the same or different and represent a hydrogen atom or a substituent, and n and m are The same or different and represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different. )

本発明は第7に、前記製造方法で製造した光電変換素子を提供する。   7thly this invention provides the photoelectric conversion element manufactured with the said manufacturing method.

本発明は第8に、前記光電変換素子を含む太陽電池モジュールを提供する。   Eighthly, the present invention provides a solar cell module including the photoelectric conversion element.

本発明の光電変換素子は、光電変換効率が高いため、本発明は極めて有用である。   Since the photoelectric conversion element of the present invention has high photoelectric conversion efficiency, the present invention is extremely useful.

本発明の光電変換素子は、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像1μmあたり、100μm以上である。 The photoelectric conversion element of the present invention has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and has an electron donating compound and an electron accepting compound in the organic active layer. In the image of the organic active layer observed with a transmission electron microscope and binarized, the bond length between the electron donating compound and the electron accepting compound is It is 100 μm or more per 1 μm 2 of the image.

本発明に係る光電変換素子を構成する、陽極、有機活性層、有機活性層を構成する電子供与性化合物及び電子受容性化合物、陰極、及び必要に応じて形成される他の構成要素について、以下に詳しく説明する。   The anode, the organic active layer, the electron donating compound and the electron accepting compound constituting the organic active layer, the cathode, and other components formed as necessary, which constitute the photoelectric conversion element according to the present invention, are described below. This will be explained in detail.

(光電変換素子の基本的形態)
本発明の光電変換素子の基本的形態としては、少なくとも一方が透明又は半透明である一対の電極と、電子供与性化合物(p型の有機半導体)と電子受容性化合物(n型の有機半導体など)との有機組成物から形成されるバルクへテロ型の有機活性層を有する。
(Basic form of photoelectric conversion element)
As a basic form of the photoelectric conversion element of the present invention, a pair of electrodes, at least one of which is transparent or translucent, an electron donating compound (p-type organic semiconductor) and an electron-accepting compound (n-type organic semiconductor, etc.) And a bulk hetero-type organic active layer formed from an organic composition.

(光電変換素子の基本動作)
透明又は半透明の電極から入射した光エネルギーが電子受容性化合物及び/又は電子供与性化合物で吸収され、電子と正孔がクーロン結合してなる励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれの最高占有分子軌道(HOMO)エネルギー及び最低空分子軌道(LUMO)エネルギーの違いにより電子と正孔が分離し、独立に動くことができる電荷(電子と正孔)が発生する。
発生したそれぞれの電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
本発明の光電変換素子では、光電荷分離と電荷輸送を効率的に生じさせる有機活性層を有するため光電変換効率が高くなる。
(Basic operation of photoelectric conversion element)
Light energy incident from a transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound, thereby generating excitons formed by electron-hole coulomb bonding. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent, the highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) at the interface. ) Electrons and holes are separated by energy difference, and charges (electrons and holes) that can move independently are generated.
Each generated electric charge can be taken out as electric energy (current) to the outside by moving to the electrode.
Since the photoelectric conversion element of the present invention has an organic active layer that efficiently generates photocharge separation and charge transport, the photoelectric conversion efficiency is increased.

(基板)
本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
(substrate)
The photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.

(電極)
前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて作製された膜や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。透明又は半透明の電極は、陽極であっても陰極であってもよい。
(electrode)
Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, it is manufactured using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof. Films, gold, platinum, silver, copper, etc. are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material. The transparent or translucent electrode may be an anode or a cathode.

他方の電極は透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。   The other electrode may not be transparent, and a metal, a conductive polymer, or the like can be used as an electrode material of the electrode. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, etc. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.

(バッファー層)
光電変換効率を向上させるための手段として有機活性層以外の付加的な中間層(電荷輸送層など)を使用してもよい。中間層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等が挙げられ、具体的にはフッ化リチウムが挙げられる。
また、酸化チタン等の無機半導体の微粒子、PEDOT(ポリ(3,4−エチレンジオキシチオフェン))とPSS(ポリ(4−スチレンスルホネート))との混合物(PEDOT:PSS)などを中間層に用いられる材料として用いてもよい。
(Buffer layer)
As a means for improving the photoelectric conversion efficiency, an additional intermediate layer (such as a charge transport layer) other than the organic active layer may be used. Examples of the material used for the intermediate layer include alkali metal or alkaline earth metal halides or oxides such as lithium fluoride, and specifically lithium fluoride.
In addition, fine particles of inorganic semiconductor such as titanium oxide, a mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS), etc. are used for the intermediate layer. It may be used as a material.

(有機活性層)
本発明の光電変換素子に含まれる有機活性層は、電子供与性化合物と電子受容性化合物とを含む。
なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のHOMOまたはLUMOのエネルギー準位から相対的に決定される。
(Organic active layer)
The organic active layer contained in the photoelectric conversion element of the present invention contains an electron donating compound and an electron accepting compound.
The electron-donating compound and the electron-accepting compound are relatively determined from the HOMO or LUMO energy levels of these compounds.

電子供与性化合物と電子受容性化合物の少なくとも一方が、高分子化合物であることが好ましく、電子供与性化合物と電子受容性化合物がともに高分子化合物であることがより好ましい。   At least one of the electron donating compound and the electron accepting compound is preferably a polymer compound, and both the electron donating compound and the electron accepting compound are more preferably polymer compounds.

(電子供与性化合物)
前記電子供与性化合物としては、太陽光の放射波長の領域に吸収を持っておれば、制限はないが、その最高占有分子軌道のエネルギー準位が−4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が−4.0eV以上である高分子化合物が好ましい。電子供与性化合物は、低分子化合物でも高分子化合物でもよいが、高分子化合物が好ましい。電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられ、中でも、高分子化合物が好ましい。
p型半導体である高分子化合物としては、ポリチオフェン及びその誘導体、チオフェンの2〜5量体を含む構造又はチオフェンの誘導体の2〜5量体を含む構造を有する高分子化合物が好ましく、ポリチオフェン及びその誘導体がより好ましい。ここで、ポリチオフェン誘導体とは、置換基を有するチオフェンジイル基を有する高分子化合物である。
ポリチオフェン及びその誘導体としては、ホモポリマーであることが好ましい。ホモポリマーとは、チオフェンジイル基及び置換基を有するチオフェンジイル基からなる群から選ばれる基のみが複数個結合してなるポリマーである。チオフェンジイル基としては、チオフェン−2,5−ジイル基が好ましく、置換基を有するチオフェンジイル基としては、アルキルチオフェン−2、5−ジイル基が好ましい。ホモポリマーであるポリチオフェン及びその誘導体の具体例としては、ポリ(3−ヘキシルチオフェン−2,5−ジイル)(P3HT)、ポリ(3−オクチルチオフェン−2,5−ジイル)、ポリ(3−ドデシルチオフェン−2,5−ジイル)、ポリ(3−オクタデシルチオフェン−2,5−ジイル)が挙げられる。ホモポリマーであるポリチオフェン及びその誘導体の中では、炭素数6〜30のアルキル基が置換したチオフェンジイル基からなるポリチオフェンホモポリマーが好ましい。
(Electron donating compound)
The electron-donating compound is not limited as long as it has absorption in the radiation wavelength region of sunlight, but the energy level of its highest occupied molecular orbital is −4.7 eV or less, and its lowest A polymer compound having an empty molecular orbital energy level of −4.0 eV or more is preferred. The electron donating compound may be a low molecular compound or a high molecular compound, but a high molecular compound is preferable. Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, among which polymer compounds are preferred.
The polymer compound which is a p-type semiconductor is preferably a polythiophene and its derivative, a polymer compound having a structure containing a 2 to 5 mer of thiophene or a structure containing a 2 to 5 mer of a thiophene derivative, and polythiophene and its Derivatives are more preferred. Here, the polythiophene derivative is a polymer compound having a thiophenediyl group having a substituent.
Polythiophene and its derivatives are preferably homopolymers. A homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group. The thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group. Specific examples of polythiophene that is a homopolymer and derivatives thereof include poly (3-hexylthiophene-2,5-diyl) (P3HT), poly (3-octylthiophene-2,5-diyl), and poly (3-dodecyl). Thiophene-2,5-diyl) and poly (3-octadecylthiophene-2,5-diyl). Among polythiophenes and derivatives thereof which are homopolymers, polythiophene homopolymers composed of thiophene diyl groups substituted with alkyl groups having 6 to 30 carbon atoms are preferred.

電子供与性化合物である高分子化合物としては、下記構造式(4)で示される高分子化合物Aが挙げられる。   Examples of the polymer compound that is an electron donating compound include polymer compound A represented by the following structural formula (4).

Figure 0005639783
Figure 0005639783

(電子受容性化合物)
電子受容性化合物としては、その最高占有分子軌道のエネルギー準位が−5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が−4.3eV以上である高分子化合物であることが好ましい。
前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブが挙げられる。電子受容性化合物としては、好ましくは、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、より好ましくは、フラーレン、フラーレン誘導体、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物であり、さらに好ましくは、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物であり、特に好ましくは、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、繰り返し単位にキノキサリン構造を含む高分子化合物である。
n型半導体としては、共役系高分子化合物であることが好ましい。
(Electron-accepting compound)
The electron accepting compound is a polymer compound having an energy level of the highest occupied molecular orbital of −5.0 eV or lower and an energy level of the lowest unoccupied molecular orbital of −4.3 eV or higher. Is preferred.
Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives. , diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, bathocuproine etc. Phenanthrene derivatives, metal oxides such as titanium oxide, and carbon nanotubes. The electron accepting compound is preferably a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a polymer compound containing a quinoxaline structure in a repeating unit, titanium oxide, carbon Nanotubes, fullerenes, fullerene derivatives, more preferably fullerenes, fullerene derivatives, compounds containing a benzothiadiazole structure, polymer compounds containing a benzothiadiazole structure in a repeating unit, compounds containing a quinoxaline structure, and a quinoxaline structure in a repeating unit More preferably, it is a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a repeating unit To a polymer compound containing a quinoxaline structure, particularly preferably a polymer compound containing a benzothiadiazole structure in the repeating unit, a polymer compound containing a quinoxaline structure repeating units.
The n-type semiconductor is preferably a conjugated polymer compound.

繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物の例としては、式(4)で表される高分子化合物が挙げられる。   Examples of the polymer compound containing a benzothiadiazole structure in the repeating unit include a polymer compound represented by the formula (4).

Figure 0005639783
Figure 0005639783

フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンが挙げられる。
フラーレン誘導体としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンの誘導体が挙げられる。
Examples of fullerene, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene.
Examples of fullerene derivatives include derivatives of C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, and C 84 fullerene.

60フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。 Specific examples of the C 60 fullerene derivative include the following.

Figure 0005639783
Figure 0005639783

70フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。 Specific examples of the C 70 fullerene derivative include the following.

Figure 0005639783
Figure 0005639783

また、フラーレン誘導体の例としては、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル−C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。   Examples of fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] thienyl- Examples thereof include C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).

有機活性層において、電子供与性化合物に対する電子受容性化合物の使用割合は、電子供与性化合物100重量部に対して、10〜1000重量部であることが好ましく、20〜500重量部であることがより好ましい。   In the organic active layer, the use ratio of the electron accepting compound to the electron donating compound is preferably 10 to 1000 parts by weight, and preferably 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. More preferred.

有機活性層の厚さは、通常、1nm〜100μmが好ましく、より好ましくは2nm〜1000nmであり、さらに好ましくは5nm〜500nmであり、特に好ましくは20nm〜200nmである。   The thickness of the organic active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.

本発明の光電変換素子は、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。   The photoelectric conversion element of the present invention is a polymer compound in which at least one of an electron-donating compound and an electron-accepting compound includes a repeating unit represented by the formula (I), and is included in the polymer compound Among all the repeating units, a polymer compound having the largest ratio of repeating units represented by formula (I) is preferable.

Figure 0005639783
Figure 0005639783

式(I)中、R1、R2、R3、R4、R5及びR6は、同一又は相異なり、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成してもよい。X1、X2及びX3は、同一又は相異なり、硫黄原子、酸素原子、セレン原子、−N(R7)−又は−C(R8)=C(R9)−を表す。R7、8及びR9は、同一又は相異なり、水素原子又は置換基を表す。n及びmは、同一又は相異なり、0〜5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。 In formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and represent a hydrogen atom or a substituent. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure. X 1 , X 2 and X 3 are the same or different and each represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) —. R 7, R 8 and R 9 are the same or different and each represents a hydrogen atom or a substituent. n and m are the same or different and each represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 , and X 3 , they may be the same or different.

式(I)中、n及びmは、同一又は相異なり、0〜5の整数を表す。n及びmは、1〜3の整数が好ましく、1であることがさらに好ましい。
1、R2、R3、R4、R5及びR6は、同一又は相異なり、水素原子又は置換基を表す。R1〜R6が置換基である場合、炭素数1〜30の基が好ましい。置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、フェニル、ナフチルなどのアリール基等が挙げられる。
また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成してもよい。R1とR2が連結して形成した環状構造、R5とR6が連結して形成した環状構造の具体例としては、以下の環状構造が挙げられる。
In formula (I), n and m are the same or different and each represents an integer of 0 to 5. n and m are preferably an integer of 1 to 3, and more preferably 1.
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom or a substituent. When R < 1 > -R < 6 > is a substituent, a C1-C30 group is preferable. Substituents include alkyl groups such as methyl, ethyl, butyl, hexyl, octyl and dodecyl, alkoxy such as methoxy, ethoxy, butoxy, hexyloxy, octyloxy and dodecyloxy. Groups, aryl groups such as phenyl and naphthyl, and the like.
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure. Specific examples of the cyclic structure formed by linking R 1 and R 2 and the cyclic structure formed by linking R 5 and R 6 include the following cyclic structures.

Figure 0005639783
Figure 0005639783

3とR4が連結して形成した環状構造の具体例としては、以下の環状構造が挙げられる。 Specific examples of the cyclic structure formed by linking R 3 and R 4 include the following cyclic structures.

Figure 0005639783
Figure 0005639783

式中、R12及びR13は、同一又は相異なり、水素原子又は置換基を表す。 In the formula, R 12 and R 13 are the same or different and each represents a hydrogen atom or a substituent.

12、R13で表される置換基としては、前述のR1〜R6で表される置換基と同様の基が挙げられる。 Examples of the substituent represented by R 12 and R 13 include the same groups as the substituents represented by R 1 to R 6 described above.

1〜R6は、好ましくは、水素原子又はアルキル基であり、より好ましくは、水素原子である。 R 1 to R 6 are preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.

1、X2及びX3は、同一又は相異なり、硫黄原子、酸素原子、セレン原子、−N(R7)−又は−C(R8)=C(R9)−を表す。R7、8及びR9は、同一又は相異なり、水素原子又は置換基を表す。R7、8、R9が置換基である場合、置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、フェニル基、ナフチル基などのアリール基等が挙げられる。
1、X2、X3は、好ましくは硫黄原子である。
X 1 , X 2 and X 3 are the same or different and each represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) —. R 7, R 8 and R 9 are the same or different and each represents a hydrogen atom or a substituent. When R 7, R 8 , and R 9 are substituents, examples of the substituent include alkyl groups such as methyl group, ethyl group, butyl group, hexyl group, octyl group, and dodecyl group, and aryl groups such as phenyl group and naphthyl group. Groups and the like.
X 1 , X 2 and X 3 are preferably sulfur atoms.

式(I)で表される繰り返し単位としては、式(I−1)で表される繰り返し単位が好ましい。   As the repeating unit represented by the formula (I), a repeating unit represented by the formula (I-1) is preferable.

Figure 0005639783
Figure 0005639783

本発明に用いられる高分子化合物は、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中が含有する全ての繰り返し単位の中で、式(I)で表される繰り返し単位の含有量(モル数)が最も大きい。
本発明に用いられる高分子化合物は、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、50%を超えることが好ましい。50%を超える高分子化合物を光電変換素子に用いることで、50%を超えていない高分子化合物を用いた光電変換素子よりも光電変換効率が高くなる。より好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、52%以上である。更に好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、55%以上である。
また、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、100%未満であることが好ましい。より好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、98%以下であることが好ましい。更に好ましくは、式(I)で表される繰り返し単位が、高分子化合物中の全繰り返し単位の合計に対して、70%以下であることが好ましい。本発明に用いられる高分子化合物は式(I)で表される繰り返し単位以外の他の繰り返し単位を含むことが好ましい。
The polymer compound used in the present invention is a polymer compound containing a repeating unit represented by the formula (I), and among all the repeating units contained in the polymer compound, the compound represented by the formula (I) The content (number of moles) of the repeating unit represented is the largest.
In the polymer compound used in the present invention, it is preferable that the repeating unit represented by the formula (I) exceeds 50% with respect to the total of all repeating units in the polymer compound. By using a polymer compound exceeding 50% for the photoelectric conversion element, the photoelectric conversion efficiency is higher than that of the photoelectric conversion element using the polymer compound not exceeding 50%. More preferably, the repeating unit represented by the formula (I) is 52% or more based on the total of all repeating units in the polymer compound. More preferably, the repeating unit represented by the formula (I) is 55% or more with respect to the total of all repeating units in the polymer compound.
Moreover, it is preferable that the repeating unit represented by a formula (I) is less than 100% with respect to the sum total of all the repeating units in a high molecular compound. More preferably, the repeating unit represented by the formula (I) is preferably 98% or less with respect to the total of all repeating units in the polymer compound. More preferably, the repeating unit represented by the formula (I) is 70% or less with respect to the total of all repeating units in the polymer compound. The polymer compound used in the present invention preferably contains a repeating unit other than the repeating unit represented by the formula (I).

高分子化合物は、さらに、式(II)で表される繰り返し単位を含んでいてもよい。   The polymer compound may further contain a repeating unit represented by the formula (II).

Figure 0005639783
Figure 0005639783

式(II)中、環A及び環Bは、同一又は相異なり、芳香族環を表す。R10及びR11は、同一又は相異なり、水素原子又は置換基を表す。また、R10、R11は、連結して環状構造を形成してもよい。 In formula (II), ring A and ring B are the same or different and each represents an aromatic ring. R 10 and R 11 are the same or different and each represents a hydrogen atom or a substituent. R 10 and R 11 may be linked to form a cyclic structure.

10、R11が置換基である場合、置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基などのアルキル基、フェニル基、ナフチル基などのアリール基等が挙げられる。R10、R11は、アルキル基、アリール基等の炭化水素基であることが好ましく、アルキル基であることがさらに好ましい。また、R10、R11が置換基である場合、炭素数が12以上であることが好ましい。 When R 10 and R 11 are substituents, examples of the substituent include methyl, ethyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, Examples thereof include alkyl groups such as tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and eicosyl group, and aryl groups such as phenyl group and naphthyl group. R 10 and R 11 are preferably hydrocarbon groups such as alkyl groups and aryl groups, and more preferably alkyl groups. Moreover, when R < 10 >, R < 11 > is a substituent, it is preferable that carbon number is 12 or more.

環A、環Bとしては、ベンゼン環、ナフタレン環などの芳香族炭化水素環、チオフェンなどの芳香族複素環等が挙げられる。環A、環Bは、5〜10員環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましい。   Examples of ring A and ring B include aromatic hydrocarbon rings such as benzene ring and naphthalene ring, aromatic heterocycles such as thiophene, and the like. Ring A and ring B are preferably 5- to 10-membered rings, and more preferably benzene rings or naphthalene rings.

式(II)で表される繰り返し単位としては、式(II−1)で表される繰り返し単位が好ましい。   As the repeating unit represented by the formula (II), a repeating unit represented by the formula (II-1) is preferable.

Figure 0005639783
Figure 0005639783

式(II−1)中、R10及びR11は、前述と同じ意味を表す。 In formula (II-1), R 10 and R 11 represent the same meaning as described above.

本発明に用いる高分子化合物が式(I)で示される繰り返し単位に加えて、式(II)で表される繰り返し単位を含む場合、高分子化合物中に含まれる全繰り返し単位中、式(II)で表される繰り返し単位の比率が、式(I)で表される繰り返し単位の比率に次いで大きいことが好ましい。高分子化合物が有する繰り返し単位が、式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位のみである場合がさらに好ましい。   When the polymer compound used in the present invention contains a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), the compound represented by the formula (II) among all the repeating units contained in the polymer compound: It is preferable that the ratio of the repeating unit represented by the formula (I) is next to the ratio of the repeating unit represented by the formula (I). The case where the repeating unit of the polymer compound is only the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) is more preferable.

本発明に用いられる高分子化合物の製造方法としては、特に制限されるものではないが、高分子化合物の合成の容易さからは、Suzukiカップリング反応を用いる方法が好ましい。   The method for producing the polymer compound used in the present invention is not particularly limited, but a method using a Suzuki coupling reaction is preferred from the viewpoint of ease of synthesis of the polymer compound.

(その他の成分)
有機活性層には、種々の機能を発現させるために、必要に応じて他の成分を含有させてもよい。例えば、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するためのため増感剤、紫外線からの安定性を増すための光安定剤、等が挙げられる。
(Other ingredients)
In order to express various functions, the organic active layer may contain other components as necessary. Examples thereof include an ultraviolet absorber, an antioxidant, a sensitizer for sensitizing the function of generating charges by absorbed light, and a light stabilizer for increasing stability from ultraviolet rays.

有機活性層を構成する電子供与性化合物及び電子受容性化合物以外の成分は、電子供与性化合物及び電子受容性化合物の合計量100重量部に対し、それぞれ5重量部以下、特に、0.01〜3重量部の割合で配合するのが効果的である。
また、有機活性層は、機械的特性を高めるため、電子供与性化合物及び電子受容性化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又はホール輸送性を阻害しないものが好ましく、また可視光に対する吸収が強くないものが好ましく用いられる。前記高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーポネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
Components other than the electron-donating compound and the electron-accepting compound constituting the organic active layer are each 5 parts by weight or less, particularly 0.01 to 100 parts by weight based on the total amount of the electron-donating compound and the electron-accepting compound. It is effective to blend in the proportion of 3 parts by weight.
Further, the organic active layer may contain a polymer compound other than the electron donating compound and the electron accepting compound as a polymer binder in order to improve mechanical properties. As the polymer binder, those that do not inhibit the electron transport property or hole transport property are preferable, and those that do not strongly absorb visible light are preferably used. Examples of the polymer binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, Polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.

本発明の光電変換素子が有する有機活性層は、透過型電子顕微鏡で観察した有機活性層の画像であって明暗を2値化した有機活性層の画像において、電子供与性化合物と電子受容性化合物との接合長さが、有機活性層の画像1μmあたり、100μm以上である特徴を有する。 The organic active layer of the photoelectric conversion element of the present invention is an image of the organic active layer observed with a transmission electron microscope, and the image of the organic active layer in which light and dark are binarized. The bonding length is 100 μm or more per 1 μm 2 of the organic active layer image.

電子供与性化合物と電子受容性化合物との接合長さの測定方法としては、透過型電子顕微鏡(TEM)を用いて活性層を観察し、長さを求める方法が挙げられる。電子供与性化合物、電子受容性化合物が含有する元素に特徴的な像により、電子供与性化合物と電子受容性化合物を分離して観察することができる。元素に特徴的な像としては、エネルギーフィルターTEMによる元素マッピング像、元素マッピング像と同じコントラストを与えるエネルギー値を用いたエネルギーロス像、走査透過型電子顕微鏡を用いたエネルギー分散型X線分析(STEM−EDX)による元素マッピング像などが挙げられる。電子供与性化合物相と電子受容性化合物相とを比較して、明るい相を白に、暗い相を黒にする像の2値化処理を行うことで、電子供与性化合物と電子受容性化合物との接合長さを算出することができる。   Examples of the method for measuring the bonding length between the electron donating compound and the electron accepting compound include a method of observing the active layer using a transmission electron microscope (TEM) and determining the length. The electron-donating compound and the electron-accepting compound can be separated and observed by an image characteristic of the element contained in the electron-donating compound and the electron-accepting compound. An image characteristic of the element includes an element mapping image by an energy filter TEM, an energy loss image using an energy value that gives the same contrast as the element mapping image, and an energy dispersive X-ray analysis (STEM) using a scanning transmission electron microscope. -EDX) and the like element mapping image. By comparing the electron-donating compound phase with the electron-accepting compound phase, and performing binarization processing of the image in which the bright phase is white and the dark phase is black, the electron-donating compound and the electron-accepting compound are The joining length of can be calculated.

電子供与性化合物と電子受容性化合物との接合長さは、好ましくは、有機活性層の画像1μmあたり100μm以上300μm以下であり、より好ましくは、115μm以上250μm以下である。 The bonding length between the electron donating compound and the electron accepting compound is preferably 100 μm or more and 300 μm or less, more preferably 115 μm or more and 250 μm or less, per 1 μm 2 of the image of the organic active layer.

本発明の光電変換素子は、有機活性層中の電子供与性化合物材料と電子受容性化合物材料の相分離構造が適切に制御されるため、光電荷分離と電荷輸送を効率的に生じさせることができ、高い光電変換効率を示す。   Since the phase separation structure of the electron donating compound material and the electron accepting compound material in the organic active layer is appropriately controlled, the photoelectric conversion device of the present invention can efficiently generate photocharge separation and charge transport. And high photoelectric conversion efficiency.

本発明の光電変換素子の他の態様は、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、顕微鏡で観察した有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化して白色部と黒色部を形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差が、0.09以下である光電変換素子である。   Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer. 9 sections of an image of an organic active layer having a compound and having an area of 900 nm × 900 nm, in which white and black portions are formed by binarizing light and dark, and having an equal area It is a photoelectric conversion element whose standard deviation calculated from the area fraction of the black part of each section is 0.09 or less.

電子供与性化合物材料と電子受容性化合物材料の少なくとも一方の化合物が硫黄原子を含む場合、有機活性層の明暗を2値化する方法としては、以下の方法が挙げられる。該層中の電子供与性化合物材料と電子受容性化合物材料の相分離を示す画像を、透過電子顕微鏡による電子エネルギー損失分光法(TEM−EELS)の3ウィンドウ法による硫黄原子のマッピング像として得る。そして、得られた硫黄原子のマッピング像のヒストグラムを算出し、得られたヒストグラムのピークトップを閾値として、硫黄原子(S)組成の高い化合物を含む相を白に、S組成の低い高分子化合物を含む相を黒として2値化を行う。   When at least one of the electron-donating compound material and the electron-accepting compound material contains a sulfur atom, examples of the method for binarizing the brightness of the organic active layer include the following methods. An image showing phase separation of the electron donating compound material and the electron accepting compound material in the layer is obtained as a mapping image of sulfur atoms by a three window method of electron energy loss spectroscopy (TEM-EELS) using a transmission electron microscope. Then, a histogram of the mapping image of the obtained sulfur atom is calculated, and the phase containing the compound having a high sulfur atom (S) composition is white with the peak top of the obtained histogram as a threshold, and the polymer compound having a low S composition Binarization is performed by setting the phase including the black as black.

得られた有機活性層の900nm×900nmの範囲の画像であって、明暗を2値化した白色部と黒色部を形成した画像を均等な面積となる9個の区画に分割し、各区画の黒色部の面積分率から算出した標準偏差は、0.03〜0.09であることが好ましく、0.04〜0.08であることがさらに好ましい。   The image of the obtained organic active layer in a range of 900 nm × 900 nm, in which the white portion and the black portion, in which the brightness is binarized, is divided into nine sections having an equal area. The standard deviation calculated from the area fraction of the black part is preferably 0.03 to 0.09, and more preferably 0.04 to 0.08.

本発明の光電変換素子は、有機活性層中の電子供与性化合物材料と電子受容性化合物材料の相分離構造が適切に制御されるため、光電荷分離と電荷輸送を効率的に生じさせることができ、高い光電変換効率を示す。   Since the phase separation structure of the electron donating compound material and the electron accepting compound material in the organic active layer is appropriately controlled, the photoelectric conversion device of the present invention can efficiently generate photocharge separation and charge transport. And high photoelectric conversion efficiency.

本態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料としては、前述の態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料と同じである。
本態様の光電変換素子において、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。
The material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
In the photoelectric conversion element of this embodiment, at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is included in the polymer compound Among all the repeating units, a polymer compound having the largest ratio of repeating units represented by formula (I) is preferable.

本発明の光電変換素子の他の態様は、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物の少なくとも一方の励起状態の寿命が、1ns以下である光電変換素子である。   Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer. And a lifetime of an excited state of at least one of an electron donating compound in the organic active layer and an electron accepting compound in the organic active layer is 1 ns or less.

ここで、励起状態とは、光を吸収した結果生ずる励起一重項または、励起三重項等を意味し、励起状態の寿命とは、励起状態の数または濃度が、生成した励起状態の最初の数または濃度の1/eに減少するまでの時間のことを意味する。
ここで、化合物の励起一重項または励起三重項の寿命はフェムト秒レーザーを励起光源として用いたポンププローブ過渡吸収分光法により、励起状態の最初の吸収強度が1/eに減少する時間から評価することができる。また、eとは自然対数の底を意味する。
有機薄膜太陽電池を例に、過渡吸収の測定方法を説明する。有機薄膜太陽電池の作製と同様な操作でガラス基板上に電子供与性化合物と電子受容性化合物とからなるバルクヘテロ型有機活性層を作製する。ここで、光励起していないときに測定される活性層の吸光度をA0とする。A0は活性層に入射するプローブ光の強度をIpとし、このうち、活性層を透過するプローブ光の強度をI0とすると、A0=log(Ip/I0)で定義される。また、活性層をポンプ光により光励起し、時間tだけ経過した後に測定される活性層の吸光度をA(t)とする。A(t)はポンプ光による光励起後、時間tだけ経過した後に活性層に入射したプローブ光のうち、この活性層を透過するプローブ光の強度をIとすると、A(t)=log(Ip/I)で定義される。ここで、光励起により活性層内で新たに生成(増加)または消滅(減少)した化学種の吸収強度(ΔA)はΔA=A(t)-A0で定義される。すなわち、ΔA=log(Ip/I)-log(Ip/I0)=log(I0/I)で定義される。ここで、異なる遅延時間tにおけるΔAの値を測定することで、使用したプローブ光の波長における吸収強度の時間変化を評価することができる。さらに、使用するプローブ光の波長を変化させることで、ある遅延時間tにおいて、光励起前と比べ、活性層内で新たに生成(増加)または消滅(減少)した化学種の吸収スペクトルが得られる。さらに、プローブ光、ポンプ光ともにフェムト秒レーザーを光源とするパルス光を用いることにより、100fsの時間分解能を達成できる。
Here, the excited state means an excited singlet or an excited triplet generated as a result of absorbing light, and the excited state lifetime means the number of excited states or the initial number of excited states generated. Or it means the time to decrease to 1 / e of the concentration.
Here, the lifetime of the excited singlet or triplet of the compound is evaluated from the time when the initial absorption intensity of the excited state decreases to 1 / e by pump probe transient absorption spectroscopy using a femtosecond laser as the excitation light source. be able to. E means the base of natural logarithm.
A method for measuring transient absorption will be described using an organic thin film solar cell as an example. A bulk hetero type organic active layer composed of an electron donating compound and an electron accepting compound is produced on a glass substrate by the same operation as the production of the organic thin film solar cell. Here, the absorbance of the active layer measured when not photoexcited is A0. A0 is defined as A0 = log (Ip / I0), where Ip is the intensity of the probe light incident on the active layer, and I0 is the intensity of the probe light transmitted through the active layer. Further, the absorbance of the active layer measured after the active layer is photoexcited with pump light and the time t has elapsed is defined as A (t). A (t) is A (t) = log (Ip, where I is the intensity of the probe light that has passed through the active layer out of the probe light that has entered the active layer after time t has elapsed after photoexcitation with pump light. / I). Here, the absorption intensity (ΔA) of a chemical species newly generated (increased) or extinguished (decreased) in the active layer by photoexcitation is defined as ΔA = A (t) −A0. That is, it is defined by ΔA = log (Ip / I) −log (Ip / I0) = log (I0 / I). Here, by measuring the value of ΔA at different delay times t, it is possible to evaluate the temporal change in absorption intensity at the wavelength of the probe light used. Furthermore, by changing the wavelength of the probe light to be used, an absorption spectrum of a chemical species newly generated (increased) or extinguished (decreased) in the active layer can be obtained at a certain delay time t as compared to before photoexcitation. Furthermore, a time resolution of 100 fs can be achieved by using pulsed light with a femtosecond laser as a light source for both the probe light and the pump light.

励起状態の寿命は、1ns以下であることが好ましく、100ps以下であることがより好ましく、10ps以下であることが更に好ましい。   The lifetime of the excited state is preferably 1 ns or less, more preferably 100 ps or less, and even more preferably 10 ps or less.

有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物の少なくとも一方の励起状態の寿命が、1ns以下であることにより、有機活性層中において、電荷分離効率が高く、光電変換素子の光電変換効率が高くなる。   When the lifetime of the excited state of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 1 ns or less, the charge separation efficiency is high in the organic active layer, and photoelectric conversion The photoelectric conversion efficiency of the device is increased.

本態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料としては、前述の態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料と同じである。
本態様の光電変換素子において、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。
The material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
In the photoelectric conversion element of this embodiment, at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is included in the polymer compound Among all the repeating units, a polymer compound having the largest ratio of repeating units represented by formula (I) is preferable.

本発明の光電変換素子の他の態様は、陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、有機活性層中に電子供与性化合物と電子受容性化合物とを有し、有機活性層中の電子供与性化合物と有機活性層中の電子受容性化合物の少なくとも一方の蛍光消光率が、60%以上である光電変換素子である。   Another aspect of the photoelectric conversion device of the present invention includes an anode, a cathode, and an organic active layer provided between the anode and the cathode, and an electron donating compound and an electron accepting property in the organic active layer. The photoelectric conversion element has a compound and a fluorescence quenching rate of at least one of an electron donating compound in the organic active layer and an electron accepting compound in the organic active layer is 60% or more.

電子供与性化合物と電子受容性化合物とからなるバルクヘテロ型有機活性層を有する有機薄膜太陽電池を例に、蛍光消光率の測定方法を説明する。有機薄膜太陽電池の作製と同様な操作でガラス基板上にバルクヘテロ型有機活性層を作製する。分光蛍光光度計を用いて、この活性層をなす電子供与性化合物と電子受容性化合物の少なくとも一方を光励起し、観測される電子供与性化合物または電子受容性化合物からの蛍光強度をΦ1とする。また、この光励起波長における電子供与性化合物または電子受容性化合物の吸光度をA1とする。同様な操作でガラス基板上に電子供与性化合物または電子受容性化合物のみからなる活性層を作製し、活性層が異なる以外はバルクヘテロ型有機活性層の場合と同じ条件で光励起したときの電子供与性化合物または電子受容性化合物からの蛍光強度をΦ2、その光励起波長における電子供与性化合物または電子受容性化合物の吸光度をA2とする。ここで、バルクヘテロ型有機活性層中における電子供与性化合物または電子受容性化合物の蛍光消光率(Φq)は、Φq=(1-Φ1/(1-10-A1)/Φ2/(1-10-A2))×100で定義される。
本発明の光電変換素子の活性層の蛍光消光率(Φq)は、60%以上であることが好ましく、70%以上であることが更に好ましい。Φqが60%以上であることから、有機活性層中において、電荷分離効率が高く、光電変換素子の光電変換効率が高くなる。
A method for measuring the fluorescence quenching rate will be described by taking an organic thin-film solar cell having a bulk hetero type organic active layer composed of an electron donating compound and an electron accepting compound as an example. A bulk hetero type organic active layer is produced on a glass substrate by the same operation as the production of the organic thin film solar cell. Using a spectrofluorometer, at least one of the electron donating compound and the electron accepting compound forming the active layer is photoexcited, and the observed fluorescence intensity from the electron donating compound or the electron accepting compound is defined as Φ1. The absorbance of the electron donating compound or electron accepting compound at this photoexcitation wavelength is A1. An electron-donating property when an active layer made of only an electron-donating compound or an electron-accepting compound is produced on a glass substrate by the same operation and photoexcited under the same conditions as in the case of a bulk hetero-type organic active layer except that the active layer is different. The fluorescence intensity from the compound or electron accepting compound is Φ2, and the absorbance of the electron donating compound or electron accepting compound at the photoexcitation wavelength is A2. Here, the fluorescence quenching rate of the electron-donating compound or electron-accepting compound in the bulk-type organic active layer (.PHI.q) is, Φq = (1-Φ1 / (1-10 -A1) / Φ2 / (1-10 - A2 )) x 100.
The fluorescence quenching rate (Φq) of the active layer of the photoelectric conversion element of the present invention is preferably 60% or more, and more preferably 70% or more. Since Φq is 60% or more, the charge separation efficiency is high in the organic active layer, and the photoelectric conversion efficiency of the photoelectric conversion element is high.

本態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料としては、前述の態様の光電変換素子が有する電極の材料、電子供与性化合物、電子受容性化合物、必要に応じて形成される他の構成要素の材料と同じである。
本態様の光電変換素子において、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物であることが好ましい。
The material of the electrode included in the photoelectric conversion element of this embodiment, the electron donating compound, the electron accepting compound, and the other constituent material formed as necessary include the material of the electrode included in the photoelectric conversion element of the above embodiment. , Electron-donating compound, electron-accepting compound, and the same materials as those of other components formed as necessary.
In the photoelectric conversion element of this embodiment, at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is included in the polymer compound Among all the repeating units, a polymer compound having the largest ratio of repeating units represented by formula (I) is preferable.

(有機活性層の製造方法)
本願発明の光電変換素子が有する有機活性層は、バルクへテロ型であり、上記電子供与性化合物、電子受容性化合物、及び必要に応じて配合される他の成分を含む溶液からの成膜により形成することができる。例えば、該溶液を陽極又は陰極上に塗布し、有機活性層を形成することができる。その後、有機活性層上に他の電極を形成し、光電変換素子を製造することができる。
(Method for producing organic active layer)
The organic active layer included in the photoelectric conversion element of the present invention is a bulk hetero type, and is formed by film formation from a solution containing the electron-donating compound, the electron-accepting compound, and other components blended as necessary. Can be formed. For example, the solution can be applied on the anode or cathode to form an organic active layer. Then, another electrode can be formed on an organic active layer, and a photoelectric conversion element can be manufactured.

溶液からの成膜に用いる溶媒は、本発明の上述の電子供与性化合物及び電子受容性化合物を溶解させるものであれば、特に制限はないが、複数の溶媒を混合してもよく、そのうち少なくとも一種類の溶媒の沸点は200℃以下、好ましくは150℃、さらに好ましくは100℃以下である。かかる溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロプロパン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒等が挙げられる。有機活性層を構成する有機材料は、通常、前記溶媒に0.1重量%以上溶解させることができる。
電子供与性化合物と電子受容性化合物との接合長さを制御して光電変換素子の光電変換効率を高める観点からは、好ましい溶媒として、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロプロパン、クロロブタンなどの沸点が100℃以下のハロゲン化飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピランなどの沸点が100℃以下のエーテル系溶媒が挙げられる。
より好ましい溶媒としては、クロロホルムが挙げられる。
The solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-described electron-donating compound and electron-accepting compound of the present invention, and a plurality of solvents may be mixed. The boiling point of one kind of solvent is 200 ° C. or less, preferably 150 ° C., more preferably 100 ° C. or less. Examples of such solvents include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane. Halogenated saturated hydrocarbon solvents such as chloroethane, dichlorobenzene, and trichlorobenzene Examples thereof include hydrocarbon solvents, ether solvents such as tetrahydrofuran and tetrahydropyran. The organic material constituting the organic active layer can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element by controlling the junction length between the electron donating compound and the electron accepting compound, preferred solvents include carbon tetrachloride, chloroform, dichloromethane, dichloroethane, dichloropropane, chlorobutane, and the like. And a halogenated saturated hydrocarbon solvent having a boiling point of 100 ° C. or lower, and an ether solvent having a boiling point of 100 ° C. or lower, such as tetrahydrofuran or tetrahydropyran.
A more preferred solvent is chloroform.

成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。   For film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing, flexographic printing Application methods such as printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method can be used, spin coating method, flexographic printing method, gravure printing method, inkjet printing method, dispenser printing The method is preferred.

光電変換素子の製造方法の好ましい一態様は、陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含み、電子供与性化合物と電子受容性化合物の少なくとも一方の化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である光電変換素子の製造方法である。   A preferred embodiment of the method for producing a photoelectric conversion element is a step of producing an organic active layer by applying a solution containing an electron donating compound, an electron accepting compound, and a solvent having a boiling point of 100 ° C. or less on an anode or a cathode. Wherein at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I), and is contained in all repeating units contained in the polymer compound This is a method for producing a photoelectric conversion element which is a polymer compound having the largest ratio of repeating units represented by formula (I).

Figure 0005639783
Figure 0005639783

式(I)中、R1、R2、R3、R4、R5及びR6は、同一又は相異なり、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成してもよい。X1、X2及びX3は、同一又は相異なり、硫黄原子、酸素原子、セレン原子、−N(R7)−又は−C(R8)=C(R9)−を表す。R7、8及びR9は、同一又は相異なり、水素原子又は置換基を表す。n及びmは、同一又は相異なり、0〜5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。 In formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and represent a hydrogen atom or a substituent. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure. X 1 , X 2 and X 3 are the same or different and each represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) —. R 7, R 8 and R 9 are the same or different and each represents a hydrogen atom or a substituent. n and m are the same or different and each represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 , and X 3 , they may be the same or different.

(素子の用途)
本発明の光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
(Application of the device)
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by irradiating light such as sunlight from a transparent or translucent electrode to generate a photovoltaic force between the electrodes. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.

また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を入射させることにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。   In addition, when light is incident from a transparent or translucent electrode in a state where a voltage is applied between electrodes or in a state where no voltage is applied, a photocurrent flows and the organic light sensor can be operated. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.

(太陽電池モジュール)
有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の有機光電変換素子を適用した有機薄膜太陽電池でも使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
(Solar cell module)
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. Even in an organic thin film solar cell to which the organic photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected depending on the purpose of use, the place of use and the environment.

代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出す構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。   In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. It is connected, and the collector electrode is arrange | positioned in the outer edge part, It has the structure which takes out generated electric power outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. In addition, when used in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.

ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48, p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。   In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Also, a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.

以下、本発明の実施例を説明する。以下に示す実施例は、本発明を説明するための好適な例示であり、本発明を限定するものではない。   Examples of the present invention will be described below. The following examples are preferred examples for explaining the present invention, and do not limit the present invention.

合成例1
(高分子化合物Aの製造)
Synthesis example 1
(Production of polymer compound A)

Figure 0005639783
Figure 0005639783

単量体(1)0.945g(1.60mmol)と単量体(2)(2.00mmol)0.918gと、テトラキス(トリフェニルホスフィン)パラジウム(0)25mgとを反応容器に仕込み、反応容器内をアルゴンガスで十分置換した。この反応容器に、予めアルゴンガスでバブリングして脱気したトルエン50gを加えた。得られた溶液を、100℃で約10分間攪拌した。次に、得られた溶液に、予めアルゴンガスでバブリングして脱気したテトラエチルアンモニウムヒドロキシド溶液(20%水溶液)5mlを滴下した後、3.5時間還流した。次に、得られた反応溶液に、フェニルホウ酸0.55gを加えた後、8.5時間還流した。なお、反応は、アルゴンガス雰囲気下で行った。   A reaction vessel was charged with 0.945 g (1.60 mmol) of monomer (1), 0.918 g of monomer (2) (2.00 mmol) and 25 mg of tetrakis (triphenylphosphine) palladium (0), and the reaction was performed. The inside of the container was sufficiently replaced with argon gas. To this reaction vessel, 50 g of toluene deaerated previously by bubbling with argon gas was added. The resulting solution was stirred at 100 ° C. for about 10 minutes. Next, 5 ml of a tetraethylammonium hydroxide solution (20% aqueous solution) previously deaerated by bubbling with argon gas was added dropwise to the obtained solution, and then refluxed for 3.5 hours. Next, after adding 0.55 g of phenylboric acid to the obtained reaction solution, it was refluxed for 8.5 hours. The reaction was performed in an argon gas atmosphere.

反応終了後、反応溶液を室温(25℃)で冷却した後、得られた反応溶液を静置し、分液したトルエン層を回収した。次いで、得られたトルエン層をメタノール中に注ぎ込み、再沈し、生成した沈殿を回収した。この沈殿を減圧乾燥した後、クロロホルムに溶解した。次に、得られたクロロホルム溶液をろ過し、不溶物を除去した後、アルミナカラムに通し、精製した。次に、得られたクロロホルム溶液を減圧濃縮した後、メタノール中に注ぎ込み、再沈し、生成した沈殿を回収した。この沈殿をメタノールで洗浄した後、減圧乾燥して、重合体0.93gを得た。以下、この重合体を高分子化合物Aという。高分子化合物Aは、ポリスチレン換算の重量平均分子量が2.0×104であり、ポリスチレン換算の数平均分子量が4.7×103であった。
高分子化合物Aの全繰り返し単位中、仕込み比から計算した式(2’)で表される繰り返し単位の比率は、55.6%であった。
After completion of the reaction, the reaction solution was cooled at room temperature (25 ° C.), and then the obtained reaction solution was allowed to stand and a separated toluene layer was recovered. Next, the obtained toluene layer was poured into methanol and re-precipitated, and the generated precipitate was collected. This precipitate was dried under reduced pressure and then dissolved in chloroform. Next, the obtained chloroform solution was filtered to remove insoluble matters, and then passed through an alumina column for purification. Next, the obtained chloroform solution was concentrated under reduced pressure, poured into methanol, re-precipitated, and the generated precipitate was collected. This precipitate was washed with methanol and then dried under reduced pressure to obtain 0.93 g of a polymer. Hereinafter, this polymer is referred to as polymer compound A. The polymer compound A had a polystyrene equivalent weight average molecular weight of 2.0 × 10 4 and a polystyrene equivalent number average molecular weight of 4.7 × 10 3 .
The ratio of the repeating unit represented by the formula (2 ′) calculated from the charging ratio among all the repeating units of the polymer compound A was 55.6%.

Figure 0005639783
Figure 0005639783

実施例1
(有機薄膜太陽電池の作製、評価)
真空蒸着法により300nmの厚みでITO膜を付けたガラス基板をトルエン、アセトン、エタノール中で、この順に各15分間超音波洗浄を行なった後、オゾンUV処理することにより表面処理を行った。表面処理を行ったITO基板上に、PEDOT(ポリ(3,4−エチレンジオキシチオフェン))とPSS(ポリ(4−スチレンスルホネート))との混合物(PEDOT:PSS)(H.C.Starck社製、PH500)を約40nmの膜厚になるようにスピンコートし、大気中、140℃のホットプレート上にて10分間加熱した。次に、電子受容性化合物である高分子化合物A及び電子供与性化合物であるポリ(3−ヘキシルチオフェン−2,5−ジイル)(P3HT)(レジオレギュラー、アルドリッチ社製)を含むクロロホルム溶液(高分子化合物A/P3HTの重量比=1/1、高分子化合物AとP3HTの合計の濃度は1重量%)をこのPEDOT:PSS膜上にスピンコートにより塗布して有機活性層を作製した。有機活性層の膜厚は約70nmであった。その後、真空蒸着機によりフッ化リチウムを厚さ1nmで蒸着し、次いでAlを厚さ80nmで蒸着した。その後、グローブボックス中、140℃で10分間有機薄膜太陽電池を加熱した。得られた有機薄膜太陽電池の形状は、半径1.5mmの円状であった。得られた有機薄膜太陽電池にソーラシミュレーター(イーグルエンジニアリング社製、500Wキセノン光源装置LHX-500E3:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放電圧、フィルファクターを求めた。Jsc(短絡電流密度)は3.94mA/cm2であり、Voc(開放電圧)は1.19Vであり、ff(フィルファクター)は0.42であり、光電変換効率(η)は、1.95%であった。
Example 1
(Production and evaluation of organic thin-film solar cells)
A glass substrate with an ITO film having a thickness of 300 nm formed by vacuum deposition was subjected to ultrasonic cleaning in this order for 15 minutes in toluene, acetone and ethanol, respectively, and then surface treatment was performed by ozone UV treatment. A mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS) (manufactured by HCStarck, PH500) on a surface-treated ITO substrate Was spin-coated to a thickness of about 40 nm, and heated in the air on a hot plate at 140 ° C. for 10 minutes. Next, a chloroform solution containing a high molecular compound A which is an electron-accepting compound and poly (3-hexylthiophene-2,5-diyl) (P3HT) (Resiregular, manufactured by Aldrich Co.) which is an electron-donating compound (high A weight ratio of molecular compound A / P3HT = 1/1, and the total concentration of polymer compound A and P3HT was 1% by weight) was applied onto this PEDOT: PSS film by spin coating to produce an organic active layer. The thickness of the organic active layer was about 70 nm. Thereafter, lithium fluoride was vapor-deposited with a thickness of 1 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 80 nm. Thereafter, the organic thin film solar cell was heated at 140 ° C. for 10 minutes in the glove box. The shape of the obtained organic thin film solar cell was a circle having a radius of 1.5 mm. The organic thin-film solar cell obtained was irradiated with a certain amount of light using a solar simulator (Eagle Engineering, 500W xenon light source device LHX-500E3: AM1.5G filter, irradiance 100 mW / cm 2 ) The voltage was measured to determine photoelectric conversion efficiency, short circuit current density, open circuit voltage, and fill factor. Jsc (short circuit current density) was 3.94 mA / cm 2 , Voc (open circuit voltage) was 1.19 V, ff (fill factor) was 0.42, and photoelectric conversion efficiency (η) was 1.95%.

(HOMOのエネルギー準位及びLUMOのエネルギー準位の測定)
HOMOのエネルギー準位は、光電子分光装置AC−2(理研計器株式会社製)により測定した。LUMOのエネルギー準位は、吸収波長末端(λth(nm))から以下の式を用いて算出した。
(LUMOのエネルギー準位)=(HOMOのエネルギー準位)+1240/λth
高分子化合物AのHOMOのエネルギー準位は、−5.5evであり、LUMOのエネルギー準位は、−3.6eVであった。P3HTのHOMOのエネルギー準位は、−4.9eVであり、LUMOのエネルギー準位は、−3.0eVであった。
(Measurement of HOMO energy level and LUMO energy level)
The energy level of HOMO was measured with a photoelectron spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.). The LUMO energy level was calculated from the end of the absorption wavelength (λth (nm)) using the following equation.
(LUMO energy level) = (HOMO energy level) + 1240 / λth
The HOMO energy level of the polymer compound A was −5.5 ev, and the LUMO energy level was −3.6 eV. The energy level of HOMO of P3HT was -4.9 eV, and the energy level of LUMO was -3.0 eV.

(蛍光消光率の測定)
有機薄膜太陽電池の作製と同様な操作でガラス基板上に作製したブレンド膜を392nmで励起し、高分子化合物Aの蛍光消光率(Φq)を見積もった。その結果、Φqは、71%であった。
(Measurement of fluorescence quenching rate)
The blend film produced on the glass substrate by the same operation as the production of the organic thin film solar cell was excited at 392 nm, and the fluorescence quenching rate (Φq) of the polymer compound A was estimated. As a result, Φq was 71%.

(相分離構造の観察)
実施例1の方法で基板上に有機活性層を形成した後、電子供与性化合物を含む相と電子受容性化合物を含む相との相分離の観察を、透過電子顕微鏡(TEM)による電子エネルギー損失分光法(TEM−EELS)の3ウィンドウ法により、硫黄原子のマッピング像を得ることによって行った。TEM観察用試料は、スピンキャストで作製した膜を水に浮かべ、TEM用グリッドですくって得た。TEMは、JEM2200FS(日本電子製)を加速電圧200kVで用い、20000倍で900nm×900nmの範囲の層を512×512ピクセルで観察した。得られた硫黄原子のマッピング像のヒストグラムを算出し、得られたヒストグラムのピークトップを閾値として、硫黄原子(S)組成の高い高分子化合物を含む相を白に、S組成の低い高分子化合物を含む相を黒として2値化を行った。上記のようにして得た2値化像を均等な面積となる9個の区画に分割し、各区画の黒色部分の面積分率を求めた。以上の画像解析は画像解析ソフトimage-Jを用いて行った。得られた9つの区画の黒色部分の面積分率の平均値と標準偏差を計算した。その結果、黒色部の面積分率の平均値は0.454、黒色部の面積分率の標準偏差は0.074であった。
(Observation of phase separation structure)
After forming the organic active layer on the substrate by the method of Example 1, observation of phase separation between the phase containing the electron-donating compound and the phase containing the electron-accepting compound was conducted using a transmission electron microscope (TEM). This was performed by obtaining a mapping image of sulfur atoms by a three-window method of spectroscopy (TEM-EELS). A sample for TEM observation was obtained by floating a film prepared by spin casting on water and scoring with a TEM grid. For TEM, JEM2200FS (manufactured by JEOL Ltd.) was used at an acceleration voltage of 200 kV, and a layer in the range of 900 nm × 900 nm at 20000 times was observed with 512 × 512 pixels. A histogram of the mapping image of the obtained sulfur atom is calculated, and the phase containing the polymer compound having a high sulfur atom (S) composition is white with the peak top of the obtained histogram as a threshold, and the polymer compound having a low S composition Binarization was performed by setting the phase containing the black as black. The binarized image obtained as described above was divided into nine sections having an equal area, and the area fraction of the black portion of each section was determined. The above image analysis was performed using image analysis software image-J. The average value and standard deviation of the area fractions of the nine black sections obtained were calculated. As a result, the average value of the area fraction of the black portion was 0.454, and the standard deviation of the area fraction of the black portion was 0.074.

比較例1
(有機薄膜太陽電池の作製、評価)
クロロホルムの代わりにクロロベンゼンを用いた以外は、実施例1と同様に有機薄膜太陽電池を作製し、評価した。その結果、Jscは0.91mA/cm2であり、Vocは1.06Vであり、ffは0.48であり、光電変換効率(η)は、0.46%であった。
この条件での、高分子化合物Aの蛍光消光率(Φq)を見積もった。その結果、Φqは、50%であった。
また、TEMで観測した黒色部の面積分率の平均値は0.581、黒色部の面積分率の標準偏差は0.171であった。
Comparative Example 1
(Production and evaluation of organic thin-film solar cells)
An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that chlorobenzene was used instead of chloroform. As a result, Jsc was 0.91 mA / cm 2 , Voc was 1.06 V, ff was 0.48, and the photoelectric conversion efficiency (η) was 0.46%.
Under this condition, the fluorescence quenching rate (Φq) of the polymer compound A was estimated. As a result, Φq was 50%.
Moreover, the average value of the area fraction of the black part observed by TEM was 0.581, and the standard deviation of the area fraction of the black part was 0.171.

比較例2
(有機薄膜太陽電池の作製、評価)
クロロホルムの代わりにo-ジクロロベンゼンを用いた以外は、実施例1と同様に有機薄膜太陽電池を作製し、評価した。その結果、Jscは0.84mA/cm2であり、Vocは0.80Vであり、ffは0.36であり、光電変換効率(η)は、0.24%であった。
また、TEMで観測した黒色部の面積分率の平均値は0.535、黒色部の面積分率の標準偏差は0.221であった。
Comparative Example 2
(Production and evaluation of organic thin-film solar cells)
An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that o-dichlorobenzene was used instead of chloroform. As a result, Jsc was 0.84 mA / cm 2 , Voc was 0.80 V, ff was 0.36, and the photoelectric conversion efficiency (η) was 0.24%.
Moreover, the average value of the area fraction of the black part observed by TEM was 0.535, and the standard deviation of the area fraction of the black part was 0.221.

比較例3
(有機薄膜太陽電池の作製、評価)
クロロホルムの代わりにキシレンを用いた以外は、実施例1と同様に有機薄膜太陽電池を作製し、評価した。その結果、Jscは1.37mA/cm2であり、Vocは0.91Vであり、ffは0.54であり、光電変換効率(η)は、0.67%であった。
また、TEMで観測した黒色部の面積分率の平均値は0.476、黒色部の面積分率の標準偏差は0.099であった。
Comparative Example 3
(Production and evaluation of organic thin-film solar cells)
An organic thin film solar cell was prepared and evaluated in the same manner as in Example 1 except that xylene was used instead of chloroform. As a result, Jsc was 1.37 mA / cm 2 , Voc was 0.91 V, ff was 0.54, and the photoelectric conversion efficiency (η) was 0.67%.
Moreover, the average value of the area fraction of the black part observed by TEM was 0.476, and the standard deviation of the area fraction of the black part was 0.099.

Claims (7)

陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、該有機活性層電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液から塗布して製造され、透過型電子顕微鏡で観察した前記有機活性層の画像であって明暗を2値化した前記有機活性層の画像において、前記電子供与性化合物と前記電子受容性化合物との接合長さが、前記有機活性層の画像1μmあたり、100μm以上である光電変換素子であって、
前記電子供与性化合物が、その最高占有分子軌道のエネルギー準位が−4.7eV以下であり、かつ、その最低空分子軌道のエネルギー準位が−4.0eV以上である高分子化合物である、ポリチオフェン又はその誘導体であり、前記電子受容性化合物が、ベンゾチアジアゾール構造、又は、キノキサリン構造を有する高分子化合物であって、その最高占有分子軌道のエネルギー準位が−5.0eV以下であり、かつ、その最低空分子軌道のエネルギー準位が−4.3eV以上である高分子化合物である、光電変換素子
Comprising an anode, a cathode, and an organic active layer provided between the anode and the cathode, the organic active layer is an electron-donating compound and an electron-accepting compound and a boiling point between 100 ° C. or less of the solvent In the image of the organic active layer produced by coating from a solution and observed with a transmission electron microscope and binarized, the electron donating compound and the electron accepting compound A photoelectric conversion element having a junction length of 100 μm or more per 1 μm 2 of the image of the organic active layer ,
The electron donating compound is a polymer compound having an energy level of the highest occupied molecular orbital of −4.7 eV or lower and an energy level of the lowest unoccupied molecular orbital of −4.0 eV or higher. Polythiophene or a derivative thereof, wherein the electron-accepting compound is a polymer compound having a benzothiadiazole structure or a quinoxaline structure, and the energy level of the highest occupied molecular orbital is −5.0 eV or less, and The photoelectric conversion element which is a polymer compound whose energy level of the lowest unoccupied molecular orbital is −4.3 eV or more .
前記電子供与性化合物と前記電子受容性化合物との前記接合長さが、前記有機活性層の画像1μmあたり、300μm以下である請求項1に記載の光電変換素子。 2. The photoelectric conversion element according to claim 1, wherein the junction length between the electron donating compound and the electron accepting compound is 300 μm or less per 1 μm 2 of the image of the organic active layer. 前記有機活性層中の前記電子供与性化合物と前記有機活性層中の前記電子受容性化合物との少なくとも一方の励起状態の寿命が、1ns以下である、請求項1又は2に記載の光電変換素子。   3. The photoelectric conversion device according to claim 1, wherein the lifetime of at least one of the electron donating compound in the organic active layer and the electron accepting compound in the organic active layer is 1 ns or less. . 記電子受容性化合物が、式(I)で表される繰り返し単位を含む高分子化合物であって、該高分子化合物中に含まれる全繰り返し単位中、式(I)で表される繰り返し単位の比率が最も大きい高分子化合物である、請求項のいずれか1項に記載の光電変換素子。
Figure 0005639783
(式(I)中、R1、R2、R3、R4、R5及びR6は、同一又は相異なり、水素原子又は置換基を表す。また、R1、R2、R3、R4、R5、R6は、それぞれ互いに連結して環状構造を形成してもよい。X1、X2及びX3は、同一又は相異なり、硫黄原子、酸素原子、セレン原子、−N(R7)−又は−C(R8)=C(R9)−を表す。R7、8及びR9は、同一又は相異なり、水素原子又は置換基を表す。n及びmは、同一又は相異なり、0〜5の整数を表す。R1、R2、R5、R6、X1、X3が複数個ある場合、それらは同一であっても相異なっていてもよい。)
Repeat previous SL electron-accepting compound, a polymer compound containing a repeating unit represented by formula (I), based on all repeating units contained in the polymer compound, represented by formula (I) the proportion of units having the greatest polymer compound, photoelectric conversion device according to any one of claims 1-3.
Figure 0005639783
(In the formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and represent a hydrogen atom or a substituent. Also, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be connected to each other to form a cyclic structure, and X 1 , X 2 and X 3 are the same or different and are a sulfur atom, an oxygen atom, a selenium atom, —N (R 7 ) — or —C (R 8 ) ═C (R 9 ) — R 7, R 8 and R 9 are the same or different and represent a hydrogen atom or a substituent, and n and m are The same or different and represents an integer of 0 to 5. When there are a plurality of R 1 , R 2 , R 5 , R 6 , X 1 and X 3 , they may be the same or different. )
陽極又は陰極上に、電子供与性化合物と電子受容性化合物と沸点が100℃以下の溶媒とを含む溶液を塗布して有機活性層を製造する工程を含む、請求項1〜のいずれか1項に記載の光電変換素子を製造する製造方法。 On the anode or cathode, comprising the step of electron-donating compound and an electron-accepting compound and a boiling point to produce the organic active layer solution was applied including a 100 ° C. or less of the solvent, any one of claims 1-4 1 The manufacturing method which manufactures the photoelectric conversion element as described in a term . 請求項1〜のいずれか1項に記載の光電変換素子を含む太陽電池モジュール。 The solar cell module containing the photoelectric conversion element of any one of Claims 1-4 . 請求項1〜のいずれか1項に記載の光電変換素子を含むイメージセンサー。
The image sensor containing the photoelectric conversion element of any one of Claims 1-4 .
JP2010108574A 2010-05-10 2010-05-10 Photoelectric conversion element Expired - Fee Related JP5639783B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010108574A JP5639783B2 (en) 2010-05-10 2010-05-10 Photoelectric conversion element
PCT/JP2011/060650 WO2011142314A1 (en) 2010-05-10 2011-05-09 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108574A JP5639783B2 (en) 2010-05-10 2010-05-10 Photoelectric conversion element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014107373A Division JP2014197688A (en) 2014-05-23 2014-05-23 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2011238762A JP2011238762A (en) 2011-11-24
JP5639783B2 true JP5639783B2 (en) 2014-12-10

Family

ID=44914370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108574A Expired - Fee Related JP5639783B2 (en) 2010-05-10 2010-05-10 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP5639783B2 (en)
WO (1) WO2011142314A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
CN105118921B (en) * 2015-09-14 2017-08-04 中国科学院长春应用化学研究所 A kind of organic photodetector of high external quantum efficiency and wide spectrum response and preparation method thereof
WO2019082849A1 (en) * 2017-10-23 2019-05-02 住友化学株式会社 Photoelectric conversion element and method for manufacturing same
JP6637638B2 (en) * 2017-10-23 2020-01-29 住友化学株式会社 Photoelectric conversion element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974217A (en) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd Organic solar battery
CN1263754C (en) * 2001-01-24 2006-07-12 剑桥显示技术有限公司 Monomer for use in preparation of a polymer to be used in optical devices
US20060174937A1 (en) * 2005-02-09 2006-08-10 Zhang-Lin Zhou High performance organic materials for solar cells
EP1866982A2 (en) * 2005-04-07 2007-12-19 The Regents Of The University Of California Highly efficient polymer solar cell by polymer self-organization
EP2072557A4 (en) * 2006-10-11 2010-04-14 Toray Industries Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP2010041022A (en) * 2008-07-08 2010-02-18 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP5258037B2 (en) * 2008-09-08 2013-08-07 国立大学法人京都大学 Photoelectric conversion element, manufacturing method thereof, and solar cell

Also Published As

Publication number Publication date
WO2011142314A1 (en) 2011-11-17
JP2011238762A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US20120204960A1 (en) Organic photovoltaic cell and method for manufacturing the same
US9362515B2 (en) Photoelectric conversion element
JP2013179181A (en) Organic photoelectric conversion element
US20120216866A1 (en) Organic photovoltaic cell
Wang et al. FAPbCl3 perovskite as alternative interfacial layer for highly efficient and stable polymer solar cells
KR101815755B1 (en) Phenazine derivatives with the extended conjugated structure and applied to the organic photovoltaic polymers
JP6687025B2 (en) Photoelectric conversion element
JP5639783B2 (en) Photoelectric conversion element
WO2016158698A1 (en) Photoelectric conversion element
JP5434027B2 (en) Organic photoelectric conversion element
JP2011119676A (en) Organic photoelectric conversion element
JP2015220331A (en) Photoelectric conversion element
JP5553728B2 (en) Organic photoelectric conversion element
EP2597695A1 (en) Electroactive surfactant improved hybrid bulk heterojunction solar cells
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
JP2013207252A (en) Photoelectric conversion element
WO2013047293A1 (en) Photoelectric conversion element
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
JP6995596B2 (en) Photoelectric conversion element
JP2012021150A (en) Method for producing high-molecular compound
JP2014197688A (en) Photoelectric conversion element
JP5908305B2 (en) Photoelectric conversion element
JP6180099B2 (en) Photoelectric conversion element
KR101580385B1 (en) New Acceptor containing conjugated polymers and organic optoelectronic devices
Wienk et al. Low band gap polymer: fullerene solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5639783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees