JP5638626B2 - OA roller manufacturing method and OA roller - Google Patents

OA roller manufacturing method and OA roller Download PDF

Info

Publication number
JP5638626B2
JP5638626B2 JP2012548815A JP2012548815A JP5638626B2 JP 5638626 B2 JP5638626 B2 JP 5638626B2 JP 2012548815 A JP2012548815 A JP 2012548815A JP 2012548815 A JP2012548815 A JP 2012548815A JP 5638626 B2 JP5638626 B2 JP 5638626B2
Authority
JP
Japan
Prior art keywords
roller
shaft
elastic layer
roller material
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012548815A
Other languages
Japanese (ja)
Other versions
JPWO2012081626A1 (en
Inventor
亨 益山
亨 益山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012548815A priority Critical patent/JP5638626B2/en
Publication of JPWO2012081626A1 publication Critical patent/JPWO2012081626A1/en
Application granted granted Critical
Publication of JP5638626B2 publication Critical patent/JP5638626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/08Details of powder developing device not concerning the development directly
    • G03G2215/0855Materials and manufacturing of the developing device
    • G03G2215/0858Donor member
    • G03G2215/0863Manufacturing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/16Transferring device, details
    • G03G2215/1604Main transfer electrode
    • G03G2215/1614Transfer roll
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2221/00Processes not provided for by group G03G2215/00, e.g. cleaning or residual charge elimination
    • G03G2221/0005Cleaning of residual toner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Dry Development In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

本発明は、OAローラの製造方法及びOAローラに関する。   The present invention relates to an OA roller manufacturing method and an OA roller.

オフィスオートメーション機器(OA機器)のなかで、複写機やプリンタ、ファクシミリ等のような電子写真方式を用いた画像形成装置においては、転写ローラ、トナー供給ローラ、クリーニングローラ等の各種のローラが用いられている。これらのローラを総称したOAローラは、回転軸としてのシャフトの外周に、樹脂発泡体、例えばポリウレタン発泡体よりなる弾性層が円柱形状に形成された基本構造を備えている。   Among office automation equipment (OA equipment), various types of rollers such as transfer rollers, toner supply rollers, and cleaning rollers are used in electrophotographic image forming apparatuses such as copying machines, printers, and facsimiles. ing. The OA roller, which is a collective term for these rollers, has a basic structure in which an elastic layer made of a resin foam, for example, a polyurethane foam, is formed in a cylindrical shape on the outer periphery of a shaft serving as a rotating shaft.

OAローラの製造方法は、大別すると3種の方法がある。第一の方法は、金属製等のシャフトに必要に応じて接着剤等を塗布し、そのシャフトの外周に樹脂発泡体からなる弾性層材料を取りつけて固定し、その後に、弾性層材料を所望のサイズの円柱形状になるように研磨等をする方法である(特許文献1、特許文献2)。第二の方法は、第一の方法と同様にシャフトの外周に樹脂発泡体からなる弾性層材料を取りつけて固定した後、弾性層材料を所望のサイズの円柱形状になるように熱線で加工する方法である。第三の方法は、金型のキャビティに予めシャフトを配置しておき、このキャビティ内にゴム又は樹脂発泡体材料を射出してOAローラを得る方法である。   The OA roller manufacturing method is roughly classified into three types. The first method is to apply an adhesive or the like to a shaft made of metal, etc., if necessary, attach and fix an elastic layer material made of a resin foam on the outer periphery of the shaft, and then the elastic layer material is desired (Patent Document 1, Patent Document 2). In the second method, an elastic layer material made of a resin foam is attached and fixed to the outer periphery of the shaft in the same manner as in the first method, and then the elastic layer material is processed with a hot wire so as to have a cylindrical shape of a desired size. Is the method. The third method is a method in which a shaft is arranged in advance in a cavity of a mold, and rubber or resin foam material is injected into the cavity to obtain an OA roller.

しかしながら、弾性層材料を研磨、研削又は切削により加工する第一の方法は、加工の際に弾性層の表面にケバ立ちが生じていた。また、弾性層材料を熱線で加工する第二の方法は、ローラの周面を均一に仕上げることが難しく、しかも熱線加工である故にローラの表面が熱により硬化したり、表面の発泡セルが破れたりする不具合があった。更に、射出成形で加工する第三の方法は、金型等の製作をする必要があることから製造コストが嵩み、かつ、金型内で発泡体の発泡状態を調整するのが難しいため、ローラの表面を低硬度で平滑な状態に均一にするのが難しかった。   However, in the first method of processing the elastic layer material by polishing, grinding, or cutting, the surface of the elastic layer is rubbed during processing. In addition, the second method of processing the elastic layer material with heat rays makes it difficult to uniformly finish the peripheral surface of the roller, and because of the heat ray processing, the surface of the roller is hardened by heat or the foam cells on the surface are torn. There was a malfunction. Furthermore, since the third method of processing by injection molding requires the production of a mold or the like, the manufacturing cost is high, and it is difficult to adjust the foaming state of the foam in the mold, It was difficult to make the surface of the roller uniform in a smooth state with low hardness.

ケバ立ちや熱硬化やコスト上昇を招かないOAローラの製造方法に関して、所望のローラ径よりも大きい径のローラ材を作製したのち、そのローラ材の外径よりも小径の円筒状成形具に当該ローラ材を挿入してローラの弾性層を圧縮してから加熱する、ローラの製造方法がある(特許文献3)。この製造方法により得られたローラは、弾性層の樹脂発泡体のセルがローラの径方向に圧縮された形状で、表面におけるセル数がローラ径方向内部のセル数よりも多くなっていて、ローラ表面のケバ立ちがなく、平滑なローラとなっている。   Regarding a method for manufacturing an OA roller that does not cause fluffing, thermal curing, or cost increase, after producing a roller material having a diameter larger than a desired roller diameter, the cylindrical molding tool having a diameter smaller than the outer diameter of the roller material There is a method for manufacturing a roller in which a roller material is inserted and the elastic layer of the roller is compressed and then heated (Patent Document 3). The roller obtained by this manufacturing method has a shape in which the cells of the resin foam of the elastic layer are compressed in the radial direction of the roller, and the number of cells on the surface is larger than the number of cells inside the roller radial direction. The surface is free from flaking and is a smooth roller.

特開2008−299006号公報JP 2008-299006 A 特開2001−225201号公報JP 2001-225201 A 特開平9−297512号公報JP-A-9-297512

しかしながら、特許文献3に記載の製造方法により得られたローラは、弾性層表面のケバ立ち抑制を改善することができるが、円筒状成形具に一方向からローラを挿入することにより、弾性層を構成する樹脂発泡体のセルに、ローラのシャフト軸方向に歪が生じていた。この歪が生じていると、例えばOAローラがトナー供給ローラに適用される場合には、所定量でのトナー供給ができなかったり、トナーの詰まりが発生したりして、このトナー供給ローラを組み込んだ画像形成装置における画像不具合を引き起こすおそれがあり、また、転写ローラやクリーニングローラ等においても、不具合を引き起こすおそれがある。したがって、OAローラに要求される特性として、なお改善の余地があった。   However, the roller obtained by the manufacturing method described in Patent Document 3 can improve the suppression of the fluffing on the surface of the elastic layer, but the elastic layer is removed by inserting the roller into the cylindrical forming tool from one direction. In the resin foam cell to be formed, distortion occurred in the axial direction of the roller shaft. When this distortion occurs, for example, when an OA roller is applied to the toner supply roller, the toner supply at a predetermined amount cannot be performed or the toner is clogged. However, there is a risk of causing an image defect in the image forming apparatus, and also in a transfer roller, a cleaning roller, or the like. Therefore, there is still room for improvement as a characteristic required for the OA roller.

本発明は、上記の問題を有利に解決するものであり、ケバ立ちのなく表面が平滑で、シャフト軸方向のセル歪が生じていないOAローラ製造することのできるOAローラの製造方法及びこの製造方法を用いて得られたOAローラを提供することを目的とする。   The present invention advantageously solves the above-described problem, and a method of manufacturing an OA roller capable of manufacturing an OA roller that is smooth and has a smooth surface and is free from cell distortion in the shaft axial direction. An object is to provide an OA roller obtained by using the method.

上記課題を解決する、本発明のOAローラの製造方法は、シャフトと、このシャフトの外周に形成された樹脂発泡体よりなる円柱形状の弾性層と、を有し、この弾性層が最終の外径よりも大きな外径を有しているローラ材を用意する工程と、このローラ材の弾性層の外径よりも小さな内径を有する円筒状成形具内に、ローラ材の弾性層を圧縮させながら当該ローラ材を挿入する工程と、この円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪を除去するようにシャフトを挿入方向とは逆方向に移動させる工程と、ローラ材を円筒状成形具と共に加熱する工程と、加熱後のローラ材を円筒状成形具から取り外すことで最終の外径の弾性層を有するローラを得る工程とを備えることを特徴とする。   The manufacturing method of the OA roller of the present invention that solves the above-described problem has a shaft and a cylindrical elastic layer made of a resin foam formed on the outer periphery of the shaft, and the elastic layer is the final outer layer. A step of preparing a roller material having an outer diameter larger than the diameter, and while compressing the elastic layer of the roller material in a cylindrical forming tool having an inner diameter smaller than the outer diameter of the elastic layer of the roller material A step of inserting the roller material, a step of moving the shaft in a direction opposite to the insertion direction so as to remove distortion in the shaft axial direction generated in the elastic layer of the roller material in the cylindrical molding tool, and the roller material And a step of heating together with the cylindrical forming tool and a step of obtaining a roller having an elastic layer having a final outer diameter by removing the heated roller material from the cylindrical forming tool.

本発明のOAローラの製造方法は、シャフトを挿入方向とは逆方向に移動させる工程において、ローラ材のシャフトを、円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪み量で定められる量で移動させることが好ましい。樹脂発泡体は、ウレタンフォームであることが好ましく、また、加熱する工程の際は、ローラ材のシャフトの少なくとも一端を保持部材により保持することが好ましい。   In the method for manufacturing an OA roller according to the present invention, in the step of moving the shaft in the direction opposite to the insertion direction, the amount of strain in the axial direction of the shaft of the roller material generated in the elastic layer of the roller material in the cylindrical forming tool. It is preferable to move by an amount determined by The resin foam is preferably urethane foam, and in the heating step, it is preferable to hold at least one end of the shaft of the roller material by the holding member.

本発明のOAローラは、本発明のOAローラの製造方法により製造されるものであって、シャフトと、このシャフトの外周に形成された樹脂発泡体よりなる円柱形状の弾性層と、を備え、この弾性層の表面近傍の樹脂発泡体のセルがローラの径方向に圧縮変形され、シャフトの軸方向の歪が除去された形状を有することを特徴とする。   The OA roller of the present invention is manufactured by the manufacturing method of the OA roller of the present invention, and includes a shaft and a cylindrical elastic layer made of a resin foam formed on the outer periphery of the shaft, The resin foam cell in the vicinity of the surface of the elastic layer is compressed and deformed in the radial direction of the roller, and has a shape in which the axial strain of the shaft is removed.

本発明のOAローラの製造方法によれば、円筒状成形具にローラ材を挿入したときに弾性層に生じるシャフト軸方向の歪を、挿入方向とは逆方向にシャフトを移動させることにより除去することができる。これにより、弾性層を構成する発泡体のセルにローラのシャフト軸方向の歪が生じていない、良好な特性のOAローラを製造することができる。   According to the manufacturing method of the OA roller of the present invention, the distortion in the shaft axial direction generated in the elastic layer when the roller material is inserted into the cylindrical forming tool is removed by moving the shaft in the direction opposite to the insertion direction. be able to. As a result, it is possible to manufacture an OA roller having good characteristics in which the foam cell constituting the elastic layer is not distorted in the shaft axial direction of the roller.

本発明の製造方法の実施形態を説明する時系列順の模式図である。It is a schematic diagram of the time series order explaining embodiment of the manufacturing method of this invention. ローラ材の弾性層の先後端近傍の形状を示す模式図である。It is a schematic diagram which shows the shape of the front-rear end vicinity of the elastic layer of a roller material. 発泡体セル形状の顕微鏡写真である。It is a microscope picture of a foam cell shape. ローラ材の弾性層の先後端近傍の形状を示す模式図である。It is a schematic diagram which shows the shape of the front-rear end vicinity of the elastic layer of a roller material. 発泡体セル形状の顕微鏡写真である。It is a microscope picture of a foam cell shape. 歪み量の測定方法の一例の説明図である。It is explanatory drawing of an example of the measuring method of distortion amount. 保持部材の説明図である。It is explanatory drawing of a holding member. 実施例の振れ特性を示すグラフである。It is a graph which shows the shake characteristic of an Example. 実施例の外径を示すグラフである。It is a graph which shows the outer diameter of an Example.

以下、本発明のOAローラの製造方法及びOAローラの実施の形態について、図面を用いつつ具体的に説明する。   Hereinafter, the manufacturing method of the OA roller and the embodiment of the OA roller according to the present invention will be described in detail with reference to the drawings.

図1に、本発明の製造方法の実施形態を説明する時系列順の模式図を示す。図1(a)に示すように、まずローラ材10を用意する。このローラ材10は、シャフト11と、このシャフト11の外周に形成された樹脂発泡体よりなる円柱形状の弾性層12とから構成されている。シャフト11は、本発明で製造するOAローラにおける回転軸となるものであり、形状、材料、サイズ等について特に限定されるものではなく、通常のOAローラに適用されるものとすることができる。例えば、材料は金属製であってもよく、樹脂製であってもよい。また、シャフト11は中実形状であってもよいし、中空形状であってもよい。   In FIG. 1, the schematic diagram of the time-sequential order explaining embodiment of the manufacturing method of this invention is shown. As shown in FIG. 1A, a roller material 10 is first prepared. The roller material 10 includes a shaft 11 and a cylindrical elastic layer 12 made of a resin foam formed on the outer periphery of the shaft 11. The shaft 11 serves as a rotation axis in the OA roller manufactured in the present invention, and is not particularly limited in shape, material, size, and the like, and can be applied to a normal OA roller. For example, the material may be made of metal or resin. Further, the shaft 11 may be a solid shape or a hollow shape.

このシャフト11の外周に形成された弾性層12は、本発明で製造するOAローラにおける弾性層に対応するものである。弾性層12は、必要に応じて接着剤によりシャフト11と固着される。   The elastic layer 12 formed on the outer periphery of the shaft 11 corresponds to the elastic layer in the OA roller manufactured in the present invention. The elastic layer 12 is fixed to the shaft 11 with an adhesive as necessary.

弾性層12の材料の樹脂発泡体は、特に限定されるものではないが、ウレタンフォームとすることができる。ウレタンフォームに用いるポリウレタン樹脂としては、従来公知の材料を適宜選択して用いることができ、特に制限されるものではない。また、ポリウレタン発泡体の発泡倍率としては、特に制限されるものではないが、1.2〜50倍、特には10〜25倍程度が好ましく、フォーム密度は、0.04〜0.1g/cm程度が好ましい。The resin foam of the material of the elastic layer 12 is not particularly limited, but can be urethane foam. As the polyurethane resin used for the urethane foam, a conventionally known material can be appropriately selected and used, and is not particularly limited. The foaming ratio of the polyurethane foam is not particularly limited, but is preferably 1.2 to 50 times, particularly preferably about 10 to 25 times, and the foam density is 0.04 to 0.1 g / cm. About 3 is preferable.

弾性層12の外径は、本発明の製造方法による得られるOAローラの外径、すなわち最終の外径よりも大きな外径を有しているものとする。弾性層12は、OAローラの円柱形状と相似する円柱形状とすることが好ましい。このような円柱形状は、樹脂発泡体のシートから方形又は多角形断面のブロックを切り出してシャフト11に取り付け固定したのち、公知の方法、例えば研磨、研削、切削等により樹脂発泡体を円柱形状に加工することにより得られる。もっとも、場合によっては、円柱形状ではなく、方形又は多角形断面形状とすることもできる。   It is assumed that the outer diameter of the elastic layer 12 has an outer diameter larger than the outer diameter of the OA roller obtained by the manufacturing method of the present invention, that is, the final outer diameter. It is preferable that the elastic layer 12 has a cylindrical shape similar to the cylindrical shape of the OA roller. Such a columnar shape is obtained by cutting a block having a square or polygonal cross section from a sheet of resin foam and attaching and fixing the block to the shaft 11, and then converting the resin foam into a columnar shape by a known method such as polishing, grinding, cutting, or the like. It is obtained by processing. However, depending on the case, it may be a rectangular or polygonal cross-sectional shape instead of a cylindrical shape.

次に、図1(b)に示すように、円筒状成形具mを用意する。円筒状成形具mは、円筒形状であり、中心軸方向の長さは、ローラ材10の弾性層12よりも長い。内径は製造するOAローラの外径とほぼ同じ径で、OAローラの外径との隙間を考慮して、わずかに大きな内径とするのがよい。OAローラの外径にもよるが、例えばOAローラの外径よりも0.1mm大きな内径とすることができる。   Next, as shown in FIG. 1B, a cylindrical forming tool m is prepared. The cylindrical forming tool m has a cylindrical shape, and the length in the central axis direction is longer than the elastic layer 12 of the roller material 10. The inner diameter is substantially the same as the outer diameter of the OA roller to be manufactured, and it is preferable to make the inner diameter slightly larger in consideration of the gap with the outer diameter of the OA roller. Depending on the outer diameter of the OA roller, for example, the inner diameter can be 0.1 mm larger than the outer diameter of the OA roller.

円筒状成形具mは、樹脂製又は金属製とすることができるが、後工程で円筒状成形具mと共に加熱することから、耐熱性があり、かつ熱伝導性が良好な金属製であることが好ましい。なかでも、アルミニウム、銅、鉄等が好ましい。円筒状成形具の内面には、摩擦係数を低下させるために、フッ素コーティング等の、樹脂発泡体を汚染しない潤滑性皮膜を形成させることもできる。   The cylindrical molding tool m can be made of resin or metal, but is heated with the cylindrical molding tool m in a later process, so that it is made of metal having heat resistance and good thermal conductivity. Is preferred. Of these, aluminum, copper, iron and the like are preferable. In order to reduce the coefficient of friction, a lubricating film that does not contaminate the resin foam, such as fluorine coating, can be formed on the inner surface of the cylindrical molding tool.

図1(b)に示すように、このような円筒状成形具mの一端の開口からローラ材10を挿入する。この際、ローラ材10の弾性層12の外径は、円筒状成形具mの内径よりも大きいため、弾性層12を径方向中心に向けて圧縮させながら挿入する。弾性層の圧縮率(%)は、挿入前のローラ材10の弾性層12の厚さをRとし、挿入後の圧縮された弾性層12の厚さをrとするとき{(R−r)/R}×100として表されるものであり、好適な圧縮率は、5〜50%程度とすることが好ましい。圧縮率が下限値よりも大きいことにより、弾性層の表面近傍のセル密度を高くし、OAローラ表面でトナー詰まり等を抑制することができる。圧縮率が上限値よりも小さいことにより、過度の圧縮を防止して、弾性層の弾性が損なわれることを防ぐことができる。   As shown in FIG.1 (b), the roller material 10 is inserted from the opening of one end of such a cylindrical shaping | molding tool m. At this time, since the outer diameter of the elastic layer 12 of the roller material 10 is larger than the inner diameter of the cylindrical forming tool m, the elastic layer 12 is inserted while being compressed toward the radial center. The compression rate (%) of the elastic layer is determined when R is the thickness of the elastic layer 12 of the roller material 10 before insertion, and r is the thickness of the compressed elastic layer 12 after insertion {(R−r). / R} × 100, and a preferable compression ratio is preferably about 5 to 50%. When the compression rate is larger than the lower limit, the cell density near the surface of the elastic layer can be increased, and toner clogging or the like can be suppressed on the surface of the OA roller. When the compression ratio is smaller than the upper limit value, excessive compression can be prevented and the elasticity of the elastic layer can be prevented from being impaired.

ローラ材11を円筒状成形具mに挿入するための手段は、特に限定されない。適切な挿入装置を用いてもよいし、また人力により挿入してもよい。なお、ローラ材11を円筒状成形具mに対して捩じりながら挿入するのは避けることが好ましい。   The means for inserting the roller material 11 into the cylindrical forming tool m is not particularly limited. An appropriate insertion device may be used, or it may be inserted manually. It is preferable to avoid inserting the roller material 11 while twisting it with respect to the cylindrical forming tool m.

挿入直後の円筒状成形具mの外観を図1(c)に示す。また、このときの円筒状成形具m内に挿入されたローラ材11の弾性層12の先端側の端部近傍及び後端側の端部近傍の形状を模式的に図2に示す。弾性層12は、径方向に圧縮されるばかりでなく、円筒状成形具m内に圧縮されながら挿入されるので、シャフト11の軸方向に変形し、先端側の端部はコーン形に膨らみ、後端側の端部はカップ形に窪む形状となる。この形状のままで後工程の加熱を行うと、発泡体のセルは、図3に弾性層12のシャフト軸方向に平行な方向における中央部において、弾性層12表面からシャフト11に向かう半径方向断面における発泡体セル形状の顕微鏡写真を示すように、弾性層12の半径方向ばかりでなく、シャフト11の軸方向に歪が加わって、発泡体セルが図の斜め方向に変形している。   The appearance of the cylindrical forming tool m immediately after insertion is shown in FIG. Moreover, the shape of the vicinity of the end part of the elastic layer 12 of the roller material 11 inserted in the cylindrical forming tool m at this time and the vicinity of the end part of the rear end side are schematically shown in FIG. The elastic layer 12 is not only compressed in the radial direction but also inserted while being compressed into the cylindrical forming tool m, so that it deforms in the axial direction of the shaft 11 and the end on the tip side swells in a cone shape, The end on the rear end side is recessed in a cup shape. When the subsequent heating is performed in this shape, the foam cell has a radial cross section from the surface of the elastic layer 12 toward the shaft 11 in the central portion in the direction parallel to the shaft axis direction of the elastic layer 12 in FIG. As shown in the micrograph of the foam cell shape in FIG. 1, not only the radial direction of the elastic layer 12 but also the axial direction of the shaft 11 is distorted, and the foam cell is deformed in the oblique direction of the figure.

そこで、本発明の製造方法の実施形態では、円筒状成形具m内のローラ材10の弾性層12に生じたシャフト軸方向の歪を除去するように、シャフト11を挿入方向とは逆方向に移動させる。移動後の円筒状成形具mの外観を図1(d)に示す。また、このときの円筒状成形具m内に挿入されたローラ材11の弾性層12の先端側の端部近傍及び後端側の端部近傍の形状を模式的に図4に示す。図4から分かるように、弾性層12は、先端側の端部及び後端側の端部のいずれも、ほぼ平坦な形状となる。この形状を維持して後工程の加熱を行うと、発泡体のセルは、図5に弾性層12のシャフト軸方向に平行な方向における中央部において、弾性層12表面からシャフト11に向かう半径方向断面における発泡体セル形状の顕微鏡写真を示すように、発泡体セルはシャフト11の軸方向に歪が除去されて、半径方向に変形している。   Therefore, in the embodiment of the manufacturing method of the present invention, the shaft 11 is moved in the direction opposite to the insertion direction so as to remove the distortion in the shaft axial direction generated in the elastic layer 12 of the roller material 10 in the cylindrical forming tool m. Move. The appearance of the cylindrical forming tool m after movement is shown in FIG. Moreover, the shape of the vicinity of the end part of the elastic layer 12 of the roller material 11 inserted in the cylindrical forming tool m at this time and the vicinity of the end part of the rear end side are schematically shown in FIG. As can be seen from FIG. 4, the elastic layer 12 has a substantially flat shape at both the end on the front end side and the end on the rear end side. When heating is performed in the subsequent process while maintaining this shape, the foam cell is in the radial direction from the surface of the elastic layer 12 toward the shaft 11 in the central portion of the elastic layer 12 in the direction parallel to the axial direction of the shaft in FIG. As shown in the micrograph of the foam cell shape in the cross section, the foam cell is deformed in the radial direction with strain removed in the axial direction of the shaft 11.

本実施形態の製造方法は、上述のように円筒状成形具m内のローラ材10の弾性層12に生じたシャフト軸方向の歪を除去するように、シャフト11を挿入方向とは逆方向に移動させることから、得られたOAローラは、弾性層を構成する発泡体のセルにローラのシャフト軸方向の歪が解消される。そのため、OAローラによって搬送されるトナー等の詰まりを防止することでき、また、弾性層の長さ方向で歪の大きさがローラの長さ方向に変動することもないので、OA機器にOAローラを組み込んだ場合に良好な画像形成特性が得られる。   In the manufacturing method of the present embodiment, the shaft 11 is placed in the direction opposite to the insertion direction so as to remove the distortion in the shaft axial direction generated in the elastic layer 12 of the roller material 10 in the cylindrical forming tool m as described above. Since the obtained OA roller is moved, the distortion in the shaft axial direction of the roller is eliminated in the foam cell constituting the elastic layer. Therefore, clogging of toner or the like conveyed by the OA roller can be prevented, and the magnitude of strain does not vary in the length direction of the elastic layer. Good image forming characteristics can be obtained when the is incorporated.

シャフト11を挿入方向とは逆方向に移動させる量は、円筒状成形具m内のローラ材10の弾性層12に生じたシャフト11軸方向の歪み量により定められる量、より具体的には、当該歪み量と同じ量又は実質的に同じ量とすることが好ましい。実質的に同じ量とは、歪み量±1mm以内の量のことをいう。シャフト11の移動量を、このような歪み量により定められる量とすることにより、弾性層12に生じたシャフト軸方向の歪を、より効果的に除去することができる。シャフト11の好ましい移動量の具体的範囲は、2〜10mmであり、より好ましい範囲は、2〜4mmである。   The amount by which the shaft 11 is moved in the direction opposite to the insertion direction is an amount determined by the amount of strain in the axial direction of the shaft 11 generated in the elastic layer 12 of the roller material 10 in the cylindrical forming tool m, more specifically, The amount is preferably the same or substantially the same as the amount of distortion. “Substantially the same amount” means an amount within ± 1 mm of distortion. By setting the movement amount of the shaft 11 to an amount determined by such a strain amount, the strain in the shaft axis direction generated in the elastic layer 12 can be more effectively removed. A specific range of a preferable moving amount of the shaft 11 is 2 to 10 mm, and a more preferable range is 2 to 4 mm.

円筒状成形具m内のローラ材10の弾性層12に生じたシャフト11軸方向の歪み量は、次のようにして測定することができる。図6に示す、当該歪み量の測定方法の一例の説明図において、まず、ナイフkを用いて、ローラ材10の弾性層12の表面から中心に向かう半径方向の切り込みcを、シャフト11の軸方向に沿って形成する(図6(a))。この切り込みcは、図示した例ではローラ材11の弾性層12の先端側の端部近傍、後端側の端部近傍及び軸方向中央部近傍の合計3か所に形成されているが、3か所である場合に限定されない。なお、図6(a)に示したローラ材10は、本発明の理解を容易にするために模式的に描かれており、ローラ材の寸法形状、切り込みcのサイズは、図示した例に限定されるものではない。   The amount of strain in the axial direction of the shaft 11 generated in the elastic layer 12 of the roller material 10 in the cylindrical forming tool m can be measured as follows. In the explanatory view of an example of the measurement method of the distortion amount shown in FIG. 6, first, using a knife k, a radial cut c from the surface of the elastic layer 12 of the roller material 10 toward the center is formed on the axis of the shaft 11. It forms along a direction (Fig.6 (a)). In the illustrated example, the cuts c are formed at a total of three locations in the vicinity of the end portion on the front end side of the elastic layer 12 of the roller material 11, the vicinity of the end portion on the rear end side, and the vicinity of the central portion in the axial direction. It is not limited to a place. Note that the roller material 10 shown in FIG. 6A is schematically drawn for easy understanding of the present invention, and the dimensional shape of the roller material and the size of the notch c are limited to the illustrated example. Is not to be done.

次に、図6(b)に弾性層12の切り込みcの1つについての、当該弾性層12の半径方向断面を示すように、切り込みc内に、シャフト11の軸方向に対して垂直な方向の直線Lを描く。この直線Lを描く手段は特に限定されないが、本発明の製造方法において実施される加熱工程で直線Lが消えないような手段とする。例えば油性インクのペンを用いることができる。   Next, a direction perpendicular to the axial direction of the shaft 11 in the notch c is shown in FIG. 6B, so that one of the notches c in the elastic layer 12 shows a radial section of the elastic layer 12. A straight line L is drawn. The means for drawing the straight line L is not particularly limited, but means for preventing the straight line L from disappearing in the heating step performed in the manufacturing method of the present invention. For example, an oil-based ink pen can be used.

次に、直線Lが描かれた切り込みcを弾性層12に有するローラ材10を、円筒状成形具mに挿入する。挿入後は、ローラ材10のシャフト11を、挿入方向とは逆方向に移動させないで、又は所定量で移動させて、ローラ材10を円筒状成形具mと共に加熱する。   Next, the roller material 10 having the cut c in which the straight line L is drawn in the elastic layer 12 is inserted into the cylindrical forming tool m. After the insertion, the roller material 10 is heated together with the cylindrical forming tool m without moving the shaft 11 of the roller material 10 in a direction opposite to the insertion direction or by a predetermined amount.

加熱後はローラ材10を円筒状成形具mから取り外す。得られたローラの弾性層2に形成されている切り込みcの1つについての、当該弾性層2の半径方向断面を、ローラ材10のシャフト11を、挿入方向とは逆方向に移動させなかった場合について図6(c)に示す。この図6(c)から分かるように、ローラ材10のシャフト11を、挿入方向とは逆方向に移動させなかった場合には、弾性層2はシャフト軸方向に歪み、この歪みにより切り込みcに描かれた直線Lは、シャフト11の軸方向に対して垂直な方向に対して傾斜している。このような直線Lのシャフト軸方向の変位量dを、弾性層2の先端側の端部近傍、後端側の端部近傍及び軸方向中央部近傍の合計3か所の切り込みでそれぞれ測定する。測定された値の平均値を、円筒状成形具m内にローラ材10を挿入したときの当該ローラ材10の弾性層12に生じたシャフト11軸方向の歪み量とする。このようにして、円筒状成形具m内のローラ材10の弾性層12に生じたシャフト11軸方向の歪み量を測定することができる。   After heating, the roller material 10 is removed from the cylindrical forming tool m. For one of the cuts c formed in the elastic layer 2 of the obtained roller, the radial section of the elastic layer 2 was not moved in the direction opposite to the insertion direction of the shaft 11 of the roller material 10. The case is shown in FIG. As can be seen from FIG. 6C, when the shaft 11 of the roller material 10 is not moved in the direction opposite to the insertion direction, the elastic layer 2 is distorted in the axial direction of the shaft. The drawn straight line L is inclined with respect to a direction perpendicular to the axial direction of the shaft 11. The displacement d in the shaft axial direction of the straight line L is measured by a total of three incisions in the vicinity of the end portion on the front end side, in the vicinity of the end portion on the rear end side and in the vicinity of the central portion in the axial direction. . The average value of the measured values is defined as the amount of strain in the axial direction of the shaft 11 generated in the elastic layer 12 of the roller material 10 when the roller material 10 is inserted into the cylindrical forming tool m. In this way, the amount of strain in the axial direction of the shaft 11 generated in the elastic layer 12 of the roller material 10 in the cylindrical forming tool m can be measured.

そして、測定に用いたのと寸法、材料が同じローラ材を、同じ寸法、材料の円筒状成形具mを用いて本発明に従ってOAローラを製造する際は、シャフトを挿入方向とは逆方向に移動させる工程において、シャフトの移動量を、上述した、ローラ材10のシャフト11を、挿入方向とは逆方向に移動させなかった場合における、測定された歪み量と同じ又は実質的に同じ量とすることができる。これによりローラ材の弾性層に生じたシャフト軸方向の歪を効果的に除去することができる。   When an OA roller is manufactured according to the present invention using a cylindrical molding tool m having the same size and material as that of the same size and material as that used for the measurement, the shaft is set in the direction opposite to the insertion direction. In the moving step, the movement amount of the shaft is the same as or substantially the same as the measured distortion amount when the shaft 11 of the roller material 10 described above is not moved in the direction opposite to the insertion direction. can do. Thereby, the distortion of the shaft axial direction which arose in the elastic layer of roller material can be removed effectively.

次に図1(e)に示すように、ローラ材を円筒状成形具mと共に加熱する。加熱手段は、特に限定されない。図1(e)では、既存の加熱装置tを用いている。また、加熱温度、加熱時間も特に限定されない。もっとも、ローラ材10の弾性層12表面に生じていたケバ立ちを防止するためには、当該ケバ立ちを防止し得る加熱温度、加熱時間の条件があるので、その条件にしたがって加熱すればよい。加熱条件の一例として、弾性層12の樹脂発泡体がウレタンフォームである場合に、150℃以上、60分以上加熱することにより、ケバ立ちを防止することができる。より好ましい温度範囲は150℃以上250℃以下である。加熱時間は、あまりに長くしてもケバ立ち防止の効果が飽和するので、省エネルギーの観点から240分以下とすることが好ましい。   Next, as shown in FIG. 1E, the roller material is heated together with the cylindrical forming tool m. The heating means is not particularly limited. In FIG.1 (e), the existing heating apparatus t is used. Further, the heating temperature and the heating time are not particularly limited. However, since there are heating temperature and heating time conditions that can prevent the flaking from occurring in order to prevent the flaking from occurring on the surface of the elastic layer 12 of the roller material 10, heating may be performed according to the conditions. As an example of the heating condition, when the resin foam of the elastic layer 12 is urethane foam, it is possible to prevent fluffing by heating at 150 ° C. or more for 60 minutes or more. A more preferable temperature range is 150 ° C. or higher and 250 ° C. or lower. The heating time is preferably set to 240 minutes or less from the viewpoint of energy saving, since the effect of preventing flashing is saturated even if the heating time is too long.

上記加熱後は、円筒状成形具m内のローラ材10は、その弾性層の表面のセル密度が高く、ケバ立ちのない、平滑な表面が得られている。したがって、円筒状成形具mからローラ材10を取り外すことにより、弾性層に対して別途に減径加工を施すことなく最終の外径の弾性層を有するOAローラが得られる(図1(f))。この加熱後に、ローラ材10の温度が高い状態でローラ材10を取り外すと、弾性層の外径が所望の径よりも大きくなる場合があり、また、円筒状成形具mから取り外す際にシャフト軸方向の歪が弾性層に加わるおそれがある。したがって、ローラ材10は充分に降温させてから取り外すことが好ましく、例えば、50℃〜室温程度まで降温させてから、取り外すことが好ましい。この降温は、大気中放冷でもよいし、加熱装置内で緩冷してもよいし、また、処理時間短縮のために冷却装置を用いて冷却してもよい。   After the heating, the roller material 10 in the cylindrical forming tool m has a high cell density on the surface of the elastic layer, and a smooth surface free from flaking is obtained. Therefore, by removing the roller material 10 from the cylindrical forming tool m, an OA roller having an elastic layer having a final outer diameter can be obtained without separately reducing the diameter of the elastic layer (FIG. 1 (f)). ). After the heating, if the roller material 10 is removed while the temperature of the roller material 10 is high, the outer diameter of the elastic layer may be larger than the desired diameter, and the shaft shaft may be removed when the roller material 10 is removed from the cylindrical forming tool m. Directional strain may be applied to the elastic layer. Therefore, it is preferable to remove the roller material 10 after sufficiently lowering the temperature. For example, it is preferable to remove the roller material 10 after lowering the temperature to about 50 ° C. to about room temperature. This temperature drop may be allowed to cool in the atmosphere, may be slowly cooled in the heating device, or may be cooled using a cooling device in order to shorten the processing time.

次に、本発明の別の実施形態について説明する。本実施形態は、図1(a)〜(f)を用いて説明した上記実施形態の要件を全て含み、かつ、図7に示すように、加熱工程の前にローラ材10のシャフト11の少なくとも一端を保持部材hにより保持し、この保持した状態でローラ材10を円筒状成形具mと共に加熱する。保持部材hは、円筒状成形具mと同心でシャフト11を挿通可能な貫通孔(図に表れず)を有しており、この保持部材hを円筒状成形具の少なくとも一端に、より好ましくは両端に、円筒状成形具mと同心に取り付け、このシャフト11の貫通孔にシャフト11の一端を挿入させて保持する。保持部材hの材料は、特に限定されず、耐熱性のある樹脂や金属を用いることができる。保持部材hの取り付けは、加熱前であれば、ローラ材10を円筒状成形具m内に挿入するとき(図1(b)参照)でもよいし、シャフト11を挿入方向とは逆方向に移動させるとき(図1(c)参照)でもよいし、加熱直前(図1(d))でもよい。   Next, another embodiment of the present invention will be described. This embodiment includes all the requirements of the above-described embodiment described with reference to FIGS. 1A to 1F, and as shown in FIG. 7, at least the shaft 11 of the roller material 10 before the heating step is included. One end is held by the holding member h, and the roller material 10 is heated together with the cylindrical forming tool m in this held state. The holding member h has a through-hole (not shown in the figure) that is concentric with the cylindrical forming tool m and allows the shaft 11 to be inserted. More preferably, the holding member h is at least one end of the cylindrical forming tool. At both ends, it is attached concentrically with the cylindrical forming tool m, and one end of the shaft 11 is inserted into the through hole of the shaft 11 and held. The material of the holding member h is not particularly limited, and heat-resistant resin or metal can be used. The holding member h may be attached when the roller material 10 is inserted into the cylindrical forming tool m (see FIG. 1B), or the shaft 11 is moved in the direction opposite to the insertion direction, if it is before heating. (See FIG. 1C) or just before heating (FIG. 1D).

保持部材hによりシャフト11の少なくとも一端を保持することより、シャフト11を円筒状成形具mの内径中心に位置させ、その位置で固定することができる。したがって、ローラ材10を円筒状成形具m内に挿入するときに(図1(b)参照)、シャフト11が円筒状成形具の内径中心に位置していなかった場合でも、保持部材hを用いることにより、シャフト11が円筒状成形具の内径中心に位置させることができる。つまり、保持部材hにより、円筒状成形具mとシャフト11との位置決めをすることができる。更に、保持部材hを円筒状成形具mの両端に取り付けることにより、シャフト11の軸方向の位置決めもすることができる。   By holding at least one end of the shaft 11 by the holding member h, the shaft 11 can be positioned at the center of the inner diameter of the cylindrical forming tool m and fixed at that position. Therefore, when the roller material 10 is inserted into the cylindrical forming tool m (see FIG. 1B), the holding member h is used even when the shaft 11 is not positioned at the center of the inner diameter of the cylindrical forming tool. Thus, the shaft 11 can be positioned at the center of the inner diameter of the cylindrical forming tool. In other words, the cylindrical molding tool m and the shaft 11 can be positioned by the holding member h. Furthermore, the shaft 11 can be positioned in the axial direction by attaching the holding member h to both ends of the cylindrical forming tool m.

また、シャフト11を挿入方向とは逆方向に移動させるときに、保持部材hを用いることにより、シャフト軸方向に生じる歪の大きさが、シャフトの周方向で変動することがないので、弾性層の歪の解消を、弾性層の全体にわたって均質に行うことができ、より均質な弾性層を有するOAローラを得ることができる。更に、加熱時に保持部材hを用いてシャフト11を保持することにより、その後に得られたOAローラは、シャフト11が弾性層12の回転中心に位置している。したがって、OAローラ使用時に弾性層厚さの変動がなく、良好な画像形成特性が得られる。   Further, when the shaft 11 is moved in the direction opposite to the insertion direction, the use of the holding member h prevents the magnitude of strain generated in the shaft axial direction from fluctuating in the circumferential direction of the shaft. This strain can be uniformly removed over the entire elastic layer, and an OA roller having a more uniform elastic layer can be obtained. Furthermore, the shaft 11 is positioned at the center of rotation of the elastic layer 12 in the OA roller obtained by holding the shaft 11 using the holding member h during heating. Therefore, there is no fluctuation of the elastic layer thickness when using the OA roller, and good image forming characteristics can be obtained.

本発明の実施形態のOAローラは、本発明の実施形態の製造方法により得られたローラである(図1(f)参照)。シャフト11と、このシャフト11の外周に形成された樹脂発泡体よりなる円柱形状の弾性層2と、を備え、この弾性層2の表面近傍の樹脂発泡体のセルがローラの径方向に圧縮変形され、シャフト11の軸方向の歪が除去された形状を有している。樹脂発泡体のセルがローラの径方向に圧縮変形されているから、弾性層2の表面は平滑で、かつ表面のセル密度(表面から1mmの部分で測定)が、内部のセル密度よりも大きい(例えば1.05倍〜3.00倍)。また、円筒状成形具mと共に加熱されることから、弾性層2の表面のケバ立ちが抑制されている。更に、樹脂発泡体のセルは、シャフト11の軸方向の歪が除去されているため、トナー等を安定供給、搬送することができ、トナー等の詰まりを抑制することができ、良好で均質な画像形成特性を得ることができる。なお、本発明のOAローラの用途は、トナー供給ローラに限られず、転写ローラやクリーニングローラ等の各種のローラにも用いることができる。   The OA roller according to the embodiment of the present invention is a roller obtained by the manufacturing method according to the embodiment of the present invention (see FIG. 1 (f)). A shaft 11 and a cylindrical elastic layer 2 made of a resin foam formed on the outer periphery of the shaft 11 are provided, and a cell of the resin foam near the surface of the elastic layer 2 is compressed and deformed in the radial direction of the roller. Thus, the shaft 11 has a shape in which the axial distortion is removed. Since the cell of the resin foam is compressed and deformed in the radial direction of the roller, the surface of the elastic layer 2 is smooth and the cell density on the surface (measured at 1 mm from the surface) is larger than the internal cell density. (For example, 1.05 times to 3.00 times). Moreover, since it heats with the cylindrical shaping | molding tool m, the flaking of the surface of the elastic layer 2 is suppressed. Further, since the resin foam cell is free from distortion in the axial direction of the shaft 11, it can stably supply and transport toner and the like, and can suppress clogging of toner and the like. Image forming characteristics can be obtained. The use of the OA roller of the present invention is not limited to the toner supply roller, and can be used for various rollers such as a transfer roller and a cleaning roller.

本発明のOAローラの製造方法及びOAローラは、上述した実施の形態及び後述する実施例に基づき、本発明の趣旨を逸脱しない範囲内で幾多の変形が可能である。例えば、本発明における弾性層に好適な材料は、特に限定されないが、例えば、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリビニルアルコール、ビスコース、アイオノマー等の熱可塑性フォーム又はウレタン、ラバーフォーム、エポキシ、フェノールユリア、ピラニル、シリコーン、アクリル等の熱硬化性フォームが挙げられるが、特にウレタンが好ましい。また、弾性層のセル形態は、単泡、連泡等の何れの形態でも使用可能だが、連泡の方が温度による寸法変化が少ないので好ましい。   The OA roller manufacturing method and the OA roller of the present invention can be modified in various ways within the scope of the present invention based on the above-described embodiment and examples described later. For example, a material suitable for the elastic layer in the present invention is not particularly limited. For example, thermoplastic foam such as polyethylene, polyvinyl chloride, polystyrene, polyvinyl alcohol, viscose, ionomer, or urethane, rubber foam, epoxy, phenol urea. And thermosetting foams such as pyranyl, silicone, and acrylic, and urethane is particularly preferable. The cell form of the elastic layer can be used in any form such as single foam, open foam, etc., however, open foam is preferable because the dimensional change due to temperature is small.

また、弾性層の材料がウレタンである場合、ポリオールとしては、特に限定されず、疎水性及び親水性のいかなるポリオールでも使用できる。イソシアネートとしては、特に限定されず、公知のものが使用できる。   Moreover, when the material of the elastic layer is urethane, the polyol is not particularly limited, and any hydrophobic or hydrophilic polyol can be used. It does not specifically limit as isocyanate, A well-known thing can be used.

弾性層は、導電性を有する材料からなる構成とすることもできる。導電性を付与するための導電性材料としては、まず粉体として例示すれば、ケッチェンブラックEC、アセチレンブラック等の導電性カーボン、SAF、ISAF、HAF、FEF、GPF、SRF、FT、MT等のゴム用カーボン、酸化処理等を施したカラー(インク)用カーボン、熱分解カーボン、天然グラファイト、人造グラファイト、アンチモンドープの酸化錫、酸化チタン、酸化亜鉛、ニッケル、銅、銀、ゲルマニウム等の金属及び金属酸化物、ポリアニリン、ポリピロール、ポリアセチレン等の導電性ポリマー等が挙げられる。この中で、価格が安く、少量で導電性を制御し易いものは、カーボンブラックである。通常は、これらの導電性材料の配合量は、ウレタン100重量部に対して0.5〜50重量部、特に1〜30重量部の範囲で好適に用いられる。   The elastic layer can also be made of a conductive material. Examples of conductive materials for imparting conductivity include conductive carbon such as ketjen black EC and acetylene black, SAF, ISAF, HAF, FEF, GPF, SRF, FT, MT, etc. Carbon for rubber, carbon for color (ink) subjected to oxidation treatment, pyrolytic carbon, natural graphite, artificial graphite, antimony-doped tin oxide, titanium oxide, zinc oxide, nickel, copper, silver, germanium, etc. And conductive polymers such as metal oxides, polyaniline, polypyrrole, and polyacetylene. Among these, carbon black is inexpensive and easy to control conductivity with a small amount. Usually, the compounding amount of these conductive materials is suitably used in the range of 0.5 to 50 parts by weight, particularly 1 to 30 parts by weight with respect to 100 parts by weight of urethane.

イオン導電性物質を例示すれば、過塩素酸ナトリウム、過塩素酸リチウム、過塩素酸カルシウム、塩化リチウム等の無機イオン性導電物質、更にトリデシルメチルジヒドロキシエチルアンモニウムパークロレート、ラウリルトリメチルアンモニウムパークロレート、変性脂肪族・ジメチルエチルアンモニウムエトサルフェート、N,N−ビス(2−ヒドロキシエチル)−N−(3′−ドデシロキシ−2′−ヒドロキシプロピル)メチルアンモニウムエトサルフェート、3−ラウルアミドプロピル−トエイメチルアンモニウムメチルサルフェート、ステアルアミドプロピルジメチル−β−ヒドロキシエチル−アンモニウム−ジハイドロジェンフォスフェート、テトラブチルアンモニウムホウフッ酸塩、ステアリルアンモニウムアセテート、ラウリルアンモニウムアセテート等の第4級アンモニウムの過塩素酸塩、硫酸塩、エトサルフェート塩、メチルサルフェート塩、リン酸塩、ホウフッ化水素酸塩、アセテート等の有機イオン性導電物質或は電荷移動錯体が例示される。通常は、これらの導電性材料の配合量は、ウレタン100重量部に対して0.0001〜50重量部の範囲で好適に用いられる。   Examples of ionic conductive substances include inorganic ionic conductive substances such as sodium perchlorate, lithium perchlorate, calcium perchlorate, lithium chloride, tridecylmethyldihydroxyethylammonium perchlorate, lauryltrimethylammonium perchlorate, Modified Aliphatic Dimethylethylammonium Ethosulphate, N, N-Bis (2-hydroxyethyl) -N- (3′-dodecyloxy-2′-hydroxypropyl) methylammonium etosulphate, 3-Lauramidopropyl-Toeimethylammonium Methyl sulfate, stearamidopropyldimethyl-β-hydroxyethyl-ammonium dihydrogen phosphate, tetrabutylammonium borofluoride, stearylammonium acetate, laur Organic ionic conductive materials or charge transfer complexes such as quaternary ammonium perchlorates such as ruammonium acetate, sulfate, ethosulphate, methyl sulfate, phosphate, borofluoride, acetate Illustrated. Usually, the blending amount of these conductive materials is suitably used in the range of 0.0001 to 50 parts by weight with respect to 100 parts by weight of urethane.

(実施例1〜3)
金属製の中実形状のシャフト(長さ250mm、直径6mm)の外周に、樹脂発泡体としてウレタンフォームよりなる弾性層を、外径15mm、長さ220mmの円柱形状に取り付け固定してなるローラ材を用意した。この弾性層のウレタンフォームは、材質がエステル系、平均セル径が270μm、硬度が80Ask−Fであった。
(Examples 1-3)
Roller material in which an elastic layer made of urethane foam as a resin foam is attached and fixed to a cylindrical shape with an outer diameter of 15 mm and a length of 220 mm on the outer periphery of a metal solid shaft (length: 250 mm, diameter: 6 mm) Prepared. The urethane foam of this elastic layer was made of ester, the average cell diameter was 270 μm, and the hardness was 80 Ask-F.

また、円筒状成形具として金属パイプ(SUS304、内径14.1mm、厚さ1.5mm)を用意した。この金属パイプの一端から上記のローラ材を金属パイプ内に挿入した。ローラ材の弾性層の圧縮率は11%であった。   Moreover, a metal pipe (SUS304, inner diameter 14.1 mm, thickness 1.5 mm) was prepared as a cylindrical forming tool. The roller material was inserted into the metal pipe from one end of the metal pipe. The compression ratio of the elastic layer of the roller material was 11%.

次に、金属パイプに挿入されたローラ材のシャフトを、上記挿入の方向とは逆方向に移動させた。この移動量は、比較例1として移動量が0mmの場合に円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪み量である2.0mmに基づいて、実施例1では2mm、実施例2では4mm、実施例3では10mmとした。   Next, the shaft of the roller material inserted into the metal pipe was moved in the direction opposite to the insertion direction. This amount of movement is 2 mm in Example 1 based on 2.0 mm which is the amount of distortion in the axial direction of the shaft generated in the elastic layer of the roller material in the cylindrical molding tool when the amount of movement is 0 mm as Comparative Example 1. In Example 2, the thickness was 4 mm, and in Example 3, the thickness was 10 mm.

これらの実施例1〜3及び比較例1のローラ材が挿入された金属パイプの両端に、図7に示した保持部材を取りつけることにより、これらのローラ材のシャフトの両端が保持部材で保持された状態で、実施例1〜3及び比較例1の各ローラ材を金属パイプと共に、加熱装置により150℃、60分加熱した。加熱後は常温まで降温させてから、ローラ材を金属パイプから取り外した。   By attaching the holding members shown in FIG. 7 to both ends of the metal pipe into which the roller materials of Examples 1 to 3 and Comparative Example 1 are inserted, both ends of the shafts of these roller materials are held by the holding members. In this state, each roller material of Examples 1 to 3 and Comparative Example 1 was heated together with the metal pipe by a heating device at 150 ° C. for 60 minutes. After heating, the temperature was lowered to room temperature, and then the roller material was removed from the metal pipe.

かくして得られた実施例1〜3及び比較例1のOAローラは、外径が14mmであった。これらのOAローラの弾性層におけるシャフト軸方向の歪量及びセルの歪を測定し、また、セルの歪を評価した。その結果を表1に示す。なお、表1において、セルの歪については、弾性層の表面からシャフトに向かう半径方向断面におけるセル形状を顕微鏡により観察して、セルの歪が見られない場合を○印、セル径の長辺と短辺の比が2以下の歪が見られる場合を△印、セル径の長辺と短辺の比が2を超える歪が見られる場合を×印で評価した。   The OA rollers of Examples 1 to 3 and Comparative Example 1 thus obtained had an outer diameter of 14 mm. The strain amount in the axial direction of the shaft and the strain of the cell in the elastic layer of these OA rollers were measured, and the strain of the cell was evaluated. The results are shown in Table 1. In Table 1, regarding the cell strain, the cell shape in the radial cross section from the surface of the elastic layer toward the shaft is observed with a microscope. The case where a strain with a ratio of the short side of 2 or less was observed was evaluated by Δ, and the case of a strain with a ratio of the long side to the short side of the cell diameter exceeding 2 was evaluated by a mark x.

Figure 0005638626
Figure 0005638626

表1から、OAローラの製造過程で金属パイプ内に挿入されたローラ材のシャフトを、挿入の方向とは逆方向に移動させなかった比較例1は、OAローラの弾性層のシャフト軸方向の歪量(平均値)が2.0mmであり、セルの歪については×印の評価であったのに対して、金属パイプ内に挿入されたローラ材のシャフトを、挿入の方向とは逆方向にそれぞれ2mm、4mm及び10mm移動させた実施例1、2及び3は、比較例1に比べてシャフト軸方向の歪量が小さく、かつ、セルの歪も小さかった。なお、表1において、実施例3のシャフト軸方向の歪量がマイナスの値になっているのは、挿入の方向とは逆方向の移動量が大きかったために、挿入時の向きとは逆向きに歪が導入されたことを示している。もっとも、この実施例3の逆向きに導入された歪の量は、比較例1の歪の量よりも小さかった。実施例1〜3のなかでは、比較例1のシャフト軸方向の歪量と同じ又は近似した移動量とした実施例1及び実施例2が、実施例3に比べてシャフト軸方向の歪量が小さく、かつ、セルの歪も小さかった。   From Table 1, Comparative Example 1 in which the shaft of the roller material inserted into the metal pipe in the manufacturing process of the OA roller was not moved in the direction opposite to the direction of insertion was obtained in the shaft axial direction of the elastic layer of the OA roller. The strain amount (average value) was 2.0 mm, and the cell strain was evaluated as x, whereas the roller material shaft inserted in the metal pipe was in the direction opposite to the insertion direction. In Examples 1, 2 and 3, which were moved by 2 mm, 4 mm and 10 mm respectively, the strain amount in the shaft axial direction was smaller than that of Comparative Example 1, and the strain of the cell was also smaller. In Table 1, the amount of strain in the shaft axis direction of Example 3 has a negative value because the amount of movement in the direction opposite to the direction of insertion is large, which is opposite to the direction at the time of insertion. Shows that distortion has been introduced. However, the amount of strain introduced in the reverse direction of Example 3 was smaller than that of Comparative Example 1. Among Examples 1 to 3, Example 1 and Example 2 having the same or approximate amount of movement as the amount of strain in the shaft axial direction of Comparative Example 1 have a larger amount of distortion in the shaft axial direction than Example 3. The cell distortion was also small.

(実施例4及び比較例2)
ローラ材の弾性体の外径を18mmとした以外は実施例1及び比較例1と同じ寸法、材料のローラ材を用意した。また、円筒状成形具として実施例1及び比較例1と同じ寸法、材料の金属パイプを用意した。この金属パイプの一端から上記のローラ材を金属パイプ内に挿入した。ローラ材の弾性層の圧縮率は33%であった。
次に、金属パイプ内に挿入されたローラ材のシャフトを、上記挿入の方向とは逆方向に移動させた。実施例4の移動量は、比較例2として移動量が0mmの場合に円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪み量である2.7mmに基づいて、3mmとした。
これらの実施例4及び比較例2の各ローラ材を、実施例1と同様に保持部材により保持された状態で、実施例1と同じ加熱条件で加熱した。加熱後は実施例1と同様に常温まで降温させてから、ローラ材を金属パイプから取り外した。
(Example 4 and Comparative Example 2)
A roller material having the same dimensions and materials as those of Example 1 and Comparative Example 1 was prepared except that the outer diameter of the elastic body of the roller material was 18 mm. Moreover, the metal pipe of the same dimension and material as Example 1 and Comparative Example 1 was prepared as a cylindrical shaping | molding tool. The roller material was inserted into the metal pipe from one end of the metal pipe. The compression ratio of the elastic layer of the roller material was 33%.
Next, the shaft of the roller material inserted into the metal pipe was moved in the direction opposite to the insertion direction. The amount of movement in Example 4 is 3 mm based on 2.7 mm, which is the amount of distortion in the shaft axis direction generated in the elastic layer of the roller material in the cylindrical molding tool when the amount of movement is 0 mm as Comparative Example 2. did.
Each roller material of Example 4 and Comparative Example 2 was heated under the same heating conditions as in Example 1 while being held by the holding member in the same manner as in Example 1. After heating, the temperature was lowered to room temperature as in Example 1, and then the roller material was removed from the metal pipe.

かくして得られた実施例4及び比較例2のOAローラは、外径が14mmであった。これらのOAローラの弾性層におけるシャフト軸方向の歪量及びセルの歪を測定し、また、セルの歪を評価した。その結果を表1に併記した。
表1から、OAローラの製造過程で金属パイプ内に挿入されたローラ材のシャフトを、挿入の方向とは逆方向に移動させなかった比較例2は、OAローラの弾性層のシャフト軸方向の歪量(平均値)が2.7mmであり、セルの歪については×印の評価であったのに対して、金属パイプ内に挿入されたローラ材のシャフトを、挿入の方向とは逆方向に比較例2のシャフト軸方向の歪量と同程度に移動させた実施例4は、比較例2に比べてシャフト軸方向の歪量が小さく、かつ、セルの歪も小さかった。
The OA rollers of Example 4 and Comparative Example 2 thus obtained had an outer diameter of 14 mm. The strain amount in the axial direction of the shaft and the strain of the cell in the elastic layer of these OA rollers were measured, and the strain of the cell was evaluated. The results are also shown in Table 1.
From Table 1, Comparative Example 2 in which the shaft of the roller material inserted into the metal pipe in the manufacturing process of the OA roller was not moved in the direction opposite to the direction of insertion was obtained in the shaft axial direction of the elastic layer of the OA roller. The strain amount (average value) was 2.7 mm, and the cell strain was evaluated as “x”, whereas the shaft of the roller material inserted into the metal pipe was reverse to the insertion direction. In Example 4, which was moved to the same extent as the amount of strain in the shaft axis direction of Comparative Example 2, the amount of strain in the shaft axis direction was smaller than that of Comparative Example 2, and the strain of the cell was also small.

(実施例5及び比較例3)
弾性層のウレタンフォームを、材質がエステル系、平均セル径が540μm、硬度が50Ask−Fのものを用いたこと以外は、実施例1及び比較例1と同じローラ材を用意した。また、円筒状成形具として実施例1及び比較例1と同じ寸法、材料の金属パイプを用意した。この金属パイプの一端から上記のローラ材を金属パイプ内に挿入した。ローラ材の弾性層の圧縮率は、実施例1と同様に11%であった。
次に、金属パイプ内に挿入されたローラ材のシャフトを、上記挿入の方向とは逆方向に移動させた。この実施例5の移動量は、比較例3として移動量が0mmの場合に円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪み量である3.0mmに基づいて、3mmとした。
これらの実施例5及び比較例3の各ローラ材を、実施例1と同様に保持部材により保持された状態で、実施例1と同じ加熱条件で加熱した。加熱後は実施例1と同様に常温まで降温させてから、ローラ材を金属パイプから取り外した。
(Example 5 and Comparative Example 3)
The same roller material as in Example 1 and Comparative Example 1 was prepared except that the urethane foam of the elastic layer was of an ester type, the average cell diameter was 540 μm, and the hardness was 50 Ask-F. Moreover, the metal pipe of the same dimension and material as Example 1 and Comparative Example 1 was prepared as a cylindrical shaping | molding tool. The roller material was inserted into the metal pipe from one end of the metal pipe. The compression rate of the elastic layer of the roller material was 11% as in Example 1.
Next, the shaft of the roller material inserted into the metal pipe was moved in the direction opposite to the insertion direction. The amount of movement in Example 5 is 3 mm based on 3.0 mm which is the amount of distortion in the shaft axial direction generated in the elastic layer of the roller material in the cylindrical molding tool when the amount of movement is 0 mm as Comparative Example 3. It was.
These roller materials of Example 5 and Comparative Example 3 were heated under the same heating conditions as in Example 1 while being held by the holding member in the same manner as in Example 1. After heating, the temperature was lowered to room temperature as in Example 1, and then the roller material was removed from the metal pipe.

かくして得られた実施例5及び比較例3のOAローラは、外径が14mmであった。これらのOAローラの弾性層におけるシャフト軸方向の歪量及びセルの歪を測定し、また、セルの歪を評価した。その結果を表1に併記した。
表1から、OAローラの製造過程で金属パイプ内に挿入されたローラ材のシャフトを、挿入の方向とは逆方向に移動させなかった比較例3は、OAローラの弾性層のシャフト軸方向の歪量(平均値)が3.0mmであり、セルの歪については×印の評価であったのに対して、金属パイプ内に挿入されたローラ材のシャフトを、挿入の方向とは逆方向に比較例3のシャフト軸方向の歪量と同じ量で移動させた実施例4は、比較例3に比べてシャフト軸方向の歪量が小さく、かつ、セルの歪も小さかった。
The OA rollers of Example 5 and Comparative Example 3 thus obtained had an outer diameter of 14 mm. The strain amount in the axial direction of the shaft and the strain of the cell in the elastic layer of these OA rollers were measured, and the strain of the cell was evaluated. The results are also shown in Table 1.
From Table 1, Comparative Example 3 in which the shaft of the roller material inserted into the metal pipe in the manufacturing process of the OA roller was not moved in the direction opposite to the direction of insertion was obtained in the axial direction of the elastic layer of the OA roller. The strain amount (average value) was 3.0 mm, and the cell strain was evaluated as x. On the other hand, the shaft of the roller material inserted in the metal pipe was opposite to the insertion direction. In Example 4, which was moved by the same amount as the amount of strain in the shaft axis direction of Comparative Example 3, the amount of strain in the shaft axis direction was smaller than that of Comparative Example 3, and the strain of the cell was also small.

(実施例6)
加熱前に、保持部材を用いてローラ材の両端部を保持しなかった以外は実施例1同様にしてOAローラを作製した。得られたOAローラの軸振れを、レーザー寸法測定器を用いて測定した。その結果を図8に実施例1との対比でグラフに示す。
保持部材を用いた実施例1に比べて、保持部材を用いなかった実施例6は、軸の振れが大きかった。また光学顕微鏡によるウレタンフォームのセルの観察によりシャフト軸方向の歪量は、0.5mmであり、実施例1よりも多かったが、上述の比較例1よりも少なかった。
(Example 6)
An OA roller was produced in the same manner as in Example 1 except that the holding member was not used to hold both ends of the roller material before heating. The shaft runout of the obtained OA roller was measured using a laser size measuring instrument. The results are shown in a graph in FIG. 8 in comparison with Example 1.
Compared to Example 1 using the holding member, Example 6 that did not use the holding member had a large shaft runout. Further, the amount of strain in the shaft axial direction was 0.5 mm as a result of observing urethane foam cells with an optical microscope, which was larger than that in Example 1, but smaller than that in Comparative Example 1 described above.

(実施例7)
加熱後に、降温過程の140℃の時に、ローラ材を円筒状成形具から取り外した以外は実施例1と同様にしてOAローラを製造した。得られたOAローラの外径を実施例1との対比で図9にグラフで示す。
実施例7のOAローラは、円筒状成形具から取り外した後にローラの弾性層で測定される外径が実施例1よりも増大していた。
(Example 7)
After heating, an OA roller was produced in the same manner as in Example 1 except that the roller material was removed from the cylindrical molding tool at 140 ° C. in the temperature lowering process. The outer diameter of the obtained OA roller is shown as a graph in FIG.
The outer diameter measured by the elastic layer of the roller after the OA roller of Example 7 was removed from the cylindrical forming tool was larger than that of Example 1.

1 OAローラ
2 弾性層
10 ローラ材
11 シャフト
12 弾性層
m 円筒状成形具
t 加熱装置
h 保持部材
DESCRIPTION OF SYMBOLS 1 OA roller 2 Elastic layer 10 Roller material 11 Shaft 12 Elastic layer m Cylindrical forming tool t Heating device h Holding member

Claims (5)

シャフトと、このシャフトの外周に形成された樹脂発泡体よりなる円柱形状の弾性層と、を有し、この弾性層が最終の外径よりも大きな外径を有しているローラ材を用意する工程と、
このローラ材の弾性層の外径よりも小さな内径を有する円筒状成形具内に、ローラ材の弾性層を圧縮させながら当該ローラ材を挿入する工程と、
この円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪を除去するようにシャフトを挿入方向とは逆方向に移動させる工程と、
ローラ材を円筒状成形具と共に加熱する工程と、
加熱後のローラ材を円筒状成形具から取り外すことで最終の外径の弾性層を有するローラを得る工程と
を備えることを特徴とするOAローラの製造方法。
A roller material having a shaft and a cylindrical elastic layer made of a resin foam formed on the outer periphery of the shaft, the elastic layer having an outer diameter larger than the final outer diameter is prepared. Process,
Inserting the roller material into the cylindrical molding tool having an inner diameter smaller than the outer diameter of the elastic layer of the roller material while compressing the elastic layer of the roller material;
A step of moving the shaft in the direction opposite to the insertion direction so as to remove the distortion in the shaft axial direction generated in the elastic layer of the roller material in the cylindrical molding tool;
Heating the roller material together with the cylindrical forming tool;
And a step of obtaining a roller having an elastic layer having a final outer diameter by removing the heated roller material from the cylindrical forming tool.
前記シャフトを挿入方向とは逆方向に移動させる工程は、ローラ材のシャフトを、円筒状成形具内のローラ材の弾性層に生じたシャフト軸方向の歪み量で定められる量で移動させることを特徴とする請求項1記載のOAローラの製造方法。   The step of moving the shaft in the direction opposite to the insertion direction is to move the shaft of the roller material by an amount determined by the amount of strain in the axial direction of the shaft generated in the elastic layer of the roller material in the cylindrical forming tool. The method for manufacturing an OA roller according to claim 1. 前記樹脂発泡体が、ウレタンフォームであることを特徴とする請求項1又は2記載のOAローラの製造方法。   The OA roller manufacturing method according to claim 1, wherein the resin foam is urethane foam. 前記加熱する工程の際に、ローラ材のシャフトの少なくとも一端を保持部材により保持することを特徴とする請求項1〜3記載のOAローラの製造方法。   The method for manufacturing an OA roller according to claim 1, wherein at least one end of the shaft of the roller material is held by a holding member during the heating step. 請求項1〜4のいずれか1項に記載の製造方法により製造されるOAローラであって、
シャフトと、このシャフトの外周に形成された樹脂発泡体よりなる円柱形状の弾性層と、を備え、この弾性層の表面近傍の樹脂発泡体のセルがローラの径方向に圧縮変形され、シャフトの軸方向の歪が除去された形状を有することを特徴とするOAローラ。
An OA roller manufactured by the manufacturing method according to any one of claims 1 to 4,
A cylindrical elastic layer made of a resin foam formed on the outer periphery of the shaft, and a cell of the resin foam in the vicinity of the surface of the elastic layer is compressed and deformed in the radial direction of the roller. An OA roller having a shape from which axial strain is removed.
JP2012548815A 2010-12-16 2011-12-14 OA roller manufacturing method and OA roller Active JP5638626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548815A JP5638626B2 (en) 2010-12-16 2011-12-14 OA roller manufacturing method and OA roller

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010280483 2010-12-16
JP2010280483 2010-12-16
PCT/JP2011/078929 WO2012081626A1 (en) 2010-12-16 2011-12-14 Method of manufacturing office automation roller and office automation roller
JP2012548815A JP5638626B2 (en) 2010-12-16 2011-12-14 OA roller manufacturing method and OA roller

Publications (2)

Publication Number Publication Date
JPWO2012081626A1 JPWO2012081626A1 (en) 2014-05-22
JP5638626B2 true JP5638626B2 (en) 2014-12-10

Family

ID=46244722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012548815A Active JP5638626B2 (en) 2010-12-16 2011-12-14 OA roller manufacturing method and OA roller

Country Status (3)

Country Link
JP (1) JP5638626B2 (en)
CN (1) CN103261974B (en)
WO (1) WO2012081626A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711116A (en) * 2016-03-16 2016-06-29 苏州市创怡盛实业有限公司 Internal compression method of sponge roller

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643358B2 (en) * 2013-03-01 2014-12-17 株式会社ブリヂストン Toner transport roller and toner transport roller manufacturing method
CN105082524B (en) * 2015-08-10 2017-07-18 苏州市创怡盛实业有限公司 The roller that roller surface processing method and surface are modified
JP6706437B2 (en) * 2016-01-14 2020-06-10 シンジーテック株式会社 Method of manufacturing fixing member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297512A (en) * 1996-04-30 1997-11-18 Bridgestone Corp Roller and its production
JP2004257476A (en) * 2003-02-26 2004-09-16 Sumitomo Rubber Ind Ltd Method for manufacturing elastic roller
JP2005195709A (en) * 2003-12-31 2005-07-21 Fuji Enterprise Kk Cleaning roller, its manufacturing method and mold used for manufacture
JP2007193001A (en) * 2006-01-18 2007-08-02 Canon Inc Manufacturing method for conductive roller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167219A (en) * 1981-04-10 1982-10-15 Shinden Kogyo Kk Compression molding of polyurethane foam
CN100461019C (en) * 2005-03-08 2009-02-11 株式会社普利司通 Conductive roller and image forming device using same
JP5243061B2 (en) * 2008-02-25 2013-07-24 株式会社ブリヂストン Method for manufacturing roller for image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297512A (en) * 1996-04-30 1997-11-18 Bridgestone Corp Roller and its production
JP2004257476A (en) * 2003-02-26 2004-09-16 Sumitomo Rubber Ind Ltd Method for manufacturing elastic roller
JP2005195709A (en) * 2003-12-31 2005-07-21 Fuji Enterprise Kk Cleaning roller, its manufacturing method and mold used for manufacture
JP2007193001A (en) * 2006-01-18 2007-08-02 Canon Inc Manufacturing method for conductive roller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711116A (en) * 2016-03-16 2016-06-29 苏州市创怡盛实业有限公司 Internal compression method of sponge roller
CN105711116B (en) * 2016-03-16 2018-05-22 苏州市创怡盛实业有限公司 The internal compression method of sponge roller

Also Published As

Publication number Publication date
CN103261974B (en) 2016-02-24
CN103261974A (en) 2013-08-21
WO2012081626A1 (en) 2012-06-21
JPWO2012081626A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5638626B2 (en) OA roller manufacturing method and OA roller
US5893821A (en) Roller for electrophotographic apparatus
JP6096425B2 (en) Manufacturing method of toner supply roller
JP2005047266A (en) Manufacturing method of double-layered roll, and manufacturing method of cylindrical member
EP2963501B1 (en) Toner conveyance roller and method for manufacturing toner conveyance roller
JP5937367B2 (en) OA roller manufacturing method
JP4442812B2 (en) Developing roll
JPH09297512A (en) Roller and its production
JPH1195541A (en) Developer carrying roller and its production
CN105082524A (en) Roller-surface treating method and roller with modified surface
JP2010224334A (en) Fixing roller, belt fixing device and image forming apparatus
JP6452532B2 (en) Method for producing foamed elastic roller
JP4570385B2 (en) Developing roller and image forming apparatus using the same
JP5142423B2 (en) Toner supply roller and image forming apparatus using the same
JP2006106352A (en) Toner supply roller
JP5568455B2 (en) Sponge roll for electrophotographic equipment and method for producing sponge roll for electrophotographic equipment
JP2018013513A (en) Method for producing elastic roller
JP2013096539A (en) Conductive roll
JP2007047322A (en) Conductive member, manufacturing method thereof, process cartridge and image forming apparatus
JP4260254B2 (en) Office equipment member and image forming apparatus
JP5085308B2 (en) Roller and its manufacturing method
JP2014169721A (en) Method for manufacturing roller and roller
JP2011232476A (en) Inspection device, inspection and selection method, and manufacturing method of elastic roller
JP2018155844A (en) Toner conveying roller and method for manufacturing the same
JP2002236414A (en) Toner supply roller and image forming device using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250